Properties

Label 2720.2.l.a.2481.36
Level $2720$
Weight $2$
Character 2720.2481
Analytic conductor $21.719$
Analytic rank $0$
Dimension $36$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2720,2,Mod(2481,2720)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2720, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2720.2481"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2720 = 2^{5} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2720.l (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [36,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(21.7193093498\)
Analytic rank: \(0\)
Dimension: \(36\)
Twist minimal: no (minimal twist has level 680)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 2481.36
Character \(\chi\) \(=\) 2720.2481
Dual form 2720.2.l.a.2481.35

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.03317 q^{3} -1.00000 q^{5} +1.14609i q^{7} +6.20011 q^{9} +1.02326 q^{11} +5.48640i q^{13} -3.03317 q^{15} +(-3.36364 + 2.38451i) q^{17} -0.131183i q^{19} +3.47629i q^{21} +2.38954i q^{23} +1.00000 q^{25} +9.70646 q^{27} -3.08229 q^{29} -0.752428i q^{31} +3.10373 q^{33} -1.14609i q^{35} +7.71836 q^{37} +16.6412i q^{39} +6.10135i q^{41} +9.64227i q^{43} -6.20011 q^{45} +3.00424 q^{47} +5.68647 q^{49} +(-10.2025 + 7.23263i) q^{51} -13.4640i q^{53} -1.02326 q^{55} -0.397901i q^{57} +10.0052i q^{59} -3.72365 q^{61} +7.10589i q^{63} -5.48640i q^{65} -3.72428i q^{67} +7.24788i q^{69} -6.62521i q^{71} -14.9275i q^{73} +3.03317 q^{75} +1.17275i q^{77} +13.7272i q^{79} +10.8410 q^{81} -3.85242i q^{83} +(3.36364 - 2.38451i) q^{85} -9.34909 q^{87} -3.64410 q^{89} -6.28791 q^{91} -2.28224i q^{93} +0.131183i q^{95} -3.73153i q^{97} +6.34435 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36 q - 4 q^{3} - 36 q^{5} + 36 q^{9} - 8 q^{11} + 4 q^{15} + 36 q^{25} - 16 q^{27} - 8 q^{33} - 36 q^{45} - 20 q^{47} - 36 q^{49} + 8 q^{55} - 4 q^{75} + 44 q^{81} - 24 q^{87} - 56 q^{91} - 40 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2720\mathbb{Z}\right)^\times\).

\(n\) \(511\) \(1601\) \(1701\) \(2177\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 3.03317 1.75120 0.875600 0.483037i \(-0.160466\pi\)
0.875600 + 0.483037i \(0.160466\pi\)
\(4\) 0 0
\(5\) −1.00000 −0.447214
\(6\) 0 0
\(7\) 1.14609i 0.433182i 0.976262 + 0.216591i \(0.0694938\pi\)
−0.976262 + 0.216591i \(0.930506\pi\)
\(8\) 0 0
\(9\) 6.20011 2.06670
\(10\) 0 0
\(11\) 1.02326 0.308526 0.154263 0.988030i \(-0.450700\pi\)
0.154263 + 0.988030i \(0.450700\pi\)
\(12\) 0 0
\(13\) 5.48640i 1.52165i 0.648956 + 0.760826i \(0.275206\pi\)
−0.648956 + 0.760826i \(0.724794\pi\)
\(14\) 0 0
\(15\) −3.03317 −0.783161
\(16\) 0 0
\(17\) −3.36364 + 2.38451i −0.815803 + 0.578329i
\(18\) 0 0
\(19\) 0.131183i 0.0300955i −0.999887 0.0150477i \(-0.995210\pi\)
0.999887 0.0150477i \(-0.00479003\pi\)
\(20\) 0 0
\(21\) 3.47629i 0.758588i
\(22\) 0 0
\(23\) 2.38954i 0.498254i 0.968471 + 0.249127i \(0.0801436\pi\)
−0.968471 + 0.249127i \(0.919856\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 9.70646 1.86801
\(28\) 0 0
\(29\) −3.08229 −0.572366 −0.286183 0.958175i \(-0.592387\pi\)
−0.286183 + 0.958175i \(0.592387\pi\)
\(30\) 0 0
\(31\) 0.752428i 0.135140i −0.997715 0.0675700i \(-0.978475\pi\)
0.997715 0.0675700i \(-0.0215246\pi\)
\(32\) 0 0
\(33\) 3.10373 0.540291
\(34\) 0 0
\(35\) 1.14609i 0.193725i
\(36\) 0 0
\(37\) 7.71836 1.26889 0.634445 0.772968i \(-0.281229\pi\)
0.634445 + 0.772968i \(0.281229\pi\)
\(38\) 0 0
\(39\) 16.6412i 2.66472i
\(40\) 0 0
\(41\) 6.10135i 0.952871i 0.879210 + 0.476435i \(0.158071\pi\)
−0.879210 + 0.476435i \(0.841929\pi\)
\(42\) 0 0
\(43\) 9.64227i 1.47043i 0.677833 + 0.735216i \(0.262919\pi\)
−0.677833 + 0.735216i \(0.737081\pi\)
\(44\) 0 0
\(45\) −6.20011 −0.924257
\(46\) 0 0
\(47\) 3.00424 0.438214 0.219107 0.975701i \(-0.429686\pi\)
0.219107 + 0.975701i \(0.429686\pi\)
\(48\) 0 0
\(49\) 5.68647 0.812353
\(50\) 0 0
\(51\) −10.2025 + 7.23263i −1.42864 + 1.01277i
\(52\) 0 0
\(53\) 13.4640i 1.84942i −0.380677 0.924708i \(-0.624309\pi\)
0.380677 0.924708i \(-0.375691\pi\)
\(54\) 0 0
\(55\) −1.02326 −0.137977
\(56\) 0 0
\(57\) 0.397901i 0.0527032i
\(58\) 0 0
\(59\) 10.0052i 1.30257i 0.758835 + 0.651283i \(0.225769\pi\)
−0.758835 + 0.651283i \(0.774231\pi\)
\(60\) 0 0
\(61\) −3.72365 −0.476765 −0.238383 0.971171i \(-0.576617\pi\)
−0.238383 + 0.971171i \(0.576617\pi\)
\(62\) 0 0
\(63\) 7.10589i 0.895258i
\(64\) 0 0
\(65\) 5.48640i 0.680504i
\(66\) 0 0
\(67\) 3.72428i 0.454993i −0.973779 0.227497i \(-0.926946\pi\)
0.973779 0.227497i \(-0.0730541\pi\)
\(68\) 0 0
\(69\) 7.24788i 0.872542i
\(70\) 0 0
\(71\) 6.62521i 0.786268i −0.919481 0.393134i \(-0.871391\pi\)
0.919481 0.393134i \(-0.128609\pi\)
\(72\) 0 0
\(73\) 14.9275i 1.74713i −0.486708 0.873565i \(-0.661802\pi\)
0.486708 0.873565i \(-0.338198\pi\)
\(74\) 0 0
\(75\) 3.03317 0.350240
\(76\) 0 0
\(77\) 1.17275i 0.133648i
\(78\) 0 0
\(79\) 13.7272i 1.54443i 0.635358 + 0.772217i \(0.280852\pi\)
−0.635358 + 0.772217i \(0.719148\pi\)
\(80\) 0 0
\(81\) 10.8410 1.20456
\(82\) 0 0
\(83\) 3.85242i 0.422858i −0.977393 0.211429i \(-0.932188\pi\)
0.977393 0.211429i \(-0.0678117\pi\)
\(84\) 0 0
\(85\) 3.36364 2.38451i 0.364838 0.258637i
\(86\) 0 0
\(87\) −9.34909 −1.00233
\(88\) 0 0
\(89\) −3.64410 −0.386274 −0.193137 0.981172i \(-0.561866\pi\)
−0.193137 + 0.981172i \(0.561866\pi\)
\(90\) 0 0
\(91\) −6.28791 −0.659152
\(92\) 0 0
\(93\) 2.28224i 0.236657i
\(94\) 0 0
\(95\) 0.131183i 0.0134591i
\(96\) 0 0
\(97\) 3.73153i 0.378880i −0.981892 0.189440i \(-0.939333\pi\)
0.981892 0.189440i \(-0.0606672\pi\)
\(98\) 0 0
\(99\) 6.34435 0.637631
\(100\) 0 0
\(101\) 12.0231i 1.19635i −0.801366 0.598174i \(-0.795893\pi\)
0.801366 0.598174i \(-0.204107\pi\)
\(102\) 0 0
\(103\) 3.61534 0.356230 0.178115 0.984010i \(-0.443000\pi\)
0.178115 + 0.984010i \(0.443000\pi\)
\(104\) 0 0
\(105\) 3.47629i 0.339251i
\(106\) 0 0
\(107\) 13.7464 1.32892 0.664459 0.747324i \(-0.268662\pi\)
0.664459 + 0.747324i \(0.268662\pi\)
\(108\) 0 0
\(109\) 16.8047 1.60960 0.804798 0.593549i \(-0.202274\pi\)
0.804798 + 0.593549i \(0.202274\pi\)
\(110\) 0 0
\(111\) 23.4111 2.22208
\(112\) 0 0
\(113\) 2.53084i 0.238081i −0.992889 0.119041i \(-0.962018\pi\)
0.992889 0.119041i \(-0.0379818\pi\)
\(114\) 0 0
\(115\) 2.38954i 0.222826i
\(116\) 0 0
\(117\) 34.0162i 3.14480i
\(118\) 0 0
\(119\) −2.73287 3.85504i −0.250522 0.353391i
\(120\) 0 0
\(121\) −9.95293 −0.904812
\(122\) 0 0
\(123\) 18.5064i 1.66867i
\(124\) 0 0
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) −9.53470 −0.846068 −0.423034 0.906114i \(-0.639035\pi\)
−0.423034 + 0.906114i \(0.639035\pi\)
\(128\) 0 0
\(129\) 29.2466i 2.57502i
\(130\) 0 0
\(131\) −18.4141 −1.60884 −0.804422 0.594059i \(-0.797525\pi\)
−0.804422 + 0.594059i \(0.797525\pi\)
\(132\) 0 0
\(133\) 0.150348 0.0130368
\(134\) 0 0
\(135\) −9.70646 −0.835399
\(136\) 0 0
\(137\) −13.1861 −1.12656 −0.563282 0.826264i \(-0.690462\pi\)
−0.563282 + 0.826264i \(0.690462\pi\)
\(138\) 0 0
\(139\) 16.9269 1.43572 0.717862 0.696185i \(-0.245121\pi\)
0.717862 + 0.696185i \(0.245121\pi\)
\(140\) 0 0
\(141\) 9.11237 0.767400
\(142\) 0 0
\(143\) 5.61403i 0.469469i
\(144\) 0 0
\(145\) 3.08229 0.255970
\(146\) 0 0
\(147\) 17.2480 1.42259
\(148\) 0 0
\(149\) 11.7779i 0.964881i 0.875929 + 0.482441i \(0.160250\pi\)
−0.875929 + 0.482441i \(0.839750\pi\)
\(150\) 0 0
\(151\) −2.90058 −0.236046 −0.118023 0.993011i \(-0.537656\pi\)
−0.118023 + 0.993011i \(0.537656\pi\)
\(152\) 0 0
\(153\) −20.8549 + 14.7842i −1.68602 + 1.19523i
\(154\) 0 0
\(155\) 0.752428i 0.0604364i
\(156\) 0 0
\(157\) 9.13785i 0.729280i −0.931149 0.364640i \(-0.881192\pi\)
0.931149 0.364640i \(-0.118808\pi\)
\(158\) 0 0
\(159\) 40.8384i 3.23870i
\(160\) 0 0
\(161\) −2.73863 −0.215835
\(162\) 0 0
\(163\) 22.3320 1.74917 0.874587 0.484868i \(-0.161132\pi\)
0.874587 + 0.484868i \(0.161132\pi\)
\(164\) 0 0
\(165\) −3.10373 −0.241625
\(166\) 0 0
\(167\) 0.350738i 0.0271409i 0.999908 + 0.0135704i \(0.00431974\pi\)
−0.999908 + 0.0135704i \(0.995680\pi\)
\(168\) 0 0
\(169\) −17.1005 −1.31543
\(170\) 0 0
\(171\) 0.813350i 0.0621984i
\(172\) 0 0
\(173\) 21.6007 1.64227 0.821137 0.570731i \(-0.193340\pi\)
0.821137 + 0.570731i \(0.193340\pi\)
\(174\) 0 0
\(175\) 1.14609i 0.0866364i
\(176\) 0 0
\(177\) 30.3474i 2.28105i
\(178\) 0 0
\(179\) 20.4689i 1.52991i 0.644082 + 0.764957i \(0.277240\pi\)
−0.644082 + 0.764957i \(0.722760\pi\)
\(180\) 0 0
\(181\) 10.2177 0.759472 0.379736 0.925095i \(-0.376015\pi\)
0.379736 + 0.925095i \(0.376015\pi\)
\(182\) 0 0
\(183\) −11.2945 −0.834911
\(184\) 0 0
\(185\) −7.71836 −0.567465
\(186\) 0 0
\(187\) −3.44190 + 2.43999i −0.251696 + 0.178430i
\(188\) 0 0
\(189\) 11.1245i 0.809188i
\(190\) 0 0
\(191\) 10.7086 0.774847 0.387424 0.921902i \(-0.373365\pi\)
0.387424 + 0.921902i \(0.373365\pi\)
\(192\) 0 0
\(193\) 5.68548i 0.409250i −0.978840 0.204625i \(-0.934403\pi\)
0.978840 0.204625i \(-0.0655974\pi\)
\(194\) 0 0
\(195\) 16.6412i 1.19170i
\(196\) 0 0
\(197\) 18.1950 1.29634 0.648170 0.761496i \(-0.275535\pi\)
0.648170 + 0.761496i \(0.275535\pi\)
\(198\) 0 0
\(199\) 6.43510i 0.456172i −0.973641 0.228086i \(-0.926753\pi\)
0.973641 0.228086i \(-0.0732468\pi\)
\(200\) 0 0
\(201\) 11.2964i 0.796785i
\(202\) 0 0
\(203\) 3.53258i 0.247939i
\(204\) 0 0
\(205\) 6.10135i 0.426137i
\(206\) 0 0
\(207\) 14.8154i 1.02974i
\(208\) 0 0
\(209\) 0.134235i 0.00928524i
\(210\) 0 0
\(211\) 0.0864097 0.00594869 0.00297434 0.999996i \(-0.499053\pi\)
0.00297434 + 0.999996i \(0.499053\pi\)
\(212\) 0 0
\(213\) 20.0954i 1.37691i
\(214\) 0 0
\(215\) 9.64227i 0.657597i
\(216\) 0 0
\(217\) 0.862351 0.0585402
\(218\) 0 0
\(219\) 45.2776i 3.05957i
\(220\) 0 0
\(221\) −13.0824 18.4543i −0.880016 1.24137i
\(222\) 0 0
\(223\) −24.4718 −1.63876 −0.819378 0.573254i \(-0.805681\pi\)
−0.819378 + 0.573254i \(0.805681\pi\)
\(224\) 0 0
\(225\) 6.20011 0.413340
\(226\) 0 0
\(227\) −1.45822 −0.0967854 −0.0483927 0.998828i \(-0.515410\pi\)
−0.0483927 + 0.998828i \(0.515410\pi\)
\(228\) 0 0
\(229\) 15.5745i 1.02919i −0.857434 0.514595i \(-0.827942\pi\)
0.857434 0.514595i \(-0.172058\pi\)
\(230\) 0 0
\(231\) 3.55716i 0.234044i
\(232\) 0 0
\(233\) 27.4971i 1.80140i −0.434445 0.900698i \(-0.643055\pi\)
0.434445 0.900698i \(-0.356945\pi\)
\(234\) 0 0
\(235\) −3.00424 −0.195975
\(236\) 0 0
\(237\) 41.6370i 2.70461i
\(238\) 0 0
\(239\) −24.6460 −1.59422 −0.797109 0.603836i \(-0.793638\pi\)
−0.797109 + 0.603836i \(0.793638\pi\)
\(240\) 0 0
\(241\) 4.94166i 0.318320i 0.987253 + 0.159160i \(0.0508786\pi\)
−0.987253 + 0.159160i \(0.949121\pi\)
\(242\) 0 0
\(243\) 3.76319 0.241409
\(244\) 0 0
\(245\) −5.68647 −0.363295
\(246\) 0 0
\(247\) 0.719723 0.0457949
\(248\) 0 0
\(249\) 11.6850i 0.740509i
\(250\) 0 0
\(251\) 14.0131i 0.884498i −0.896892 0.442249i \(-0.854181\pi\)
0.896892 0.442249i \(-0.145819\pi\)
\(252\) 0 0
\(253\) 2.44513i 0.153724i
\(254\) 0 0
\(255\) 10.2025 7.23263i 0.638905 0.452925i
\(256\) 0 0
\(257\) 4.66350 0.290901 0.145451 0.989366i \(-0.453537\pi\)
0.145451 + 0.989366i \(0.453537\pi\)
\(258\) 0 0
\(259\) 8.84595i 0.549661i
\(260\) 0 0
\(261\) −19.1105 −1.18291
\(262\) 0 0
\(263\) −14.1307 −0.871339 −0.435669 0.900107i \(-0.643488\pi\)
−0.435669 + 0.900107i \(0.643488\pi\)
\(264\) 0 0
\(265\) 13.4640i 0.827084i
\(266\) 0 0
\(267\) −11.0532 −0.676443
\(268\) 0 0
\(269\) −8.14611 −0.496677 −0.248339 0.968673i \(-0.579885\pi\)
−0.248339 + 0.968673i \(0.579885\pi\)
\(270\) 0 0
\(271\) 15.1993 0.923289 0.461644 0.887065i \(-0.347260\pi\)
0.461644 + 0.887065i \(0.347260\pi\)
\(272\) 0 0
\(273\) −19.0723 −1.15431
\(274\) 0 0
\(275\) 1.02326 0.0617052
\(276\) 0 0
\(277\) 8.47445 0.509180 0.254590 0.967049i \(-0.418059\pi\)
0.254590 + 0.967049i \(0.418059\pi\)
\(278\) 0 0
\(279\) 4.66513i 0.279294i
\(280\) 0 0
\(281\) −18.0326 −1.07574 −0.537868 0.843029i \(-0.680770\pi\)
−0.537868 + 0.843029i \(0.680770\pi\)
\(282\) 0 0
\(283\) −19.9346 −1.18499 −0.592493 0.805576i \(-0.701856\pi\)
−0.592493 + 0.805576i \(0.701856\pi\)
\(284\) 0 0
\(285\) 0.397901i 0.0235696i
\(286\) 0 0
\(287\) −6.99271 −0.412766
\(288\) 0 0
\(289\) 5.62819 16.0413i 0.331070 0.943606i
\(290\) 0 0
\(291\) 11.3184i 0.663494i
\(292\) 0 0
\(293\) 7.57931i 0.442788i −0.975184 0.221394i \(-0.928939\pi\)
0.975184 0.221394i \(-0.0710607\pi\)
\(294\) 0 0
\(295\) 10.0052i 0.582525i
\(296\) 0 0
\(297\) 9.93227 0.576329
\(298\) 0 0
\(299\) −13.1100 −0.758169
\(300\) 0 0
\(301\) −11.0509 −0.636965
\(302\) 0 0
\(303\) 36.4682i 2.09504i
\(304\) 0 0
\(305\) 3.72365 0.213216
\(306\) 0 0
\(307\) 19.8260i 1.13153i 0.824567 + 0.565765i \(0.191419\pi\)
−0.824567 + 0.565765i \(0.808581\pi\)
\(308\) 0 0
\(309\) 10.9659 0.623830
\(310\) 0 0
\(311\) 16.7810i 0.951565i −0.879563 0.475782i \(-0.842165\pi\)
0.879563 0.475782i \(-0.157835\pi\)
\(312\) 0 0
\(313\) 10.1370i 0.572979i −0.958083 0.286490i \(-0.907512\pi\)
0.958083 0.286490i \(-0.0924884\pi\)
\(314\) 0 0
\(315\) 7.10589i 0.400372i
\(316\) 0 0
\(317\) −16.3655 −0.919177 −0.459589 0.888132i \(-0.652003\pi\)
−0.459589 + 0.888132i \(0.652003\pi\)
\(318\) 0 0
\(319\) −3.15400 −0.176590
\(320\) 0 0
\(321\) 41.6953 2.32720
\(322\) 0 0
\(323\) 0.312808 + 0.441254i 0.0174051 + 0.0245520i
\(324\) 0 0
\(325\) 5.48640i 0.304330i
\(326\) 0 0
\(327\) 50.9714 2.81872
\(328\) 0 0
\(329\) 3.44314i 0.189826i
\(330\) 0 0
\(331\) 25.3181i 1.39161i −0.718232 0.695804i \(-0.755048\pi\)
0.718232 0.695804i \(-0.244952\pi\)
\(332\) 0 0
\(333\) 47.8547 2.62242
\(334\) 0 0
\(335\) 3.72428i 0.203479i
\(336\) 0 0
\(337\) 13.6016i 0.740928i 0.928847 + 0.370464i \(0.120801\pi\)
−0.928847 + 0.370464i \(0.879199\pi\)
\(338\) 0 0
\(339\) 7.67645i 0.416928i
\(340\) 0 0
\(341\) 0.769932i 0.0416942i
\(342\) 0 0
\(343\) 14.5399i 0.785079i
\(344\) 0 0
\(345\) 7.24788i 0.390213i
\(346\) 0 0
\(347\) 2.58624 0.138837 0.0694183 0.997588i \(-0.477886\pi\)
0.0694183 + 0.997588i \(0.477886\pi\)
\(348\) 0 0
\(349\) 14.5552i 0.779123i 0.921000 + 0.389561i \(0.127373\pi\)
−0.921000 + 0.389561i \(0.872627\pi\)
\(350\) 0 0
\(351\) 53.2535i 2.84246i
\(352\) 0 0
\(353\) 12.1646 0.647456 0.323728 0.946150i \(-0.395064\pi\)
0.323728 + 0.946150i \(0.395064\pi\)
\(354\) 0 0
\(355\) 6.62521i 0.351630i
\(356\) 0 0
\(357\) −8.28925 11.6930i −0.438714 0.618859i
\(358\) 0 0
\(359\) −2.79598 −0.147566 −0.0737830 0.997274i \(-0.523507\pi\)
−0.0737830 + 0.997274i \(0.523507\pi\)
\(360\) 0 0
\(361\) 18.9828 0.999094
\(362\) 0 0
\(363\) −30.1889 −1.58451
\(364\) 0 0
\(365\) 14.9275i 0.781340i
\(366\) 0 0
\(367\) 8.02582i 0.418944i −0.977815 0.209472i \(-0.932825\pi\)
0.977815 0.209472i \(-0.0671746\pi\)
\(368\) 0 0
\(369\) 37.8290i 1.96930i
\(370\) 0 0
\(371\) 15.4309 0.801134
\(372\) 0 0
\(373\) 7.11793i 0.368553i −0.982874 0.184276i \(-0.941006\pi\)
0.982874 0.184276i \(-0.0589941\pi\)
\(374\) 0 0
\(375\) −3.03317 −0.156632
\(376\) 0 0
\(377\) 16.9106i 0.870943i
\(378\) 0 0
\(379\) 6.32540 0.324914 0.162457 0.986716i \(-0.448058\pi\)
0.162457 + 0.986716i \(0.448058\pi\)
\(380\) 0 0
\(381\) −28.9203 −1.48163
\(382\) 0 0
\(383\) −2.87869 −0.147094 −0.0735472 0.997292i \(-0.523432\pi\)
−0.0735472 + 0.997292i \(0.523432\pi\)
\(384\) 0 0
\(385\) 1.17275i 0.0597691i
\(386\) 0 0
\(387\) 59.7831i 3.03895i
\(388\) 0 0
\(389\) 0.0104623i 0.000530459i 1.00000 0.000265230i \(8.44253e-5\pi\)
−1.00000 0.000265230i \(0.999916\pi\)
\(390\) 0 0
\(391\) −5.69789 8.03757i −0.288155 0.406477i
\(392\) 0 0
\(393\) −55.8529 −2.81741
\(394\) 0 0
\(395\) 13.7272i 0.690692i
\(396\) 0 0
\(397\) 10.7463 0.539343 0.269672 0.962952i \(-0.413085\pi\)
0.269672 + 0.962952i \(0.413085\pi\)
\(398\) 0 0
\(399\) 0.456031 0.0228301
\(400\) 0 0
\(401\) 17.1586i 0.856858i −0.903575 0.428429i \(-0.859067\pi\)
0.903575 0.428429i \(-0.140933\pi\)
\(402\) 0 0
\(403\) 4.12811 0.205636
\(404\) 0 0
\(405\) −10.8410 −0.538694
\(406\) 0 0
\(407\) 7.89792 0.391486
\(408\) 0 0
\(409\) −24.4746 −1.21019 −0.605096 0.796153i \(-0.706865\pi\)
−0.605096 + 0.796153i \(0.706865\pi\)
\(410\) 0 0
\(411\) −39.9957 −1.97284
\(412\) 0 0
\(413\) −11.4669 −0.564248
\(414\) 0 0
\(415\) 3.85242i 0.189108i
\(416\) 0 0
\(417\) 51.3422 2.51424
\(418\) 0 0
\(419\) 31.5503 1.54133 0.770667 0.637238i \(-0.219923\pi\)
0.770667 + 0.637238i \(0.219923\pi\)
\(420\) 0 0
\(421\) 34.3300i 1.67314i 0.547858 + 0.836571i \(0.315443\pi\)
−0.547858 + 0.836571i \(0.684557\pi\)
\(422\) 0 0
\(423\) 18.6266 0.905657
\(424\) 0 0
\(425\) −3.36364 + 2.38451i −0.163161 + 0.115666i
\(426\) 0 0
\(427\) 4.26765i 0.206526i
\(428\) 0 0
\(429\) 17.0283i 0.822134i
\(430\) 0 0
\(431\) 23.6707i 1.14018i 0.821584 + 0.570088i \(0.193091\pi\)
−0.821584 + 0.570088i \(0.806909\pi\)
\(432\) 0 0
\(433\) −35.0893 −1.68628 −0.843142 0.537691i \(-0.819297\pi\)
−0.843142 + 0.537691i \(0.819297\pi\)
\(434\) 0 0
\(435\) 9.34909 0.448255
\(436\) 0 0
\(437\) 0.313468 0.0149952
\(438\) 0 0
\(439\) 23.9757i 1.14430i 0.820150 + 0.572149i \(0.193890\pi\)
−0.820150 + 0.572149i \(0.806110\pi\)
\(440\) 0 0
\(441\) 35.2567 1.67889
\(442\) 0 0
\(443\) 2.98605i 0.141872i 0.997481 + 0.0709358i \(0.0225985\pi\)
−0.997481 + 0.0709358i \(0.977401\pi\)
\(444\) 0 0
\(445\) 3.64410 0.172747
\(446\) 0 0
\(447\) 35.7243i 1.68970i
\(448\) 0 0
\(449\) 23.9517i 1.13035i −0.824970 0.565176i \(-0.808808\pi\)
0.824970 0.565176i \(-0.191192\pi\)
\(450\) 0 0
\(451\) 6.24329i 0.293985i
\(452\) 0 0
\(453\) −8.79794 −0.413363
\(454\) 0 0
\(455\) 6.28791 0.294782
\(456\) 0 0
\(457\) −18.6341 −0.871666 −0.435833 0.900027i \(-0.643546\pi\)
−0.435833 + 0.900027i \(0.643546\pi\)
\(458\) 0 0
\(459\) −32.6491 + 23.1452i −1.52393 + 1.08032i
\(460\) 0 0
\(461\) 13.9508i 0.649753i −0.945756 0.324877i \(-0.894677\pi\)
0.945756 0.324877i \(-0.105323\pi\)
\(462\) 0 0
\(463\) 20.8212 0.967644 0.483822 0.875166i \(-0.339248\pi\)
0.483822 + 0.875166i \(0.339248\pi\)
\(464\) 0 0
\(465\) 2.28224i 0.105836i
\(466\) 0 0
\(467\) 16.4551i 0.761453i −0.924688 0.380726i \(-0.875674\pi\)
0.924688 0.380726i \(-0.124326\pi\)
\(468\) 0 0
\(469\) 4.26837 0.197095
\(470\) 0 0
\(471\) 27.7166i 1.27712i
\(472\) 0 0
\(473\) 9.86659i 0.453666i
\(474\) 0 0
\(475\) 0.131183i 0.00601910i
\(476\) 0 0
\(477\) 83.4780i 3.82219i
\(478\) 0 0
\(479\) 4.95366i 0.226338i 0.993576 + 0.113169i \(0.0361002\pi\)
−0.993576 + 0.113169i \(0.963900\pi\)
\(480\) 0 0
\(481\) 42.3460i 1.93081i
\(482\) 0 0
\(483\) −8.30674 −0.377970
\(484\) 0 0
\(485\) 3.73153i 0.169440i
\(486\) 0 0
\(487\) 38.6316i 1.75057i 0.483611 + 0.875283i \(0.339325\pi\)
−0.483611 + 0.875283i \(0.660675\pi\)
\(488\) 0 0
\(489\) 67.7366 3.06315
\(490\) 0 0
\(491\) 34.3423i 1.54985i 0.632054 + 0.774924i \(0.282212\pi\)
−0.632054 + 0.774924i \(0.717788\pi\)
\(492\) 0 0
\(493\) 10.3677 7.34975i 0.466938 0.331016i
\(494\) 0 0
\(495\) −6.34435 −0.285157
\(496\) 0 0
\(497\) 7.59310 0.340597
\(498\) 0 0
\(499\) 12.3584 0.553240 0.276620 0.960979i \(-0.410786\pi\)
0.276620 + 0.960979i \(0.410786\pi\)
\(500\) 0 0
\(501\) 1.06385i 0.0475291i
\(502\) 0 0
\(503\) 41.3000i 1.84147i −0.390183 0.920737i \(-0.627588\pi\)
0.390183 0.920737i \(-0.372412\pi\)
\(504\) 0 0
\(505\) 12.0231i 0.535023i
\(506\) 0 0
\(507\) −51.8688 −2.30357
\(508\) 0 0
\(509\) 27.2031i 1.20576i −0.797833 0.602878i \(-0.794020\pi\)
0.797833 0.602878i \(-0.205980\pi\)
\(510\) 0 0
\(511\) 17.1083 0.756825
\(512\) 0 0
\(513\) 1.27332i 0.0562186i
\(514\) 0 0
\(515\) −3.61534 −0.159311
\(516\) 0 0
\(517\) 3.07413 0.135200
\(518\) 0 0
\(519\) 65.5187 2.87595
\(520\) 0 0
\(521\) 28.1207i 1.23199i −0.787750 0.615995i \(-0.788754\pi\)
0.787750 0.615995i \(-0.211246\pi\)
\(522\) 0 0
\(523\) 39.9777i 1.74810i −0.485834 0.874051i \(-0.661484\pi\)
0.485834 0.874051i \(-0.338516\pi\)
\(524\) 0 0
\(525\) 3.47629i 0.151718i
\(526\) 0 0
\(527\) 1.79417 + 2.53090i 0.0781554 + 0.110248i
\(528\) 0 0
\(529\) 17.2901 0.751743
\(530\) 0 0
\(531\) 62.0333i 2.69202i
\(532\) 0 0
\(533\) −33.4744 −1.44994
\(534\) 0 0
\(535\) −13.7464 −0.594311
\(536\) 0 0
\(537\) 62.0855i 2.67919i
\(538\) 0 0
\(539\) 5.81877 0.250632
\(540\) 0 0
\(541\) −26.3948 −1.13480 −0.567401 0.823442i \(-0.692051\pi\)
−0.567401 + 0.823442i \(0.692051\pi\)
\(542\) 0 0
\(543\) 30.9919 1.32999
\(544\) 0 0
\(545\) −16.8047 −0.719833
\(546\) 0 0
\(547\) −3.38133 −0.144575 −0.0722877 0.997384i \(-0.523030\pi\)
−0.0722877 + 0.997384i \(0.523030\pi\)
\(548\) 0 0
\(549\) −23.0871 −0.985331
\(550\) 0 0
\(551\) 0.404344i 0.0172256i
\(552\) 0 0
\(553\) −15.7327 −0.669021
\(554\) 0 0
\(555\) −23.4111 −0.993745
\(556\) 0 0
\(557\) 6.09342i 0.258187i 0.991632 + 0.129093i \(0.0412067\pi\)
−0.991632 + 0.129093i \(0.958793\pi\)
\(558\) 0 0
\(559\) −52.9013 −2.23749
\(560\) 0 0
\(561\) −10.4399 + 7.40089i −0.440771 + 0.312466i
\(562\) 0 0
\(563\) 41.4270i 1.74594i −0.487774 0.872970i \(-0.662191\pi\)
0.487774 0.872970i \(-0.337809\pi\)
\(564\) 0 0
\(565\) 2.53084i 0.106473i
\(566\) 0 0
\(567\) 12.4248i 0.521792i
\(568\) 0 0
\(569\) −1.99334 −0.0835653 −0.0417827 0.999127i \(-0.513304\pi\)
−0.0417827 + 0.999127i \(0.513304\pi\)
\(570\) 0 0
\(571\) −12.1058 −0.506614 −0.253307 0.967386i \(-0.581518\pi\)
−0.253307 + 0.967386i \(0.581518\pi\)
\(572\) 0 0
\(573\) 32.4810 1.35691
\(574\) 0 0
\(575\) 2.38954i 0.0996508i
\(576\) 0 0
\(577\) 19.1678 0.797967 0.398984 0.916958i \(-0.369363\pi\)
0.398984 + 0.916958i \(0.369363\pi\)
\(578\) 0 0
\(579\) 17.2450i 0.716678i
\(580\) 0 0
\(581\) 4.41523 0.183174
\(582\) 0 0
\(583\) 13.7772i 0.570593i
\(584\) 0 0
\(585\) 34.0162i 1.40640i
\(586\) 0 0
\(587\) 16.6238i 0.686137i −0.939310 0.343068i \(-0.888534\pi\)
0.939310 0.343068i \(-0.111466\pi\)
\(588\) 0 0
\(589\) −0.0987059 −0.00406710
\(590\) 0 0
\(591\) 55.1885 2.27015
\(592\) 0 0
\(593\) 24.6362 1.01169 0.505844 0.862625i \(-0.331181\pi\)
0.505844 + 0.862625i \(0.331181\pi\)
\(594\) 0 0
\(595\) 2.73287 + 3.85504i 0.112037 + 0.158041i
\(596\) 0 0
\(597\) 19.5188i 0.798849i
\(598\) 0 0
\(599\) −0.908614 −0.0371249 −0.0185625 0.999828i \(-0.505909\pi\)
−0.0185625 + 0.999828i \(0.505909\pi\)
\(600\) 0 0
\(601\) 25.0001i 1.01977i −0.860241 0.509887i \(-0.829687\pi\)
0.860241 0.509887i \(-0.170313\pi\)
\(602\) 0 0
\(603\) 23.0909i 0.940336i
\(604\) 0 0
\(605\) 9.95293 0.404644
\(606\) 0 0
\(607\) 36.9035i 1.49787i −0.662645 0.748933i \(-0.730566\pi\)
0.662645 0.748933i \(-0.269434\pi\)
\(608\) 0 0
\(609\) 10.7149i 0.434190i
\(610\) 0 0
\(611\) 16.4825i 0.666809i
\(612\) 0 0
\(613\) 6.42995i 0.259703i 0.991533 + 0.129852i \(0.0414501\pi\)
−0.991533 + 0.129852i \(0.958550\pi\)
\(614\) 0 0
\(615\) 18.5064i 0.746251i
\(616\) 0 0
\(617\) 14.0811i 0.566883i −0.958989 0.283442i \(-0.908524\pi\)
0.958989 0.283442i \(-0.0914762\pi\)
\(618\) 0 0
\(619\) −0.313074 −0.0125835 −0.00629176 0.999980i \(-0.502003\pi\)
−0.00629176 + 0.999980i \(0.502003\pi\)
\(620\) 0 0
\(621\) 23.1940i 0.930743i
\(622\) 0 0
\(623\) 4.17647i 0.167327i
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 0.407158i 0.0162603i
\(628\) 0 0
\(629\) −25.9618 + 18.4045i −1.03517 + 0.733837i
\(630\) 0 0
\(631\) −47.2286 −1.88014 −0.940070 0.340982i \(-0.889241\pi\)
−0.940070 + 0.340982i \(0.889241\pi\)
\(632\) 0 0
\(633\) 0.262095 0.0104173
\(634\) 0 0
\(635\) 9.53470 0.378373
\(636\) 0 0
\(637\) 31.1982i 1.23612i
\(638\) 0 0
\(639\) 41.0770i 1.62498i
\(640\) 0 0
\(641\) 33.8478i 1.33691i 0.743754 + 0.668453i \(0.233043\pi\)
−0.743754 + 0.668453i \(0.766957\pi\)
\(642\) 0 0
\(643\) 12.8818 0.508008 0.254004 0.967203i \(-0.418252\pi\)
0.254004 + 0.967203i \(0.418252\pi\)
\(644\) 0 0
\(645\) 29.2466i 1.15158i
\(646\) 0 0
\(647\) 12.8495 0.505166 0.252583 0.967575i \(-0.418720\pi\)
0.252583 + 0.967575i \(0.418720\pi\)
\(648\) 0 0
\(649\) 10.2380i 0.401875i
\(650\) 0 0
\(651\) 2.61565 0.102516
\(652\) 0 0
\(653\) −35.7866 −1.40044 −0.700219 0.713928i \(-0.746914\pi\)
−0.700219 + 0.713928i \(0.746914\pi\)
\(654\) 0 0
\(655\) 18.4141 0.719497
\(656\) 0 0
\(657\) 92.5520i 3.61080i
\(658\) 0 0
\(659\) 31.8870i 1.24214i −0.783754 0.621071i \(-0.786698\pi\)
0.783754 0.621071i \(-0.213302\pi\)
\(660\) 0 0
\(661\) 4.27000i 0.166084i 0.996546 + 0.0830420i \(0.0264636\pi\)
−0.996546 + 0.0830420i \(0.973536\pi\)
\(662\) 0 0
\(663\) −39.6811 55.9749i −1.54108 2.17389i
\(664\) 0 0
\(665\) −0.150348 −0.00583024
\(666\) 0 0
\(667\) 7.36525i 0.285184i
\(668\) 0 0
\(669\) −74.2272 −2.86979
\(670\) 0 0
\(671\) −3.81028 −0.147094
\(672\) 0 0
\(673\) 48.6589i 1.87566i 0.347089 + 0.937832i \(0.387170\pi\)
−0.347089 + 0.937832i \(0.612830\pi\)
\(674\) 0 0
\(675\) 9.70646 0.373602
\(676\) 0 0
\(677\) −13.6262 −0.523698 −0.261849 0.965109i \(-0.584332\pi\)
−0.261849 + 0.965109i \(0.584332\pi\)
\(678\) 0 0
\(679\) 4.27668 0.164124
\(680\) 0 0
\(681\) −4.42302 −0.169491
\(682\) 0 0
\(683\) −4.24075 −0.162268 −0.0811339 0.996703i \(-0.525854\pi\)
−0.0811339 + 0.996703i \(0.525854\pi\)
\(684\) 0 0
\(685\) 13.1861 0.503815
\(686\) 0 0
\(687\) 47.2400i 1.80232i
\(688\) 0 0
\(689\) 73.8686 2.81417
\(690\) 0 0
\(691\) 37.5781 1.42954 0.714769 0.699361i \(-0.246532\pi\)
0.714769 + 0.699361i \(0.246532\pi\)
\(692\) 0 0
\(693\) 7.27120i 0.276210i
\(694\) 0 0
\(695\) −16.9269 −0.642075
\(696\) 0 0
\(697\) −14.5487 20.5228i −0.551073 0.777355i
\(698\) 0 0
\(699\) 83.4034i 3.15461i
\(700\) 0 0
\(701\) 24.2590i 0.916249i −0.888888 0.458124i \(-0.848521\pi\)
0.888888 0.458124i \(-0.151479\pi\)
\(702\) 0 0
\(703\) 1.01252i 0.0381879i
\(704\) 0 0
\(705\) −9.11237 −0.343192
\(706\) 0 0
\(707\) 13.7796 0.518236
\(708\) 0 0
\(709\) 21.6792 0.814181 0.407090 0.913388i \(-0.366543\pi\)
0.407090 + 0.913388i \(0.366543\pi\)
\(710\) 0 0
\(711\) 85.1103i 3.19189i
\(712\) 0 0
\(713\) 1.79796 0.0673340
\(714\) 0 0
\(715\) 5.61403i 0.209953i
\(716\) 0 0
\(717\) −74.7555 −2.79179
\(718\) 0 0
\(719\) 23.9297i 0.892427i 0.894926 + 0.446214i \(0.147228\pi\)
−0.894926 + 0.446214i \(0.852772\pi\)
\(720\) 0 0
\(721\) 4.14351i 0.154312i
\(722\) 0 0
\(723\) 14.9889i 0.557442i
\(724\) 0 0
\(725\) −3.08229 −0.114473
\(726\) 0 0
\(727\) 5.88741 0.218352 0.109176 0.994022i \(-0.465179\pi\)
0.109176 + 0.994022i \(0.465179\pi\)
\(728\) 0 0
\(729\) −21.1086 −0.781800
\(730\) 0 0
\(731\) −22.9921 32.4332i −0.850394 1.19958i
\(732\) 0 0
\(733\) 17.0070i 0.628167i −0.949395 0.314084i \(-0.898303\pi\)
0.949395 0.314084i \(-0.101697\pi\)
\(734\) 0 0
\(735\) −17.2480 −0.636203
\(736\) 0 0
\(737\) 3.81093i 0.140377i
\(738\) 0 0
\(739\) 26.7139i 0.982687i 0.870966 + 0.491344i \(0.163494\pi\)
−0.870966 + 0.491344i \(0.836506\pi\)
\(740\) 0 0
\(741\) 2.18304 0.0801960
\(742\) 0 0
\(743\) 49.2505i 1.80683i 0.428771 + 0.903413i \(0.358947\pi\)
−0.428771 + 0.903413i \(0.641053\pi\)
\(744\) 0 0
\(745\) 11.7779i 0.431508i
\(746\) 0 0
\(747\) 23.8854i 0.873921i
\(748\) 0 0
\(749\) 15.7547i 0.575664i
\(750\) 0 0
\(751\) 9.44928i 0.344809i −0.985026 0.172405i \(-0.944846\pi\)
0.985026 0.172405i \(-0.0551537\pi\)
\(752\) 0 0
\(753\) 42.5040i 1.54893i
\(754\) 0 0
\(755\) 2.90058 0.105563
\(756\) 0 0
\(757\) 1.63895i 0.0595685i −0.999556 0.0297843i \(-0.990518\pi\)
0.999556 0.0297843i \(-0.00948203\pi\)
\(758\) 0 0
\(759\) 7.41650i 0.269202i
\(760\) 0 0
\(761\) 28.2428 1.02380 0.511901 0.859044i \(-0.328941\pi\)
0.511901 + 0.859044i \(0.328941\pi\)
\(762\) 0 0
\(763\) 19.2597i 0.697248i
\(764\) 0 0
\(765\) 20.8549 14.7842i 0.754012 0.534525i
\(766\) 0 0
\(767\) −54.8925 −1.98205
\(768\) 0 0
\(769\) 5.94202 0.214275 0.107137 0.994244i \(-0.465832\pi\)
0.107137 + 0.994244i \(0.465832\pi\)
\(770\) 0 0
\(771\) 14.1452 0.509427
\(772\) 0 0
\(773\) 20.5173i 0.737957i −0.929438 0.368978i \(-0.879708\pi\)
0.929438 0.368978i \(-0.120292\pi\)
\(774\) 0 0
\(775\) 0.752428i 0.0270280i
\(776\) 0 0
\(777\) 26.8312i 0.962566i
\(778\) 0 0
\(779\) 0.800395 0.0286771
\(780\) 0 0
\(781\) 6.77935i 0.242584i
\(782\) 0 0
\(783\) −29.9181 −1.06919
\(784\) 0 0
\(785\) 9.13785i 0.326144i
\(786\) 0 0
\(787\) 30.1991 1.07648 0.538241 0.842791i \(-0.319089\pi\)
0.538241 + 0.842791i \(0.319089\pi\)
\(788\) 0 0
\(789\) −42.8609 −1.52589
\(790\) 0 0
\(791\) 2.90057 0.103132
\(792\) 0 0
\(793\) 20.4294i 0.725471i
\(794\) 0 0
\(795\) 40.8384i 1.44839i
\(796\) 0 0
\(797\) 24.2150i 0.857738i −0.903367 0.428869i \(-0.858912\pi\)
0.903367 0.428869i \(-0.141088\pi\)
\(798\) 0 0
\(799\) −10.1052 + 7.16365i −0.357496 + 0.253432i
\(800\) 0 0
\(801\) −22.5938 −0.798313
\(802\) 0 0
\(803\) 15.2748i 0.539035i
\(804\) 0 0
\(805\) 2.73863 0.0965242
\(806\) 0 0
\(807\) −24.7085 −0.869781
\(808\) 0 0
\(809\) 42.8270i 1.50572i −0.658183 0.752858i \(-0.728675\pi\)
0.658183 0.752858i \(-0.271325\pi\)
\(810\) 0 0
\(811\) 35.3651 1.24184 0.620919 0.783875i \(-0.286760\pi\)
0.620919 + 0.783875i \(0.286760\pi\)
\(812\) 0 0
\(813\) 46.1019 1.61686
\(814\) 0 0
\(815\) −22.3320 −0.782255
\(816\) 0 0
\(817\) 1.26490 0.0442534
\(818\) 0 0
\(819\) −38.9857 −1.36227
\(820\) 0 0
\(821\) 40.2892 1.40610 0.703051 0.711139i \(-0.251821\pi\)
0.703051 + 0.711139i \(0.251821\pi\)
\(822\) 0 0
\(823\) 15.8735i 0.553315i −0.960969 0.276658i \(-0.910773\pi\)
0.960969 0.276658i \(-0.0892268\pi\)
\(824\) 0 0
\(825\) 3.10373 0.108058
\(826\) 0 0
\(827\) −50.7719 −1.76551 −0.882756 0.469833i \(-0.844314\pi\)
−0.882756 + 0.469833i \(0.844314\pi\)
\(828\) 0 0
\(829\) 17.3126i 0.601290i 0.953736 + 0.300645i \(0.0972019\pi\)
−0.953736 + 0.300645i \(0.902798\pi\)
\(830\) 0 0
\(831\) 25.7044 0.891677
\(832\) 0 0
\(833\) −19.1273 + 13.5595i −0.662721 + 0.469808i
\(834\) 0 0
\(835\) 0.350738i 0.0121378i
\(836\) 0 0
\(837\) 7.30341i 0.252443i
\(838\) 0 0
\(839\) 37.2470i 1.28591i 0.765904 + 0.642955i \(0.222292\pi\)
−0.765904 + 0.642955i \(0.777708\pi\)
\(840\) 0 0
\(841\) −19.4995 −0.672397
\(842\) 0 0
\(843\) −54.6960 −1.88383
\(844\) 0 0
\(845\) 17.1005 0.588276
\(846\) 0 0
\(847\) 11.4070i 0.391948i
\(848\) 0 0
\(849\) −60.4648 −2.07515
\(850\) 0 0
\(851\) 18.4433i 0.632230i
\(852\) 0 0
\(853\) −23.8943 −0.818125 −0.409062 0.912506i \(-0.634144\pi\)
−0.409062 + 0.912506i \(0.634144\pi\)
\(854\) 0 0
\(855\) 0.813350i 0.0278160i
\(856\) 0 0
\(857\) 22.7277i 0.776363i −0.921583 0.388181i \(-0.873103\pi\)
0.921583 0.388181i \(-0.126897\pi\)
\(858\) 0 0
\(859\) 48.5724i 1.65727i 0.559790 + 0.828635i \(0.310882\pi\)
−0.559790 + 0.828635i \(0.689118\pi\)
\(860\) 0 0
\(861\) −21.2100 −0.722836
\(862\) 0 0
\(863\) −32.4151 −1.10342 −0.551711 0.834035i \(-0.686025\pi\)
−0.551711 + 0.834035i \(0.686025\pi\)
\(864\) 0 0
\(865\) −21.6007 −0.734447
\(866\) 0 0
\(867\) 17.0713 48.6560i 0.579770 1.65244i
\(868\) 0 0
\(869\) 14.0466i 0.476498i
\(870\) 0 0
\(871\) 20.4329 0.692342
\(872\) 0 0
\(873\) 23.1359i 0.783032i
\(874\) 0 0
\(875\) 1.14609i 0.0387450i
\(876\) 0 0
\(877\) 48.4637 1.63650 0.818252 0.574860i \(-0.194944\pi\)
0.818252 + 0.574860i \(0.194944\pi\)
\(878\) 0 0
\(879\) 22.9893i 0.775410i
\(880\) 0 0
\(881\) 19.3636i 0.652377i −0.945305 0.326188i \(-0.894236\pi\)
0.945305 0.326188i \(-0.105764\pi\)
\(882\) 0 0
\(883\) 48.0780i 1.61795i 0.587841 + 0.808977i \(0.299978\pi\)
−0.587841 + 0.808977i \(0.700022\pi\)
\(884\) 0 0
\(885\) 30.3474i 1.02012i
\(886\) 0 0
\(887\) 57.0934i 1.91701i −0.285078 0.958504i \(-0.592019\pi\)
0.285078 0.958504i \(-0.407981\pi\)
\(888\) 0 0
\(889\) 10.9276i 0.366501i
\(890\) 0 0
\(891\) 11.0932 0.371636
\(892\) 0 0
\(893\) 0.394106i 0.0131883i
\(894\) 0 0
\(895\) 20.4689i 0.684198i
\(896\) 0 0
\(897\) −39.7647 −1.32771
\(898\) 0 0
\(899\) 2.31920i 0.0773496i
\(900\) 0 0
\(901\) 32.1050 + 45.2879i 1.06957 + 1.50876i
\(902\) 0 0
\(903\) −33.5193 −1.11545
\(904\) 0 0
\(905\) −10.2177 −0.339646
\(906\) 0 0
\(907\) 2.35855 0.0783144 0.0391572 0.999233i \(-0.487533\pi\)
0.0391572 + 0.999233i \(0.487533\pi\)
\(908\) 0 0
\(909\) 74.5448i 2.47249i
\(910\) 0 0
\(911\) 36.5217i 1.21002i 0.796218 + 0.605009i \(0.206831\pi\)
−0.796218 + 0.605009i \(0.793169\pi\)
\(912\) 0 0
\(913\) 3.94204i 0.130463i
\(914\) 0 0
\(915\) 11.2945 0.373384
\(916\) 0 0
\(917\) 21.1042i 0.696922i
\(918\) 0 0
\(919\) −28.1923 −0.929978 −0.464989 0.885317i \(-0.653942\pi\)
−0.464989 + 0.885317i \(0.653942\pi\)
\(920\) 0 0
\(921\) 60.1356i 1.98153i
\(922\) 0 0
\(923\) 36.3485 1.19643
\(924\) 0 0
\(925\) 7.71836 0.253778
\(926\) 0 0
\(927\) 22.4155 0.736222
\(928\) 0 0
\(929\) 13.5645i 0.445038i 0.974928 + 0.222519i \(0.0714280\pi\)
−0.974928 + 0.222519i \(0.928572\pi\)
\(930\) 0 0
\(931\) 0.745970i 0.0244482i
\(932\) 0 0
\(933\) 50.8997i 1.66638i
\(934\) 0 0
\(935\) 3.44190 2.43999i 0.112562 0.0797961i
\(936\) 0 0
\(937\) −36.5498 −1.19403 −0.597015 0.802230i \(-0.703647\pi\)
−0.597015 + 0.802230i \(0.703647\pi\)
\(938\) 0 0
\(939\) 30.7473i 1.00340i
\(940\) 0 0
\(941\) 12.6597 0.412695 0.206347 0.978479i \(-0.433842\pi\)
0.206347 + 0.978479i \(0.433842\pi\)
\(942\) 0 0
\(943\) −14.5794 −0.474772
\(944\) 0 0
\(945\) 11.1245i 0.361880i
\(946\) 0 0
\(947\) −15.4599 −0.502378 −0.251189 0.967938i \(-0.580822\pi\)
−0.251189 + 0.967938i \(0.580822\pi\)
\(948\) 0 0
\(949\) 81.8981 2.65852
\(950\) 0 0
\(951\) −49.6393 −1.60966
\(952\) 0 0
\(953\) 36.0503 1.16778 0.583891 0.811832i \(-0.301529\pi\)
0.583891 + 0.811832i \(0.301529\pi\)
\(954\) 0 0
\(955\) −10.7086 −0.346522
\(956\) 0 0
\(957\) −9.56660 −0.309244
\(958\) 0 0
\(959\) 15.1125i 0.488007i
\(960\) 0 0
\(961\) 30.4339 0.981737
\(962\) 0 0
\(963\) 85.2294 2.74648
\(964\) 0 0
\(965\) 5.68548i 0.183022i
\(966\) 0 0
\(967\) 41.1709 1.32397 0.661984 0.749518i \(-0.269715\pi\)
0.661984 + 0.749518i \(0.269715\pi\)
\(968\) 0 0
\(969\) 0.948799 + 1.33840i 0.0304798 + 0.0429955i
\(970\) 0 0
\(971\) 28.5053i 0.914777i 0.889267 + 0.457389i \(0.151215\pi\)
−0.889267 + 0.457389i \(0.848785\pi\)
\(972\) 0 0
\(973\) 19.3998i 0.621930i
\(974\) 0 0
\(975\) 16.6412i 0.532944i
\(976\) 0 0
\(977\) −15.7285 −0.503198 −0.251599 0.967832i \(-0.580956\pi\)
−0.251599 + 0.967832i \(0.580956\pi\)
\(978\) 0 0
\(979\) −3.72888 −0.119175
\(980\) 0 0
\(981\) 104.191 3.32655
\(982\) 0 0
\(983\) 24.3987i 0.778196i 0.921196 + 0.389098i \(0.127213\pi\)
−0.921196 + 0.389098i \(0.872787\pi\)
\(984\) 0 0
\(985\) −18.1950 −0.579741
\(986\) 0 0
\(987\) 10.4436i 0.332424i
\(988\) 0 0
\(989\) −23.0406 −0.732649
\(990\) 0 0
\(991\) 6.73788i 0.214036i −0.994257 0.107018i \(-0.965870\pi\)
0.994257 0.107018i \(-0.0341302\pi\)
\(992\) 0 0
\(993\) 76.7940i 2.43698i
\(994\) 0 0
\(995\) 6.43510i 0.204007i
\(996\) 0 0
\(997\) −49.0657 −1.55393 −0.776964 0.629545i \(-0.783241\pi\)
−0.776964 + 0.629545i \(0.783241\pi\)
\(998\) 0 0
\(999\) 74.9180 2.37030
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2720.2.l.a.2481.36 36
4.3 odd 2 680.2.l.b.101.6 yes 36
8.3 odd 2 680.2.l.a.101.5 36
8.5 even 2 2720.2.l.b.2481.2 36
17.16 even 2 2720.2.l.b.2481.1 36
68.67 odd 2 680.2.l.a.101.6 yes 36
136.67 odd 2 680.2.l.b.101.5 yes 36
136.101 even 2 inner 2720.2.l.a.2481.35 36
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
680.2.l.a.101.5 36 8.3 odd 2
680.2.l.a.101.6 yes 36 68.67 odd 2
680.2.l.b.101.5 yes 36 136.67 odd 2
680.2.l.b.101.6 yes 36 4.3 odd 2
2720.2.l.a.2481.35 36 136.101 even 2 inner
2720.2.l.a.2481.36 36 1.1 even 1 trivial
2720.2.l.b.2481.1 36 17.16 even 2
2720.2.l.b.2481.2 36 8.5 even 2