Properties

Label 680.2.l.a.101.18
Level $680$
Weight $2$
Character 680.101
Analytic conductor $5.430$
Analytic rank $0$
Dimension $36$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [680,2,Mod(101,680)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(680, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("680.101"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 680 = 2^{3} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 680.l (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [36,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.42982733745\)
Analytic rank: \(0\)
Dimension: \(36\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 101.18
Character \(\chi\) \(=\) 680.101
Dual form 680.2.l.a.101.17

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.0976378 + 1.41084i) q^{2} -0.700054 q^{3} +(-1.98093 - 0.275503i) q^{4} +1.00000 q^{5} +(0.0683518 - 0.987663i) q^{6} -0.472369i q^{7} +(0.582104 - 2.76788i) q^{8} -2.50992 q^{9} +(-0.0976378 + 1.41084i) q^{10} +3.76587 q^{11} +(1.38676 + 0.192867i) q^{12} -2.08475i q^{13} +(0.666437 + 0.0461211i) q^{14} -0.700054 q^{15} +(3.84820 + 1.09150i) q^{16} +(3.62268 + 1.96881i) q^{17} +(0.245064 - 3.54110i) q^{18} -4.24061i q^{19} +(-1.98093 - 0.275503i) q^{20} +0.330684i q^{21} +(-0.367691 + 5.31304i) q^{22} +3.04244i q^{23} +(-0.407504 + 1.93766i) q^{24} +1.00000 q^{25} +(2.94124 + 0.203550i) q^{26} +3.85724 q^{27} +(-0.130139 + 0.935732i) q^{28} +8.44930 q^{29} +(0.0683518 - 0.987663i) q^{30} -1.89633i q^{31} +(-1.91567 + 5.32261i) q^{32} -2.63631 q^{33} +(-3.13138 + 4.91878i) q^{34} -0.472369i q^{35} +(4.97199 + 0.691491i) q^{36} +4.90602 q^{37} +(5.98282 + 0.414044i) q^{38} +1.45943i q^{39} +(0.582104 - 2.76788i) q^{40} +10.3105i q^{41} +(-0.466542 - 0.0322873i) q^{42} -8.18245i q^{43} +(-7.45994 - 1.03751i) q^{44} -2.50992 q^{45} +(-4.29240 - 0.297058i) q^{46} -5.56596 q^{47} +(-2.69394 - 0.764112i) q^{48} +6.77687 q^{49} +(-0.0976378 + 1.41084i) q^{50} +(-2.53607 - 1.37827i) q^{51} +(-0.574353 + 4.12975i) q^{52} +6.11891i q^{53} +(-0.376613 + 5.44195i) q^{54} +3.76587 q^{55} +(-1.30746 - 0.274968i) q^{56} +2.96866i q^{57} +(-0.824972 + 11.9206i) q^{58} -5.25557i q^{59} +(1.38676 + 0.192867i) q^{60} +4.08954 q^{61} +(2.67542 + 0.185154i) q^{62} +1.18561i q^{63} +(-7.32231 - 3.22239i) q^{64} -2.08475i q^{65} +(0.257404 - 3.71941i) q^{66} +14.0350i q^{67} +(-6.63387 - 4.89814i) q^{68} -2.12987i q^{69} +(0.666437 + 0.0461211i) q^{70} -14.4641i q^{71} +(-1.46104 + 6.94717i) q^{72} +11.7807i q^{73} +(-0.479013 + 6.92160i) q^{74} -0.700054 q^{75} +(-1.16830 + 8.40037i) q^{76} -1.77888i q^{77} +(-2.05903 - 0.142496i) q^{78} -14.2573i q^{79} +(3.84820 + 1.09150i) q^{80} +4.82950 q^{81} +(-14.5464 - 1.00669i) q^{82} +1.62221i q^{83} +(0.0911042 - 0.655063i) q^{84} +(3.62268 + 1.96881i) q^{85} +(11.5441 + 0.798916i) q^{86} -5.91497 q^{87} +(2.19213 - 10.4235i) q^{88} +4.13274 q^{89} +(0.245064 - 3.54110i) q^{90} -0.984770 q^{91} +(0.838201 - 6.02688i) q^{92} +1.32754i q^{93} +(0.543449 - 7.85268i) q^{94} -4.24061i q^{95} +(1.34107 - 3.72612i) q^{96} -1.51194i q^{97} +(-0.661679 + 9.56107i) q^{98} -9.45205 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36 q - 4 q^{3} + 2 q^{4} + 36 q^{5} + 36 q^{9} - 8 q^{11} - 2 q^{12} + 2 q^{14} - 4 q^{15} + 6 q^{16} - 10 q^{18} + 2 q^{20} + 26 q^{24} + 36 q^{25} + 6 q^{26} - 16 q^{27} + 14 q^{28} - 10 q^{32} - 8 q^{33}+ \cdots - 40 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/680\mathbb{Z}\right)^\times\).

\(n\) \(137\) \(241\) \(341\) \(511\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.0976378 + 1.41084i −0.0690404 + 0.997614i
\(3\) −0.700054 −0.404176 −0.202088 0.979367i \(-0.564773\pi\)
−0.202088 + 0.979367i \(0.564773\pi\)
\(4\) −1.98093 0.275503i −0.990467 0.137751i
\(5\) 1.00000 0.447214
\(6\) 0.0683518 0.987663i 0.0279045 0.403212i
\(7\) 0.472369i 0.178539i −0.996008 0.0892694i \(-0.971547\pi\)
0.996008 0.0892694i \(-0.0284532\pi\)
\(8\) 0.582104 2.76788i 0.205805 0.978593i
\(9\) −2.50992 −0.836642
\(10\) −0.0976378 + 1.41084i −0.0308758 + 0.446146i
\(11\) 3.76587 1.13545 0.567726 0.823217i \(-0.307823\pi\)
0.567726 + 0.823217i \(0.307823\pi\)
\(12\) 1.38676 + 0.192867i 0.400323 + 0.0556758i
\(13\) 2.08475i 0.578205i −0.957298 0.289102i \(-0.906643\pi\)
0.957298 0.289102i \(-0.0933568\pi\)
\(14\) 0.666437 + 0.0461211i 0.178113 + 0.0123264i
\(15\) −0.700054 −0.180753
\(16\) 3.84820 + 1.09150i 0.962049 + 0.272876i
\(17\) 3.62268 + 1.96881i 0.878628 + 0.477507i
\(18\) 0.245064 3.54110i 0.0577621 0.834645i
\(19\) 4.24061i 0.972863i −0.873719 0.486432i \(-0.838298\pi\)
0.873719 0.486432i \(-0.161702\pi\)
\(20\) −1.98093 0.275503i −0.442950 0.0616042i
\(21\) 0.330684i 0.0721611i
\(22\) −0.367691 + 5.31304i −0.0783921 + 1.13274i
\(23\) 3.04244i 0.634393i 0.948360 + 0.317197i \(0.102741\pi\)
−0.948360 + 0.317197i \(0.897259\pi\)
\(24\) −0.407504 + 1.93766i −0.0831814 + 0.395524i
\(25\) 1.00000 0.200000
\(26\) 2.94124 + 0.203550i 0.576825 + 0.0399195i
\(27\) 3.85724 0.742327
\(28\) −0.130139 + 0.935732i −0.0245939 + 0.176837i
\(29\) 8.44930 1.56900 0.784498 0.620131i \(-0.212921\pi\)
0.784498 + 0.620131i \(0.212921\pi\)
\(30\) 0.0683518 0.987663i 0.0124793 0.180322i
\(31\) 1.89633i 0.340592i −0.985393 0.170296i \(-0.945528\pi\)
0.985393 0.170296i \(-0.0544723\pi\)
\(32\) −1.91567 + 5.32261i −0.338645 + 0.940914i
\(33\) −2.63631 −0.458923
\(34\) −3.13138 + 4.91878i −0.537028 + 0.843564i
\(35\) 0.472369i 0.0798449i
\(36\) 4.97199 + 0.691491i 0.828666 + 0.115248i
\(37\) 4.90602 0.806544 0.403272 0.915080i \(-0.367873\pi\)
0.403272 + 0.915080i \(0.367873\pi\)
\(38\) 5.98282 + 0.414044i 0.970542 + 0.0671669i
\(39\) 1.45943i 0.233697i
\(40\) 0.582104 2.76788i 0.0920387 0.437640i
\(41\) 10.3105i 1.61022i 0.593123 + 0.805112i \(0.297895\pi\)
−0.593123 + 0.805112i \(0.702105\pi\)
\(42\) −0.466542 0.0322873i −0.0719889 0.00498203i
\(43\) 8.18245i 1.24781i −0.781500 0.623906i \(-0.785545\pi\)
0.781500 0.623906i \(-0.214455\pi\)
\(44\) −7.45994 1.03751i −1.12463 0.156410i
\(45\) −2.50992 −0.374157
\(46\) −4.29240 0.297058i −0.632879 0.0437987i
\(47\) −5.56596 −0.811879 −0.405940 0.913900i \(-0.633056\pi\)
−0.405940 + 0.913900i \(0.633056\pi\)
\(48\) −2.69394 0.764112i −0.388837 0.110290i
\(49\) 6.77687 0.968124
\(50\) −0.0976378 + 1.41084i −0.0138081 + 0.199523i
\(51\) −2.53607 1.37827i −0.355121 0.192997i
\(52\) −0.574353 + 4.12975i −0.0796484 + 0.572693i
\(53\) 6.11891i 0.840497i 0.907409 + 0.420249i \(0.138057\pi\)
−0.907409 + 0.420249i \(0.861943\pi\)
\(54\) −0.376613 + 5.44195i −0.0512505 + 0.740556i
\(55\) 3.76587 0.507790
\(56\) −1.30746 0.274968i −0.174717 0.0367441i
\(57\) 2.96866i 0.393208i
\(58\) −0.824972 + 11.9206i −0.108324 + 1.56525i
\(59\) 5.25557i 0.684217i −0.939660 0.342109i \(-0.888859\pi\)
0.939660 0.342109i \(-0.111141\pi\)
\(60\) 1.38676 + 0.192867i 0.179030 + 0.0248990i
\(61\) 4.08954 0.523612 0.261806 0.965121i \(-0.415682\pi\)
0.261806 + 0.965121i \(0.415682\pi\)
\(62\) 2.67542 + 0.185154i 0.339779 + 0.0235146i
\(63\) 1.18561i 0.149373i
\(64\) −7.32231 3.22239i −0.915289 0.402798i
\(65\) 2.08475i 0.258581i
\(66\) 0.257404 3.71941i 0.0316842 0.457828i
\(67\) 14.0350i 1.71465i 0.514775 + 0.857325i \(0.327875\pi\)
−0.514775 + 0.857325i \(0.672125\pi\)
\(68\) −6.63387 4.89814i −0.804475 0.593987i
\(69\) 2.12987i 0.256407i
\(70\) 0.666437 + 0.0461211i 0.0796544 + 0.00551253i
\(71\) 14.4641i 1.71657i −0.513171 0.858287i \(-0.671529\pi\)
0.513171 0.858287i \(-0.328471\pi\)
\(72\) −1.46104 + 6.94717i −0.172185 + 0.818732i
\(73\) 11.7807i 1.37883i 0.724368 + 0.689413i \(0.242132\pi\)
−0.724368 + 0.689413i \(0.757868\pi\)
\(74\) −0.479013 + 6.92160i −0.0556841 + 0.804620i
\(75\) −0.700054 −0.0808353
\(76\) −1.16830 + 8.40037i −0.134013 + 0.963589i
\(77\) 1.77888i 0.202722i
\(78\) −2.05903 0.142496i −0.233139 0.0161345i
\(79\) 14.2573i 1.60408i −0.597273 0.802038i \(-0.703749\pi\)
0.597273 0.802038i \(-0.296251\pi\)
\(80\) 3.84820 + 1.09150i 0.430241 + 0.122034i
\(81\) 4.82950 0.536611
\(82\) −14.5464 1.00669i −1.60638 0.111170i
\(83\) 1.62221i 0.178060i 0.996029 + 0.0890302i \(0.0283768\pi\)
−0.996029 + 0.0890302i \(0.971623\pi\)
\(84\) 0.0911042 0.655063i 0.00994029 0.0714732i
\(85\) 3.62268 + 1.96881i 0.392934 + 0.213547i
\(86\) 11.5441 + 0.798916i 1.24483 + 0.0861494i
\(87\) −5.91497 −0.634151
\(88\) 2.19213 10.4235i 0.233682 1.11115i
\(89\) 4.13274 0.438070 0.219035 0.975717i \(-0.429709\pi\)
0.219035 + 0.975717i \(0.429709\pi\)
\(90\) 0.245064 3.54110i 0.0258320 0.373265i
\(91\) −0.984770 −0.103232
\(92\) 0.838201 6.02688i 0.0873885 0.628345i
\(93\) 1.32754i 0.137659i
\(94\) 0.543449 7.85268i 0.0560525 0.809942i
\(95\) 4.24061i 0.435078i
\(96\) 1.34107 3.72612i 0.136872 0.380295i
\(97\) 1.51194i 0.153514i −0.997050 0.0767570i \(-0.975543\pi\)
0.997050 0.0767570i \(-0.0244566\pi\)
\(98\) −0.661679 + 9.56107i −0.0668396 + 0.965814i
\(99\) −9.45205 −0.949967
\(100\) −1.98093 0.275503i −0.198093 0.0275503i
\(101\) 15.9111i 1.58321i −0.611032 0.791606i \(-0.709245\pi\)
0.611032 0.791606i \(-0.290755\pi\)
\(102\) 2.19214 3.44341i 0.217054 0.340949i
\(103\) −14.9491 −1.47298 −0.736488 0.676451i \(-0.763517\pi\)
−0.736488 + 0.676451i \(0.763517\pi\)
\(104\) −5.77033 1.21354i −0.565827 0.118997i
\(105\) 0.330684i 0.0322714i
\(106\) −8.63280 0.597437i −0.838492 0.0580283i
\(107\) 15.6850 1.51633 0.758165 0.652063i \(-0.226096\pi\)
0.758165 + 0.652063i \(0.226096\pi\)
\(108\) −7.64094 1.06268i −0.735250 0.102256i
\(109\) −16.0643 −1.53869 −0.769343 0.638836i \(-0.779416\pi\)
−0.769343 + 0.638836i \(0.779416\pi\)
\(110\) −0.367691 + 5.31304i −0.0350580 + 0.506578i
\(111\) −3.43448 −0.325986
\(112\) 0.515593 1.81777i 0.0487190 0.171763i
\(113\) 7.80211i 0.733961i −0.930229 0.366980i \(-0.880392\pi\)
0.930229 0.366980i \(-0.119608\pi\)
\(114\) −4.18830 0.289853i −0.392270 0.0271473i
\(115\) 3.04244i 0.283709i
\(116\) −16.7375 2.32780i −1.55404 0.216131i
\(117\) 5.23256i 0.483750i
\(118\) 7.41477 + 0.513143i 0.682585 + 0.0472386i
\(119\) 0.930005 1.71124i 0.0852534 0.156869i
\(120\) −0.407504 + 1.93766i −0.0371999 + 0.176884i
\(121\) 3.18178 0.289252
\(122\) −0.399294 + 5.76968i −0.0361503 + 0.522362i
\(123\) 7.21788i 0.650814i
\(124\) −0.522445 + 3.75651i −0.0469169 + 0.337345i
\(125\) 1.00000 0.0894427
\(126\) −1.67271 0.115760i −0.149016 0.0103128i
\(127\) 10.8800 0.965447 0.482724 0.875773i \(-0.339648\pi\)
0.482724 + 0.875773i \(0.339648\pi\)
\(128\) 5.26120 10.0160i 0.465029 0.885295i
\(129\) 5.72815i 0.504336i
\(130\) 2.94124 + 0.203550i 0.257964 + 0.0178525i
\(131\) 13.9563 1.21937 0.609685 0.792644i \(-0.291296\pi\)
0.609685 + 0.792644i \(0.291296\pi\)
\(132\) 5.22236 + 0.726311i 0.454548 + 0.0632172i
\(133\) −2.00313 −0.173694
\(134\) −19.8011 1.37035i −1.71056 0.118380i
\(135\) 3.85724 0.331979
\(136\) 7.55820 8.88108i 0.648111 0.761546i
\(137\) −16.2479 −1.38815 −0.694075 0.719903i \(-0.744186\pi\)
−0.694075 + 0.719903i \(0.744186\pi\)
\(138\) 3.00491 + 0.207956i 0.255795 + 0.0177024i
\(139\) 3.86189 0.327561 0.163780 0.986497i \(-0.447631\pi\)
0.163780 + 0.986497i \(0.447631\pi\)
\(140\) −0.130139 + 0.935732i −0.0109987 + 0.0790838i
\(141\) 3.89647 0.328142
\(142\) 20.4065 + 1.41224i 1.71248 + 0.118513i
\(143\) 7.85089i 0.656524i
\(144\) −9.65868 2.73959i −0.804890 0.228300i
\(145\) 8.44930 0.701676
\(146\) −16.6207 1.15024i −1.37554 0.0951947i
\(147\) −4.74417 −0.391293
\(148\) −9.71850 1.35162i −0.798856 0.111103i
\(149\) 15.2325i 1.24789i −0.781467 0.623946i \(-0.785528\pi\)
0.781467 0.623946i \(-0.214472\pi\)
\(150\) 0.0683518 0.987663i 0.00558090 0.0806424i
\(151\) −1.45467 −0.118380 −0.0591899 0.998247i \(-0.518852\pi\)
−0.0591899 + 0.998247i \(0.518852\pi\)
\(152\) −11.7375 2.46848i −0.952037 0.200220i
\(153\) −9.09265 4.94157i −0.735097 0.399502i
\(154\) 2.50971 + 0.173686i 0.202239 + 0.0139960i
\(155\) 1.89633i 0.152317i
\(156\) 0.402078 2.89104i 0.0321920 0.231469i
\(157\) 2.38317i 0.190198i −0.995468 0.0950989i \(-0.969683\pi\)
0.995468 0.0950989i \(-0.0303167\pi\)
\(158\) 20.1148 + 1.39206i 1.60025 + 0.110746i
\(159\) 4.28357i 0.339709i
\(160\) −1.91567 + 5.32261i −0.151447 + 0.420790i
\(161\) 1.43716 0.113264
\(162\) −0.471542 + 6.81364i −0.0370478 + 0.535330i
\(163\) −10.0630 −0.788196 −0.394098 0.919068i \(-0.628943\pi\)
−0.394098 + 0.919068i \(0.628943\pi\)
\(164\) 2.84056 20.4243i 0.221810 1.59487i
\(165\) −2.63631 −0.205237
\(166\) −2.28867 0.158389i −0.177635 0.0122934i
\(167\) 4.09470i 0.316857i −0.987370 0.158429i \(-0.949357\pi\)
0.987370 0.158429i \(-0.0506428\pi\)
\(168\) 0.915293 + 0.192492i 0.0706164 + 0.0148511i
\(169\) 8.65383 0.665679
\(170\) −3.13138 + 4.91878i −0.240166 + 0.377253i
\(171\) 10.6436i 0.813938i
\(172\) −2.25428 + 16.2089i −0.171888 + 1.23592i
\(173\) 16.3781 1.24520 0.622601 0.782540i \(-0.286076\pi\)
0.622601 + 0.782540i \(0.286076\pi\)
\(174\) 0.577525 8.34507i 0.0437820 0.632638i
\(175\) 0.472369i 0.0357077i
\(176\) 14.4918 + 4.11046i 1.09236 + 0.309838i
\(177\) 3.67918i 0.276544i
\(178\) −0.403512 + 5.83064i −0.0302445 + 0.437025i
\(179\) 8.16713i 0.610440i 0.952282 + 0.305220i \(0.0987300\pi\)
−0.952282 + 0.305220i \(0.901270\pi\)
\(180\) 4.97199 + 0.691491i 0.370591 + 0.0515407i
\(181\) −12.6490 −0.940190 −0.470095 0.882616i \(-0.655780\pi\)
−0.470095 + 0.882616i \(0.655780\pi\)
\(182\) 0.0961508 1.38935i 0.00712717 0.102986i
\(183\) −2.86290 −0.211631
\(184\) 8.42111 + 1.77102i 0.620813 + 0.130561i
\(185\) 4.90602 0.360698
\(186\) −1.87294 0.129618i −0.137331 0.00950403i
\(187\) 13.6425 + 7.41428i 0.997641 + 0.542186i
\(188\) 11.0258 + 1.53344i 0.804140 + 0.111837i
\(189\) 1.82204i 0.132534i
\(190\) 5.98282 + 0.414044i 0.434040 + 0.0300379i
\(191\) −9.84032 −0.712021 −0.356010 0.934482i \(-0.615863\pi\)
−0.356010 + 0.934482i \(0.615863\pi\)
\(192\) 5.12601 + 2.25584i 0.369938 + 0.162802i
\(193\) 19.3479i 1.39270i 0.717705 + 0.696348i \(0.245193\pi\)
−0.717705 + 0.696348i \(0.754807\pi\)
\(194\) 2.13310 + 0.147622i 0.153148 + 0.0105987i
\(195\) 1.45943i 0.104512i
\(196\) −13.4245 1.86704i −0.958895 0.133360i
\(197\) 2.53115 0.180337 0.0901685 0.995927i \(-0.471259\pi\)
0.0901685 + 0.995927i \(0.471259\pi\)
\(198\) 0.922878 13.3353i 0.0655861 0.947700i
\(199\) 7.75580i 0.549794i 0.961474 + 0.274897i \(0.0886437\pi\)
−0.961474 + 0.274897i \(0.911356\pi\)
\(200\) 0.582104 2.76788i 0.0411610 0.195719i
\(201\) 9.82527i 0.693021i
\(202\) 22.4480 + 1.55352i 1.57943 + 0.109306i
\(203\) 3.99119i 0.280127i
\(204\) 4.64407 + 3.42896i 0.325150 + 0.240075i
\(205\) 10.3105i 0.720114i
\(206\) 1.45959 21.0907i 0.101695 1.46946i
\(207\) 7.63630i 0.530760i
\(208\) 2.27551 8.02252i 0.157778 0.556261i
\(209\) 15.9696i 1.10464i
\(210\) −0.466542 0.0322873i −0.0321944 0.00222803i
\(211\) −10.3268 −0.710923 −0.355462 0.934691i \(-0.615676\pi\)
−0.355462 + 0.934691i \(0.615676\pi\)
\(212\) 1.68578 12.1212i 0.115780 0.832485i
\(213\) 10.1257i 0.693798i
\(214\) −1.53145 + 22.1291i −0.104688 + 1.51271i
\(215\) 8.18245i 0.558038i
\(216\) 2.24532 10.6764i 0.152774 0.726436i
\(217\) −0.895769 −0.0608088
\(218\) 1.56849 22.6642i 0.106231 1.53501i
\(219\) 8.24712i 0.557289i
\(220\) −7.45994 1.03751i −0.502949 0.0699487i
\(221\) 4.10447 7.55236i 0.276097 0.508027i
\(222\) 0.335335 4.84549i 0.0225062 0.325208i
\(223\) 0.853240 0.0571372 0.0285686 0.999592i \(-0.490905\pi\)
0.0285686 + 0.999592i \(0.490905\pi\)
\(224\) 2.51424 + 0.904902i 0.167990 + 0.0604613i
\(225\) −2.50992 −0.167328
\(226\) 11.0075 + 0.761781i 0.732209 + 0.0506729i
\(227\) −21.4110 −1.42110 −0.710549 0.703648i \(-0.751553\pi\)
−0.710549 + 0.703648i \(0.751553\pi\)
\(228\) 0.817873 5.88071i 0.0541650 0.389460i
\(229\) 0.280780i 0.0185545i 0.999957 + 0.00927725i \(0.00295308\pi\)
−0.999957 + 0.00927725i \(0.997047\pi\)
\(230\) −4.29240 0.297058i −0.283032 0.0195874i
\(231\) 1.24531i 0.0819355i
\(232\) 4.91837 23.3866i 0.322907 1.53541i
\(233\) 2.80188i 0.183557i −0.995779 0.0917786i \(-0.970745\pi\)
0.995779 0.0917786i \(-0.0292552\pi\)
\(234\) −7.38230 0.510896i −0.482596 0.0333983i
\(235\) −5.56596 −0.363083
\(236\) −1.44792 + 10.4109i −0.0942518 + 0.677695i
\(237\) 9.98091i 0.648329i
\(238\) 2.32348 + 1.47917i 0.150609 + 0.0958803i
\(239\) 7.25286 0.469148 0.234574 0.972098i \(-0.424630\pi\)
0.234574 + 0.972098i \(0.424630\pi\)
\(240\) −2.69394 0.764112i −0.173893 0.0493232i
\(241\) 21.7072i 1.39828i 0.714983 + 0.699142i \(0.246435\pi\)
−0.714983 + 0.699142i \(0.753565\pi\)
\(242\) −0.310662 + 4.48898i −0.0199701 + 0.288562i
\(243\) −14.9526 −0.959212
\(244\) −8.10110 1.12668i −0.518620 0.0721282i
\(245\) 6.77687 0.432958
\(246\) 10.1833 + 0.704738i 0.649261 + 0.0449325i
\(247\) −8.84060 −0.562514
\(248\) −5.24882 1.10386i −0.333301 0.0700954i
\(249\) 1.13563i 0.0719678i
\(250\) −0.0976378 + 1.41084i −0.00617516 + 0.0892293i
\(251\) 7.87719i 0.497204i 0.968606 + 0.248602i \(0.0799711\pi\)
−0.968606 + 0.248602i \(0.920029\pi\)
\(252\) 0.326639 2.34862i 0.0205763 0.147949i
\(253\) 11.4574i 0.720323i
\(254\) −1.06230 + 15.3500i −0.0666548 + 0.963143i
\(255\) −2.53607 1.37827i −0.158815 0.0863108i
\(256\) 13.6172 + 8.40065i 0.851077 + 0.525041i
\(257\) 6.86958 0.428513 0.214256 0.976777i \(-0.431267\pi\)
0.214256 + 0.976777i \(0.431267\pi\)
\(258\) −8.08150 0.559285i −0.503132 0.0348195i
\(259\) 2.31745i 0.143999i
\(260\) −0.574353 + 4.12975i −0.0356199 + 0.256116i
\(261\) −21.2071 −1.31269
\(262\) −1.36267 + 19.6901i −0.0841857 + 1.21646i
\(263\) −26.2544 −1.61891 −0.809457 0.587179i \(-0.800239\pi\)
−0.809457 + 0.587179i \(0.800239\pi\)
\(264\) −1.53461 + 7.29699i −0.0944486 + 0.449099i
\(265\) 6.11891i 0.375882i
\(266\) 0.195582 2.82610i 0.0119919 0.173279i
\(267\) −2.89314 −0.177057
\(268\) 3.86668 27.8024i 0.236195 1.69830i
\(269\) −19.7359 −1.20332 −0.601661 0.798752i \(-0.705494\pi\)
−0.601661 + 0.798752i \(0.705494\pi\)
\(270\) −0.376613 + 5.44195i −0.0229199 + 0.331187i
\(271\) −9.82641 −0.596912 −0.298456 0.954423i \(-0.596472\pi\)
−0.298456 + 0.954423i \(0.596472\pi\)
\(272\) 11.7918 + 11.5305i 0.714983 + 0.699142i
\(273\) 0.689392 0.0417239
\(274\) 1.58641 22.9231i 0.0958384 1.38484i
\(275\) 3.76587 0.227091
\(276\) −0.586786 + 4.21914i −0.0353203 + 0.253962i
\(277\) −7.12825 −0.428295 −0.214148 0.976801i \(-0.568697\pi\)
−0.214148 + 0.976801i \(0.568697\pi\)
\(278\) −0.377066 + 5.44850i −0.0226149 + 0.326779i
\(279\) 4.75966i 0.284953i
\(280\) −1.30746 0.274968i −0.0781357 0.0164325i
\(281\) −19.5618 −1.16696 −0.583480 0.812127i \(-0.698309\pi\)
−0.583480 + 0.812127i \(0.698309\pi\)
\(282\) −0.380443 + 5.49730i −0.0226551 + 0.327359i
\(283\) −8.55218 −0.508374 −0.254187 0.967155i \(-0.581808\pi\)
−0.254187 + 0.967155i \(0.581808\pi\)
\(284\) −3.98490 + 28.6524i −0.236460 + 1.70021i
\(285\) 2.96866i 0.175848i
\(286\) 11.0763 + 0.766544i 0.654957 + 0.0453267i
\(287\) 4.87034 0.287487
\(288\) 4.80818 13.3594i 0.283325 0.787208i
\(289\) 9.24757 + 14.2647i 0.543975 + 0.839102i
\(290\) −0.824972 + 11.9206i −0.0484440 + 0.700002i
\(291\) 1.05844i 0.0620467i
\(292\) 3.24561 23.3368i 0.189935 1.36568i
\(293\) 22.8881i 1.33714i 0.743649 + 0.668570i \(0.233093\pi\)
−0.743649 + 0.668570i \(0.766907\pi\)
\(294\) 0.463211 6.69326i 0.0270150 0.390359i
\(295\) 5.25557i 0.305991i
\(296\) 2.85581 13.5793i 0.165991 0.789279i
\(297\) 14.5259 0.842877
\(298\) 21.4906 + 1.48727i 1.24492 + 0.0861550i
\(299\) 6.34272 0.366809
\(300\) 1.38676 + 0.192867i 0.0800646 + 0.0111352i
\(301\) −3.86513 −0.222783
\(302\) 0.142031 2.05231i 0.00817298 0.118097i
\(303\) 11.1386i 0.639897i
\(304\) 4.62865 16.3187i 0.265471 0.935942i
\(305\) 4.08954 0.234166
\(306\) 7.85954 12.3458i 0.449300 0.705761i
\(307\) 4.75160i 0.271188i 0.990764 + 0.135594i \(0.0432943\pi\)
−0.990764 + 0.135594i \(0.956706\pi\)
\(308\) −0.490086 + 3.52384i −0.0279252 + 0.200790i
\(309\) 10.4652 0.595342
\(310\) 2.67542 + 0.185154i 0.151954 + 0.0105160i
\(311\) 18.5567i 1.05225i 0.850407 + 0.526126i \(0.176356\pi\)
−0.850407 + 0.526126i \(0.823644\pi\)
\(312\) 4.03954 + 0.849543i 0.228694 + 0.0480959i
\(313\) 27.7728i 1.56981i 0.619614 + 0.784907i \(0.287289\pi\)
−0.619614 + 0.784907i \(0.712711\pi\)
\(314\) 3.36227 + 0.232688i 0.189744 + 0.0131313i
\(315\) 1.18561i 0.0668016i
\(316\) −3.92793 + 28.2428i −0.220964 + 1.58878i
\(317\) −6.90582 −0.387869 −0.193935 0.981014i \(-0.562125\pi\)
−0.193935 + 0.981014i \(0.562125\pi\)
\(318\) 6.04343 + 0.418238i 0.338898 + 0.0234536i
\(319\) 31.8190 1.78152
\(320\) −7.32231 3.22239i −0.409330 0.180137i
\(321\) −10.9804 −0.612864
\(322\) −0.140321 + 2.02760i −0.00781977 + 0.112993i
\(323\) 8.34896 15.3624i 0.464549 0.854785i
\(324\) −9.56691 1.33054i −0.531495 0.0739188i
\(325\) 2.08475i 0.115641i
\(326\) 0.982531 14.1973i 0.0544173 0.786315i
\(327\) 11.2459 0.621900
\(328\) 28.5381 + 6.00176i 1.57575 + 0.331392i
\(329\) 2.62919i 0.144952i
\(330\) 0.257404 3.71941i 0.0141696 0.204747i
\(331\) 17.7274i 0.974385i 0.873295 + 0.487193i \(0.161979\pi\)
−0.873295 + 0.487193i \(0.838021\pi\)
\(332\) 0.446922 3.21348i 0.0245280 0.176363i
\(333\) −12.3137 −0.674789
\(334\) 5.77696 + 0.399798i 0.316101 + 0.0218759i
\(335\) 14.0350i 0.766815i
\(336\) −0.360943 + 1.27254i −0.0196910 + 0.0694225i
\(337\) 6.64499i 0.361975i −0.983485 0.180988i \(-0.942071\pi\)
0.983485 0.180988i \(-0.0579294\pi\)
\(338\) −0.844941 + 12.2092i −0.0459588 + 0.664091i
\(339\) 5.46190i 0.296650i
\(340\) −6.63387 4.89814i −0.359772 0.265639i
\(341\) 7.14135i 0.386726i
\(342\) −15.0164 1.03922i −0.811996 0.0561946i
\(343\) 6.50777i 0.351386i
\(344\) −22.6480 4.76303i −1.22110 0.256806i
\(345\) 2.12987i 0.114669i
\(346\) −1.59912 + 23.1068i −0.0859692 + 1.24223i
\(347\) −6.94078 −0.372600 −0.186300 0.982493i \(-0.559650\pi\)
−0.186300 + 0.982493i \(0.559650\pi\)
\(348\) 11.7172 + 1.62959i 0.628106 + 0.0873551i
\(349\) 27.3230i 1.46257i −0.682072 0.731285i \(-0.738921\pi\)
0.682072 0.731285i \(-0.261079\pi\)
\(350\) 0.666437 + 0.0461211i 0.0356225 + 0.00246528i
\(351\) 8.04138i 0.429217i
\(352\) −7.21415 + 20.0443i −0.384516 + 1.06836i
\(353\) 5.69659 0.303199 0.151599 0.988442i \(-0.451558\pi\)
0.151599 + 0.988442i \(0.451558\pi\)
\(354\) −5.19074 0.359228i −0.275885 0.0190927i
\(355\) 14.4641i 0.767675i
\(356\) −8.18669 1.13858i −0.433894 0.0603447i
\(357\) −0.651054 + 1.19796i −0.0344574 + 0.0634028i
\(358\) −11.5225 0.797421i −0.608983 0.0421450i
\(359\) 28.5022 1.50429 0.752143 0.659000i \(-0.229020\pi\)
0.752143 + 0.659000i \(0.229020\pi\)
\(360\) −1.46104 + 6.94717i −0.0770034 + 0.366148i
\(361\) 1.01720 0.0535367
\(362\) 1.23502 17.8457i 0.0649111 0.937947i
\(363\) −2.22742 −0.116909
\(364\) 1.95076 + 0.271307i 0.102248 + 0.0142203i
\(365\) 11.7807i 0.616630i
\(366\) 0.279527 4.03909i 0.0146111 0.211126i
\(367\) 30.1453i 1.57357i 0.617227 + 0.786786i \(0.288256\pi\)
−0.617227 + 0.786786i \(0.711744\pi\)
\(368\) −3.32084 + 11.7079i −0.173111 + 0.610317i
\(369\) 25.8785i 1.34718i
\(370\) −0.479013 + 6.92160i −0.0249027 + 0.359837i
\(371\) 2.89038 0.150061
\(372\) 0.365740 2.62976i 0.0189627 0.136347i
\(373\) 8.99135i 0.465555i −0.972530 0.232777i \(-0.925219\pi\)
0.972530 0.232777i \(-0.0747813\pi\)
\(374\) −11.7924 + 18.5235i −0.609770 + 0.957827i
\(375\) −0.700054 −0.0361506
\(376\) −3.23997 + 15.4059i −0.167089 + 0.794499i
\(377\) 17.6147i 0.907201i
\(378\) 2.57061 + 0.177900i 0.132218 + 0.00915020i
\(379\) −11.8768 −0.610068 −0.305034 0.952341i \(-0.598668\pi\)
−0.305034 + 0.952341i \(0.598668\pi\)
\(380\) −1.16830 + 8.40037i −0.0599325 + 0.430930i
\(381\) −7.61661 −0.390211
\(382\) 0.960788 13.8831i 0.0491582 0.710322i
\(383\) 10.6980 0.546644 0.273322 0.961923i \(-0.411877\pi\)
0.273322 + 0.961923i \(0.411877\pi\)
\(384\) −3.68313 + 7.01172i −0.187954 + 0.357815i
\(385\) 1.77888i 0.0906601i
\(386\) −27.2968 1.88909i −1.38937 0.0961522i
\(387\) 20.5373i 1.04397i
\(388\) −0.416543 + 2.99505i −0.0211468 + 0.152051i
\(389\) 14.5550i 0.737970i 0.929435 + 0.368985i \(0.120295\pi\)
−0.929435 + 0.368985i \(0.879705\pi\)
\(390\) −2.05903 0.142496i −0.104263 0.00721557i
\(391\) −5.98999 + 11.0218i −0.302927 + 0.557396i
\(392\) 3.94484 18.7576i 0.199245 0.947399i
\(393\) −9.77018 −0.492840
\(394\) −0.247136 + 3.57105i −0.0124505 + 0.179907i
\(395\) 14.2573i 0.717365i
\(396\) 18.7239 + 2.60406i 0.940911 + 0.130859i
\(397\) −5.14070 −0.258004 −0.129002 0.991644i \(-0.541177\pi\)
−0.129002 + 0.991644i \(0.541177\pi\)
\(398\) −10.9422 0.757259i −0.548482 0.0379580i
\(399\) 1.40230 0.0702029
\(400\) 3.84820 + 1.09150i 0.192410 + 0.0545752i
\(401\) 14.8456i 0.741354i 0.928762 + 0.370677i \(0.120874\pi\)
−0.928762 + 0.370677i \(0.879126\pi\)
\(402\) 13.8619 + 0.959318i 0.691367 + 0.0478464i
\(403\) −3.95338 −0.196932
\(404\) −4.38354 + 31.5188i −0.218089 + 1.56812i
\(405\) 4.82950 0.239980
\(406\) 5.63092 + 0.389691i 0.279458 + 0.0193400i
\(407\) 18.4754 0.915793
\(408\) −5.29115 + 6.21723i −0.261951 + 0.307799i
\(409\) 28.8169 1.42490 0.712451 0.701722i \(-0.247585\pi\)
0.712451 + 0.701722i \(0.247585\pi\)
\(410\) −14.5464 1.00669i −0.718396 0.0497170i
\(411\) 11.3744 0.561057
\(412\) 29.6131 + 4.11851i 1.45893 + 0.202904i
\(413\) −2.48257 −0.122159
\(414\) 10.7736 + 0.745592i 0.529493 + 0.0366438i
\(415\) 1.62221i 0.0796310i
\(416\) 11.0963 + 3.99368i 0.544041 + 0.195806i
\(417\) −2.70353 −0.132392
\(418\) 22.5305 + 1.55924i 1.10200 + 0.0762648i
\(419\) −15.8132 −0.772525 −0.386263 0.922389i \(-0.626234\pi\)
−0.386263 + 0.922389i \(0.626234\pi\)
\(420\) 0.0911042 0.655063i 0.00444543 0.0319638i
\(421\) 0.972923i 0.0474174i −0.999719 0.0237087i \(-0.992453\pi\)
0.999719 0.0237087i \(-0.00754742\pi\)
\(422\) 1.00828 14.5694i 0.0490824 0.709227i
\(423\) 13.9702 0.679252
\(424\) 16.9364 + 3.56184i 0.822505 + 0.172978i
\(425\) 3.62268 + 1.96881i 0.175726 + 0.0955013i
\(426\) −14.2857 0.988647i −0.692143 0.0479001i
\(427\) 1.93177i 0.0934849i
\(428\) −31.0710 4.32127i −1.50187 0.208876i
\(429\) 5.49604i 0.265351i
\(430\) 11.5441 + 0.798916i 0.556707 + 0.0385272i
\(431\) 29.2081i 1.40690i 0.710744 + 0.703451i \(0.248359\pi\)
−0.710744 + 0.703451i \(0.751641\pi\)
\(432\) 14.8434 + 4.21020i 0.714155 + 0.202563i
\(433\) −23.8697 −1.14710 −0.573552 0.819169i \(-0.694435\pi\)
−0.573552 + 0.819169i \(0.694435\pi\)
\(434\) 0.0874610 1.26379i 0.00419826 0.0606637i
\(435\) −5.91497 −0.283601
\(436\) 31.8224 + 4.42577i 1.52402 + 0.211956i
\(437\) 12.9018 0.617178
\(438\) 11.6354 + 0.805232i 0.555959 + 0.0384754i
\(439\) 24.6752i 1.17768i −0.808249 0.588841i \(-0.799585\pi\)
0.808249 0.588841i \(-0.200415\pi\)
\(440\) 2.19213 10.4235i 0.104506 0.496920i
\(441\) −17.0094 −0.809973
\(442\) 10.2544 + 6.52814i 0.487753 + 0.310512i
\(443\) 6.58438i 0.312834i −0.987691 0.156417i \(-0.950006\pi\)
0.987691 0.156417i \(-0.0499943\pi\)
\(444\) 6.80347 + 0.946207i 0.322878 + 0.0449050i
\(445\) 4.13274 0.195911
\(446\) −0.0833085 + 1.20378i −0.00394477 + 0.0570008i
\(447\) 10.6636i 0.504369i
\(448\) −1.52216 + 3.45883i −0.0719151 + 0.163414i
\(449\) 17.6917i 0.834925i −0.908694 0.417462i \(-0.862920\pi\)
0.908694 0.417462i \(-0.137080\pi\)
\(450\) 0.245064 3.54110i 0.0115524 0.166929i
\(451\) 38.8279i 1.82833i
\(452\) −2.14950 + 15.4555i −0.101104 + 0.726964i
\(453\) 1.01835 0.0478463
\(454\) 2.09052 30.2075i 0.0981132 1.41771i
\(455\) −0.984770 −0.0461667
\(456\) 8.21689 + 1.72807i 0.384791 + 0.0809242i
\(457\) 8.25279 0.386049 0.193025 0.981194i \(-0.438170\pi\)
0.193025 + 0.981194i \(0.438170\pi\)
\(458\) −0.396136 0.0274148i −0.0185102 0.00128101i
\(459\) 13.9735 + 7.59418i 0.652229 + 0.354466i
\(460\) 0.838201 6.02688i 0.0390813 0.281005i
\(461\) 8.12505i 0.378421i −0.981937 0.189211i \(-0.939407\pi\)
0.981937 0.189211i \(-0.0605929\pi\)
\(462\) −1.75693 0.121590i −0.0817400 0.00565686i
\(463\) −25.7721 −1.19773 −0.598864 0.800850i \(-0.704381\pi\)
−0.598864 + 0.800850i \(0.704381\pi\)
\(464\) 32.5146 + 9.22245i 1.50945 + 0.428142i
\(465\) 1.32754i 0.0615630i
\(466\) 3.95300 + 0.273570i 0.183119 + 0.0126729i
\(467\) 31.6325i 1.46378i −0.681425 0.731888i \(-0.738639\pi\)
0.681425 0.731888i \(-0.261361\pi\)
\(468\) 1.44158 10.3653i 0.0666372 0.479138i
\(469\) 6.62971 0.306131
\(470\) 0.543449 7.85268i 0.0250674 0.362217i
\(471\) 1.66835i 0.0768734i
\(472\) −14.5468 3.05929i −0.669570 0.140815i
\(473\) 30.8140i 1.41683i
\(474\) −14.0815 0.974514i −0.646782 0.0447609i
\(475\) 4.24061i 0.194573i
\(476\) −2.31373 + 3.13363i −0.106050 + 0.143630i
\(477\) 15.3580i 0.703195i
\(478\) −0.708153 + 10.2326i −0.0323902 + 0.468029i
\(479\) 10.9120i 0.498584i −0.968428 0.249292i \(-0.919802\pi\)
0.968428 0.249292i \(-0.0801978\pi\)
\(480\) 1.34107 3.72612i 0.0612112 0.170073i
\(481\) 10.2278i 0.466348i
\(482\) −30.6254 2.11945i −1.39495 0.0965381i
\(483\) −1.00609 −0.0457785
\(484\) −6.30289 0.876588i −0.286495 0.0398449i
\(485\) 1.51194i 0.0686536i
\(486\) 1.45994 21.0958i 0.0662244 0.956923i
\(487\) 8.42188i 0.381632i 0.981626 + 0.190816i \(0.0611134\pi\)
−0.981626 + 0.190816i \(0.938887\pi\)
\(488\) 2.38054 11.3193i 0.107762 0.512403i
\(489\) 7.04465 0.318570
\(490\) −0.661679 + 9.56107i −0.0298916 + 0.431925i
\(491\) 1.68337i 0.0759696i −0.999278 0.0379848i \(-0.987906\pi\)
0.999278 0.0379848i \(-0.0120938\pi\)
\(492\) −1.98854 + 14.2981i −0.0896505 + 0.644610i
\(493\) 30.6091 + 16.6351i 1.37856 + 0.749206i
\(494\) 0.863178 12.4727i 0.0388362 0.561172i
\(495\) −9.45205 −0.424838
\(496\) 2.06986 7.29747i 0.0929393 0.327666i
\(497\) −6.83239 −0.306475
\(498\) 1.60219 + 0.110881i 0.0717960 + 0.00496868i
\(499\) −2.69995 −0.120866 −0.0604331 0.998172i \(-0.519248\pi\)
−0.0604331 + 0.998172i \(0.519248\pi\)
\(500\) −1.98093 0.275503i −0.0885900 0.0123208i
\(501\) 2.86651i 0.128066i
\(502\) −11.1134 0.769112i −0.496018 0.0343271i
\(503\) 41.6996i 1.85929i 0.368452 + 0.929647i \(0.379888\pi\)
−0.368452 + 0.929647i \(0.620112\pi\)
\(504\) 3.28163 + 0.690149i 0.146175 + 0.0307417i
\(505\) 15.9111i 0.708034i
\(506\) −16.1646 1.11868i −0.718604 0.0497314i
\(507\) −6.05815 −0.269052
\(508\) −21.5526 2.99748i −0.956243 0.132992i
\(509\) 21.3267i 0.945291i 0.881253 + 0.472646i \(0.156701\pi\)
−0.881253 + 0.472646i \(0.843299\pi\)
\(510\) 2.19214 3.44341i 0.0970695 0.152477i
\(511\) 5.56484 0.246174
\(512\) −13.1815 + 18.3915i −0.582546 + 0.812797i
\(513\) 16.3571i 0.722183i
\(514\) −0.670731 + 9.69187i −0.0295847 + 0.427490i
\(515\) −14.9491 −0.658735
\(516\) 1.57812 11.3471i 0.0694729 0.499528i
\(517\) −20.9607 −0.921850
\(518\) 3.26955 + 0.226271i 0.143656 + 0.00994177i
\(519\) −11.4655 −0.503281
\(520\) −5.77033 1.21354i −0.253046 0.0532172i
\(521\) 5.58565i 0.244712i −0.992486 0.122356i \(-0.960955\pi\)
0.992486 0.122356i \(-0.0390449\pi\)
\(522\) 2.07062 29.9198i 0.0906284 1.30955i
\(523\) 30.3049i 1.32514i −0.748999 0.662571i \(-0.769465\pi\)
0.748999 0.662571i \(-0.230535\pi\)
\(524\) −27.6466 3.84500i −1.20775 0.167970i
\(525\) 0.330684i 0.0144322i
\(526\) 2.56342 37.0407i 0.111770 1.61505i
\(527\) 3.73352 6.86981i 0.162635 0.299253i
\(528\) −10.1450 2.87755i −0.441506 0.125229i
\(529\) 13.7435 0.597545
\(530\) −8.63280 0.597437i −0.374985 0.0259510i
\(531\) 13.1911i 0.572445i
\(532\) 3.96808 + 0.551869i 0.172038 + 0.0239265i
\(533\) 21.4947 0.931039
\(534\) 0.282480 4.08176i 0.0122241 0.176635i
\(535\) 15.6850 0.678123
\(536\) 38.8472 + 8.16984i 1.67794 + 0.352883i
\(537\) 5.71743i 0.246725i
\(538\) 1.92697 27.8442i 0.0830777 1.20045i
\(539\) 25.5208 1.09926
\(540\) −7.64094 1.06268i −0.328814 0.0457305i
\(541\) 5.91685 0.254385 0.127193 0.991878i \(-0.459403\pi\)
0.127193 + 0.991878i \(0.459403\pi\)
\(542\) 0.959429 13.8635i 0.0412110 0.595487i
\(543\) 8.85496 0.380003
\(544\) −17.4191 + 15.5105i −0.746836 + 0.665008i
\(545\) −16.0643 −0.688121
\(546\) −0.0673107 + 0.972621i −0.00288063 + 0.0416243i
\(547\) 39.6019 1.69325 0.846627 0.532187i \(-0.178629\pi\)
0.846627 + 0.532187i \(0.178629\pi\)
\(548\) 32.1860 + 4.47633i 1.37492 + 0.191219i
\(549\) −10.2644 −0.438075
\(550\) −0.367691 + 5.31304i −0.0156784 + 0.226549i
\(551\) 35.8302i 1.52642i
\(552\) −5.89523 1.23981i −0.250918 0.0527697i
\(553\) −6.73473 −0.286390
\(554\) 0.695987 10.0568i 0.0295697 0.427273i
\(555\) −3.43448 −0.145785
\(556\) −7.65014 1.06396i −0.324438 0.0451219i
\(557\) 23.3121i 0.987763i −0.869529 0.493882i \(-0.835578\pi\)
0.869529 0.493882i \(-0.164422\pi\)
\(558\) −6.71511 0.464723i −0.284273 0.0196733i
\(559\) −17.0583 −0.721490
\(560\) 0.515593 1.81777i 0.0217878 0.0768148i
\(561\) −9.55051 5.19040i −0.403223 0.219139i
\(562\) 1.90997 27.5986i 0.0805674 1.16418i
\(563\) 8.22003i 0.346433i −0.984884 0.173216i \(-0.944584\pi\)
0.984884 0.173216i \(-0.0554160\pi\)
\(564\) −7.71866 1.07349i −0.325014 0.0452020i
\(565\) 7.80211i 0.328237i
\(566\) 0.835016 12.0657i 0.0350983 0.507161i
\(567\) 2.28130i 0.0958058i
\(568\) −40.0349 8.41961i −1.67983 0.353279i
\(569\) −42.0664 −1.76352 −0.881758 0.471703i \(-0.843639\pi\)
−0.881758 + 0.471703i \(0.843639\pi\)
\(570\) −4.18830 0.289853i −0.175429 0.0121406i
\(571\) 45.1866 1.89100 0.945500 0.325623i \(-0.105574\pi\)
0.945500 + 0.325623i \(0.105574\pi\)
\(572\) −2.16294 + 15.5521i −0.0904370 + 0.650265i
\(573\) 6.88876 0.287782
\(574\) −0.475530 + 6.87127i −0.0198482 + 0.286801i
\(575\) 3.04244i 0.126879i
\(576\) 18.3784 + 8.08795i 0.765769 + 0.336998i
\(577\) −9.00464 −0.374868 −0.187434 0.982277i \(-0.560017\pi\)
−0.187434 + 0.982277i \(0.560017\pi\)
\(578\) −21.0281 + 11.6541i −0.874656 + 0.484745i
\(579\) 13.5446i 0.562894i
\(580\) −16.7375 2.32780i −0.694987 0.0966568i
\(581\) 0.766280 0.0317907
\(582\) −1.49329 0.103344i −0.0618987 0.00428373i
\(583\) 23.0430i 0.954345i
\(584\) 32.6076 + 6.85759i 1.34931 + 0.283769i
\(585\) 5.23256i 0.216340i
\(586\) −32.2915 2.23475i −1.33395 0.0923166i
\(587\) 19.0434i 0.786005i −0.919537 0.393002i \(-0.871436\pi\)
0.919537 0.393002i \(-0.128564\pi\)
\(588\) 9.39789 + 1.30703i 0.387562 + 0.0539011i
\(589\) −8.04162 −0.331349
\(590\) 7.41477 + 0.513143i 0.305261 + 0.0211258i
\(591\) −1.77194 −0.0728879
\(592\) 18.8793 + 5.35494i 0.775935 + 0.220087i
\(593\) −15.4544 −0.634636 −0.317318 0.948319i \(-0.602782\pi\)
−0.317318 + 0.948319i \(0.602782\pi\)
\(594\) −1.41828 + 20.4937i −0.0581926 + 0.840866i
\(595\) 0.930005 1.71124i 0.0381265 0.0701540i
\(596\) −4.19659 + 30.1745i −0.171899 + 1.23600i
\(597\) 5.42948i 0.222214i
\(598\) −0.619290 + 8.94856i −0.0253246 + 0.365934i
\(599\) 9.04450 0.369548 0.184774 0.982781i \(-0.440845\pi\)
0.184774 + 0.982781i \(0.440845\pi\)
\(600\) −0.407504 + 1.93766i −0.0166363 + 0.0791048i
\(601\) 19.6183i 0.800246i 0.916461 + 0.400123i \(0.131033\pi\)
−0.916461 + 0.400123i \(0.868967\pi\)
\(602\) 0.377383 5.45308i 0.0153810 0.222251i
\(603\) 35.2268i 1.43455i
\(604\) 2.88161 + 0.400767i 0.117251 + 0.0163070i
\(605\) 3.18178 0.129358
\(606\) −15.7148 1.08755i −0.638370 0.0441787i
\(607\) 25.1180i 1.01951i −0.860320 0.509754i \(-0.829736\pi\)
0.860320 0.509754i \(-0.170264\pi\)
\(608\) 22.5711 + 8.12360i 0.915381 + 0.329456i
\(609\) 2.79405i 0.113220i
\(610\) −0.399294 + 5.76968i −0.0161669 + 0.233607i
\(611\) 11.6036i 0.469432i
\(612\) 16.6505 + 12.2940i 0.673057 + 0.496954i
\(613\) 5.63031i 0.227406i 0.993515 + 0.113703i \(0.0362712\pi\)
−0.993515 + 0.113703i \(0.963729\pi\)
\(614\) −6.70375 0.463936i −0.270541 0.0187229i
\(615\) 7.21788i 0.291053i
\(616\) −4.92373 1.03549i −0.198383 0.0417212i
\(617\) 14.6134i 0.588314i −0.955757 0.294157i \(-0.904961\pi\)
0.955757 0.294157i \(-0.0950389\pi\)
\(618\) −1.02179 + 14.7646i −0.0411026 + 0.593921i
\(619\) −10.0040 −0.402095 −0.201048 0.979581i \(-0.564435\pi\)
−0.201048 + 0.979581i \(0.564435\pi\)
\(620\) −0.522445 + 3.75651i −0.0209819 + 0.150865i
\(621\) 11.7354i 0.470927i
\(622\) −26.1805 1.81183i −1.04974 0.0726479i
\(623\) 1.95218i 0.0782124i
\(624\) −1.59298 + 5.61619i −0.0637702 + 0.224828i
\(625\) 1.00000 0.0400000
\(626\) −39.1830 2.71168i −1.56607 0.108380i
\(627\) 11.1796i 0.446469i
\(628\) −0.656570 + 4.72091i −0.0262000 + 0.188385i
\(629\) 17.7729 + 9.65902i 0.708653 + 0.385130i
\(630\) −1.67271 0.115760i −0.0666422 0.00461201i
\(631\) 13.4572 0.535722 0.267861 0.963458i \(-0.413683\pi\)
0.267861 + 0.963458i \(0.413683\pi\)
\(632\) −39.4626 8.29925i −1.56974 0.330127i
\(633\) 7.22929 0.287338
\(634\) 0.674269 9.74299i 0.0267786 0.386944i
\(635\) 10.8800 0.431761
\(636\) −1.18013 + 8.48546i −0.0467954 + 0.336471i
\(637\) 14.1281i 0.559774i
\(638\) −3.10674 + 44.8914i −0.122997 + 1.77727i
\(639\) 36.3038i 1.43616i
\(640\) 5.26120 10.0160i 0.207967 0.395916i
\(641\) 42.8148i 1.69108i −0.533909 0.845542i \(-0.679278\pi\)
0.533909 0.845542i \(-0.320722\pi\)
\(642\) 1.07210 15.4915i 0.0423124 0.611402i
\(643\) −22.4425 −0.885044 −0.442522 0.896758i \(-0.645916\pi\)
−0.442522 + 0.896758i \(0.645916\pi\)
\(644\) −2.84691 0.395940i −0.112184 0.0156022i
\(645\) 5.72815i 0.225546i
\(646\) 20.8587 + 13.2790i 0.820673 + 0.522455i
\(647\) −31.4314 −1.23570 −0.617849 0.786297i \(-0.711996\pi\)
−0.617849 + 0.786297i \(0.711996\pi\)
\(648\) 2.81127 13.3675i 0.110437 0.525123i
\(649\) 19.7918i 0.776896i
\(650\) 2.94124 + 0.203550i 0.115365 + 0.00798389i
\(651\) 0.627087 0.0245775
\(652\) 19.9342 + 2.77239i 0.780682 + 0.108575i
\(653\) 24.8465 0.972318 0.486159 0.873871i \(-0.338398\pi\)
0.486159 + 0.873871i \(0.338398\pi\)
\(654\) −1.09803 + 15.8662i −0.0429362 + 0.620416i
\(655\) 13.9563 0.545319
\(656\) −11.2539 + 39.6767i −0.439392 + 1.54911i
\(657\) 29.5687i 1.15358i
\(658\) −3.70936 0.256708i −0.144606 0.0100075i
\(659\) 36.5507i 1.42381i 0.702273 + 0.711907i \(0.252168\pi\)
−0.702273 + 0.711907i \(0.747832\pi\)
\(660\) 5.22236 + 0.726311i 0.203280 + 0.0282716i
\(661\) 17.4285i 0.677889i −0.940806 0.338944i \(-0.889930\pi\)
0.940806 0.338944i \(-0.110070\pi\)
\(662\) −25.0105 1.73086i −0.972060 0.0672719i
\(663\) −2.87335 + 5.28706i −0.111592 + 0.205332i
\(664\) 4.49007 + 0.944293i 0.174249 + 0.0366457i
\(665\) −2.00313 −0.0776782
\(666\) 1.20229 17.3727i 0.0465877 0.673178i
\(667\) 25.7065i 0.995360i
\(668\) −1.12810 + 8.11133i −0.0436475 + 0.313837i
\(669\) −0.597314 −0.0230935
\(670\) −19.8011 1.37035i −0.764985 0.0529412i
\(671\) 15.4007 0.594536
\(672\) −1.76010 0.633480i −0.0678974 0.0244370i
\(673\) 26.9124i 1.03740i −0.854957 0.518699i \(-0.826417\pi\)
0.854957 0.518699i \(-0.173583\pi\)
\(674\) 9.37500 + 0.648802i 0.361112 + 0.0249909i
\(675\) 3.85724 0.148465
\(676\) −17.1427 2.38415i −0.659333 0.0916982i
\(677\) −15.5242 −0.596642 −0.298321 0.954466i \(-0.596427\pi\)
−0.298321 + 0.954466i \(0.596427\pi\)
\(678\) −7.70586 0.533288i −0.295942 0.0204808i
\(679\) −0.714193 −0.0274082
\(680\) 7.55820 8.88108i 0.289844 0.340574i
\(681\) 14.9889 0.574374
\(682\) 10.0753 + 0.697266i 0.385803 + 0.0266997i
\(683\) 32.9726 1.26166 0.630830 0.775921i \(-0.282715\pi\)
0.630830 + 0.775921i \(0.282715\pi\)
\(684\) 2.93234 21.0843i 0.112121 0.806179i
\(685\) −16.2479 −0.620799
\(686\) 9.18141 + 0.635404i 0.350548 + 0.0242598i
\(687\) 0.196561i 0.00749929i
\(688\) 8.93118 31.4877i 0.340498 1.20046i
\(689\) 12.7564 0.485979
\(690\) 3.00491 + 0.207956i 0.114395 + 0.00791676i
\(691\) −38.9502 −1.48174 −0.740869 0.671650i \(-0.765586\pi\)
−0.740869 + 0.671650i \(0.765586\pi\)
\(692\) −32.4439 4.51220i −1.23333 0.171528i
\(693\) 4.46486i 0.169606i
\(694\) 0.677682 9.79232i 0.0257245 0.371711i
\(695\) 3.86189 0.146490
\(696\) −3.44312 + 16.3719i −0.130511 + 0.620576i
\(697\) −20.2993 + 37.3515i −0.768893 + 1.41479i
\(698\) 38.5484 + 2.66776i 1.45908 + 0.100976i
\(699\) 1.96147i 0.0741895i
\(700\) −0.130139 + 0.935732i −0.00491879 + 0.0353673i
\(701\) 39.7185i 1.50015i −0.661354 0.750074i \(-0.730018\pi\)
0.661354 0.750074i \(-0.269982\pi\)
\(702\) 11.3451 + 0.785143i 0.428193 + 0.0296333i
\(703\) 20.8045i 0.784658i
\(704\) −27.5749 12.1351i −1.03927 0.457358i
\(705\) 3.89647 0.146750
\(706\) −0.556203 + 8.03697i −0.0209330 + 0.302475i
\(707\) −7.51590 −0.282665
\(708\) 1.01362 7.28822i 0.0380943 0.273908i
\(709\) −0.684050 −0.0256901 −0.0128450 0.999917i \(-0.504089\pi\)
−0.0128450 + 0.999917i \(0.504089\pi\)
\(710\) 20.4065 + 1.41224i 0.765843 + 0.0530006i
\(711\) 35.7848i 1.34204i
\(712\) 2.40569 11.4389i 0.0901569 0.428692i
\(713\) 5.76949 0.216069
\(714\) −1.62656 1.03550i −0.0608725 0.0387525i
\(715\) 7.85089i 0.293606i
\(716\) 2.25006 16.1785i 0.0840889 0.604620i
\(717\) −5.07739 −0.189619
\(718\) −2.78289 + 40.2120i −0.103857 + 1.50070i
\(719\) 38.6497i 1.44139i 0.693252 + 0.720695i \(0.256177\pi\)
−0.693252 + 0.720695i \(0.743823\pi\)
\(720\) −9.65868 2.73959i −0.359958 0.102099i
\(721\) 7.06148i 0.262983i
\(722\) −0.0993170 + 1.43510i −0.00369620 + 0.0534090i
\(723\) 15.1962i 0.565153i
\(724\) 25.0568 + 3.48482i 0.931227 + 0.129512i
\(725\) 8.44930 0.313799
\(726\) 0.217480 3.14252i 0.00807144 0.116630i
\(727\) −25.3357 −0.939651 −0.469825 0.882759i \(-0.655683\pi\)
−0.469825 + 0.882759i \(0.655683\pi\)
\(728\) −0.573238 + 2.72572i −0.0212456 + 0.101022i
\(729\) −4.02083 −0.148920
\(730\) −16.6207 1.15024i −0.615159 0.0425724i
\(731\) 16.1097 29.6424i 0.595838 1.09636i
\(732\) 5.67121 + 0.788735i 0.209614 + 0.0291525i
\(733\) 53.4938i 1.97584i 0.154968 + 0.987920i \(0.450473\pi\)
−0.154968 + 0.987920i \(0.549527\pi\)
\(734\) −42.5301 2.94332i −1.56982 0.108640i
\(735\) −4.74417 −0.174991
\(736\) −16.1937 5.82831i −0.596909 0.214834i
\(737\) 52.8540i 1.94690i
\(738\) 36.5104 + 2.52672i 1.34397 + 0.0930098i
\(739\) 10.7854i 0.396746i 0.980127 + 0.198373i \(0.0635658\pi\)
−0.980127 + 0.198373i \(0.936434\pi\)
\(740\) −9.71850 1.35162i −0.357259 0.0496866i
\(741\) 6.18890 0.227355
\(742\) −0.282211 + 4.07787i −0.0103603 + 0.149703i
\(743\) 10.8676i 0.398694i 0.979929 + 0.199347i \(0.0638821\pi\)
−0.979929 + 0.199347i \(0.936118\pi\)
\(744\) 3.67446 + 0.772764i 0.134712 + 0.0283309i
\(745\) 15.2325i 0.558075i
\(746\) 12.6854 + 0.877896i 0.464444 + 0.0321421i
\(747\) 4.07162i 0.148973i
\(748\) −24.9823 18.4458i −0.913443 0.674444i
\(749\) 7.40912i 0.270724i
\(750\) 0.0683518 0.987663i 0.00249585 0.0360644i
\(751\) 43.1284i 1.57378i −0.617095 0.786889i \(-0.711691\pi\)
0.617095 0.786889i \(-0.288309\pi\)
\(752\) −21.4189 6.07528i −0.781068 0.221543i
\(753\) 5.51446i 0.200958i
\(754\) 24.8514 + 1.71986i 0.905036 + 0.0626335i
\(755\) −1.45467 −0.0529410
\(756\) −0.501977 + 3.60935i −0.0182567 + 0.131271i
\(757\) 22.5791i 0.820652i −0.911939 0.410326i \(-0.865415\pi\)
0.911939 0.410326i \(-0.134585\pi\)
\(758\) 1.15962 16.7562i 0.0421194 0.608613i
\(759\) 8.02083i 0.291138i
\(760\) −11.7375 2.46848i −0.425764 0.0895411i
\(761\) −10.4373 −0.378353 −0.189177 0.981943i \(-0.560582\pi\)
−0.189177 + 0.981943i \(0.560582\pi\)
\(762\) 0.743670 10.7458i 0.0269403 0.389280i
\(763\) 7.58830i 0.274715i
\(764\) 19.4930 + 2.71103i 0.705233 + 0.0980818i
\(765\) −9.09265 4.94157i −0.328745 0.178663i
\(766\) −1.04453 + 15.0932i −0.0377405 + 0.545340i
\(767\) −10.9565 −0.395618
\(768\) −9.53280 5.88091i −0.343985 0.212209i
\(769\) −30.5474 −1.10157 −0.550784 0.834648i \(-0.685671\pi\)
−0.550784 + 0.834648i \(0.685671\pi\)
\(770\) 2.50971 + 0.173686i 0.0904438 + 0.00625921i
\(771\) −4.80908 −0.173195
\(772\) 5.33041 38.3270i 0.191846 1.37942i
\(773\) 40.8348i 1.46873i 0.678756 + 0.734364i \(0.262519\pi\)
−0.678756 + 0.734364i \(0.737481\pi\)
\(774\) −28.9749 2.00522i −1.04148 0.0720761i
\(775\) 1.89633i 0.0681183i
\(776\) −4.18486 0.880105i −0.150228 0.0315939i
\(777\) 1.62234i 0.0582011i
\(778\) −20.5348 1.42112i −0.736209 0.0509497i
\(779\) 43.7227 1.56653
\(780\) 0.402078 2.89104i 0.0143967 0.103516i
\(781\) 54.4699i 1.94909i
\(782\) −14.9651 9.52706i −0.535151 0.340687i
\(783\) 32.5910 1.16471
\(784\) 26.0787 + 7.39698i 0.931383 + 0.264178i
\(785\) 2.38317i 0.0850590i
\(786\) 0.953939 13.7841i 0.0340259 0.491664i
\(787\) −40.1369 −1.43073 −0.715363 0.698753i \(-0.753739\pi\)
−0.715363 + 0.698753i \(0.753739\pi\)
\(788\) −5.01404 0.697338i −0.178618 0.0248416i
\(789\) 18.3795 0.654327
\(790\) 20.1148 + 1.39206i 0.715653 + 0.0495271i
\(791\) −3.68547 −0.131040
\(792\) −5.50208 + 26.1621i −0.195508 + 0.929631i
\(793\) 8.52565i 0.302755i
\(794\) 0.501927 7.25270i 0.0178127 0.257389i
\(795\) 4.28357i 0.151923i
\(796\) 2.13674 15.3637i 0.0757348 0.544553i
\(797\) 36.6352i 1.29768i −0.760923 0.648842i \(-0.775254\pi\)
0.760923 0.648842i \(-0.224746\pi\)
\(798\) −0.136918 + 1.97842i −0.00484684 + 0.0700354i
\(799\) −20.1637 10.9583i −0.713340 0.387678i
\(800\) −1.91567 + 5.32261i −0.0677291 + 0.188183i
\(801\) −10.3729 −0.366507
\(802\) −20.9448 1.44949i −0.739585 0.0511834i
\(803\) 44.3646i 1.56559i
\(804\) −2.70689 + 19.4632i −0.0954645 + 0.686414i
\(805\) 1.43716 0.0506531
\(806\) 0.385999 5.57758i 0.0135962 0.196462i
\(807\) 13.8162 0.486354
\(808\) −44.0399 9.26190i −1.54932 0.325833i
\(809\) 31.5268i 1.10842i −0.832376 0.554212i \(-0.813020\pi\)
0.832376 0.554212i \(-0.186980\pi\)
\(810\) −0.471542 + 6.81364i −0.0165683 + 0.239407i
\(811\) −2.16993 −0.0761965 −0.0380982 0.999274i \(-0.512130\pi\)
−0.0380982 + 0.999274i \(0.512130\pi\)
\(812\) −1.09958 + 7.90628i −0.0385878 + 0.277456i
\(813\) 6.87901 0.241258
\(814\) −1.80390 + 26.0659i −0.0632267 + 0.913608i
\(815\) −10.0630 −0.352492
\(816\) −8.25490 8.07200i −0.288979 0.282576i
\(817\) −34.6986 −1.21395
\(818\) −2.81362 + 40.6560i −0.0983758 + 1.42150i
\(819\) 2.47170 0.0863681
\(820\) 2.84056 20.4243i 0.0991966 0.713249i
\(821\) −43.9566 −1.53410 −0.767048 0.641590i \(-0.778275\pi\)
−0.767048 + 0.641590i \(0.778275\pi\)
\(822\) −1.11057 + 16.0474i −0.0387356 + 0.559718i
\(823\) 4.32095i 0.150619i −0.997160 0.0753094i \(-0.976006\pi\)
0.997160 0.0753094i \(-0.0239945\pi\)
\(824\) −8.70191 + 41.3772i −0.303145 + 1.44144i
\(825\) −2.63631 −0.0917846
\(826\) 0.242393 3.50251i 0.00843392 0.121868i
\(827\) 13.4583 0.467990 0.233995 0.972238i \(-0.424820\pi\)
0.233995 + 0.972238i \(0.424820\pi\)
\(828\) −2.10382 + 15.1270i −0.0731128 + 0.525700i
\(829\) 36.3519i 1.26255i 0.775558 + 0.631277i \(0.217469\pi\)
−0.775558 + 0.631277i \(0.782531\pi\)
\(830\) −2.28867 0.158389i −0.0794410 0.00549776i
\(831\) 4.99016 0.173107
\(832\) −6.71786 + 15.2652i −0.232900 + 0.529224i
\(833\) 24.5504 + 13.3424i 0.850621 + 0.462286i
\(834\) 0.263967 3.81424i 0.00914042 0.132076i
\(835\) 4.09470i 0.141703i
\(836\) −4.39967 + 31.6347i −0.152166 + 1.09411i
\(837\) 7.31462i 0.252830i
\(838\) 1.54397 22.3099i 0.0533354 0.770682i
\(839\) 10.1963i 0.352016i −0.984389 0.176008i \(-0.943682\pi\)
0.984389 0.176008i \(-0.0563185\pi\)
\(840\) 0.915293 + 0.192492i 0.0315806 + 0.00664162i
\(841\) 42.3907 1.46175
\(842\) 1.37264 + 0.0949941i 0.0473042 + 0.00327371i
\(843\) 13.6943 0.471658
\(844\) 20.4566 + 2.84505i 0.704146 + 0.0979306i
\(845\) 8.65383 0.297701
\(846\) −1.36402 + 19.7096i −0.0468958 + 0.677631i
\(847\) 1.50297i 0.0516428i
\(848\) −6.67882 + 23.5468i −0.229352 + 0.808600i
\(849\) 5.98698 0.205473
\(850\) −3.13138 + 4.91878i −0.107406 + 0.168713i
\(851\) 14.9263i 0.511666i
\(852\) 2.78964 20.0582i 0.0955716 0.687184i
\(853\) 19.0192 0.651205 0.325602 0.945507i \(-0.394433\pi\)
0.325602 + 0.945507i \(0.394433\pi\)
\(854\) 2.72542 + 0.188614i 0.0932619 + 0.00645423i
\(855\) 10.6436i 0.364004i
\(856\) 9.13032 43.4143i 0.312068 1.48387i
\(857\) 15.6163i 0.533443i −0.963774 0.266721i \(-0.914060\pi\)
0.963774 0.266721i \(-0.0859404\pi\)
\(858\) −7.75403 0.536622i −0.264718 0.0183200i
\(859\) 8.33388i 0.284348i 0.989842 + 0.142174i \(0.0454093\pi\)
−0.989842 + 0.142174i \(0.954591\pi\)
\(860\) −2.25428 + 16.2089i −0.0768705 + 0.552718i
\(861\) −3.40950 −0.116196
\(862\) −41.2079 2.85181i −1.40355 0.0971331i
\(863\) 5.60477 0.190789 0.0953943 0.995440i \(-0.469589\pi\)
0.0953943 + 0.995440i \(0.469589\pi\)
\(864\) −7.38920 + 20.5306i −0.251386 + 0.698466i
\(865\) 16.3781 0.556871
\(866\) 2.33059 33.6763i 0.0791966 1.14437i
\(867\) −6.47380 9.98608i −0.219862 0.339145i
\(868\) 1.77446 + 0.246787i 0.0602291 + 0.00837649i
\(869\) 53.6913i 1.82135i
\(870\) 0.577525 8.34507i 0.0195799 0.282924i
\(871\) 29.2595 0.991419
\(872\) −9.35112 + 44.4642i −0.316669 + 1.50575i
\(873\) 3.79485i 0.128436i
\(874\) −1.25971 + 18.2024i −0.0426102 + 0.615705i
\(875\) 0.472369i 0.0159690i
\(876\) −2.27210 + 16.3370i −0.0767673 + 0.551976i
\(877\) 27.8925 0.941864 0.470932 0.882169i \(-0.343918\pi\)
0.470932 + 0.882169i \(0.343918\pi\)
\(878\) 34.8127 + 2.40923i 1.17487 + 0.0813076i
\(879\) 16.0229i 0.540440i
\(880\) 14.4918 + 4.11046i 0.488519 + 0.138564i
\(881\) 31.1567i 1.04969i −0.851196 0.524847i \(-0.824122\pi\)
0.851196 0.524847i \(-0.175878\pi\)
\(882\) 1.66076 23.9976i 0.0559208 0.808040i
\(883\) 26.5634i 0.893931i −0.894551 0.446965i \(-0.852505\pi\)
0.894551 0.446965i \(-0.147495\pi\)
\(884\) −10.2114 + 13.8299i −0.343446 + 0.465151i
\(885\) 3.67918i 0.123674i
\(886\) 9.28951 + 0.642885i 0.312087 + 0.0215981i
\(887\) 25.6641i 0.861717i 0.902419 + 0.430859i \(0.141789\pi\)
−0.902419 + 0.430859i \(0.858211\pi\)
\(888\) −1.99922 + 9.50622i −0.0670895 + 0.319008i
\(889\) 5.13939i 0.172370i
\(890\) −0.403512 + 5.83064i −0.0135258 + 0.195443i
\(891\) 18.1873 0.609296
\(892\) −1.69021 0.235070i −0.0565925 0.00787072i
\(893\) 23.6031i 0.789848i
\(894\) −15.0446 1.04117i −0.503165 0.0348218i
\(895\) 8.16713i 0.272997i
\(896\) −4.73124 2.48523i −0.158059 0.0830257i
\(897\) −4.44025 −0.148256
\(898\) 24.9602 + 1.72738i 0.832932 + 0.0576435i
\(899\) 16.0227i 0.534387i
\(900\) 4.97199 + 0.691491i 0.165733 + 0.0230497i
\(901\) −12.0470 + 22.1668i −0.401343 + 0.738485i
\(902\) −54.7799 3.79107i −1.82397 0.126229i
\(903\) 2.70580 0.0900435
\(904\) −21.5953 4.54164i −0.718249 0.151053i
\(905\) −12.6490 −0.420466
\(906\) −0.0994296 + 1.43673i −0.00330333 + 0.0477321i
\(907\) 20.5456 0.682206 0.341103 0.940026i \(-0.389200\pi\)
0.341103 + 0.940026i \(0.389200\pi\)
\(908\) 42.4138 + 5.89879i 1.40755 + 0.195758i
\(909\) 39.9356i 1.32458i
\(910\) 0.0961508 1.38935i 0.00318737 0.0460566i
\(911\) 34.5273i 1.14394i 0.820274 + 0.571970i \(0.193821\pi\)
−0.820274 + 0.571970i \(0.806179\pi\)
\(912\) −3.24030 + 11.4240i −0.107297 + 0.378286i
\(913\) 6.10902i 0.202179i
\(914\) −0.805785 + 11.6434i −0.0266530 + 0.385128i
\(915\) −2.86290 −0.0946444
\(916\) 0.0773557 0.556207i 0.00255591 0.0183776i
\(917\) 6.59253i 0.217705i
\(918\) −12.0785 + 18.9729i −0.398650 + 0.626201i
\(919\) 18.5422 0.611650 0.305825 0.952088i \(-0.401068\pi\)
0.305825 + 0.952088i \(0.401068\pi\)
\(920\) 8.42111 + 1.77102i 0.277636 + 0.0583887i
\(921\) 3.32638i 0.109608i
\(922\) 11.4631 + 0.793312i 0.377518 + 0.0261263i
\(923\) −30.1540 −0.992531
\(924\) 0.343087 2.46688i 0.0112867 0.0811544i
\(925\) 4.90602 0.161309
\(926\) 2.51633 36.3602i 0.0826917 1.19487i
\(927\) 37.5210 1.23235
\(928\) −16.1860 + 44.9724i −0.531333 + 1.47629i
\(929\) 18.2002i 0.597130i 0.954389 + 0.298565i \(0.0965080\pi\)
−0.954389 + 0.298565i \(0.903492\pi\)
\(930\) −1.87294 0.129618i −0.0614161 0.00425033i
\(931\) 28.7381i 0.941852i
\(932\) −0.771925 + 5.55034i −0.0252852 + 0.181807i
\(933\) 12.9907i 0.425295i
\(934\) 44.6283 + 3.08853i 1.46028 + 0.101060i
\(935\) 13.6425 + 7.41428i 0.446158 + 0.242473i
\(936\) 14.4831 + 3.04589i 0.473394 + 0.0995581i
\(937\) −35.1844 −1.14942 −0.574711 0.818356i \(-0.694886\pi\)
−0.574711 + 0.818356i \(0.694886\pi\)
\(938\) −0.647310 + 9.35345i −0.0211354 + 0.305401i
\(939\) 19.4425i 0.634481i
\(940\) 11.0258 + 1.53344i 0.359622 + 0.0500152i
\(941\) −6.97595 −0.227409 −0.113705 0.993515i \(-0.536272\pi\)
−0.113705 + 0.993515i \(0.536272\pi\)
\(942\) −2.35377 0.162894i −0.0766900 0.00530737i
\(943\) −31.3690 −1.02152
\(944\) 5.73648 20.2245i 0.186707 0.658251i
\(945\) 1.82204i 0.0592710i
\(946\) 43.4736 + 3.00862i 1.41345 + 0.0978185i
\(947\) 51.4262 1.67113 0.835564 0.549394i \(-0.185141\pi\)
0.835564 + 0.549394i \(0.185141\pi\)
\(948\) 2.74977 19.7715i 0.0893082 0.642149i
\(949\) 24.5598 0.797244
\(950\) 5.98282 + 0.414044i 0.194108 + 0.0134334i
\(951\) 4.83444 0.156768
\(952\) −4.19515 3.57026i −0.135965 0.115713i
\(953\) 2.19024 0.0709487 0.0354743 0.999371i \(-0.488706\pi\)
0.0354743 + 0.999371i \(0.488706\pi\)
\(954\) 21.6677 + 1.49952i 0.701517 + 0.0485488i
\(955\) −9.84032 −0.318425
\(956\) −14.3674 1.99818i −0.464676 0.0646258i
\(957\) −22.2750 −0.720048
\(958\) 15.3951 + 1.06543i 0.497394 + 0.0344224i
\(959\) 7.67499i 0.247838i
\(960\) 5.12601 + 2.25584i 0.165441 + 0.0728071i
\(961\) 27.4039 0.883997
\(962\) 14.4298 + 0.998621i 0.465235 + 0.0321968i
\(963\) −39.3683 −1.26862
\(964\) 5.98039 43.0005i 0.192615 1.38495i
\(965\) 19.3479i 0.622832i
\(966\) 0.0982321 1.41943i 0.00316057 0.0456693i
\(967\) −23.0610 −0.741592 −0.370796 0.928714i \(-0.620915\pi\)
−0.370796 + 0.928714i \(0.620915\pi\)
\(968\) 1.85212 8.80677i 0.0595296 0.283060i
\(969\) −5.84472 + 10.7545i −0.187760 + 0.345484i
\(970\) 2.13310 + 0.147622i 0.0684897 + 0.00473987i
\(971\) 24.4595i 0.784944i 0.919764 + 0.392472i \(0.128380\pi\)
−0.919764 + 0.392472i \(0.871620\pi\)
\(972\) 29.6202 + 4.11949i 0.950068 + 0.132133i
\(973\) 1.82423i 0.0584823i
\(974\) −11.8819 0.822295i −0.380721 0.0263480i
\(975\) 1.45943i 0.0467393i
\(976\) 15.7373 + 4.46375i 0.503740 + 0.142881i
\(977\) 59.5006 1.90359 0.951797 0.306730i \(-0.0992347\pi\)
0.951797 + 0.306730i \(0.0992347\pi\)
\(978\) −0.687824 + 9.93887i −0.0219942 + 0.317810i
\(979\) 15.5634 0.497408
\(980\) −13.4245 1.86704i −0.428831 0.0596405i
\(981\) 40.3203 1.28733
\(982\) 2.37497 + 0.164361i 0.0757883 + 0.00524497i
\(983\) 45.4634i 1.45006i −0.688718 0.725029i \(-0.741826\pi\)
0.688718 0.725029i \(-0.258174\pi\)
\(984\) −19.9782 4.20156i −0.636882 0.133941i
\(985\) 2.53115 0.0806491
\(986\) −26.4580 + 41.5603i −0.842595 + 1.32355i
\(987\) 1.84057i 0.0585861i
\(988\) 17.5127 + 2.43561i 0.557152 + 0.0774871i
\(989\) 24.8946 0.791603
\(990\) 0.922878 13.3353i 0.0293310 0.423824i
\(991\) 3.88975i 0.123562i 0.998090 + 0.0617809i \(0.0196780\pi\)
−0.998090 + 0.0617809i \(0.980322\pi\)
\(992\) 10.0935 + 3.63274i 0.320467 + 0.115340i
\(993\) 12.4101i 0.393823i
\(994\) 0.667100 9.63941i 0.0211591 0.305743i
\(995\) 7.75580i 0.245875i
\(996\) −0.312870 + 2.24961i −0.00991365 + 0.0712817i
\(997\) −32.4838 −1.02877 −0.514385 0.857559i \(-0.671980\pi\)
−0.514385 + 0.857559i \(0.671980\pi\)
\(998\) 0.263617 3.80919i 0.00834465 0.120578i
\(999\) 18.9237 0.598720
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 680.2.l.a.101.18 yes 36
4.3 odd 2 2720.2.l.b.2481.21 36
8.3 odd 2 2720.2.l.a.2481.15 36
8.5 even 2 680.2.l.b.101.17 yes 36
17.16 even 2 680.2.l.b.101.18 yes 36
68.67 odd 2 2720.2.l.a.2481.16 36
136.67 odd 2 2720.2.l.b.2481.22 36
136.101 even 2 inner 680.2.l.a.101.17 36
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
680.2.l.a.101.17 36 136.101 even 2 inner
680.2.l.a.101.18 yes 36 1.1 even 1 trivial
680.2.l.b.101.17 yes 36 8.5 even 2
680.2.l.b.101.18 yes 36 17.16 even 2
2720.2.l.a.2481.15 36 8.3 odd 2
2720.2.l.a.2481.16 36 68.67 odd 2
2720.2.l.b.2481.21 36 4.3 odd 2
2720.2.l.b.2481.22 36 136.67 odd 2