Properties

Label 2720.2.l.a.2481.15
Level $2720$
Weight $2$
Character 2720.2481
Analytic conductor $21.719$
Analytic rank $0$
Dimension $36$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2720,2,Mod(2481,2720)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2720, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2720.2481"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2720 = 2^{5} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2720.l (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [36,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(21.7193093498\)
Analytic rank: \(0\)
Dimension: \(36\)
Twist minimal: no (minimal twist has level 680)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 2481.15
Character \(\chi\) \(=\) 2720.2481
Dual form 2720.2.l.a.2481.16

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.700054 q^{3} -1.00000 q^{5} +0.472369i q^{7} -2.50992 q^{9} +3.76587 q^{11} +2.08475i q^{13} +0.700054 q^{15} +(3.62268 + 1.96881i) q^{17} -4.24061i q^{19} -0.330684i q^{21} -3.04244i q^{23} +1.00000 q^{25} +3.85724 q^{27} -8.44930 q^{29} +1.89633i q^{31} -2.63631 q^{33} -0.472369i q^{35} -4.90602 q^{37} -1.45943i q^{39} +10.3105i q^{41} -8.18245i q^{43} +2.50992 q^{45} +5.56596 q^{47} +6.77687 q^{49} +(-2.53607 - 1.37827i) q^{51} -6.11891i q^{53} -3.76587 q^{55} +2.96866i q^{57} -5.25557i q^{59} -4.08954 q^{61} -1.18561i q^{63} -2.08475i q^{65} +14.0350i q^{67} +2.12987i q^{69} +14.4641i q^{71} +11.7807i q^{73} -0.700054 q^{75} +1.77888i q^{77} +14.2573i q^{79} +4.82950 q^{81} +1.62221i q^{83} +(-3.62268 - 1.96881i) q^{85} +5.91497 q^{87} +4.13274 q^{89} -0.984770 q^{91} -1.32754i q^{93} +4.24061i q^{95} -1.51194i q^{97} -9.45205 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36 q - 4 q^{3} - 36 q^{5} + 36 q^{9} - 8 q^{11} + 4 q^{15} + 36 q^{25} - 16 q^{27} - 8 q^{33} - 36 q^{45} - 20 q^{47} - 36 q^{49} + 8 q^{55} - 4 q^{75} + 44 q^{81} - 24 q^{87} - 56 q^{91} - 40 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2720\mathbb{Z}\right)^\times\).

\(n\) \(511\) \(1601\) \(1701\) \(2177\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.700054 −0.404176 −0.202088 0.979367i \(-0.564773\pi\)
−0.202088 + 0.979367i \(0.564773\pi\)
\(4\) 0 0
\(5\) −1.00000 −0.447214
\(6\) 0 0
\(7\) 0.472369i 0.178539i 0.996008 + 0.0892694i \(0.0284532\pi\)
−0.996008 + 0.0892694i \(0.971547\pi\)
\(8\) 0 0
\(9\) −2.50992 −0.836642
\(10\) 0 0
\(11\) 3.76587 1.13545 0.567726 0.823217i \(-0.307823\pi\)
0.567726 + 0.823217i \(0.307823\pi\)
\(12\) 0 0
\(13\) 2.08475i 0.578205i 0.957298 + 0.289102i \(0.0933568\pi\)
−0.957298 + 0.289102i \(0.906643\pi\)
\(14\) 0 0
\(15\) 0.700054 0.180753
\(16\) 0 0
\(17\) 3.62268 + 1.96881i 0.878628 + 0.477507i
\(18\) 0 0
\(19\) 4.24061i 0.972863i −0.873719 0.486432i \(-0.838298\pi\)
0.873719 0.486432i \(-0.161702\pi\)
\(20\) 0 0
\(21\) 0.330684i 0.0721611i
\(22\) 0 0
\(23\) 3.04244i 0.634393i −0.948360 0.317197i \(-0.897259\pi\)
0.948360 0.317197i \(-0.102741\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 3.85724 0.742327
\(28\) 0 0
\(29\) −8.44930 −1.56900 −0.784498 0.620131i \(-0.787079\pi\)
−0.784498 + 0.620131i \(0.787079\pi\)
\(30\) 0 0
\(31\) 1.89633i 0.340592i 0.985393 + 0.170296i \(0.0544723\pi\)
−0.985393 + 0.170296i \(0.945528\pi\)
\(32\) 0 0
\(33\) −2.63631 −0.458923
\(34\) 0 0
\(35\) 0.472369i 0.0798449i
\(36\) 0 0
\(37\) −4.90602 −0.806544 −0.403272 0.915080i \(-0.632127\pi\)
−0.403272 + 0.915080i \(0.632127\pi\)
\(38\) 0 0
\(39\) 1.45943i 0.233697i
\(40\) 0 0
\(41\) 10.3105i 1.61022i 0.593123 + 0.805112i \(0.297895\pi\)
−0.593123 + 0.805112i \(0.702105\pi\)
\(42\) 0 0
\(43\) 8.18245i 1.24781i −0.781500 0.623906i \(-0.785545\pi\)
0.781500 0.623906i \(-0.214455\pi\)
\(44\) 0 0
\(45\) 2.50992 0.374157
\(46\) 0 0
\(47\) 5.56596 0.811879 0.405940 0.913900i \(-0.366944\pi\)
0.405940 + 0.913900i \(0.366944\pi\)
\(48\) 0 0
\(49\) 6.77687 0.968124
\(50\) 0 0
\(51\) −2.53607 1.37827i −0.355121 0.192997i
\(52\) 0 0
\(53\) 6.11891i 0.840497i −0.907409 0.420249i \(-0.861943\pi\)
0.907409 0.420249i \(-0.138057\pi\)
\(54\) 0 0
\(55\) −3.76587 −0.507790
\(56\) 0 0
\(57\) 2.96866i 0.393208i
\(58\) 0 0
\(59\) 5.25557i 0.684217i −0.939660 0.342109i \(-0.888859\pi\)
0.939660 0.342109i \(-0.111141\pi\)
\(60\) 0 0
\(61\) −4.08954 −0.523612 −0.261806 0.965121i \(-0.584318\pi\)
−0.261806 + 0.965121i \(0.584318\pi\)
\(62\) 0 0
\(63\) 1.18561i 0.149373i
\(64\) 0 0
\(65\) 2.08475i 0.258581i
\(66\) 0 0
\(67\) 14.0350i 1.71465i 0.514775 + 0.857325i \(0.327875\pi\)
−0.514775 + 0.857325i \(0.672125\pi\)
\(68\) 0 0
\(69\) 2.12987i 0.256407i
\(70\) 0 0
\(71\) 14.4641i 1.71657i 0.513171 + 0.858287i \(0.328471\pi\)
−0.513171 + 0.858287i \(0.671529\pi\)
\(72\) 0 0
\(73\) 11.7807i 1.37883i 0.724368 + 0.689413i \(0.242132\pi\)
−0.724368 + 0.689413i \(0.757868\pi\)
\(74\) 0 0
\(75\) −0.700054 −0.0808353
\(76\) 0 0
\(77\) 1.77888i 0.202722i
\(78\) 0 0
\(79\) 14.2573i 1.60408i 0.597273 + 0.802038i \(0.296251\pi\)
−0.597273 + 0.802038i \(0.703749\pi\)
\(80\) 0 0
\(81\) 4.82950 0.536611
\(82\) 0 0
\(83\) 1.62221i 0.178060i 0.996029 + 0.0890302i \(0.0283768\pi\)
−0.996029 + 0.0890302i \(0.971623\pi\)
\(84\) 0 0
\(85\) −3.62268 1.96881i −0.392934 0.213547i
\(86\) 0 0
\(87\) 5.91497 0.634151
\(88\) 0 0
\(89\) 4.13274 0.438070 0.219035 0.975717i \(-0.429709\pi\)
0.219035 + 0.975717i \(0.429709\pi\)
\(90\) 0 0
\(91\) −0.984770 −0.103232
\(92\) 0 0
\(93\) 1.32754i 0.137659i
\(94\) 0 0
\(95\) 4.24061i 0.435078i
\(96\) 0 0
\(97\) 1.51194i 0.153514i −0.997050 0.0767570i \(-0.975543\pi\)
0.997050 0.0767570i \(-0.0244566\pi\)
\(98\) 0 0
\(99\) −9.45205 −0.949967
\(100\) 0 0
\(101\) 15.9111i 1.58321i 0.611032 + 0.791606i \(0.290755\pi\)
−0.611032 + 0.791606i \(0.709245\pi\)
\(102\) 0 0
\(103\) 14.9491 1.47298 0.736488 0.676451i \(-0.236483\pi\)
0.736488 + 0.676451i \(0.236483\pi\)
\(104\) 0 0
\(105\) 0.330684i 0.0322714i
\(106\) 0 0
\(107\) 15.6850 1.51633 0.758165 0.652063i \(-0.226096\pi\)
0.758165 + 0.652063i \(0.226096\pi\)
\(108\) 0 0
\(109\) 16.0643 1.53869 0.769343 0.638836i \(-0.220584\pi\)
0.769343 + 0.638836i \(0.220584\pi\)
\(110\) 0 0
\(111\) 3.43448 0.325986
\(112\) 0 0
\(113\) 7.80211i 0.733961i −0.930229 0.366980i \(-0.880392\pi\)
0.930229 0.366980i \(-0.119608\pi\)
\(114\) 0 0
\(115\) 3.04244i 0.283709i
\(116\) 0 0
\(117\) 5.23256i 0.483750i
\(118\) 0 0
\(119\) −0.930005 + 1.71124i −0.0852534 + 0.156869i
\(120\) 0 0
\(121\) 3.18178 0.289252
\(122\) 0 0
\(123\) 7.21788i 0.650814i
\(124\) 0 0
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) −10.8800 −0.965447 −0.482724 0.875773i \(-0.660352\pi\)
−0.482724 + 0.875773i \(0.660352\pi\)
\(128\) 0 0
\(129\) 5.72815i 0.504336i
\(130\) 0 0
\(131\) 13.9563 1.21937 0.609685 0.792644i \(-0.291296\pi\)
0.609685 + 0.792644i \(0.291296\pi\)
\(132\) 0 0
\(133\) 2.00313 0.173694
\(134\) 0 0
\(135\) −3.85724 −0.331979
\(136\) 0 0
\(137\) −16.2479 −1.38815 −0.694075 0.719903i \(-0.744186\pi\)
−0.694075 + 0.719903i \(0.744186\pi\)
\(138\) 0 0
\(139\) 3.86189 0.327561 0.163780 0.986497i \(-0.447631\pi\)
0.163780 + 0.986497i \(0.447631\pi\)
\(140\) 0 0
\(141\) −3.89647 −0.328142
\(142\) 0 0
\(143\) 7.85089i 0.656524i
\(144\) 0 0
\(145\) 8.44930 0.701676
\(146\) 0 0
\(147\) −4.74417 −0.391293
\(148\) 0 0
\(149\) 15.2325i 1.24789i 0.781467 + 0.623946i \(0.214472\pi\)
−0.781467 + 0.623946i \(0.785528\pi\)
\(150\) 0 0
\(151\) 1.45467 0.118380 0.0591899 0.998247i \(-0.481148\pi\)
0.0591899 + 0.998247i \(0.481148\pi\)
\(152\) 0 0
\(153\) −9.09265 4.94157i −0.735097 0.399502i
\(154\) 0 0
\(155\) 1.89633i 0.152317i
\(156\) 0 0
\(157\) 2.38317i 0.190198i 0.995468 + 0.0950989i \(0.0303167\pi\)
−0.995468 + 0.0950989i \(0.969683\pi\)
\(158\) 0 0
\(159\) 4.28357i 0.339709i
\(160\) 0 0
\(161\) 1.43716 0.113264
\(162\) 0 0
\(163\) −10.0630 −0.788196 −0.394098 0.919068i \(-0.628943\pi\)
−0.394098 + 0.919068i \(0.628943\pi\)
\(164\) 0 0
\(165\) 2.63631 0.205237
\(166\) 0 0
\(167\) 4.09470i 0.316857i 0.987370 + 0.158429i \(0.0506428\pi\)
−0.987370 + 0.158429i \(0.949357\pi\)
\(168\) 0 0
\(169\) 8.65383 0.665679
\(170\) 0 0
\(171\) 10.6436i 0.813938i
\(172\) 0 0
\(173\) −16.3781 −1.24520 −0.622601 0.782540i \(-0.713924\pi\)
−0.622601 + 0.782540i \(0.713924\pi\)
\(174\) 0 0
\(175\) 0.472369i 0.0357077i
\(176\) 0 0
\(177\) 3.67918i 0.276544i
\(178\) 0 0
\(179\) 8.16713i 0.610440i 0.952282 + 0.305220i \(0.0987300\pi\)
−0.952282 + 0.305220i \(0.901270\pi\)
\(180\) 0 0
\(181\) 12.6490 0.940190 0.470095 0.882616i \(-0.344220\pi\)
0.470095 + 0.882616i \(0.344220\pi\)
\(182\) 0 0
\(183\) 2.86290 0.211631
\(184\) 0 0
\(185\) 4.90602 0.360698
\(186\) 0 0
\(187\) 13.6425 + 7.41428i 0.997641 + 0.542186i
\(188\) 0 0
\(189\) 1.82204i 0.132534i
\(190\) 0 0
\(191\) 9.84032 0.712021 0.356010 0.934482i \(-0.384137\pi\)
0.356010 + 0.934482i \(0.384137\pi\)
\(192\) 0 0
\(193\) 19.3479i 1.39270i 0.717705 + 0.696348i \(0.245193\pi\)
−0.717705 + 0.696348i \(0.754807\pi\)
\(194\) 0 0
\(195\) 1.45943i 0.104512i
\(196\) 0 0
\(197\) −2.53115 −0.180337 −0.0901685 0.995927i \(-0.528741\pi\)
−0.0901685 + 0.995927i \(0.528741\pi\)
\(198\) 0 0
\(199\) 7.75580i 0.549794i −0.961474 0.274897i \(-0.911356\pi\)
0.961474 0.274897i \(-0.0886437\pi\)
\(200\) 0 0
\(201\) 9.82527i 0.693021i
\(202\) 0 0
\(203\) 3.99119i 0.280127i
\(204\) 0 0
\(205\) 10.3105i 0.720114i
\(206\) 0 0
\(207\) 7.63630i 0.530760i
\(208\) 0 0
\(209\) 15.9696i 1.10464i
\(210\) 0 0
\(211\) −10.3268 −0.710923 −0.355462 0.934691i \(-0.615676\pi\)
−0.355462 + 0.934691i \(0.615676\pi\)
\(212\) 0 0
\(213\) 10.1257i 0.693798i
\(214\) 0 0
\(215\) 8.18245i 0.558038i
\(216\) 0 0
\(217\) −0.895769 −0.0608088
\(218\) 0 0
\(219\) 8.24712i 0.557289i
\(220\) 0 0
\(221\) −4.10447 + 7.55236i −0.276097 + 0.508027i
\(222\) 0 0
\(223\) −0.853240 −0.0571372 −0.0285686 0.999592i \(-0.509095\pi\)
−0.0285686 + 0.999592i \(0.509095\pi\)
\(224\) 0 0
\(225\) −2.50992 −0.167328
\(226\) 0 0
\(227\) −21.4110 −1.42110 −0.710549 0.703648i \(-0.751553\pi\)
−0.710549 + 0.703648i \(0.751553\pi\)
\(228\) 0 0
\(229\) 0.280780i 0.0185545i −0.999957 0.00927725i \(-0.997047\pi\)
0.999957 0.00927725i \(-0.00295308\pi\)
\(230\) 0 0
\(231\) 1.24531i 0.0819355i
\(232\) 0 0
\(233\) 2.80188i 0.183557i −0.995779 0.0917786i \(-0.970745\pi\)
0.995779 0.0917786i \(-0.0292552\pi\)
\(234\) 0 0
\(235\) −5.56596 −0.363083
\(236\) 0 0
\(237\) 9.98091i 0.648329i
\(238\) 0 0
\(239\) −7.25286 −0.469148 −0.234574 0.972098i \(-0.575370\pi\)
−0.234574 + 0.972098i \(0.575370\pi\)
\(240\) 0 0
\(241\) 21.7072i 1.39828i 0.714983 + 0.699142i \(0.246435\pi\)
−0.714983 + 0.699142i \(0.753565\pi\)
\(242\) 0 0
\(243\) −14.9526 −0.959212
\(244\) 0 0
\(245\) −6.77687 −0.432958
\(246\) 0 0
\(247\) 8.84060 0.562514
\(248\) 0 0
\(249\) 1.13563i 0.0719678i
\(250\) 0 0
\(251\) 7.87719i 0.497204i 0.968606 + 0.248602i \(0.0799711\pi\)
−0.968606 + 0.248602i \(0.920029\pi\)
\(252\) 0 0
\(253\) 11.4574i 0.720323i
\(254\) 0 0
\(255\) 2.53607 + 1.37827i 0.158815 + 0.0863108i
\(256\) 0 0
\(257\) 6.86958 0.428513 0.214256 0.976777i \(-0.431267\pi\)
0.214256 + 0.976777i \(0.431267\pi\)
\(258\) 0 0
\(259\) 2.31745i 0.143999i
\(260\) 0 0
\(261\) 21.2071 1.31269
\(262\) 0 0
\(263\) 26.2544 1.61891 0.809457 0.587179i \(-0.199761\pi\)
0.809457 + 0.587179i \(0.199761\pi\)
\(264\) 0 0
\(265\) 6.11891i 0.375882i
\(266\) 0 0
\(267\) −2.89314 −0.177057
\(268\) 0 0
\(269\) 19.7359 1.20332 0.601661 0.798752i \(-0.294506\pi\)
0.601661 + 0.798752i \(0.294506\pi\)
\(270\) 0 0
\(271\) 9.82641 0.596912 0.298456 0.954423i \(-0.403528\pi\)
0.298456 + 0.954423i \(0.403528\pi\)
\(272\) 0 0
\(273\) 0.689392 0.0417239
\(274\) 0 0
\(275\) 3.76587 0.227091
\(276\) 0 0
\(277\) 7.12825 0.428295 0.214148 0.976801i \(-0.431303\pi\)
0.214148 + 0.976801i \(0.431303\pi\)
\(278\) 0 0
\(279\) 4.75966i 0.284953i
\(280\) 0 0
\(281\) −19.5618 −1.16696 −0.583480 0.812127i \(-0.698309\pi\)
−0.583480 + 0.812127i \(0.698309\pi\)
\(282\) 0 0
\(283\) −8.55218 −0.508374 −0.254187 0.967155i \(-0.581808\pi\)
−0.254187 + 0.967155i \(0.581808\pi\)
\(284\) 0 0
\(285\) 2.96866i 0.175848i
\(286\) 0 0
\(287\) −4.87034 −0.287487
\(288\) 0 0
\(289\) 9.24757 + 14.2647i 0.543975 + 0.839102i
\(290\) 0 0
\(291\) 1.05844i 0.0620467i
\(292\) 0 0
\(293\) 22.8881i 1.33714i −0.743649 0.668570i \(-0.766907\pi\)
0.743649 0.668570i \(-0.233093\pi\)
\(294\) 0 0
\(295\) 5.25557i 0.305991i
\(296\) 0 0
\(297\) 14.5259 0.842877
\(298\) 0 0
\(299\) 6.34272 0.366809
\(300\) 0 0
\(301\) 3.86513 0.222783
\(302\) 0 0
\(303\) 11.1386i 0.639897i
\(304\) 0 0
\(305\) 4.08954 0.234166
\(306\) 0 0
\(307\) 4.75160i 0.271188i 0.990764 + 0.135594i \(0.0432943\pi\)
−0.990764 + 0.135594i \(0.956706\pi\)
\(308\) 0 0
\(309\) −10.4652 −0.595342
\(310\) 0 0
\(311\) 18.5567i 1.05225i −0.850407 0.526126i \(-0.823644\pi\)
0.850407 0.526126i \(-0.176356\pi\)
\(312\) 0 0
\(313\) 27.7728i 1.56981i 0.619614 + 0.784907i \(0.287289\pi\)
−0.619614 + 0.784907i \(0.712711\pi\)
\(314\) 0 0
\(315\) 1.18561i 0.0668016i
\(316\) 0 0
\(317\) 6.90582 0.387869 0.193935 0.981014i \(-0.437875\pi\)
0.193935 + 0.981014i \(0.437875\pi\)
\(318\) 0 0
\(319\) −31.8190 −1.78152
\(320\) 0 0
\(321\) −10.9804 −0.612864
\(322\) 0 0
\(323\) 8.34896 15.3624i 0.464549 0.854785i
\(324\) 0 0
\(325\) 2.08475i 0.115641i
\(326\) 0 0
\(327\) −11.2459 −0.621900
\(328\) 0 0
\(329\) 2.62919i 0.144952i
\(330\) 0 0
\(331\) 17.7274i 0.974385i 0.873295 + 0.487193i \(0.161979\pi\)
−0.873295 + 0.487193i \(0.838021\pi\)
\(332\) 0 0
\(333\) 12.3137 0.674789
\(334\) 0 0
\(335\) 14.0350i 0.766815i
\(336\) 0 0
\(337\) 6.64499i 0.361975i −0.983485 0.180988i \(-0.942071\pi\)
0.983485 0.180988i \(-0.0579294\pi\)
\(338\) 0 0
\(339\) 5.46190i 0.296650i
\(340\) 0 0
\(341\) 7.14135i 0.386726i
\(342\) 0 0
\(343\) 6.50777i 0.351386i
\(344\) 0 0
\(345\) 2.12987i 0.114669i
\(346\) 0 0
\(347\) −6.94078 −0.372600 −0.186300 0.982493i \(-0.559650\pi\)
−0.186300 + 0.982493i \(0.559650\pi\)
\(348\) 0 0
\(349\) 27.3230i 1.46257i 0.682072 + 0.731285i \(0.261079\pi\)
−0.682072 + 0.731285i \(0.738921\pi\)
\(350\) 0 0
\(351\) 8.04138i 0.429217i
\(352\) 0 0
\(353\) 5.69659 0.303199 0.151599 0.988442i \(-0.451558\pi\)
0.151599 + 0.988442i \(0.451558\pi\)
\(354\) 0 0
\(355\) 14.4641i 0.767675i
\(356\) 0 0
\(357\) 0.651054 1.19796i 0.0344574 0.0634028i
\(358\) 0 0
\(359\) −28.5022 −1.50429 −0.752143 0.659000i \(-0.770980\pi\)
−0.752143 + 0.659000i \(0.770980\pi\)
\(360\) 0 0
\(361\) 1.01720 0.0535367
\(362\) 0 0
\(363\) −2.22742 −0.116909
\(364\) 0 0
\(365\) 11.7807i 0.616630i
\(366\) 0 0
\(367\) 30.1453i 1.57357i −0.617227 0.786786i \(-0.711744\pi\)
0.617227 0.786786i \(-0.288256\pi\)
\(368\) 0 0
\(369\) 25.8785i 1.34718i
\(370\) 0 0
\(371\) 2.89038 0.150061
\(372\) 0 0
\(373\) 8.99135i 0.465555i 0.972530 + 0.232777i \(0.0747813\pi\)
−0.972530 + 0.232777i \(0.925219\pi\)
\(374\) 0 0
\(375\) 0.700054 0.0361506
\(376\) 0 0
\(377\) 17.6147i 0.907201i
\(378\) 0 0
\(379\) −11.8768 −0.610068 −0.305034 0.952341i \(-0.598668\pi\)
−0.305034 + 0.952341i \(0.598668\pi\)
\(380\) 0 0
\(381\) 7.61661 0.390211
\(382\) 0 0
\(383\) −10.6980 −0.546644 −0.273322 0.961923i \(-0.588123\pi\)
−0.273322 + 0.961923i \(0.588123\pi\)
\(384\) 0 0
\(385\) 1.77888i 0.0906601i
\(386\) 0 0
\(387\) 20.5373i 1.04397i
\(388\) 0 0
\(389\) 14.5550i 0.737970i −0.929435 0.368985i \(-0.879705\pi\)
0.929435 0.368985i \(-0.120295\pi\)
\(390\) 0 0
\(391\) 5.98999 11.0218i 0.302927 0.557396i
\(392\) 0 0
\(393\) −9.77018 −0.492840
\(394\) 0 0
\(395\) 14.2573i 0.717365i
\(396\) 0 0
\(397\) 5.14070 0.258004 0.129002 0.991644i \(-0.458823\pi\)
0.129002 + 0.991644i \(0.458823\pi\)
\(398\) 0 0
\(399\) −1.40230 −0.0702029
\(400\) 0 0
\(401\) 14.8456i 0.741354i 0.928762 + 0.370677i \(0.120874\pi\)
−0.928762 + 0.370677i \(0.879126\pi\)
\(402\) 0 0
\(403\) −3.95338 −0.196932
\(404\) 0 0
\(405\) −4.82950 −0.239980
\(406\) 0 0
\(407\) −18.4754 −0.915793
\(408\) 0 0
\(409\) 28.8169 1.42490 0.712451 0.701722i \(-0.247585\pi\)
0.712451 + 0.701722i \(0.247585\pi\)
\(410\) 0 0
\(411\) 11.3744 0.561057
\(412\) 0 0
\(413\) 2.48257 0.122159
\(414\) 0 0
\(415\) 1.62221i 0.0796310i
\(416\) 0 0
\(417\) −2.70353 −0.132392
\(418\) 0 0
\(419\) −15.8132 −0.772525 −0.386263 0.922389i \(-0.626234\pi\)
−0.386263 + 0.922389i \(0.626234\pi\)
\(420\) 0 0
\(421\) 0.972923i 0.0474174i 0.999719 + 0.0237087i \(0.00754742\pi\)
−0.999719 + 0.0237087i \(0.992453\pi\)
\(422\) 0 0
\(423\) −13.9702 −0.679252
\(424\) 0 0
\(425\) 3.62268 + 1.96881i 0.175726 + 0.0955013i
\(426\) 0 0
\(427\) 1.93177i 0.0934849i
\(428\) 0 0
\(429\) 5.49604i 0.265351i
\(430\) 0 0
\(431\) 29.2081i 1.40690i −0.710744 0.703451i \(-0.751641\pi\)
0.710744 0.703451i \(-0.248359\pi\)
\(432\) 0 0
\(433\) −23.8697 −1.14710 −0.573552 0.819169i \(-0.694435\pi\)
−0.573552 + 0.819169i \(0.694435\pi\)
\(434\) 0 0
\(435\) −5.91497 −0.283601
\(436\) 0 0
\(437\) −12.9018 −0.617178
\(438\) 0 0
\(439\) 24.6752i 1.17768i 0.808249 + 0.588841i \(0.200415\pi\)
−0.808249 + 0.588841i \(0.799585\pi\)
\(440\) 0 0
\(441\) −17.0094 −0.809973
\(442\) 0 0
\(443\) 6.58438i 0.312834i −0.987691 0.156417i \(-0.950006\pi\)
0.987691 0.156417i \(-0.0499943\pi\)
\(444\) 0 0
\(445\) −4.13274 −0.195911
\(446\) 0 0
\(447\) 10.6636i 0.504369i
\(448\) 0 0
\(449\) 17.6917i 0.834925i −0.908694 0.417462i \(-0.862920\pi\)
0.908694 0.417462i \(-0.137080\pi\)
\(450\) 0 0
\(451\) 38.8279i 1.82833i
\(452\) 0 0
\(453\) −1.01835 −0.0478463
\(454\) 0 0
\(455\) 0.984770 0.0461667
\(456\) 0 0
\(457\) 8.25279 0.386049 0.193025 0.981194i \(-0.438170\pi\)
0.193025 + 0.981194i \(0.438170\pi\)
\(458\) 0 0
\(459\) 13.9735 + 7.59418i 0.652229 + 0.354466i
\(460\) 0 0
\(461\) 8.12505i 0.378421i 0.981937 + 0.189211i \(0.0605929\pi\)
−0.981937 + 0.189211i \(0.939407\pi\)
\(462\) 0 0
\(463\) 25.7721 1.19773 0.598864 0.800850i \(-0.295619\pi\)
0.598864 + 0.800850i \(0.295619\pi\)
\(464\) 0 0
\(465\) 1.32754i 0.0615630i
\(466\) 0 0
\(467\) 31.6325i 1.46378i −0.681425 0.731888i \(-0.738639\pi\)
0.681425 0.731888i \(-0.261361\pi\)
\(468\) 0 0
\(469\) −6.62971 −0.306131
\(470\) 0 0
\(471\) 1.66835i 0.0768734i
\(472\) 0 0
\(473\) 30.8140i 1.41683i
\(474\) 0 0
\(475\) 4.24061i 0.194573i
\(476\) 0 0
\(477\) 15.3580i 0.703195i
\(478\) 0 0
\(479\) 10.9120i 0.498584i 0.968428 + 0.249292i \(0.0801978\pi\)
−0.968428 + 0.249292i \(0.919802\pi\)
\(480\) 0 0
\(481\) 10.2278i 0.466348i
\(482\) 0 0
\(483\) −1.00609 −0.0457785
\(484\) 0 0
\(485\) 1.51194i 0.0686536i
\(486\) 0 0
\(487\) 8.42188i 0.381632i −0.981626 0.190816i \(-0.938887\pi\)
0.981626 0.190816i \(-0.0611134\pi\)
\(488\) 0 0
\(489\) 7.04465 0.318570
\(490\) 0 0
\(491\) 1.68337i 0.0759696i −0.999278 0.0379848i \(-0.987906\pi\)
0.999278 0.0379848i \(-0.0120938\pi\)
\(492\) 0 0
\(493\) −30.6091 16.6351i −1.37856 0.749206i
\(494\) 0 0
\(495\) 9.45205 0.424838
\(496\) 0 0
\(497\) −6.83239 −0.306475
\(498\) 0 0
\(499\) −2.69995 −0.120866 −0.0604331 0.998172i \(-0.519248\pi\)
−0.0604331 + 0.998172i \(0.519248\pi\)
\(500\) 0 0
\(501\) 2.86651i 0.128066i
\(502\) 0 0
\(503\) 41.6996i 1.85929i −0.368452 0.929647i \(-0.620112\pi\)
0.368452 0.929647i \(-0.379888\pi\)
\(504\) 0 0
\(505\) 15.9111i 0.708034i
\(506\) 0 0
\(507\) −6.05815 −0.269052
\(508\) 0 0
\(509\) 21.3267i 0.945291i −0.881253 0.472646i \(-0.843299\pi\)
0.881253 0.472646i \(-0.156701\pi\)
\(510\) 0 0
\(511\) −5.56484 −0.246174
\(512\) 0 0
\(513\) 16.3571i 0.722183i
\(514\) 0 0
\(515\) −14.9491 −0.658735
\(516\) 0 0
\(517\) 20.9607 0.921850
\(518\) 0 0
\(519\) 11.4655 0.503281
\(520\) 0 0
\(521\) 5.58565i 0.244712i −0.992486 0.122356i \(-0.960955\pi\)
0.992486 0.122356i \(-0.0390449\pi\)
\(522\) 0 0
\(523\) 30.3049i 1.32514i −0.748999 0.662571i \(-0.769465\pi\)
0.748999 0.662571i \(-0.230535\pi\)
\(524\) 0 0
\(525\) 0.330684i 0.0144322i
\(526\) 0 0
\(527\) −3.73352 + 6.86981i −0.162635 + 0.299253i
\(528\) 0 0
\(529\) 13.7435 0.597545
\(530\) 0 0
\(531\) 13.1911i 0.572445i
\(532\) 0 0
\(533\) −21.4947 −0.931039
\(534\) 0 0
\(535\) −15.6850 −0.678123
\(536\) 0 0
\(537\) 5.71743i 0.246725i
\(538\) 0 0
\(539\) 25.5208 1.09926
\(540\) 0 0
\(541\) −5.91685 −0.254385 −0.127193 0.991878i \(-0.540597\pi\)
−0.127193 + 0.991878i \(0.540597\pi\)
\(542\) 0 0
\(543\) −8.85496 −0.380003
\(544\) 0 0
\(545\) −16.0643 −0.688121
\(546\) 0 0
\(547\) 39.6019 1.69325 0.846627 0.532187i \(-0.178629\pi\)
0.846627 + 0.532187i \(0.178629\pi\)
\(548\) 0 0
\(549\) 10.2644 0.438075
\(550\) 0 0
\(551\) 35.8302i 1.52642i
\(552\) 0 0
\(553\) −6.73473 −0.286390
\(554\) 0 0
\(555\) −3.43448 −0.145785
\(556\) 0 0
\(557\) 23.3121i 0.987763i 0.869529 + 0.493882i \(0.164422\pi\)
−0.869529 + 0.493882i \(0.835578\pi\)
\(558\) 0 0
\(559\) 17.0583 0.721490
\(560\) 0 0
\(561\) −9.55051 5.19040i −0.403223 0.219139i
\(562\) 0 0
\(563\) 8.22003i 0.346433i −0.984884 0.173216i \(-0.944584\pi\)
0.984884 0.173216i \(-0.0554160\pi\)
\(564\) 0 0
\(565\) 7.80211i 0.328237i
\(566\) 0 0
\(567\) 2.28130i 0.0958058i
\(568\) 0 0
\(569\) −42.0664 −1.76352 −0.881758 0.471703i \(-0.843639\pi\)
−0.881758 + 0.471703i \(0.843639\pi\)
\(570\) 0 0
\(571\) 45.1866 1.89100 0.945500 0.325623i \(-0.105574\pi\)
0.945500 + 0.325623i \(0.105574\pi\)
\(572\) 0 0
\(573\) −6.88876 −0.287782
\(574\) 0 0
\(575\) 3.04244i 0.126879i
\(576\) 0 0
\(577\) −9.00464 −0.374868 −0.187434 0.982277i \(-0.560017\pi\)
−0.187434 + 0.982277i \(0.560017\pi\)
\(578\) 0 0
\(579\) 13.5446i 0.562894i
\(580\) 0 0
\(581\) −0.766280 −0.0317907
\(582\) 0 0
\(583\) 23.0430i 0.954345i
\(584\) 0 0
\(585\) 5.23256i 0.216340i
\(586\) 0 0
\(587\) 19.0434i 0.786005i −0.919537 0.393002i \(-0.871436\pi\)
0.919537 0.393002i \(-0.128564\pi\)
\(588\) 0 0
\(589\) 8.04162 0.331349
\(590\) 0 0
\(591\) 1.77194 0.0728879
\(592\) 0 0
\(593\) −15.4544 −0.634636 −0.317318 0.948319i \(-0.602782\pi\)
−0.317318 + 0.948319i \(0.602782\pi\)
\(594\) 0 0
\(595\) 0.930005 1.71124i 0.0381265 0.0701540i
\(596\) 0 0
\(597\) 5.42948i 0.222214i
\(598\) 0 0
\(599\) −9.04450 −0.369548 −0.184774 0.982781i \(-0.559155\pi\)
−0.184774 + 0.982781i \(0.559155\pi\)
\(600\) 0 0
\(601\) 19.6183i 0.800246i 0.916461 + 0.400123i \(0.131033\pi\)
−0.916461 + 0.400123i \(0.868967\pi\)
\(602\) 0 0
\(603\) 35.2268i 1.43455i
\(604\) 0 0
\(605\) −3.18178 −0.129358
\(606\) 0 0
\(607\) 25.1180i 1.01951i 0.860320 + 0.509754i \(0.170264\pi\)
−0.860320 + 0.509754i \(0.829736\pi\)
\(608\) 0 0
\(609\) 2.79405i 0.113220i
\(610\) 0 0
\(611\) 11.6036i 0.469432i
\(612\) 0 0
\(613\) 5.63031i 0.227406i −0.993515 0.113703i \(-0.963729\pi\)
0.993515 0.113703i \(-0.0362712\pi\)
\(614\) 0 0
\(615\) 7.21788i 0.291053i
\(616\) 0 0
\(617\) 14.6134i 0.588314i −0.955757 0.294157i \(-0.904961\pi\)
0.955757 0.294157i \(-0.0950389\pi\)
\(618\) 0 0
\(619\) −10.0040 −0.402095 −0.201048 0.979581i \(-0.564435\pi\)
−0.201048 + 0.979581i \(0.564435\pi\)
\(620\) 0 0
\(621\) 11.7354i 0.470927i
\(622\) 0 0
\(623\) 1.95218i 0.0782124i
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 11.1796i 0.446469i
\(628\) 0 0
\(629\) −17.7729 9.65902i −0.708653 0.385130i
\(630\) 0 0
\(631\) −13.4572 −0.535722 −0.267861 0.963458i \(-0.586317\pi\)
−0.267861 + 0.963458i \(0.586317\pi\)
\(632\) 0 0
\(633\) 7.22929 0.287338
\(634\) 0 0
\(635\) 10.8800 0.431761
\(636\) 0 0
\(637\) 14.1281i 0.559774i
\(638\) 0 0
\(639\) 36.3038i 1.43616i
\(640\) 0 0
\(641\) 42.8148i 1.69108i −0.533909 0.845542i \(-0.679278\pi\)
0.533909 0.845542i \(-0.320722\pi\)
\(642\) 0 0
\(643\) −22.4425 −0.885044 −0.442522 0.896758i \(-0.645916\pi\)
−0.442522 + 0.896758i \(0.645916\pi\)
\(644\) 0 0
\(645\) 5.72815i 0.225546i
\(646\) 0 0
\(647\) 31.4314 1.23570 0.617849 0.786297i \(-0.288004\pi\)
0.617849 + 0.786297i \(0.288004\pi\)
\(648\) 0 0
\(649\) 19.7918i 0.776896i
\(650\) 0 0
\(651\) 0.627087 0.0245775
\(652\) 0 0
\(653\) −24.8465 −0.972318 −0.486159 0.873871i \(-0.661602\pi\)
−0.486159 + 0.873871i \(0.661602\pi\)
\(654\) 0 0
\(655\) −13.9563 −0.545319
\(656\) 0 0
\(657\) 29.5687i 1.15358i
\(658\) 0 0
\(659\) 36.5507i 1.42381i 0.702273 + 0.711907i \(0.252168\pi\)
−0.702273 + 0.711907i \(0.747832\pi\)
\(660\) 0 0
\(661\) 17.4285i 0.677889i 0.940806 + 0.338944i \(0.110070\pi\)
−0.940806 + 0.338944i \(0.889930\pi\)
\(662\) 0 0
\(663\) 2.87335 5.28706i 0.111592 0.205332i
\(664\) 0 0
\(665\) −2.00313 −0.0776782
\(666\) 0 0
\(667\) 25.7065i 0.995360i
\(668\) 0 0
\(669\) 0.597314 0.0230935
\(670\) 0 0
\(671\) −15.4007 −0.594536
\(672\) 0 0
\(673\) 26.9124i 1.03740i −0.854957 0.518699i \(-0.826417\pi\)
0.854957 0.518699i \(-0.173583\pi\)
\(674\) 0 0
\(675\) 3.85724 0.148465
\(676\) 0 0
\(677\) 15.5242 0.596642 0.298321 0.954466i \(-0.403573\pi\)
0.298321 + 0.954466i \(0.403573\pi\)
\(678\) 0 0
\(679\) 0.714193 0.0274082
\(680\) 0 0
\(681\) 14.9889 0.574374
\(682\) 0 0
\(683\) 32.9726 1.26166 0.630830 0.775921i \(-0.282715\pi\)
0.630830 + 0.775921i \(0.282715\pi\)
\(684\) 0 0
\(685\) 16.2479 0.620799
\(686\) 0 0
\(687\) 0.196561i 0.00749929i
\(688\) 0 0
\(689\) 12.7564 0.485979
\(690\) 0 0
\(691\) −38.9502 −1.48174 −0.740869 0.671650i \(-0.765586\pi\)
−0.740869 + 0.671650i \(0.765586\pi\)
\(692\) 0 0
\(693\) 4.46486i 0.169606i
\(694\) 0 0
\(695\) −3.86189 −0.146490
\(696\) 0 0
\(697\) −20.2993 + 37.3515i −0.768893 + 1.41479i
\(698\) 0 0
\(699\) 1.96147i 0.0741895i
\(700\) 0 0
\(701\) 39.7185i 1.50015i 0.661354 + 0.750074i \(0.269982\pi\)
−0.661354 + 0.750074i \(0.730018\pi\)
\(702\) 0 0
\(703\) 20.8045i 0.784658i
\(704\) 0 0
\(705\) 3.89647 0.146750
\(706\) 0 0
\(707\) −7.51590 −0.282665
\(708\) 0 0
\(709\) 0.684050 0.0256901 0.0128450 0.999917i \(-0.495911\pi\)
0.0128450 + 0.999917i \(0.495911\pi\)
\(710\) 0 0
\(711\) 35.7848i 1.34204i
\(712\) 0 0
\(713\) 5.76949 0.216069
\(714\) 0 0
\(715\) 7.85089i 0.293606i
\(716\) 0 0
\(717\) 5.07739 0.189619
\(718\) 0 0
\(719\) 38.6497i 1.44139i −0.693252 0.720695i \(-0.743823\pi\)
0.693252 0.720695i \(-0.256177\pi\)
\(720\) 0 0
\(721\) 7.06148i 0.262983i
\(722\) 0 0
\(723\) 15.1962i 0.565153i
\(724\) 0 0
\(725\) −8.44930 −0.313799
\(726\) 0 0
\(727\) 25.3357 0.939651 0.469825 0.882759i \(-0.344317\pi\)
0.469825 + 0.882759i \(0.344317\pi\)
\(728\) 0 0
\(729\) −4.02083 −0.148920
\(730\) 0 0
\(731\) 16.1097 29.6424i 0.595838 1.09636i
\(732\) 0 0
\(733\) 53.4938i 1.97584i −0.154968 0.987920i \(-0.549527\pi\)
0.154968 0.987920i \(-0.450473\pi\)
\(734\) 0 0
\(735\) 4.74417 0.174991
\(736\) 0 0
\(737\) 52.8540i 1.94690i
\(738\) 0 0
\(739\) 10.7854i 0.396746i 0.980127 + 0.198373i \(0.0635658\pi\)
−0.980127 + 0.198373i \(0.936434\pi\)
\(740\) 0 0
\(741\) −6.18890 −0.227355
\(742\) 0 0
\(743\) 10.8676i 0.398694i −0.979929 0.199347i \(-0.936118\pi\)
0.979929 0.199347i \(-0.0638821\pi\)
\(744\) 0 0
\(745\) 15.2325i 0.558075i
\(746\) 0 0
\(747\) 4.07162i 0.148973i
\(748\) 0 0
\(749\) 7.40912i 0.270724i
\(750\) 0 0
\(751\) 43.1284i 1.57378i 0.617095 + 0.786889i \(0.288309\pi\)
−0.617095 + 0.786889i \(0.711691\pi\)
\(752\) 0 0
\(753\) 5.51446i 0.200958i
\(754\) 0 0
\(755\) −1.45467 −0.0529410
\(756\) 0 0
\(757\) 22.5791i 0.820652i 0.911939 + 0.410326i \(0.134585\pi\)
−0.911939 + 0.410326i \(0.865415\pi\)
\(758\) 0 0
\(759\) 8.02083i 0.291138i
\(760\) 0 0
\(761\) −10.4373 −0.378353 −0.189177 0.981943i \(-0.560582\pi\)
−0.189177 + 0.981943i \(0.560582\pi\)
\(762\) 0 0
\(763\) 7.58830i 0.274715i
\(764\) 0 0
\(765\) 9.09265 + 4.94157i 0.328745 + 0.178663i
\(766\) 0 0
\(767\) 10.9565 0.395618
\(768\) 0 0
\(769\) −30.5474 −1.10157 −0.550784 0.834648i \(-0.685671\pi\)
−0.550784 + 0.834648i \(0.685671\pi\)
\(770\) 0 0
\(771\) −4.80908 −0.173195
\(772\) 0 0
\(773\) 40.8348i 1.46873i −0.678756 0.734364i \(-0.737481\pi\)
0.678756 0.734364i \(-0.262519\pi\)
\(774\) 0 0
\(775\) 1.89633i 0.0681183i
\(776\) 0 0
\(777\) 1.62234i 0.0582011i
\(778\) 0 0
\(779\) 43.7227 1.56653
\(780\) 0 0
\(781\) 54.4699i 1.94909i
\(782\) 0 0
\(783\) −32.5910 −1.16471
\(784\) 0 0
\(785\) 2.38317i 0.0850590i
\(786\) 0 0
\(787\) −40.1369 −1.43073 −0.715363 0.698753i \(-0.753739\pi\)
−0.715363 + 0.698753i \(0.753739\pi\)
\(788\) 0 0
\(789\) −18.3795 −0.654327
\(790\) 0 0
\(791\) 3.68547 0.131040
\(792\) 0 0
\(793\) 8.52565i 0.302755i
\(794\) 0 0
\(795\) 4.28357i 0.151923i
\(796\) 0 0
\(797\) 36.6352i 1.29768i 0.760923 + 0.648842i \(0.224746\pi\)
−0.760923 + 0.648842i \(0.775254\pi\)
\(798\) 0 0
\(799\) 20.1637 + 10.9583i 0.713340 + 0.387678i
\(800\) 0 0
\(801\) −10.3729 −0.366507
\(802\) 0 0
\(803\) 44.3646i 1.56559i
\(804\) 0 0
\(805\) −1.43716 −0.0506531
\(806\) 0 0
\(807\) −13.8162 −0.486354
\(808\) 0 0
\(809\) 31.5268i 1.10842i −0.832376 0.554212i \(-0.813020\pi\)
0.832376 0.554212i \(-0.186980\pi\)
\(810\) 0 0
\(811\) −2.16993 −0.0761965 −0.0380982 0.999274i \(-0.512130\pi\)
−0.0380982 + 0.999274i \(0.512130\pi\)
\(812\) 0 0
\(813\) −6.87901 −0.241258
\(814\) 0 0
\(815\) 10.0630 0.352492
\(816\) 0 0
\(817\) −34.6986 −1.21395
\(818\) 0 0
\(819\) 2.47170 0.0863681
\(820\) 0 0
\(821\) 43.9566 1.53410 0.767048 0.641590i \(-0.221725\pi\)
0.767048 + 0.641590i \(0.221725\pi\)
\(822\) 0 0
\(823\) 4.32095i 0.150619i 0.997160 + 0.0753094i \(0.0239945\pi\)
−0.997160 + 0.0753094i \(0.976006\pi\)
\(824\) 0 0
\(825\) −2.63631 −0.0917846
\(826\) 0 0
\(827\) 13.4583 0.467990 0.233995 0.972238i \(-0.424820\pi\)
0.233995 + 0.972238i \(0.424820\pi\)
\(828\) 0 0
\(829\) 36.3519i 1.26255i −0.775558 0.631277i \(-0.782531\pi\)
0.775558 0.631277i \(-0.217469\pi\)
\(830\) 0 0
\(831\) −4.99016 −0.173107
\(832\) 0 0
\(833\) 24.5504 + 13.3424i 0.850621 + 0.462286i
\(834\) 0 0
\(835\) 4.09470i 0.141703i
\(836\) 0 0
\(837\) 7.31462i 0.252830i
\(838\) 0 0
\(839\) 10.1963i 0.352016i 0.984389 + 0.176008i \(0.0563185\pi\)
−0.984389 + 0.176008i \(0.943682\pi\)
\(840\) 0 0
\(841\) 42.3907 1.46175
\(842\) 0 0
\(843\) 13.6943 0.471658
\(844\) 0 0
\(845\) −8.65383 −0.297701
\(846\) 0 0
\(847\) 1.50297i 0.0516428i
\(848\) 0 0
\(849\) 5.98698 0.205473
\(850\) 0 0
\(851\) 14.9263i 0.511666i
\(852\) 0 0
\(853\) −19.0192 −0.651205 −0.325602 0.945507i \(-0.605567\pi\)
−0.325602 + 0.945507i \(0.605567\pi\)
\(854\) 0 0
\(855\) 10.6436i 0.364004i
\(856\) 0 0
\(857\) 15.6163i 0.533443i −0.963774 0.266721i \(-0.914060\pi\)
0.963774 0.266721i \(-0.0859404\pi\)
\(858\) 0 0
\(859\) 8.33388i 0.284348i 0.989842 + 0.142174i \(0.0454093\pi\)
−0.989842 + 0.142174i \(0.954591\pi\)
\(860\) 0 0
\(861\) 3.40950 0.116196
\(862\) 0 0
\(863\) −5.60477 −0.190789 −0.0953943 0.995440i \(-0.530411\pi\)
−0.0953943 + 0.995440i \(0.530411\pi\)
\(864\) 0 0
\(865\) 16.3781 0.556871
\(866\) 0 0
\(867\) −6.47380 9.98608i −0.219862 0.339145i
\(868\) 0 0
\(869\) 53.6913i 1.82135i
\(870\) 0 0
\(871\) −29.2595 −0.991419
\(872\) 0 0
\(873\) 3.79485i 0.128436i
\(874\) 0 0
\(875\) 0.472369i 0.0159690i
\(876\) 0 0
\(877\) −27.8925 −0.941864 −0.470932 0.882169i \(-0.656082\pi\)
−0.470932 + 0.882169i \(0.656082\pi\)
\(878\) 0 0
\(879\) 16.0229i 0.540440i
\(880\) 0 0
\(881\) 31.1567i 1.04969i −0.851196 0.524847i \(-0.824122\pi\)
0.851196 0.524847i \(-0.175878\pi\)
\(882\) 0 0
\(883\) 26.5634i 0.893931i −0.894551 0.446965i \(-0.852505\pi\)
0.894551 0.446965i \(-0.147495\pi\)
\(884\) 0 0
\(885\) 3.67918i 0.123674i
\(886\) 0 0
\(887\) 25.6641i 0.861717i −0.902419 0.430859i \(-0.858211\pi\)
0.902419 0.430859i \(-0.141789\pi\)
\(888\) 0 0
\(889\) 5.13939i 0.172370i
\(890\) 0 0
\(891\) 18.1873 0.609296
\(892\) 0 0
\(893\) 23.6031i 0.789848i
\(894\) 0 0
\(895\) 8.16713i 0.272997i
\(896\) 0 0
\(897\) −4.44025 −0.148256
\(898\) 0 0
\(899\) 16.0227i 0.534387i
\(900\) 0 0
\(901\) 12.0470 22.1668i 0.401343 0.738485i
\(902\) 0 0
\(903\) −2.70580 −0.0900435
\(904\) 0 0
\(905\) −12.6490 −0.420466
\(906\) 0 0
\(907\) 20.5456 0.682206 0.341103 0.940026i \(-0.389200\pi\)
0.341103 + 0.940026i \(0.389200\pi\)
\(908\) 0 0
\(909\) 39.9356i 1.32458i
\(910\) 0 0
\(911\) 34.5273i 1.14394i −0.820274 0.571970i \(-0.806179\pi\)
0.820274 0.571970i \(-0.193821\pi\)
\(912\) 0 0
\(913\) 6.10902i 0.202179i
\(914\) 0 0
\(915\) −2.86290 −0.0946444
\(916\) 0 0
\(917\) 6.59253i 0.217705i
\(918\) 0 0
\(919\) −18.5422 −0.611650 −0.305825 0.952088i \(-0.598932\pi\)
−0.305825 + 0.952088i \(0.598932\pi\)
\(920\) 0 0
\(921\) 3.32638i 0.109608i
\(922\) 0 0
\(923\) −30.1540 −0.992531
\(924\) 0 0
\(925\) −4.90602 −0.161309
\(926\) 0 0
\(927\) −37.5210 −1.23235
\(928\) 0 0
\(929\) 18.2002i 0.597130i 0.954389 + 0.298565i \(0.0965080\pi\)
−0.954389 + 0.298565i \(0.903492\pi\)
\(930\) 0 0
\(931\) 28.7381i 0.941852i
\(932\) 0 0
\(933\) 12.9907i 0.425295i
\(934\) 0 0
\(935\) −13.6425 7.41428i −0.446158 0.242473i
\(936\) 0 0
\(937\) −35.1844 −1.14942 −0.574711 0.818356i \(-0.694886\pi\)
−0.574711 + 0.818356i \(0.694886\pi\)
\(938\) 0 0
\(939\) 19.4425i 0.634481i
\(940\) 0 0
\(941\) 6.97595 0.227409 0.113705 0.993515i \(-0.463728\pi\)
0.113705 + 0.993515i \(0.463728\pi\)
\(942\) 0 0
\(943\) 31.3690 1.02152
\(944\) 0 0
\(945\) 1.82204i 0.0592710i
\(946\) 0 0
\(947\) 51.4262 1.67113 0.835564 0.549394i \(-0.185141\pi\)
0.835564 + 0.549394i \(0.185141\pi\)
\(948\) 0 0
\(949\) −24.5598 −0.797244
\(950\) 0 0
\(951\) −4.83444 −0.156768
\(952\) 0 0
\(953\) 2.19024 0.0709487 0.0354743 0.999371i \(-0.488706\pi\)
0.0354743 + 0.999371i \(0.488706\pi\)
\(954\) 0 0
\(955\) −9.84032 −0.318425
\(956\) 0 0
\(957\) 22.2750 0.720048
\(958\) 0 0
\(959\) 7.67499i 0.247838i
\(960\) 0 0
\(961\) 27.4039 0.883997
\(962\) 0 0
\(963\) −39.3683 −1.26862
\(964\) 0 0
\(965\) 19.3479i 0.622832i
\(966\) 0 0
\(967\) 23.0610 0.741592 0.370796 0.928714i \(-0.379085\pi\)
0.370796 + 0.928714i \(0.379085\pi\)
\(968\) 0 0
\(969\) −5.84472 + 10.7545i −0.187760 + 0.345484i
\(970\) 0 0
\(971\) 24.4595i 0.784944i 0.919764 + 0.392472i \(0.128380\pi\)
−0.919764 + 0.392472i \(0.871620\pi\)
\(972\) 0 0
\(973\) 1.82423i 0.0584823i
\(974\) 0 0
\(975\) 1.45943i 0.0467393i
\(976\) 0 0
\(977\) 59.5006 1.90359 0.951797 0.306730i \(-0.0992347\pi\)
0.951797 + 0.306730i \(0.0992347\pi\)
\(978\) 0 0
\(979\) 15.5634 0.497408
\(980\) 0 0
\(981\) −40.3203 −1.28733
\(982\) 0 0
\(983\) 45.4634i 1.45006i 0.688718 + 0.725029i \(0.258174\pi\)
−0.688718 + 0.725029i \(0.741826\pi\)
\(984\) 0 0
\(985\) 2.53115 0.0806491
\(986\) 0 0
\(987\) 1.84057i 0.0585861i
\(988\) 0 0
\(989\) −24.8946 −0.791603
\(990\) 0 0
\(991\) 3.88975i 0.123562i −0.998090 0.0617809i \(-0.980322\pi\)
0.998090 0.0617809i \(-0.0196780\pi\)
\(992\) 0 0
\(993\) 12.4101i 0.393823i
\(994\) 0 0
\(995\) 7.75580i 0.245875i
\(996\) 0 0
\(997\) 32.4838 1.02877 0.514385 0.857559i \(-0.328020\pi\)
0.514385 + 0.857559i \(0.328020\pi\)
\(998\) 0 0
\(999\) −18.9237 −0.598720
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2720.2.l.a.2481.15 36
4.3 odd 2 680.2.l.b.101.17 yes 36
8.3 odd 2 680.2.l.a.101.18 yes 36
8.5 even 2 2720.2.l.b.2481.21 36
17.16 even 2 2720.2.l.b.2481.22 36
68.67 odd 2 680.2.l.a.101.17 36
136.67 odd 2 680.2.l.b.101.18 yes 36
136.101 even 2 inner 2720.2.l.a.2481.16 36
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
680.2.l.a.101.17 36 68.67 odd 2
680.2.l.a.101.18 yes 36 8.3 odd 2
680.2.l.b.101.17 yes 36 4.3 odd 2
680.2.l.b.101.18 yes 36 136.67 odd 2
2720.2.l.a.2481.15 36 1.1 even 1 trivial
2720.2.l.a.2481.16 36 136.101 even 2 inner
2720.2.l.b.2481.21 36 8.5 even 2
2720.2.l.b.2481.22 36 17.16 even 2