Properties

Label 680.2.h.c.509.4
Level $680$
Weight $2$
Character 680.509
Analytic conductor $5.430$
Analytic rank $0$
Dimension $48$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [680,2,Mod(509,680)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(680, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("680.509"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 680 = 2^{3} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 680.h (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.42982733745\)
Analytic rank: \(0\)
Dimension: \(48\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 509.4
Character \(\chi\) \(=\) 680.509
Dual form 680.2.h.c.509.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.39273 - 0.245576i) q^{2} +3.26492i q^{3} +(1.87939 + 0.684040i) q^{4} +(1.77664 + 1.35778i) q^{5} +(0.801785 - 4.54715i) q^{6} +3.95202 q^{7} +(-2.44949 - 1.41421i) q^{8} -7.65971 q^{9} +(-2.14094 - 2.32731i) q^{10} -2.85688 q^{11} +(-2.23334 + 6.13604i) q^{12} -2.44949 q^{13} +(-5.50409 - 0.970520i) q^{14} +(-4.43303 + 5.80059i) q^{15} +(3.06418 + 2.57115i) q^{16} +(-2.47862 + 3.29491i) q^{17} +(10.6679 + 1.88104i) q^{18} -3.93923i q^{19} +(2.41022 + 3.76708i) q^{20} +12.9030i q^{21} +(3.97886 + 0.701580i) q^{22} -3.79746 q^{23} +(4.61730 - 7.99739i) q^{24} +(1.31289 + 4.82455i) q^{25} +(3.41147 + 0.601535i) q^{26} -15.2136i q^{27} +(7.42737 + 2.70334i) q^{28} +3.04617 q^{29} +(7.59849 - 6.99000i) q^{30} +5.69829i q^{31} +(-3.63616 - 4.33340i) q^{32} -9.32749i q^{33} +(4.26119 - 3.98023i) q^{34} +(7.02132 + 5.36596i) q^{35} +(-14.3955 - 5.23955i) q^{36} +2.83577i q^{37} +(-0.967379 + 5.48628i) q^{38} -7.99739i q^{39} +(-2.43168 - 5.83840i) q^{40} +8.36647i q^{41} +(3.16867 - 17.9704i) q^{42} -1.30201 q^{43} +(-5.36918 - 1.95422i) q^{44} +(-13.6085 - 10.4002i) q^{45} +(5.28884 + 0.932564i) q^{46} +2.63968i q^{47} +(-8.39460 + 10.0043i) q^{48} +8.61847 q^{49} +(-0.643711 - 7.04171i) q^{50} +(-10.7576 - 8.09249i) q^{51} +(-4.60353 - 1.67555i) q^{52} -2.80631 q^{53} +(-3.73609 + 21.1884i) q^{54} +(-5.07565 - 3.87900i) q^{55} +(-9.68044 - 5.58900i) q^{56} +12.8613 q^{57} +(-4.24249 - 0.748066i) q^{58} +8.35170i q^{59} +(-12.2992 + 7.86917i) q^{60} +14.1216 q^{61} +(1.39936 - 7.93617i) q^{62} -30.2713 q^{63} +(4.00000 + 6.92820i) q^{64} +(-4.35186 - 3.32586i) q^{65} +(-2.29060 + 12.9907i) q^{66} -5.53763 q^{67} +(-6.91213 + 4.49694i) q^{68} -12.3984i q^{69} +(-8.46104 - 9.19758i) q^{70} -11.9811i q^{71} +(18.7624 + 10.8325i) q^{72} +3.64560 q^{73} +(0.696397 - 3.94946i) q^{74} +(-15.7518 + 4.28649i) q^{75} +(2.69459 - 7.40333i) q^{76} -11.2905 q^{77} +(-1.96396 + 11.1382i) q^{78} -6.61063i q^{79} +(1.95289 + 8.72847i) q^{80} +26.6920 q^{81} +(2.05460 - 11.6522i) q^{82} +16.8485 q^{83} +(-8.82620 + 24.2498i) q^{84} +(-8.87736 + 2.48846i) q^{85} +(1.81335 + 0.319742i) q^{86} +9.94552i q^{87} +(6.99790 + 4.04024i) q^{88} +4.40351 q^{89} +(16.3990 + 17.8265i) q^{90} -9.68044 q^{91} +(-7.13690 - 2.59762i) q^{92} -18.6045 q^{93} +(0.648241 - 3.67636i) q^{94} +(5.34859 - 6.99859i) q^{95} +(14.1482 - 11.8718i) q^{96} +13.2445 q^{97} +(-12.0032 - 2.11649i) q^{98} +21.8829 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 96 q^{9} - 48 q^{15} + 24 q^{34} - 96 q^{36} + 96 q^{49} + 48 q^{60} + 192 q^{64} - 144 q^{66} - 96 q^{70} + 96 q^{76} - 192 q^{84} - 192 q^{86} - 48 q^{89} - 144 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/680\mathbb{Z}\right)^\times\).

\(n\) \(137\) \(241\) \(341\) \(511\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.39273 0.245576i −0.984808 0.173648i
\(3\) 3.26492i 1.88500i 0.334202 + 0.942502i \(0.391533\pi\)
−0.334202 + 0.942502i \(0.608467\pi\)
\(4\) 1.87939 + 0.684040i 0.939693 + 0.342020i
\(5\) 1.77664 + 1.35778i 0.794537 + 0.607216i
\(6\) 0.801785 4.54715i 0.327327 1.85637i
\(7\) 3.95202 1.49372 0.746862 0.664979i \(-0.231560\pi\)
0.746862 + 0.664979i \(0.231560\pi\)
\(8\) −2.44949 1.41421i −0.866025 0.500000i
\(9\) −7.65971 −2.55324
\(10\) −2.14094 2.32731i −0.677025 0.735960i
\(11\) −2.85688 −0.861382 −0.430691 0.902499i \(-0.641730\pi\)
−0.430691 + 0.902499i \(0.641730\pi\)
\(12\) −2.23334 + 6.13604i −0.644709 + 1.77132i
\(13\) −2.44949 −0.679366 −0.339683 0.940540i \(-0.610320\pi\)
−0.339683 + 0.940540i \(0.610320\pi\)
\(14\) −5.50409 0.970520i −1.47103 0.259382i
\(15\) −4.43303 + 5.80059i −1.14460 + 1.49771i
\(16\) 3.06418 + 2.57115i 0.766044 + 0.642788i
\(17\) −2.47862 + 3.29491i −0.601153 + 0.799134i
\(18\) 10.6679 + 1.88104i 2.51445 + 0.443365i
\(19\) 3.93923i 0.903722i −0.892088 0.451861i \(-0.850760\pi\)
0.892088 0.451861i \(-0.149240\pi\)
\(20\) 2.41022 + 3.76708i 0.538941 + 0.842344i
\(21\) 12.9030i 2.81567i
\(22\) 3.97886 + 0.701580i 0.848296 + 0.149577i
\(23\) −3.79746 −0.791826 −0.395913 0.918288i \(-0.629572\pi\)
−0.395913 + 0.918288i \(0.629572\pi\)
\(24\) 4.61730 7.99739i 0.942502 1.63246i
\(25\) 1.31289 + 4.82455i 0.262579 + 0.964911i
\(26\) 3.41147 + 0.601535i 0.669045 + 0.117971i
\(27\) 15.2136i 2.92786i
\(28\) 7.42737 + 2.70334i 1.40364 + 0.510884i
\(29\) 3.04617 0.565660 0.282830 0.959170i \(-0.408727\pi\)
0.282830 + 0.959170i \(0.408727\pi\)
\(30\) 7.59849 6.99000i 1.38729 1.27619i
\(31\) 5.69829i 1.02344i 0.859151 + 0.511722i \(0.170992\pi\)
−0.859151 + 0.511722i \(0.829008\pi\)
\(32\) −3.63616 4.33340i −0.642788 0.766044i
\(33\) 9.32749i 1.62371i
\(34\) 4.26119 3.98023i 0.730788 0.682604i
\(35\) 7.02132 + 5.36596i 1.18682 + 0.907012i
\(36\) −14.3955 5.23955i −2.39926 0.873258i
\(37\) 2.83577i 0.466198i 0.972453 + 0.233099i \(0.0748867\pi\)
−0.972453 + 0.233099i \(0.925113\pi\)
\(38\) −0.967379 + 5.48628i −0.156930 + 0.889992i
\(39\) 7.99739i 1.28061i
\(40\) −2.43168 5.83840i −0.384482 0.923133i
\(41\) 8.36647i 1.30662i 0.757089 + 0.653311i \(0.226621\pi\)
−0.757089 + 0.653311i \(0.773379\pi\)
\(42\) 3.16867 17.9704i 0.488937 2.77290i
\(43\) −1.30201 −0.198555 −0.0992775 0.995060i \(-0.531653\pi\)
−0.0992775 + 0.995060i \(0.531653\pi\)
\(44\) −5.36918 1.95422i −0.809434 0.294610i
\(45\) −13.6085 10.4002i −2.02864 1.55037i
\(46\) 5.28884 + 0.932564i 0.779796 + 0.137499i
\(47\) 2.63968i 0.385037i 0.981293 + 0.192519i \(0.0616656\pi\)
−0.981293 + 0.192519i \(0.938334\pi\)
\(48\) −8.39460 + 10.0043i −1.21166 + 1.44400i
\(49\) 8.61847 1.23121
\(50\) −0.643711 7.04171i −0.0910345 0.995848i
\(51\) −10.7576 8.09249i −1.50637 1.13318i
\(52\) −4.60353 1.67555i −0.638395 0.232357i
\(53\) −2.80631 −0.385476 −0.192738 0.981250i \(-0.561737\pi\)
−0.192738 + 0.981250i \(0.561737\pi\)
\(54\) −3.73609 + 21.1884i −0.508417 + 2.88338i
\(55\) −5.07565 3.87900i −0.684400 0.523045i
\(56\) −9.68044 5.58900i −1.29360 0.746862i
\(57\) 12.8613 1.70352
\(58\) −4.24249 0.748066i −0.557067 0.0982259i
\(59\) 8.35170i 1.08730i 0.839312 + 0.543650i \(0.182958\pi\)
−0.839312 + 0.543650i \(0.817042\pi\)
\(60\) −12.2992 + 7.86917i −1.58782 + 1.01591i
\(61\) 14.1216 1.80809 0.904044 0.427440i \(-0.140584\pi\)
0.904044 + 0.427440i \(0.140584\pi\)
\(62\) 1.39936 7.93617i 0.177719 1.00789i
\(63\) −30.2713 −3.81383
\(64\) 4.00000 + 6.92820i 0.500000 + 0.866025i
\(65\) −4.35186 3.32586i −0.539782 0.412522i
\(66\) −2.29060 + 12.9907i −0.281954 + 1.59904i
\(67\) −5.53763 −0.676530 −0.338265 0.941051i \(-0.609840\pi\)
−0.338265 + 0.941051i \(0.609840\pi\)
\(68\) −6.91213 + 4.49694i −0.838219 + 0.545334i
\(69\) 12.3984i 1.49259i
\(70\) −8.46104 9.19758i −1.01129 1.09932i
\(71\) 11.9811i 1.42189i −0.703248 0.710945i \(-0.748268\pi\)
0.703248 0.710945i \(-0.251732\pi\)
\(72\) 18.7624 + 10.8325i 2.21117 + 1.27662i
\(73\) 3.64560 0.426685 0.213343 0.976977i \(-0.431565\pi\)
0.213343 + 0.976977i \(0.431565\pi\)
\(74\) 0.696397 3.94946i 0.0809545 0.459116i
\(75\) −15.7518 + 4.28649i −1.81886 + 0.494962i
\(76\) 2.69459 7.40333i 0.309091 0.849220i
\(77\) −11.2905 −1.28667
\(78\) −1.96396 + 11.1382i −0.222375 + 1.26115i
\(79\) 6.61063i 0.743754i −0.928282 0.371877i \(-0.878714\pi\)
0.928282 0.371877i \(-0.121286\pi\)
\(80\) 1.95289 + 8.72847i 0.218340 + 0.975873i
\(81\) 26.6920 2.96578
\(82\) 2.05460 11.6522i 0.226893 1.28677i
\(83\) 16.8485 1.84936 0.924680 0.380745i \(-0.124332\pi\)
0.924680 + 0.380745i \(0.124332\pi\)
\(84\) −8.82620 + 24.2498i −0.963017 + 2.64587i
\(85\) −8.87736 + 2.48846i −0.962885 + 0.269912i
\(86\) 1.81335 + 0.319742i 0.195538 + 0.0344787i
\(87\) 9.94552i 1.06627i
\(88\) 6.99790 + 4.04024i 0.745979 + 0.430691i
\(89\) 4.40351 0.466771 0.233386 0.972384i \(-0.425020\pi\)
0.233386 + 0.972384i \(0.425020\pi\)
\(90\) 16.3990 + 17.8265i 1.72860 + 1.87908i
\(91\) −9.68044 −1.01479
\(92\) −7.13690 2.59762i −0.744073 0.270820i
\(93\) −18.6045 −1.92919
\(94\) 0.648241 3.67636i 0.0668610 0.379188i
\(95\) 5.34859 6.99859i 0.548754 0.718040i
\(96\) 14.1482 11.8718i 1.44400 1.21166i
\(97\) 13.2445 1.34477 0.672387 0.740200i \(-0.265269\pi\)
0.672387 + 0.740200i \(0.265269\pi\)
\(98\) −12.0032 2.11649i −1.21251 0.213797i
\(99\) 21.8829 2.19931
\(100\) −0.832757 + 9.96527i −0.0832757 + 0.996527i
\(101\) 13.7178i 1.36497i 0.730900 + 0.682485i \(0.239101\pi\)
−0.730900 + 0.682485i \(0.760899\pi\)
\(102\) 12.9951 + 13.9125i 1.28671 + 1.37754i
\(103\) 0.784921i 0.0773406i 0.999252 + 0.0386703i \(0.0123122\pi\)
−0.999252 + 0.0386703i \(0.987688\pi\)
\(104\) 6.00000 + 3.46410i 0.588348 + 0.339683i
\(105\) −17.5194 + 22.9240i −1.70972 + 2.23716i
\(106\) 3.90843 + 0.689161i 0.379620 + 0.0669372i
\(107\) 13.9864i 1.35211i −0.736849 0.676057i \(-0.763687\pi\)
0.736849 0.676057i \(-0.236313\pi\)
\(108\) 10.4067 28.5922i 1.00139 2.75128i
\(109\) −5.57034 −0.533542 −0.266771 0.963760i \(-0.585957\pi\)
−0.266771 + 0.963760i \(0.585957\pi\)
\(110\) 6.11641 + 6.64885i 0.583177 + 0.633943i
\(111\) −9.25858 −0.878786
\(112\) 12.1097 + 10.1612i 1.14426 + 0.960147i
\(113\) 2.81453 0.264769 0.132385 0.991198i \(-0.457737\pi\)
0.132385 + 0.991198i \(0.457737\pi\)
\(114\) −17.9123 3.15842i −1.67764 0.295813i
\(115\) −6.74672 5.15610i −0.629135 0.480809i
\(116\) 5.72494 + 2.08371i 0.531547 + 0.193467i
\(117\) 18.7624 1.73458
\(118\) 2.05097 11.6317i 0.188808 1.07078i
\(119\) −9.79555 + 13.0216i −0.897957 + 1.19368i
\(120\) 19.0619 7.93923i 1.74011 0.724749i
\(121\) −2.83823 −0.258021
\(122\) −19.6676 3.46792i −1.78062 0.313971i
\(123\) −27.3159 −2.46299
\(124\) −3.89786 + 10.7093i −0.350038 + 0.961722i
\(125\) −4.21812 + 10.3541i −0.377280 + 0.926099i
\(126\) 42.1598 + 7.43390i 3.75589 + 0.662265i
\(127\) 4.98882i 0.442686i −0.975196 0.221343i \(-0.928956\pi\)
0.975196 0.221343i \(-0.0710440\pi\)
\(128\) −3.86952 10.6314i −0.342020 0.939693i
\(129\) 4.25097i 0.374277i
\(130\) 5.24421 + 5.70073i 0.459948 + 0.499987i
\(131\) 14.6532 1.28025 0.640127 0.768269i \(-0.278882\pi\)
0.640127 + 0.768269i \(0.278882\pi\)
\(132\) 6.38038 17.5300i 0.555341 1.52579i
\(133\) 15.5679i 1.34991i
\(134\) 7.71242 + 1.35991i 0.666252 + 0.117478i
\(135\) 20.6566 27.0291i 1.77784 2.32629i
\(136\) 10.7311 4.56556i 0.920181 0.391494i
\(137\) 3.96246i 0.338536i −0.985570 0.169268i \(-0.945860\pi\)
0.985570 0.169268i \(-0.0541403\pi\)
\(138\) −3.04475 + 17.2676i −0.259186 + 1.46992i
\(139\) 3.28155 0.278337 0.139169 0.990269i \(-0.455557\pi\)
0.139169 + 0.990269i \(0.455557\pi\)
\(140\) 9.52523 + 14.8876i 0.805029 + 1.25823i
\(141\) −8.61835 −0.725796
\(142\) −2.94225 + 16.6864i −0.246908 + 1.40029i
\(143\) 6.99790 0.585194
\(144\) −23.4707 19.6943i −1.95589 1.64119i
\(145\) 5.41195 + 4.13602i 0.449438 + 0.343478i
\(146\) −5.07733 0.895271i −0.420203 0.0740931i
\(147\) 28.1386i 2.32083i
\(148\) −1.93978 + 5.32951i −0.159449 + 0.438083i
\(149\) 0.863462i 0.0707376i 0.999374 + 0.0353688i \(0.0112606\pi\)
−0.999374 + 0.0353688i \(0.988739\pi\)
\(150\) 22.9906 2.10167i 1.87718 0.171600i
\(151\) 13.5986 1.10664 0.553318 0.832970i \(-0.313362\pi\)
0.553318 + 0.832970i \(0.313362\pi\)
\(152\) −5.57091 + 9.64911i −0.451861 + 0.782646i
\(153\) 18.9855 25.2381i 1.53489 2.04038i
\(154\) 15.7245 + 2.77266i 1.26712 + 0.223427i
\(155\) −7.73700 + 10.1238i −0.621451 + 0.813164i
\(156\) 5.47054 15.0302i 0.437994 1.20338i
\(157\) 11.3414 0.905146 0.452573 0.891727i \(-0.350506\pi\)
0.452573 + 0.891727i \(0.350506\pi\)
\(158\) −1.62341 + 9.20681i −0.129151 + 0.732454i
\(159\) 9.16238i 0.726624i
\(160\) −0.576351 12.6360i −0.0455646 0.998961i
\(161\) −15.0077 −1.18277
\(162\) −37.1748 6.55491i −2.92072 0.515003i
\(163\) 5.39441i 0.422523i −0.977430 0.211261i \(-0.932243\pi\)
0.977430 0.211261i \(-0.0677571\pi\)
\(164\) −5.72300 + 15.7238i −0.446891 + 1.22782i
\(165\) 12.6646 16.5716i 0.985941 1.29010i
\(166\) −23.4654 4.13757i −1.82126 0.321138i
\(167\) −6.46743 −0.500465 −0.250233 0.968186i \(-0.580507\pi\)
−0.250233 + 0.968186i \(0.580507\pi\)
\(168\) 18.2477 31.6059i 1.40784 2.43844i
\(169\) −7.00000 −0.538462
\(170\) 12.9749 1.28569i 0.995126 0.0986081i
\(171\) 30.1734i 2.30742i
\(172\) −2.44698 0.890629i −0.186581 0.0679098i
\(173\) 6.04537i 0.459621i 0.973235 + 0.229810i \(0.0738106\pi\)
−0.973235 + 0.229810i \(0.926189\pi\)
\(174\) 2.44238 13.8514i 0.185156 1.05007i
\(175\) 5.18858 + 19.0667i 0.392220 + 1.44131i
\(176\) −8.75399 7.34547i −0.659857 0.553686i
\(177\) −27.2677 −2.04956
\(178\) −6.13289 1.08139i −0.459680 0.0810539i
\(179\) 12.6776i 0.947569i −0.880641 0.473785i \(-0.842888\pi\)
0.880641 0.473785i \(-0.157112\pi\)
\(180\) −18.4616 28.8547i −1.37604 2.15070i
\(181\) 11.3106 0.840711 0.420355 0.907360i \(-0.361905\pi\)
0.420355 + 0.907360i \(0.361905\pi\)
\(182\) 13.4822 + 2.37728i 0.999368 + 0.176216i
\(183\) 46.1060i 3.40825i
\(184\) 9.30185 + 5.37042i 0.685741 + 0.395913i
\(185\) −3.85034 + 5.03815i −0.283083 + 0.370412i
\(186\) 25.9110 + 4.56880i 1.89988 + 0.335001i
\(187\) 7.08112 9.41317i 0.517823 0.688360i
\(188\) −1.80565 + 4.96098i −0.131690 + 0.361817i
\(189\) 60.1244i 4.37341i
\(190\) −9.16782 + 8.43366i −0.665103 + 0.611842i
\(191\) −2.52037 −0.182368 −0.0911838 0.995834i \(-0.529065\pi\)
−0.0911838 + 0.995834i \(0.529065\pi\)
\(192\) −22.6200 + 13.0597i −1.63246 + 0.942502i
\(193\) 12.2106 0.878936 0.439468 0.898258i \(-0.355167\pi\)
0.439468 + 0.898258i \(0.355167\pi\)
\(194\) −18.4460 3.25252i −1.32434 0.233518i
\(195\) 10.8587 14.2085i 0.777605 1.01749i
\(196\) 16.1974 + 5.89538i 1.15696 + 0.421099i
\(197\) 8.55634i 0.609614i −0.952414 0.304807i \(-0.901408\pi\)
0.952414 0.304807i \(-0.0985920\pi\)
\(198\) −30.4769 5.37390i −2.16590 0.381907i
\(199\) 17.2203i 1.22072i 0.792125 + 0.610358i \(0.208975\pi\)
−0.792125 + 0.610358i \(0.791025\pi\)
\(200\) 3.60703 13.6744i 0.255056 0.966926i
\(201\) 18.0799i 1.27526i
\(202\) 3.36875 19.1051i 0.237024 1.34423i
\(203\) 12.0385 0.844940
\(204\) −14.6821 22.5676i −1.02796 1.58005i
\(205\) −11.3598 + 14.8642i −0.793401 + 1.03816i
\(206\) 0.192757 1.09318i 0.0134300 0.0761656i
\(207\) 29.0875 2.02172
\(208\) −7.50567 6.29801i −0.520425 0.436688i
\(209\) 11.2539i 0.778450i
\(210\) 30.0294 27.6246i 2.07222 1.90628i
\(211\) 21.5114 1.48091 0.740454 0.672108i \(-0.234611\pi\)
0.740454 + 0.672108i \(0.234611\pi\)
\(212\) −5.27414 1.91963i −0.362229 0.131841i
\(213\) 39.1172 2.68027
\(214\) −3.43471 + 19.4792i −0.234792 + 1.33157i
\(215\) −2.31321 1.76784i −0.157759 0.120566i
\(216\) −21.5153 + 37.2655i −1.46393 + 2.53560i
\(217\) 22.5198i 1.52874i
\(218\) 7.75797 + 1.36794i 0.525436 + 0.0926485i
\(219\) 11.9026i 0.804303i
\(220\) −6.88570 10.7621i −0.464234 0.725580i
\(221\) 6.07135 8.07086i 0.408403 0.542904i
\(222\) 12.8947 + 2.27368i 0.865435 + 0.152600i
\(223\) 13.7954i 0.923806i −0.886931 0.461903i \(-0.847167\pi\)
0.886931 0.461903i \(-0.152833\pi\)
\(224\) −14.3702 17.1257i −0.960147 1.14426i
\(225\) −10.0564 36.9547i −0.670425 2.46365i
\(226\) −3.91988 0.691181i −0.260747 0.0459767i
\(227\) 5.93315i 0.393797i 0.980424 + 0.196898i \(0.0630869\pi\)
−0.980424 + 0.196898i \(0.936913\pi\)
\(228\) 24.1713 + 8.79763i 1.60078 + 0.582637i
\(229\) 6.62811i 0.437998i 0.975725 + 0.218999i \(0.0702791\pi\)
−0.975725 + 0.218999i \(0.929721\pi\)
\(230\) 8.13014 + 8.83788i 0.536086 + 0.582753i
\(231\) 36.8624i 2.42537i
\(232\) −7.46157 4.30794i −0.489876 0.282830i
\(233\) 27.0067 1.76927 0.884635 0.466285i \(-0.154408\pi\)
0.884635 + 0.466285i \(0.154408\pi\)
\(234\) −26.1309 4.60758i −1.70823 0.301207i
\(235\) −3.58409 + 4.68976i −0.233801 + 0.305926i
\(236\) −5.71290 + 15.6961i −0.371878 + 1.02173i
\(237\) 21.5832 1.40198
\(238\) 16.8403 15.7300i 1.09160 1.01962i
\(239\) −20.6172 −1.33362 −0.666808 0.745230i \(-0.732340\pi\)
−0.666808 + 0.745230i \(0.732340\pi\)
\(240\) −28.4978 + 6.37604i −1.83952 + 0.411572i
\(241\) 8.33359i 0.536814i 0.963306 + 0.268407i \(0.0864972\pi\)
−0.963306 + 0.268407i \(0.913503\pi\)
\(242\) 3.95288 + 0.697000i 0.254101 + 0.0448049i
\(243\) 41.5066i 2.66265i
\(244\) 26.5400 + 9.65975i 1.69905 + 0.618402i
\(245\) 15.3119 + 11.7019i 0.978242 + 0.747610i
\(246\) 38.0436 + 6.70811i 2.42557 + 0.427693i
\(247\) 9.64911i 0.613958i
\(248\) 8.05860 13.9579i 0.511722 0.886328i
\(249\) 55.0089i 3.48605i
\(250\) 8.41741 13.3846i 0.532364 0.846516i
\(251\) 28.0495i 1.77047i −0.465143 0.885235i \(-0.653997\pi\)
0.465143 0.885235i \(-0.346003\pi\)
\(252\) −56.8915 20.7068i −3.58383 1.30441i
\(253\) 10.8489 0.682065
\(254\) −1.22513 + 6.94807i −0.0768716 + 0.435961i
\(255\) −8.12464 28.9839i −0.508785 1.81504i
\(256\) 2.77837 + 15.7569i 0.173648 + 0.984808i
\(257\) 3.18420i 0.198625i 0.995056 + 0.0993126i \(0.0316644\pi\)
−0.995056 + 0.0993126i \(0.968336\pi\)
\(258\) −1.04393 + 5.92044i −0.0649925 + 0.368591i
\(259\) 11.2070i 0.696372i
\(260\) −5.90380 9.22741i −0.366138 0.572260i
\(261\) −23.3328 −1.44427
\(262\) −20.4079 3.59846i −1.26080 0.222314i
\(263\) 17.9996i 1.10990i 0.831883 + 0.554950i \(0.187263\pi\)
−0.831883 + 0.554950i \(0.812737\pi\)
\(264\) −13.1911 + 22.8476i −0.811854 + 1.40617i
\(265\) −4.98580 3.81034i −0.306275 0.234067i
\(266\) −3.82310 + 21.6819i −0.234409 + 1.32940i
\(267\) 14.3771i 0.879865i
\(268\) −10.4073 3.78796i −0.635730 0.231387i
\(269\) −8.73894 −0.532822 −0.266411 0.963859i \(-0.585838\pi\)
−0.266411 + 0.963859i \(0.585838\pi\)
\(270\) −35.4068 + 32.5714i −2.15479 + 1.98223i
\(271\) −9.20846 −0.559374 −0.279687 0.960091i \(-0.590231\pi\)
−0.279687 + 0.960091i \(0.590231\pi\)
\(272\) −16.0666 + 3.72330i −0.974183 + 0.225758i
\(273\) 31.6059i 1.91287i
\(274\) −0.973083 + 5.51863i −0.0587861 + 0.333392i
\(275\) −3.75078 13.7832i −0.226181 0.831157i
\(276\) 8.48102 23.3014i 0.510497 1.40258i
\(277\) 3.22987i 0.194064i −0.995281 0.0970321i \(-0.969065\pi\)
0.995281 0.0970321i \(-0.0309349\pi\)
\(278\) −4.57030 0.805867i −0.274108 0.0483327i
\(279\) 43.6473i 2.61309i
\(280\) −9.61003 23.0735i −0.574309 1.37891i
\(281\) −24.4823 −1.46049 −0.730247 0.683183i \(-0.760595\pi\)
−0.730247 + 0.683183i \(0.760595\pi\)
\(282\) 12.0030 + 2.11646i 0.714770 + 0.126033i
\(283\) 7.88131i 0.468495i −0.972177 0.234248i \(-0.924737\pi\)
0.972177 0.234248i \(-0.0752626\pi\)
\(284\) 8.19552 22.5170i 0.486315 1.33614i
\(285\) 22.8499 + 17.4627i 1.35351 + 1.03440i
\(286\) −9.74618 1.71851i −0.576303 0.101618i
\(287\) 33.0645i 1.95173i
\(288\) 27.8519 + 33.1926i 1.64119 + 1.95589i
\(289\) −4.71290 16.3337i −0.277230 0.960804i
\(290\) −6.52168 7.08940i −0.382966 0.416304i
\(291\) 43.2422i 2.53490i
\(292\) 6.85149 + 2.49374i 0.400953 + 0.145935i
\(293\) −18.5741 −1.08511 −0.542555 0.840020i \(-0.682543\pi\)
−0.542555 + 0.840020i \(0.682543\pi\)
\(294\) 6.91016 39.1895i 0.403009 2.28558i
\(295\) −11.3397 + 14.8380i −0.660225 + 0.863900i
\(296\) 4.01039 6.94620i 0.233099 0.403740i
\(297\) 43.4634i 2.52200i
\(298\) 0.212045 1.20257i 0.0122835 0.0696629i
\(299\) 9.30185 0.537940
\(300\) −32.5358 2.71888i −1.87846 0.156975i
\(301\) −5.14558 −0.296586
\(302\) −18.9391 3.33947i −1.08982 0.192165i
\(303\) −44.7875 −2.57297
\(304\) 10.1284 12.0705i 0.580901 0.692291i
\(305\) 25.0890 + 19.1740i 1.43659 + 1.09790i
\(306\) −32.6395 + 30.4874i −1.86588 + 1.74285i
\(307\) −14.0759 −0.803355 −0.401677 0.915781i \(-0.631573\pi\)
−0.401677 + 0.915781i \(0.631573\pi\)
\(308\) −21.2191 7.72313i −1.20907 0.440066i
\(309\) −2.56271 −0.145787
\(310\) 13.2617 12.1997i 0.753214 0.692896i
\(311\) 21.3760i 1.21212i 0.795418 + 0.606062i \(0.207252\pi\)
−0.795418 + 0.606062i \(0.792748\pi\)
\(312\) −11.3100 + 19.5895i −0.640304 + 1.10904i
\(313\) −16.6292 −0.939936 −0.469968 0.882684i \(-0.655734\pi\)
−0.469968 + 0.882684i \(0.655734\pi\)
\(314\) −15.7956 2.78518i −0.891395 0.157177i
\(315\) −53.7812 41.1017i −3.03023 2.31582i
\(316\) 4.52193 12.4239i 0.254379 0.698900i
\(317\) 32.4847i 1.82452i 0.409611 + 0.912260i \(0.365664\pi\)
−0.409611 + 0.912260i \(0.634336\pi\)
\(318\) −2.25006 + 12.7607i −0.126177 + 0.715585i
\(319\) −8.70256 −0.487250
\(320\) −2.30039 + 17.7400i −0.128595 + 0.991697i
\(321\) 45.6644 2.54874
\(322\) 20.9016 + 3.68551i 1.16480 + 0.205386i
\(323\) 12.9794 + 9.76385i 0.722194 + 0.543275i
\(324\) 50.1646 + 18.2584i 2.78692 + 1.01436i
\(325\) −3.21592 11.8177i −0.178387 0.655528i
\(326\) −1.32473 + 7.51294i −0.0733703 + 0.416103i
\(327\) 18.1867i 1.00573i
\(328\) 11.8320 20.4936i 0.653311 1.13157i
\(329\) 10.4321i 0.575139i
\(330\) −21.7080 + 19.9696i −1.19498 + 1.09929i
\(331\) 2.98608i 0.164130i 0.996627 + 0.0820649i \(0.0261515\pi\)
−0.996627 + 0.0820649i \(0.973849\pi\)
\(332\) 31.6648 + 11.5250i 1.73783 + 0.632519i
\(333\) 21.7212i 1.19032i
\(334\) 9.00738 + 1.58824i 0.492862 + 0.0869049i
\(335\) −9.83838 7.51886i −0.537528 0.410799i
\(336\) −33.1757 + 39.5372i −1.80988 + 2.15693i
\(337\) 8.57588 0.467158 0.233579 0.972338i \(-0.424956\pi\)
0.233579 + 0.972338i \(0.424956\pi\)
\(338\) 9.74910 + 1.71903i 0.530281 + 0.0935029i
\(339\) 9.18923i 0.499091i
\(340\) −18.3862 1.39569i −0.997131 0.0756918i
\(341\) 16.2793i 0.881576i
\(342\) 7.40984 42.0233i 0.400678 2.27236i
\(343\) 6.39623 0.345364
\(344\) 3.18927 + 1.84132i 0.171954 + 0.0992775i
\(345\) 16.8343 22.0275i 0.906326 1.18592i
\(346\) 1.48459 8.41955i 0.0798123 0.452638i
\(347\) 9.22145i 0.495033i 0.968884 + 0.247517i \(0.0796145\pi\)
−0.968884 + 0.247517i \(0.920385\pi\)
\(348\) −6.80314 + 18.6915i −0.364686 + 1.00197i
\(349\) 28.3199i 1.51593i 0.652295 + 0.757965i \(0.273806\pi\)
−0.652295 + 0.757965i \(0.726194\pi\)
\(350\) −2.54396 27.8290i −0.135980 1.48752i
\(351\) 37.2655i 1.98909i
\(352\) 10.3881 + 12.3800i 0.553686 + 0.659857i
\(353\) 23.4713i 1.24925i −0.780925 0.624625i \(-0.785252\pi\)
0.780925 0.624625i \(-0.214748\pi\)
\(354\) 37.9764 + 6.69627i 2.01843 + 0.355903i
\(355\) 16.2676 21.2860i 0.863393 1.12974i
\(356\) 8.27589 + 3.01218i 0.438621 + 0.159645i
\(357\) −42.5144 31.9817i −2.25010 1.69265i
\(358\) −3.11331 + 17.6565i −0.164544 + 0.933173i
\(359\) 30.7669 1.62381 0.811907 0.583787i \(-0.198430\pi\)
0.811907 + 0.583787i \(0.198430\pi\)
\(360\) 18.6259 + 44.7205i 0.981673 + 2.35698i
\(361\) 3.48246 0.183287
\(362\) −15.7526 2.77761i −0.827938 0.145988i
\(363\) 9.26660i 0.486370i
\(364\) −18.1933 6.62181i −0.953586 0.347077i
\(365\) 6.47692 + 4.94991i 0.339017 + 0.259090i
\(366\) 11.3225 64.2131i 0.591837 3.35647i
\(367\) 13.4873 0.704032 0.352016 0.935994i \(-0.385496\pi\)
0.352016 + 0.935994i \(0.385496\pi\)
\(368\) −11.6361 9.76385i −0.606574 0.508976i
\(369\) 64.0847i 3.33612i
\(370\) 6.59973 6.07122i 0.343104 0.315628i
\(371\) −11.0906 −0.575795
\(372\) −34.9650 12.7262i −1.81285 0.659823i
\(373\) −14.8935 −0.771155 −0.385578 0.922675i \(-0.625998\pi\)
−0.385578 + 0.922675i \(0.625998\pi\)
\(374\) −12.1737 + 11.3710i −0.629488 + 0.587983i
\(375\) −33.8053 13.7718i −1.74570 0.711174i
\(376\) 3.73307 6.46587i 0.192519 0.333452i
\(377\) −7.46157 −0.384291
\(378\) −14.7651 + 83.7370i −0.759434 + 4.30697i
\(379\) −25.5257 −1.31117 −0.655583 0.755123i \(-0.727577\pi\)
−0.655583 + 0.755123i \(0.727577\pi\)
\(380\) 14.8394 9.49440i 0.761244 0.487052i
\(381\) 16.2881 0.834464
\(382\) 3.51019 + 0.618941i 0.179597 + 0.0316678i
\(383\) 31.0306i 1.58559i −0.609488 0.792795i \(-0.708625\pi\)
0.609488 0.792795i \(-0.291375\pi\)
\(384\) 34.7107 12.6337i 1.77132 0.644709i
\(385\) −20.0591 15.3299i −1.02230 0.781284i
\(386\) −17.0060 2.99862i −0.865583 0.152626i
\(387\) 9.97304 0.506958
\(388\) 24.8915 + 9.05976i 1.26367 + 0.459940i
\(389\) 12.9639i 0.657295i 0.944453 + 0.328648i \(0.106593\pi\)
−0.944453 + 0.328648i \(0.893407\pi\)
\(390\) −18.6124 + 17.1219i −0.942476 + 0.867003i
\(391\) 9.41246 12.5123i 0.476009 0.632775i
\(392\) −21.1109 12.1884i −1.06626 0.615605i
\(393\) 47.8414i 2.41328i
\(394\) −2.10123 + 11.9167i −0.105858 + 0.600353i
\(395\) 8.97574 11.7447i 0.451619 0.590940i
\(396\) 41.1264 + 14.9688i 2.06668 + 0.752209i
\(397\) 8.48789i 0.425995i −0.977053 0.212997i \(-0.931677\pi\)
0.977053 0.212997i \(-0.0683226\pi\)
\(398\) 4.22889 23.9832i 0.211975 1.20217i
\(399\) 50.8280 2.54459
\(400\) −8.38171 + 18.1589i −0.419086 + 0.907947i
\(401\) 2.48667i 0.124178i −0.998071 0.0620891i \(-0.980224\pi\)
0.998071 0.0620891i \(-0.0197763\pi\)
\(402\) −4.43999 + 25.1804i −0.221447 + 1.25589i
\(403\) 13.9579i 0.695293i
\(404\) −9.38351 + 25.7810i −0.466847 + 1.28265i
\(405\) 47.4221 + 36.2418i 2.35642 + 1.80087i
\(406\) −16.7664 2.95637i −0.832104 0.146722i
\(407\) 8.10147i 0.401575i
\(408\) 14.9062 + 35.0361i 0.737967 + 1.73454i
\(409\) −13.4539 −0.665255 −0.332627 0.943058i \(-0.607935\pi\)
−0.332627 + 0.943058i \(0.607935\pi\)
\(410\) 19.4714 17.9121i 0.961623 0.884615i
\(411\) 12.9371 0.638141
\(412\) −0.536918 + 1.47517i −0.0264520 + 0.0726764i
\(413\) 33.0061i 1.62412i
\(414\) −40.5110 7.14317i −1.99100 0.351068i
\(415\) 29.9337 + 22.8764i 1.46939 + 1.12296i
\(416\) 8.90673 + 10.6146i 0.436688 + 0.520425i
\(417\) 10.7140i 0.524666i
\(418\) 2.76369 15.6736i 0.135176 0.766623i
\(419\) −16.7575 −0.818656 −0.409328 0.912387i \(-0.634237\pi\)
−0.409328 + 0.912387i \(0.634237\pi\)
\(420\) −48.6067 + 31.0991i −2.37176 + 1.51748i
\(421\) 2.77800i 0.135392i 0.997706 + 0.0676958i \(0.0215647\pi\)
−0.997706 + 0.0676958i \(0.978435\pi\)
\(422\) −29.9596 5.28268i −1.45841 0.257157i
\(423\) 20.2192i 0.983091i
\(424\) 6.87402 + 3.96872i 0.333832 + 0.192738i
\(425\) −19.1506 7.63236i −0.928943 0.370224i
\(426\) −54.4796 9.60623i −2.63955 0.465423i
\(427\) 55.8089 2.70078
\(428\) 9.56724 26.2858i 0.462450 1.27057i
\(429\) 22.8476i 1.10309i
\(430\) 2.78753 + 3.03019i 0.134427 + 0.146129i
\(431\) 26.8983i 1.29564i −0.761792 0.647822i \(-0.775680\pi\)
0.761792 0.647822i \(-0.224320\pi\)
\(432\) 39.1164 46.6171i 1.88199 2.24287i
\(433\) 7.26521i 0.349144i −0.984644 0.174572i \(-0.944146\pi\)
0.984644 0.174572i \(-0.0558541\pi\)
\(434\) 5.53030 31.3639i 0.265463 1.50552i
\(435\) −13.5038 + 17.6696i −0.647457 + 0.847193i
\(436\) −10.4688 3.81034i −0.501365 0.182482i
\(437\) 14.9591i 0.715590i
\(438\) 2.92299 16.5771i 0.139666 0.792084i
\(439\) 20.9652i 1.00062i 0.865847 + 0.500308i \(0.166780\pi\)
−0.865847 + 0.500308i \(0.833220\pi\)
\(440\) 6.94701 + 16.6796i 0.331186 + 0.795170i
\(441\) −66.0150 −3.14357
\(442\) −10.4377 + 9.74953i −0.496473 + 0.463738i
\(443\) 9.47648 0.450241 0.225120 0.974331i \(-0.427722\pi\)
0.225120 + 0.974331i \(0.427722\pi\)
\(444\) −17.4004 6.33324i −0.825788 0.300562i
\(445\) 7.82345 + 5.97898i 0.370867 + 0.283431i
\(446\) −3.38780 + 19.2132i −0.160417 + 0.909771i
\(447\) −2.81914 −0.133341
\(448\) 15.8081 + 27.3804i 0.746862 + 1.29360i
\(449\) 6.27882i 0.296316i −0.988964 0.148158i \(-0.952666\pi\)
0.988964 0.148158i \(-0.0473344\pi\)
\(450\) 4.93064 + 53.9374i 0.232433 + 2.54264i
\(451\) 23.9020i 1.12550i
\(452\) 5.28960 + 1.92526i 0.248802 + 0.0905564i
\(453\) 44.3982i 2.08601i
\(454\) 1.45704 8.26326i 0.0683821 0.387814i
\(455\) −17.1986 13.1439i −0.806285 0.616193i
\(456\) −31.5036 18.1886i −1.47529 0.851759i
\(457\) 3.84188i 0.179716i −0.995955 0.0898578i \(-0.971359\pi\)
0.995955 0.0898578i \(-0.0286412\pi\)
\(458\) 1.62770 9.23115i 0.0760575 0.431343i
\(459\) 50.1274 + 37.7087i 2.33975 + 1.76009i
\(460\) −9.15271 14.3053i −0.426747 0.666990i
\(461\) 9.82683i 0.457681i −0.973464 0.228841i \(-0.926507\pi\)
0.973464 0.228841i \(-0.0734935\pi\)
\(462\) −9.05252 + 51.3394i −0.421161 + 2.38852i
\(463\) 32.7468i 1.52187i −0.648828 0.760935i \(-0.724740\pi\)
0.648828 0.760935i \(-0.275260\pi\)
\(464\) 9.33402 + 7.83217i 0.433321 + 0.363600i
\(465\) −33.0534 25.2607i −1.53282 1.17144i
\(466\) −37.6130 6.63219i −1.74239 0.307230i
\(467\) 22.6029 1.04594 0.522968 0.852352i \(-0.324825\pi\)
0.522968 + 0.852352i \(0.324825\pi\)
\(468\) 35.2617 + 12.8342i 1.62997 + 0.593262i
\(469\) −21.8848 −1.01055
\(470\) 6.14336 5.65140i 0.283372 0.260680i
\(471\) 37.0289i 1.70620i
\(472\) 11.8111 20.4574i 0.543650 0.941629i
\(473\) 3.71969 0.171032
\(474\) −30.0595 5.30030i −1.38068 0.243451i
\(475\) 19.0050 5.17179i 0.872011 0.237298i
\(476\) −27.3169 + 17.7720i −1.25207 + 0.814578i
\(477\) 21.4955 0.984212
\(478\) 28.7142 + 5.06308i 1.31336 + 0.231580i
\(479\) 10.1653i 0.464467i 0.972660 + 0.232233i \(0.0746033\pi\)
−0.972660 + 0.232233i \(0.925397\pi\)
\(480\) 41.2555 1.88174i 1.88305 0.0858894i
\(481\) 6.94620i 0.316720i
\(482\) 2.04653 11.6064i 0.0932168 0.528659i
\(483\) 48.9988i 2.22952i
\(484\) −5.33413 1.94146i −0.242460 0.0882484i
\(485\) 23.5307 + 17.9830i 1.06847 + 0.816568i
\(486\) 10.1930 57.8075i 0.462365 2.62220i
\(487\) −16.2908 −0.738209 −0.369104 0.929388i \(-0.620336\pi\)
−0.369104 + 0.929388i \(0.620336\pi\)
\(488\) −34.5908 19.9710i −1.56585 0.904044i
\(489\) 17.6123 0.796456
\(490\) −18.4516 20.0579i −0.833559 0.906122i
\(491\) 28.6143i 1.29135i −0.763613 0.645674i \(-0.776577\pi\)
0.763613 0.645674i \(-0.223423\pi\)
\(492\) −51.3370 18.6851i −2.31445 0.842391i
\(493\) −7.55030 + 10.0369i −0.340049 + 0.452038i
\(494\) 2.36959 13.4386i 0.106613 0.604631i
\(495\) 38.8780 + 29.7120i 1.74744 + 1.33546i
\(496\) −14.6512 + 17.4606i −0.657857 + 0.784003i
\(497\) 47.3494i 2.12391i
\(498\) 13.5089 76.6125i 0.605346 3.43309i
\(499\) −4.03677 −0.180711 −0.0903554 0.995910i \(-0.528800\pi\)
−0.0903554 + 0.995910i \(0.528800\pi\)
\(500\) −15.0101 + 16.5740i −0.671272 + 0.741211i
\(501\) 21.1157i 0.943378i
\(502\) −6.88828 + 39.0654i −0.307439 + 1.74357i
\(503\) 4.83145 0.215424 0.107712 0.994182i \(-0.465648\pi\)
0.107712 + 0.994182i \(0.465648\pi\)
\(504\) 74.1493 + 42.8101i 3.30287 + 1.90692i
\(505\) −18.6257 + 24.3715i −0.828831 + 1.08452i
\(506\) −15.1096 2.66423i −0.671703 0.118439i
\(507\) 22.8544i 1.01500i
\(508\) 3.41255 9.37591i 0.151408 0.415989i
\(509\) 31.8045i 1.40971i −0.709352 0.704855i \(-0.751012\pi\)
0.709352 0.704855i \(-0.248988\pi\)
\(510\) 4.19768 + 42.3619i 0.185877 + 1.87582i
\(511\) 14.4075 0.637350
\(512\) 22.6274i 1.00000i
\(513\) −59.9298 −2.64597
\(514\) 0.781963 4.43473i 0.0344909 0.195608i
\(515\) −1.06575 + 1.39452i −0.0469624 + 0.0614500i
\(516\) 2.90783 7.98920i 0.128010 0.351705i
\(517\) 7.54126i 0.331664i
\(518\) 2.75218 15.6084i 0.120924 0.685792i
\(519\) −19.7376 −0.866386
\(520\) 5.95636 + 14.3011i 0.261204 + 0.627145i
\(521\) 36.9770i 1.61999i −0.586435 0.809996i \(-0.699469\pi\)
0.586435 0.809996i \(-0.300531\pi\)
\(522\) 32.4963 + 5.72997i 1.42232 + 0.250794i
\(523\) −43.2268 −1.89018 −0.945089 0.326813i \(-0.894025\pi\)
−0.945089 + 0.326813i \(0.894025\pi\)
\(524\) 27.5389 + 10.0234i 1.20304 + 0.437872i
\(525\) −62.2514 + 16.9403i −2.71687 + 0.739336i
\(526\) 4.42025 25.0685i 0.192732 1.09304i
\(527\) −18.7754 14.1239i −0.817868 0.615246i
\(528\) 23.9824 28.5811i 1.04370 1.24383i
\(529\) −8.57927 −0.373012
\(530\) 6.00814 + 6.53115i 0.260977 + 0.283695i
\(531\) 63.9716i 2.77613i
\(532\) 10.6491 29.2581i 0.461696 1.26850i
\(533\) 20.4936i 0.887675i
\(534\) 3.53067 20.0234i 0.152787 0.866498i
\(535\) 18.9903 24.8487i 0.821024 1.07430i
\(536\) 13.5644 + 7.83140i 0.585892 + 0.338265i
\(537\) 41.3914 1.78617
\(538\) 12.1710 + 2.14607i 0.524728 + 0.0925236i
\(539\) −24.6219 −1.06054
\(540\) 57.3107 36.6680i 2.46626 1.57794i
\(541\) −11.0064 −0.473203 −0.236602 0.971607i \(-0.576034\pi\)
−0.236602 + 0.971607i \(0.576034\pi\)
\(542\) 12.8249 + 2.26137i 0.550876 + 0.0971343i
\(543\) 36.9282i 1.58474i
\(544\) 23.2908 1.23997i 0.998586 0.0531632i
\(545\) −9.89648 7.56327i −0.423919 0.323975i
\(546\) −7.76163 + 44.0184i −0.332167 + 1.88381i
\(547\) 35.1638i 1.50350i −0.659450 0.751748i \(-0.729211\pi\)
0.659450 0.751748i \(-0.270789\pi\)
\(548\) 2.71048 7.44698i 0.115786 0.318119i
\(549\) −108.167 −4.61648
\(550\) 1.83901 + 20.1173i 0.0784155 + 0.857805i
\(551\) 11.9996i 0.511200i
\(552\) −17.5340 + 30.3698i −0.746297 + 1.29262i
\(553\) 26.1253i 1.11096i
\(554\) −0.793178 + 4.49833i −0.0336989 + 0.191116i
\(555\) −16.4492 12.5711i −0.698228 0.533612i
\(556\) 6.16729 + 2.24471i 0.261551 + 0.0951969i
\(557\) −6.13236 −0.259837 −0.129918 0.991525i \(-0.541472\pi\)
−0.129918 + 0.991525i \(0.541472\pi\)
\(558\) −10.7187 + 60.7888i −0.453759 + 2.57339i
\(559\) 3.18927 0.134892
\(560\) 7.71788 + 34.4951i 0.326140 + 1.45768i
\(561\) 30.7333 + 23.1193i 1.29756 + 0.976097i
\(562\) 34.0973 + 6.01227i 1.43831 + 0.253612i
\(563\) 1.47960 0.0623578 0.0311789 0.999514i \(-0.490074\pi\)
0.0311789 + 0.999514i \(0.490074\pi\)
\(564\) −16.1972 5.89530i −0.682025 0.248237i
\(565\) 5.00041 + 3.82151i 0.210369 + 0.160772i
\(566\) −1.93546 + 10.9765i −0.0813533 + 0.461378i
\(567\) 105.487 4.43006
\(568\) −16.9438 + 29.3475i −0.710945 + 1.23139i
\(569\) 21.4439 0.898974 0.449487 0.893287i \(-0.351607\pi\)
0.449487 + 0.893287i \(0.351607\pi\)
\(570\) −27.5352 29.9322i −1.15332 1.25372i
\(571\) 26.4859 1.10840 0.554201 0.832383i \(-0.313024\pi\)
0.554201 + 0.832383i \(0.313024\pi\)
\(572\) 13.1518 + 4.78685i 0.549902 + 0.200148i
\(573\) 8.22881i 0.343763i
\(574\) 8.11982 46.0498i 0.338915 1.92208i
\(575\) −4.98566 18.3211i −0.207917 0.764041i
\(576\) −30.6388 53.0680i −1.27662 2.21117i
\(577\) 27.1774i 1.13141i 0.824607 + 0.565706i \(0.191396\pi\)
−0.824607 + 0.565706i \(0.808604\pi\)
\(578\) 2.55264 + 23.9057i 0.106176 + 0.994347i
\(579\) 39.8666i 1.65680i
\(580\) 7.34194 + 11.4752i 0.304857 + 0.476480i
\(581\) 66.5855 2.76243
\(582\) 10.6192 60.2246i 0.440181 2.49639i
\(583\) 8.01729 0.332042
\(584\) −8.92986 5.15566i −0.369520 0.213343i
\(585\) 33.3340 + 25.4751i 1.37819 + 1.05327i
\(586\) 25.8687 + 4.56135i 1.06863 + 0.188428i
\(587\) 21.7425 0.897408 0.448704 0.893680i \(-0.351886\pi\)
0.448704 + 0.893680i \(0.351886\pi\)
\(588\) −19.2480 + 52.8833i −0.793772 + 2.18087i
\(589\) 22.4469 0.924908
\(590\) 19.4370 17.8805i 0.800209 0.736128i
\(591\) 27.9358 1.14912
\(592\) −7.29120 + 8.68932i −0.299667 + 0.357129i
\(593\) 47.9889i 1.97067i 0.170639 + 0.985334i \(0.445417\pi\)
−0.170639 + 0.985334i \(0.554583\pi\)
\(594\) 10.6736 60.5327i 0.437941 2.48369i
\(595\) −35.0835 + 9.83447i −1.43828 + 0.403174i
\(596\) −0.590643 + 1.62278i −0.0241937 + 0.0664716i
\(597\) −56.2230 −2.30106
\(598\) −12.9549 2.28431i −0.529767 0.0934123i
\(599\) −19.4099 −0.793066 −0.396533 0.918020i \(-0.629787\pi\)
−0.396533 + 0.918020i \(0.629787\pi\)
\(600\) 44.6459 + 11.7767i 1.82266 + 0.480780i
\(601\) 12.8704i 0.524994i 0.964933 + 0.262497i \(0.0845460\pi\)
−0.964933 + 0.262497i \(0.915454\pi\)
\(602\) 7.16639 + 1.26363i 0.292080 + 0.0515017i
\(603\) 42.4167 1.72734
\(604\) 25.5569 + 9.30196i 1.03990 + 0.378492i
\(605\) −5.04251 3.85368i −0.205007 0.156674i
\(606\) 62.3768 + 10.9987i 2.53388 + 0.446792i
\(607\) 2.76842 0.112367 0.0561834 0.998420i \(-0.482107\pi\)
0.0561834 + 0.998420i \(0.482107\pi\)
\(608\) −17.0703 + 14.3237i −0.692291 + 0.580901i
\(609\) 39.3049i 1.59272i
\(610\) −30.2335 32.8654i −1.22412 1.33068i
\(611\) 6.46587i 0.261581i
\(612\) 52.9449 34.4452i 2.14017 1.39237i
\(613\) −40.3681 −1.63045 −0.815225 0.579144i \(-0.803387\pi\)
−0.815225 + 0.579144i \(0.803387\pi\)
\(614\) 19.6039 + 3.45670i 0.791150 + 0.139501i
\(615\) −48.5304 37.0888i −1.95694 1.49556i
\(616\) 27.6559 + 15.9671i 1.11429 + 0.643333i
\(617\) 32.2833 1.29968 0.649839 0.760072i \(-0.274837\pi\)
0.649839 + 0.760072i \(0.274837\pi\)
\(618\) 3.56915 + 0.629338i 0.143572 + 0.0253157i
\(619\) −3.28155 −0.131896 −0.0659482 0.997823i \(-0.521007\pi\)
−0.0659482 + 0.997823i \(0.521007\pi\)
\(620\) −21.4659 + 13.7341i −0.862091 + 0.551575i
\(621\) 57.7730i 2.31835i
\(622\) 5.24943 29.7710i 0.210483 1.19371i
\(623\) 17.4028 0.697227
\(624\) 20.5625 24.5054i 0.823159 0.981002i
\(625\) −21.5526 + 12.6682i −0.862105 + 0.506730i
\(626\) 23.1599 + 4.08372i 0.925656 + 0.163218i
\(627\) −36.7431 −1.46738
\(628\) 21.3149 + 7.75800i 0.850559 + 0.309578i
\(629\) −9.34363 7.02880i −0.372555 0.280257i
\(630\) 64.8091 + 70.4508i 2.58206 + 2.80683i
\(631\) −20.8075 −0.828335 −0.414167 0.910201i \(-0.635927\pi\)
−0.414167 + 0.910201i \(0.635927\pi\)
\(632\) −9.34884 + 16.1927i −0.371877 + 0.644109i
\(633\) 70.2331i 2.79151i
\(634\) 7.97744 45.2423i 0.316825 1.79680i
\(635\) 6.77369 8.86333i 0.268806 0.351730i
\(636\) 6.26743 17.2196i 0.248520 0.682803i
\(637\) −21.1109 −0.836443
\(638\) 12.1203 + 2.13714i 0.479847 + 0.0846100i
\(639\) 91.7714i 3.63042i
\(640\) 7.56033 24.1421i 0.298848 0.954301i
\(641\) 12.7879i 0.505091i 0.967585 + 0.252545i \(0.0812677\pi\)
−0.967585 + 0.252545i \(0.918732\pi\)
\(642\) −63.5981 11.2141i −2.51002 0.442584i
\(643\) 3.01560i 0.118924i 0.998231 + 0.0594619i \(0.0189385\pi\)
−0.998231 + 0.0594619i \(0.981062\pi\)
\(644\) −28.2052 10.2658i −1.11144 0.404531i
\(645\) 5.77186 7.55243i 0.227267 0.297377i
\(646\) −15.6790 16.7858i −0.616884 0.660429i
\(647\) 9.06560i 0.356405i 0.983994 + 0.178203i \(0.0570283\pi\)
−0.983994 + 0.178203i \(0.942972\pi\)
\(648\) −65.3819 37.7482i −2.56844 1.48289i
\(649\) 23.8598i 0.936580i
\(650\) 1.57676 + 17.2486i 0.0618458 + 0.676545i
\(651\) −73.5253 −2.88168
\(652\) 3.68999 10.1382i 0.144511 0.397041i
\(653\) 30.8227i 1.20618i −0.797672 0.603092i \(-0.793935\pi\)
0.797672 0.603092i \(-0.206065\pi\)
\(654\) −4.46621 + 25.3292i −0.174643 + 0.990449i
\(655\) 26.0334 + 19.8957i 1.01721 + 0.777390i
\(656\) −21.5114 + 25.6363i −0.839881 + 1.00093i
\(657\) −27.9243 −1.08943
\(658\) 2.56186 14.5291i 0.0998719 0.566401i
\(659\) 17.6434i 0.687290i −0.939100 0.343645i \(-0.888338\pi\)
0.939100 0.343645i \(-0.111662\pi\)
\(660\) 35.1374 22.4813i 1.36772 0.875082i
\(661\) 24.6247i 0.957791i −0.877872 0.478895i \(-0.841037\pi\)
0.877872 0.478895i \(-0.158963\pi\)
\(662\) 0.733309 4.15880i 0.0285009 0.161636i
\(663\) 26.3507 + 19.8225i 1.02338 + 0.769841i
\(664\) −41.2702 23.8273i −1.60159 0.924680i
\(665\) 21.1377 27.6586i 0.819686 1.07255i
\(666\) −5.33420 + 30.2518i −0.206696 + 1.17223i
\(667\) −11.5677 −0.447905
\(668\) −12.1548 4.42399i −0.470283 0.171169i
\(669\) 45.0408 1.74138
\(670\) 11.8557 + 12.8878i 0.458027 + 0.497899i
\(671\) −40.3438 −1.55745
\(672\) 55.9140 46.9175i 2.15693 1.80988i
\(673\) −15.4632 −0.596064 −0.298032 0.954556i \(-0.596330\pi\)
−0.298032 + 0.954556i \(0.596330\pi\)
\(674\) −11.9439 2.10603i −0.460061 0.0811211i
\(675\) 73.3988 19.9738i 2.82512 0.768793i
\(676\) −13.1557 4.78828i −0.505988 0.184165i
\(677\) 2.81894i 0.108341i 0.998532 + 0.0541703i \(0.0172514\pi\)
−0.998532 + 0.0541703i \(0.982749\pi\)
\(678\) 2.25665 12.7981i 0.0866662 0.491508i
\(679\) 52.3425 2.00872
\(680\) 25.2642 + 6.45902i 0.968839 + 0.247692i
\(681\) −19.3713 −0.742308
\(682\) −3.99781 + 22.6727i −0.153084 + 0.868183i
\(683\) 31.9818i 1.22375i 0.790955 + 0.611874i \(0.209584\pi\)
−0.790955 + 0.611874i \(0.790416\pi\)
\(684\) −20.6398 + 56.7074i −0.789182 + 2.16826i
\(685\) 5.38013 7.03986i 0.205564 0.268979i
\(686\) −8.90821 1.57076i −0.340117 0.0599718i
\(687\) −21.6402 −0.825627
\(688\) −3.98960 3.34767i −0.152102 0.127629i
\(689\) 6.87402 0.261879
\(690\) −28.8550 + 26.5443i −1.09849 + 1.01052i
\(691\) −5.42424 −0.206348 −0.103174 0.994663i \(-0.532900\pi\)
−0.103174 + 0.994663i \(0.532900\pi\)
\(692\) −4.13527 + 11.3616i −0.157200 + 0.431902i
\(693\) 86.4816 3.28516
\(694\) 2.26456 12.8430i 0.0859616 0.487513i
\(695\) 5.83012 + 4.45560i 0.221149 + 0.169011i
\(696\) 14.0651 24.3615i 0.533136 0.923418i
\(697\) −27.5668 20.7373i −1.04417 0.785480i
\(698\) 6.95468 39.4420i 0.263239 1.49290i
\(699\) 88.1748i 3.33508i
\(700\) −3.29107 + 39.3829i −0.124391 + 1.48854i
\(701\) 34.2006i 1.29174i 0.763448 + 0.645870i \(0.223505\pi\)
−0.763448 + 0.645870i \(0.776495\pi\)
\(702\) 9.15150 51.9008i 0.345401 1.95887i
\(703\) 11.1708 0.421314
\(704\) −11.4275 19.7931i −0.430691 0.745979i
\(705\) −15.3117 11.7018i −0.576672 0.440715i
\(706\) −5.76397 + 32.6891i −0.216930 + 1.23027i
\(707\) 54.2129i 2.03889i
\(708\) −51.2464 18.6522i −1.92596 0.700992i
\(709\) −6.49760 −0.244023 −0.122011 0.992529i \(-0.538934\pi\)
−0.122011 + 0.992529i \(0.538934\pi\)
\(710\) −27.8836 + 25.6507i −1.04645 + 0.962654i
\(711\) 50.6355i 1.89898i
\(712\) −10.7864 6.22750i −0.404236 0.233386i
\(713\) 21.6391i 0.810389i
\(714\) 51.3571 + 54.9823i 1.92199 + 2.05766i
\(715\) 12.4327 + 9.50158i 0.464958 + 0.355339i
\(716\) 8.67200 23.8261i 0.324088 0.890424i
\(717\) 67.3135i 2.51387i
\(718\) −42.8499 7.55559i −1.59914 0.281972i
\(719\) 27.9732i 1.04323i −0.853182 0.521613i \(-0.825331\pi\)
0.853182 0.521613i \(-0.174669\pi\)
\(720\) −14.9586 66.8576i −0.557474 2.49163i
\(721\) 3.10202i 0.115525i
\(722\) −4.85012 0.855207i −0.180503 0.0318275i
\(723\) −27.2085 −1.01190
\(724\) 21.2570 + 7.73691i 0.790010 + 0.287540i
\(725\) 3.99930 + 14.6964i 0.148530 + 0.545812i
\(726\) −2.27565 + 12.9059i −0.0844573 + 0.478981i
\(727\) 19.8801i 0.737313i 0.929566 + 0.368656i \(0.120182\pi\)
−0.929566 + 0.368656i \(0.879818\pi\)
\(728\) 23.7121 + 13.6902i 0.878830 + 0.507393i
\(729\) −55.4398 −2.05332
\(730\) −7.80501 8.48445i −0.288876 0.314024i
\(731\) 3.22719 4.29002i 0.119362 0.158672i
\(732\) −31.5383 + 86.6509i −1.16569 + 3.20271i
\(733\) 15.3589 0.567293 0.283647 0.958929i \(-0.408456\pi\)
0.283647 + 0.958929i \(0.408456\pi\)
\(734\) −18.7842 3.31215i −0.693336 0.122254i
\(735\) −38.2059 + 49.9922i −1.40925 + 1.84399i
\(736\) 13.8082 + 16.4559i 0.508976 + 0.606574i
\(737\) 15.8204 0.582750
\(738\) −15.7376 + 89.2526i −0.579311 + 3.28543i
\(739\) 5.22655i 0.192262i 0.995369 + 0.0961310i \(0.0306468\pi\)
−0.995369 + 0.0961310i \(0.969353\pi\)
\(740\) −10.6826 + 6.83483i −0.392699 + 0.251253i
\(741\) −31.5036 −1.15731
\(742\) 15.4462 + 2.72358i 0.567047 + 0.0999857i
\(743\) 21.3385 0.782833 0.391417 0.920214i \(-0.371985\pi\)
0.391417 + 0.920214i \(0.371985\pi\)
\(744\) 45.5715 + 26.3107i 1.67073 + 0.964597i
\(745\) −1.17239 + 1.53406i −0.0429530 + 0.0562037i
\(746\) 20.7426 + 3.65748i 0.759440 + 0.133910i
\(747\) −129.054 −4.72186
\(748\) 19.7471 12.8472i 0.722027 0.469741i
\(749\) 55.2744i 2.01968i
\(750\) 43.6996 + 27.4822i 1.59568 + 1.00351i
\(751\) 37.0942i 1.35359i 0.736173 + 0.676793i \(0.236631\pi\)
−0.736173 + 0.676793i \(0.763369\pi\)
\(752\) −6.78702 + 8.08845i −0.247497 + 0.294956i
\(753\) 91.5795 3.33734
\(754\) 10.3919 + 1.83238i 0.378452 + 0.0667314i
\(755\) 24.1597 + 18.4638i 0.879263 + 0.671966i
\(756\) 41.1275 112.997i 1.49579 4.10966i
\(757\) −16.9302 −0.615339 −0.307670 0.951493i \(-0.599549\pi\)
−0.307670 + 0.951493i \(0.599549\pi\)
\(758\) 35.5503 + 6.26848i 1.29125 + 0.227682i
\(759\) 35.4208i 1.28569i
\(760\) −22.9988 + 9.57893i −0.834255 + 0.347464i
\(761\) 42.5037 1.54076 0.770380 0.637586i \(-0.220067\pi\)
0.770380 + 0.637586i \(0.220067\pi\)
\(762\) −22.6849 3.99996i −0.821787 0.144903i
\(763\) −22.0141 −0.796964
\(764\) −4.73674 1.72403i −0.171369 0.0623734i
\(765\) 67.9980 19.0609i 2.45847 0.689149i
\(766\) −7.62036 + 43.2172i −0.275335 + 1.56150i
\(767\) 20.4574i 0.738674i
\(768\) −51.4451 + 9.07116i −1.85637 + 0.327327i
\(769\) −25.0458 −0.903173 −0.451586 0.892227i \(-0.649142\pi\)
−0.451586 + 0.892227i \(0.649142\pi\)
\(770\) 24.1722 + 26.2764i 0.871105 + 0.946936i
\(771\) −10.3962 −0.374409
\(772\) 22.9484 + 8.35253i 0.825930 + 0.300614i
\(773\) −6.52248 −0.234597 −0.117299 0.993097i \(-0.537423\pi\)
−0.117299 + 0.993097i \(0.537423\pi\)
\(774\) −13.8897 2.44913i −0.499256 0.0880323i
\(775\) −27.4917 + 7.48125i −0.987531 + 0.268734i
\(776\) −32.4422 18.7305i −1.16461 0.672387i
\(777\) −36.5901 −1.31266
\(778\) 3.18362 18.0552i 0.114138 0.647310i
\(779\) 32.9574 1.18082
\(780\) 30.1268 19.2754i 1.07871 0.690172i
\(781\) 34.2284i 1.22479i
\(782\) −16.1817 + 15.1148i −0.578657 + 0.540503i
\(783\) 46.3432i 1.65617i
\(784\) 26.4085 + 22.1594i 0.943162 + 0.791407i
\(785\) 20.1497 + 15.3991i 0.719172 + 0.549619i
\(786\) 11.7487 66.6301i 0.419062 2.37662i
\(787\) 2.17067i 0.0773759i 0.999251 + 0.0386879i \(0.0123178\pi\)
−0.999251 + 0.0386879i \(0.987682\pi\)
\(788\) 5.85288 16.0807i 0.208500 0.572850i
\(789\) −58.7672 −2.09217
\(790\) −15.3850 + 14.1530i −0.547373 + 0.503539i
\(791\) 11.1231 0.395492
\(792\) −53.6019 30.9471i −1.90466 1.09966i
\(793\) −34.5908 −1.22835
\(794\) −2.08442 + 11.8213i −0.0739732 + 0.419523i
\(795\) 12.4404 16.2782i 0.441217 0.577330i
\(796\) −11.7794 + 32.3636i −0.417510 + 1.14710i
\(797\) 42.4909 1.50510 0.752552 0.658533i \(-0.228823\pi\)
0.752552 + 0.658533i \(0.228823\pi\)
\(798\) −70.7897 12.4821i −2.50593 0.441863i
\(799\) −8.69752 6.54276i −0.307696 0.231466i
\(800\) 16.1328 23.2321i 0.570382 0.821379i
\(801\) −33.7296 −1.19178
\(802\) −0.610664 + 3.46325i −0.0215633 + 0.122292i
\(803\) −10.4151 −0.367539
\(804\) 12.3674 33.9792i 0.436165 1.19835i
\(805\) −26.6632 20.3770i −0.939754 0.718196i
\(806\) −3.42772 + 19.4396i −0.120736 + 0.684730i
\(807\) 28.5319i 1.00437i
\(808\) 19.3999 33.6015i 0.682485 1.18210i
\(809\) 36.0820i 1.26858i −0.773097 0.634288i \(-0.781294\pi\)
0.773097 0.634288i \(-0.218706\pi\)
\(810\) −57.1460 62.1207i −2.00791 2.18270i
\(811\) −24.9763 −0.877038 −0.438519 0.898722i \(-0.644497\pi\)
−0.438519 + 0.898722i \(0.644497\pi\)
\(812\) 22.6251 + 8.23485i 0.793984 + 0.288987i
\(813\) 30.0649i 1.05442i
\(814\) −1.98952 + 11.2831i −0.0697328 + 0.395474i
\(815\) 7.32439 9.58391i 0.256562 0.335710i
\(816\) −12.1563 52.4563i −0.425555 1.83634i
\(817\) 5.12893i 0.179438i
\(818\) 18.7377 + 3.30396i 0.655148 + 0.115520i
\(819\) 74.1493 2.59099
\(820\) −31.5171 + 20.1650i −1.10063 + 0.704192i
\(821\) 43.1631 1.50640 0.753202 0.657789i \(-0.228508\pi\)
0.753202 + 0.657789i \(0.228508\pi\)
\(822\) −18.0179 3.17704i −0.628446 0.110812i
\(823\) 22.0577 0.768882 0.384441 0.923149i \(-0.374394\pi\)
0.384441 + 0.923149i \(0.374394\pi\)
\(824\) 1.11005 1.92266i 0.0386703 0.0669789i
\(825\) 45.0010 12.2460i 1.56673 0.426351i
\(826\) 8.10550 45.9686i 0.282026 1.59945i
\(827\) 21.9044i 0.761690i −0.924639 0.380845i \(-0.875633\pi\)
0.924639 0.380845i \(-0.124367\pi\)
\(828\) 54.6666 + 19.8970i 1.89979 + 0.691469i
\(829\) 19.6328i 0.681874i 0.940086 + 0.340937i \(0.110744\pi\)
−0.940086 + 0.340937i \(0.889256\pi\)
\(830\) −36.0716 39.2116i −1.25206 1.36106i
\(831\) 10.5453 0.365812
\(832\) −9.79796 16.9706i −0.339683 0.588348i
\(833\) −21.3619 + 28.3971i −0.740146 + 0.983902i
\(834\) 2.63109 14.9217i 0.0911073 0.516695i
\(835\) −11.4903 8.78132i −0.397638 0.303890i
\(836\) −7.69813 + 21.1504i −0.266245 + 0.731503i
\(837\) 86.6914 2.99649
\(838\) 23.3386 + 4.11523i 0.806219 + 0.142158i
\(839\) 19.2806i 0.665640i −0.942990 0.332820i \(-0.892000\pi\)
0.942990 0.332820i \(-0.108000\pi\)
\(840\) 75.3331 31.3760i 2.59924 1.08257i
\(841\) −19.7208 −0.680028
\(842\) 0.682210 3.86900i 0.0235105 0.133335i
\(843\) 79.9329i 2.75304i
\(844\) 40.4282 + 14.7147i 1.39160 + 0.506500i
\(845\) −12.4365 9.50443i −0.427828 0.326962i
\(846\) −4.96534 + 28.1599i −0.170712 + 0.968156i
\(847\) −11.2167 −0.385412
\(848\) −8.59903 7.21544i −0.295292 0.247779i
\(849\) 25.7319 0.883115
\(850\) 24.7973 + 15.3327i 0.850541 + 0.525908i
\(851\) 10.7688i 0.369148i
\(852\) 73.5163 + 26.7577i 2.51863 + 0.916705i
\(853\) 29.2235i 1.00059i 0.865854 + 0.500297i \(0.166776\pi\)
−0.865854 + 0.500297i \(0.833224\pi\)
\(854\) −77.7267 13.7053i −2.65975 0.468986i
\(855\) −40.9687 + 53.6072i −1.40110 + 1.83333i
\(856\) −19.7797 + 34.2595i −0.676057 + 1.17096i
\(857\) −1.09290 −0.0373329 −0.0186665 0.999826i \(-0.505942\pi\)
−0.0186665 + 0.999826i \(0.505942\pi\)
\(858\) 5.61081 31.8205i 0.191550 1.08633i
\(859\) 27.3477i 0.933093i 0.884497 + 0.466547i \(0.154502\pi\)
−0.884497 + 0.466547i \(0.845498\pi\)
\(860\) −3.13813 4.90478i −0.107009 0.167252i
\(861\) −107.953 −3.67902
\(862\) −6.60556 + 37.4620i −0.224986 + 1.27596i
\(863\) 19.9736i 0.679909i −0.940442 0.339955i \(-0.889588\pi\)
0.940442 0.339955i \(-0.110412\pi\)
\(864\) −65.9266 + 55.3190i −2.24287 + 1.88199i
\(865\) −8.20825 + 10.7404i −0.279089 + 0.365186i
\(866\) −1.78416 + 10.1185i −0.0606282 + 0.343839i
\(867\) 53.3281 15.3873i 1.81112 0.522579i
\(868\) −15.4044 + 42.3233i −0.522860 + 1.43655i
\(869\) 18.8858i 0.640656i
\(870\) 23.1463 21.2928i 0.784734 0.721892i
\(871\) 13.5644 0.459611
\(872\) 13.6445 + 7.87765i 0.462061 + 0.266771i
\(873\) −101.449 −3.43353
\(874\) 3.67359 20.8339i 0.124261 0.704719i
\(875\) −16.6701 + 40.9196i −0.563552 + 1.38334i
\(876\) −8.14186 + 22.3696i −0.275088 + 0.755798i
\(877\) 32.4128i 1.09450i 0.836969 + 0.547251i \(0.184326\pi\)
−0.836969 + 0.547251i \(0.815674\pi\)
\(878\) 5.14855 29.1989i 0.173755 0.985415i
\(879\) 60.6430i 2.04544i
\(880\) −5.57919 24.9362i −0.188074 0.840599i
\(881\) 13.0253i 0.438833i −0.975631 0.219417i \(-0.929585\pi\)
0.975631 0.219417i \(-0.0704154\pi\)
\(882\) 91.9410 + 16.2117i 3.09581 + 0.545875i
\(883\) −7.08631 −0.238473 −0.119237 0.992866i \(-0.538045\pi\)
−0.119237 + 0.992866i \(0.538045\pi\)
\(884\) 16.9312 11.0152i 0.569458 0.370481i
\(885\) −48.4448 37.0233i −1.62845 1.24453i
\(886\) −13.1982 2.32719i −0.443401 0.0781835i
\(887\) −53.7005 −1.80309 −0.901543 0.432690i \(-0.857564\pi\)
−0.901543 + 0.432690i \(0.857564\pi\)
\(888\) 22.6788 + 13.0936i 0.761051 + 0.439393i
\(889\) 19.7159i 0.661250i
\(890\) −9.42765 10.2483i −0.316015 0.343525i
\(891\) −76.2560 −2.55467
\(892\) 9.43658 25.9268i 0.315960 0.868093i
\(893\) 10.3983 0.347966
\(894\) 3.92629 + 0.692311i 0.131315 + 0.0231544i
\(895\) 17.2133 22.5235i 0.575379 0.752879i
\(896\) −15.2924 42.0156i −0.510884 1.40364i
\(897\) 30.3698i 1.01402i
\(898\) −1.54193 + 8.74470i −0.0514547 + 0.291814i
\(899\) 17.3580i 0.578921i
\(900\) 6.37867 76.3310i 0.212622 2.54437i
\(901\) 6.95577 9.24654i 0.231730 0.308047i
\(902\) −5.86975 + 33.2890i −0.195441 + 1.10840i
\(903\) 16.7999i 0.559066i
\(904\) −6.89417 3.98035i −0.229297 0.132385i
\(905\) 20.0949 + 15.3573i 0.667976 + 0.510493i
\(906\) 10.9031 61.8347i 0.362232 2.05432i
\(907\) 8.46087i 0.280939i 0.990085 + 0.140469i \(0.0448611\pi\)
−0.990085 + 0.140469i \(0.955139\pi\)
\(908\) −4.05851 + 11.1507i −0.134686 + 0.370048i
\(909\) 105.074i 3.48509i
\(910\) 20.7252 + 22.5294i 0.687035 + 0.746842i
\(911\) 15.7340i 0.521292i −0.965434 0.260646i \(-0.916064\pi\)
0.965434 0.260646i \(-0.0839356\pi\)
\(912\) 39.4092 + 33.0683i 1.30497 + 1.09500i
\(913\) −48.1341 −1.59301
\(914\) −0.943472 + 5.35069i −0.0312073 + 0.176985i
\(915\) −62.6015 + 81.9137i −2.06954 + 2.70798i
\(916\) −4.53389 + 12.4568i −0.149804 + 0.411583i
\(917\) 57.9096 1.91234
\(918\) −60.5536 64.8280i −1.99857 2.13964i
\(919\) 26.9250 0.888173 0.444087 0.895984i \(-0.353528\pi\)
0.444087 + 0.895984i \(0.353528\pi\)
\(920\) 9.23420 + 22.1711i 0.304443 + 0.730960i
\(921\) 45.9567i 1.51433i
\(922\) −2.41323 + 13.6861i −0.0794755 + 0.450728i
\(923\) 29.3475i 0.965983i
\(924\) 25.2154 69.2787i 0.829526 2.27910i
\(925\) −13.6813 + 3.72307i −0.449840 + 0.122414i
\(926\) −8.04180 + 45.6073i −0.264270 + 1.49875i
\(927\) 6.01227i 0.197469i
\(928\) −11.0764 13.2003i −0.363600 0.433321i
\(929\) 47.2412i 1.54993i 0.632003 + 0.774966i \(0.282233\pi\)
−0.632003 + 0.774966i \(0.717767\pi\)
\(930\) 39.8310 + 43.2984i 1.30611 + 1.41981i
\(931\) 33.9501i 1.11267i
\(932\) 50.7560 + 18.4737i 1.66257 + 0.605126i
\(933\) −69.7911 −2.28486
\(934\) −31.4797 5.55072i −1.03005 0.181625i
\(935\) 25.3616 7.10925i 0.829412 0.232497i
\(936\) −45.9583 26.5340i −1.50219 0.867291i
\(937\) 0.449610i 0.0146881i −0.999973 0.00734406i \(-0.997662\pi\)
0.999973 0.00734406i \(-0.00233771\pi\)
\(938\) 30.4796 + 5.37438i 0.995196 + 0.175480i
\(939\) 54.2929i 1.77178i
\(940\) −9.94388 + 6.36220i −0.324334 + 0.207512i
\(941\) 1.88584 0.0614767 0.0307384 0.999527i \(-0.490214\pi\)
0.0307384 + 0.999527i \(0.490214\pi\)
\(942\) 9.09340 51.5712i 0.296279 1.68028i
\(943\) 31.7714i 1.03462i
\(944\) −21.4735 + 25.5911i −0.698903 + 0.832920i
\(945\) 81.6354 106.819i 2.65560 3.47484i
\(946\) −5.18052 0.913466i −0.168433 0.0296993i
\(947\) 34.0760i 1.10732i −0.832742 0.553661i \(-0.813231\pi\)
0.832742 0.553661i \(-0.186769\pi\)
\(948\) 40.5631 + 14.7638i 1.31743 + 0.479505i
\(949\) −8.92986 −0.289876
\(950\) −27.7389 + 2.53573i −0.899969 + 0.0822699i
\(951\) −106.060 −3.43923
\(952\) 42.4094 18.0432i 1.37450 0.584783i
\(953\) 21.0994i 0.683476i 0.939795 + 0.341738i \(0.111016\pi\)
−0.939795 + 0.341738i \(0.888984\pi\)
\(954\) −29.9374 5.27877i −0.969259 0.170907i
\(955\) −4.47779 3.42209i −0.144898 0.110736i
\(956\) −38.7477 14.1030i −1.25319 0.456124i
\(957\) 28.4132i 0.918467i
\(958\) 2.49636 14.1576i 0.0806538 0.457410i
\(959\) 15.6597i 0.505679i
\(960\) −57.9198 7.51058i −1.86935 0.242403i
\(961\) −1.47052 −0.0474360
\(962\) −1.70582 + 9.67417i −0.0549978 + 0.311908i
\(963\) 107.132i 3.45227i
\(964\) −5.70051 + 15.6620i −0.183601 + 0.504440i
\(965\) 21.6938 + 16.5792i 0.698348 + 0.533704i
\(966\) −12.0329 + 68.2420i −0.387153 + 2.19565i
\(967\) 44.9475i 1.44541i 0.691155 + 0.722706i \(0.257102\pi\)
−0.691155 + 0.722706i \(0.742898\pi\)
\(968\) 6.95222 + 4.01386i 0.223453 + 0.129010i
\(969\) −31.8782 + 42.3768i −1.02408 + 1.36134i
\(970\) −28.3556 30.8240i −0.910445 0.989700i
\(971\) 16.0267i 0.514320i 0.966369 + 0.257160i \(0.0827868\pi\)
−0.966369 + 0.257160i \(0.917213\pi\)
\(972\) −28.3922 + 78.0069i −0.910680 + 2.50207i
\(973\) 12.9687 0.415759
\(974\) 22.6887 + 4.00063i 0.726994 + 0.128189i
\(975\) 38.5838 10.4997i 1.23567 0.336260i
\(976\) 43.2711 + 36.3088i 1.38508 + 1.16222i
\(977\) 20.5970i 0.658955i −0.944163 0.329478i \(-0.893127\pi\)
0.944163 0.329478i \(-0.106873\pi\)
\(978\) −24.5292 4.32515i −0.784356 0.138303i
\(979\) −12.5803 −0.402068
\(980\) 20.7724 + 32.4664i 0.663549 + 1.03710i
\(981\) 42.6672 1.36226
\(982\) −7.02699 + 39.8520i −0.224240 + 1.27173i
\(983\) 18.8102 0.599952 0.299976 0.953947i \(-0.403021\pi\)
0.299976 + 0.953947i \(0.403021\pi\)
\(984\) 66.9099 + 38.6305i 2.13301 + 1.23149i
\(985\) 11.6176 15.2015i 0.370167 0.484361i
\(986\) 12.9803 12.1245i 0.413378 0.386122i
\(987\) −34.0599 −1.08414
\(988\) −6.60038 + 18.1344i −0.209986 + 0.576932i
\(989\) 4.94434 0.157221
\(990\) −46.8499 50.9283i −1.48899 1.61861i
\(991\) 4.34248i 0.137943i −0.997619 0.0689717i \(-0.978028\pi\)
0.997619 0.0689717i \(-0.0219718\pi\)
\(992\) 24.6930 20.7199i 0.784003 0.657857i
\(993\) −9.74932 −0.309385
\(994\) −11.6278 + 65.9448i −0.368813 + 2.09164i
\(995\) −23.3813 + 30.5943i −0.741238 + 0.969905i
\(996\) −37.6283 + 103.383i −1.19230 + 3.27582i
\(997\) 32.7246i 1.03640i −0.855260 0.518199i \(-0.826603\pi\)
0.855260 0.518199i \(-0.173397\pi\)
\(998\) 5.62213 + 0.991333i 0.177965 + 0.0313801i
\(999\) 43.1423 1.36496
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 680.2.h.c.509.4 yes 48
5.4 even 2 inner 680.2.h.c.509.45 yes 48
8.5 even 2 inner 680.2.h.c.509.41 yes 48
17.16 even 2 inner 680.2.h.c.509.1 48
40.29 even 2 inner 680.2.h.c.509.8 yes 48
85.84 even 2 inner 680.2.h.c.509.48 yes 48
136.101 even 2 inner 680.2.h.c.509.44 yes 48
680.509 even 2 inner 680.2.h.c.509.5 yes 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
680.2.h.c.509.1 48 17.16 even 2 inner
680.2.h.c.509.4 yes 48 1.1 even 1 trivial
680.2.h.c.509.5 yes 48 680.509 even 2 inner
680.2.h.c.509.8 yes 48 40.29 even 2 inner
680.2.h.c.509.41 yes 48 8.5 even 2 inner
680.2.h.c.509.44 yes 48 136.101 even 2 inner
680.2.h.c.509.45 yes 48 5.4 even 2 inner
680.2.h.c.509.48 yes 48 85.84 even 2 inner