Properties

Label 680.2.h.c.509.36
Level $680$
Weight $2$
Character 680.509
Analytic conductor $5.430$
Analytic rank $0$
Dimension $48$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [680,2,Mod(509,680)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(680, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("680.509"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 680 = 2^{3} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 680.h (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.42982733745\)
Analytic rank: \(0\)
Dimension: \(48\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 509.36
Character \(\chi\) \(=\) 680.509
Dual form 680.2.h.c.509.37

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.909039 - 1.08335i) q^{2} +2.68098i q^{3} +(-0.347296 - 1.96962i) q^{4} +(-2.10758 + 0.747066i) q^{5} +(2.90444 + 2.43712i) q^{6} +0.590069 q^{7} +(-2.44949 - 1.41421i) q^{8} -4.18766 q^{9} +(-1.10654 + 2.96236i) q^{10} -5.24673 q^{11} +(5.28050 - 0.931095i) q^{12} -2.44949 q^{13} +(0.536396 - 0.639252i) q^{14} +(-2.00287 - 5.65038i) q^{15} +(-3.75877 + 1.36808i) q^{16} +(4.03667 + 0.839805i) q^{17} +(-3.80675 + 4.53671i) q^{18} +2.57115i q^{19} +(2.20339 + 3.89167i) q^{20} +1.58196i q^{21} +(-4.76948 + 5.68404i) q^{22} -7.58646 q^{23} +(3.79148 - 6.56704i) q^{24} +(3.88378 - 3.14900i) q^{25} +(-2.22668 + 2.65366i) q^{26} -3.18410i q^{27} +(-0.204929 - 1.16221i) q^{28} -3.32207 q^{29} +(-7.94203 - 2.96661i) q^{30} -4.11271i q^{31} +(-1.93476 + 5.31570i) q^{32} -14.0664i q^{33} +(4.57930 - 3.60972i) q^{34} +(-1.24362 + 0.440821i) q^{35} +(1.45436 + 8.24809i) q^{36} -8.73391i q^{37} +(2.78546 + 2.33728i) q^{38} -6.56704i q^{39} +(6.21901 + 1.15064i) q^{40} +10.8958i q^{41} +(1.71382 + 1.43807i) q^{42} -6.08842 q^{43} +(1.82217 + 10.3340i) q^{44} +(8.82583 - 3.12846i) q^{45} +(-6.89639 + 8.21880i) q^{46} +5.98771i q^{47} +(-3.66780 - 10.0772i) q^{48} -6.65182 q^{49} +(0.119037 - 7.07007i) q^{50} +(-2.25150 + 10.8222i) q^{51} +(0.850699 + 4.82455i) q^{52} +10.8139 q^{53} +(-3.44950 - 2.89448i) q^{54} +(11.0579 - 3.91965i) q^{55} +(-1.44537 - 0.834484i) q^{56} -6.89321 q^{57} +(-3.01989 + 3.59897i) q^{58} +7.40726i q^{59} +(-10.4335 + 5.90724i) q^{60} +6.60514 q^{61} +(-4.45551 - 3.73862i) q^{62} -2.47101 q^{63} +(4.00000 + 6.92820i) q^{64} +(5.16249 - 1.82993i) q^{65} +(-15.2388 - 12.7869i) q^{66} +7.40124 q^{67} +(0.252171 - 8.24235i) q^{68} -20.3392i q^{69} +(-0.652933 + 1.74800i) q^{70} -0.239853i q^{71} +(10.2576 + 5.92225i) q^{72} -5.97435 q^{73} +(-9.46189 - 7.93947i) q^{74} +(8.44242 + 10.4124i) q^{75} +(5.06418 - 0.892951i) q^{76} -3.09593 q^{77} +(-7.11440 - 5.96969i) q^{78} +10.4890i q^{79} +(6.89986 - 5.69139i) q^{80} -4.02646 q^{81} +(11.8039 + 9.90468i) q^{82} +6.83277 q^{83} +(3.11586 - 0.549410i) q^{84} +(-9.13500 + 1.24571i) q^{85} +(-5.53461 + 6.59590i) q^{86} -8.90641i q^{87} +(12.8518 + 7.41999i) q^{88} -13.4029 q^{89} +(4.63381 - 12.4054i) q^{90} -1.44537 q^{91} +(2.63475 + 14.9424i) q^{92} +11.0261 q^{93} +(6.48679 + 5.44306i) q^{94} +(-1.92082 - 5.41890i) q^{95} +(-14.2513 - 5.18705i) q^{96} +17.0326 q^{97} +(-6.04676 + 7.20625i) q^{98} +21.9715 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 96 q^{9} - 48 q^{15} + 24 q^{34} - 96 q^{36} + 96 q^{49} + 48 q^{60} + 192 q^{64} - 144 q^{66} - 96 q^{70} + 96 q^{76} - 192 q^{84} - 192 q^{86} - 48 q^{89} - 144 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/680\mathbb{Z}\right)^\times\).

\(n\) \(137\) \(241\) \(341\) \(511\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.909039 1.08335i 0.642788 0.766044i
\(3\) 2.68098i 1.54787i 0.633268 + 0.773933i \(0.281713\pi\)
−0.633268 + 0.773933i \(0.718287\pi\)
\(4\) −0.347296 1.96962i −0.173648 0.984808i
\(5\) −2.10758 + 0.747066i −0.942538 + 0.334098i
\(6\) 2.90444 + 2.43712i 1.18573 + 0.994949i
\(7\) 0.590069 0.223025 0.111513 0.993763i \(-0.464430\pi\)
0.111513 + 0.993763i \(0.464430\pi\)
\(8\) −2.44949 1.41421i −0.866025 0.500000i
\(9\) −4.18766 −1.39589
\(10\) −1.10654 + 2.96236i −0.349918 + 0.936780i
\(11\) −5.24673 −1.58195 −0.790974 0.611850i \(-0.790426\pi\)
−0.790974 + 0.611850i \(0.790426\pi\)
\(12\) 5.28050 0.931095i 1.52435 0.268784i
\(13\) −2.44949 −0.679366 −0.339683 0.940540i \(-0.610320\pi\)
−0.339683 + 0.940540i \(0.610320\pi\)
\(14\) 0.536396 0.639252i 0.143358 0.170847i
\(15\) −2.00287 5.65038i −0.517139 1.45892i
\(16\) −3.75877 + 1.36808i −0.939693 + 0.342020i
\(17\) 4.03667 + 0.839805i 0.979037 + 0.203683i
\(18\) −3.80675 + 4.53671i −0.897259 + 1.06931i
\(19\) 2.57115i 0.589862i 0.955518 + 0.294931i \(0.0952967\pi\)
−0.955518 + 0.294931i \(0.904703\pi\)
\(20\) 2.20339 + 3.89167i 0.492693 + 0.870203i
\(21\) 1.58196i 0.345213i
\(22\) −4.76948 + 5.68404i −1.01686 + 1.21184i
\(23\) −7.58646 −1.58189 −0.790943 0.611889i \(-0.790410\pi\)
−0.790943 + 0.611889i \(0.790410\pi\)
\(24\) 3.79148 6.56704i 0.773933 1.34049i
\(25\) 3.88378 3.14900i 0.776757 0.629801i
\(26\) −2.22668 + 2.65366i −0.436688 + 0.520425i
\(27\) 3.18410i 0.612781i
\(28\) −0.204929 1.16221i −0.0387279 0.219637i
\(29\) −3.32207 −0.616893 −0.308446 0.951242i \(-0.599809\pi\)
−0.308446 + 0.951242i \(0.599809\pi\)
\(30\) −7.94203 2.96661i −1.45001 0.541626i
\(31\) 4.11271i 0.738665i −0.929297 0.369333i \(-0.879586\pi\)
0.929297 0.369333i \(-0.120414\pi\)
\(32\) −1.93476 + 5.31570i −0.342020 + 0.939693i
\(33\) 14.0664i 2.44864i
\(34\) 4.57930 3.60972i 0.785343 0.619061i
\(35\) −1.24362 + 0.440821i −0.210210 + 0.0745123i
\(36\) 1.45436 + 8.24809i 0.242393 + 1.37468i
\(37\) 8.73391i 1.43585i −0.696122 0.717923i \(-0.745093\pi\)
0.696122 0.717923i \(-0.254907\pi\)
\(38\) 2.78546 + 2.33728i 0.451861 + 0.379156i
\(39\) 6.56704i 1.05157i
\(40\) 6.21901 + 1.15064i 0.983311 + 0.181932i
\(41\) 10.8958i 1.70163i 0.525463 + 0.850817i \(0.323892\pi\)
−0.525463 + 0.850817i \(0.676108\pi\)
\(42\) 1.71382 + 1.43807i 0.264448 + 0.221899i
\(43\) −6.08842 −0.928476 −0.464238 0.885711i \(-0.653672\pi\)
−0.464238 + 0.885711i \(0.653672\pi\)
\(44\) 1.82217 + 10.3340i 0.274702 + 1.55791i
\(45\) 8.82583 3.12846i 1.31568 0.466364i
\(46\) −6.89639 + 8.21880i −1.01682 + 1.21180i
\(47\) 5.98771i 0.873397i 0.899608 + 0.436699i \(0.143852\pi\)
−0.899608 + 0.436699i \(0.856148\pi\)
\(48\) −3.66780 10.0772i −0.529401 1.45452i
\(49\) −6.65182 −0.950260
\(50\) 0.119037 7.07007i 0.0168343 0.999858i
\(51\) −2.25150 + 10.8222i −0.315273 + 1.51542i
\(52\) 0.850699 + 4.82455i 0.117971 + 0.669045i
\(53\) 10.8139 1.48540 0.742699 0.669626i \(-0.233545\pi\)
0.742699 + 0.669626i \(0.233545\pi\)
\(54\) −3.44950 2.89448i −0.469418 0.393888i
\(55\) 11.0579 3.91965i 1.49105 0.528526i
\(56\) −1.44537 0.834484i −0.193145 0.111513i
\(57\) −6.89321 −0.913028
\(58\) −3.01989 + 3.59897i −0.396531 + 0.472567i
\(59\) 7.40726i 0.964343i 0.876077 + 0.482172i \(0.160152\pi\)
−0.876077 + 0.482172i \(0.839848\pi\)
\(60\) −10.4335 + 5.90724i −1.34696 + 0.762622i
\(61\) 6.60514 0.845702 0.422851 0.906199i \(-0.361029\pi\)
0.422851 + 0.906199i \(0.361029\pi\)
\(62\) −4.45551 3.73862i −0.565850 0.474805i
\(63\) −2.47101 −0.311318
\(64\) 4.00000 + 6.92820i 0.500000 + 0.866025i
\(65\) 5.16249 1.82993i 0.640329 0.226975i
\(66\) −15.2388 12.7869i −1.87577 1.57396i
\(67\) 7.40124 0.904206 0.452103 0.891966i \(-0.350674\pi\)
0.452103 + 0.891966i \(0.350674\pi\)
\(68\) 0.252171 8.24235i 0.0305802 0.999532i
\(69\) 20.3392i 2.44855i
\(70\) −0.652933 + 1.74800i −0.0780405 + 0.208926i
\(71\) 0.239853i 0.0284654i −0.999899 0.0142327i \(-0.995469\pi\)
0.999899 0.0142327i \(-0.00453056\pi\)
\(72\) 10.2576 + 5.92225i 1.20887 + 0.697944i
\(73\) −5.97435 −0.699244 −0.349622 0.936891i \(-0.613690\pi\)
−0.349622 + 0.936891i \(0.613690\pi\)
\(74\) −9.46189 7.93947i −1.09992 0.922944i
\(75\) 8.44242 + 10.4124i 0.974847 + 1.20232i
\(76\) 5.06418 0.892951i 0.580901 0.102429i
\(77\) −3.09593 −0.352814
\(78\) −7.11440 5.96969i −0.805548 0.675935i
\(79\) 10.4890i 1.18011i 0.807364 + 0.590054i \(0.200893\pi\)
−0.807364 + 0.590054i \(0.799107\pi\)
\(80\) 6.89986 5.69139i 0.771428 0.636317i
\(81\) −4.02646 −0.447385
\(82\) 11.8039 + 9.90468i 1.30353 + 1.09379i
\(83\) 6.83277 0.749994 0.374997 0.927026i \(-0.377644\pi\)
0.374997 + 0.927026i \(0.377644\pi\)
\(84\) 3.11586 0.549410i 0.339968 0.0599456i
\(85\) −9.13500 + 1.24571i −0.990830 + 0.135116i
\(86\) −5.53461 + 6.59590i −0.596813 + 0.711254i
\(87\) 8.90641i 0.954867i
\(88\) 12.8518 + 7.41999i 1.37001 + 0.790974i
\(89\) −13.4029 −1.42070 −0.710350 0.703849i \(-0.751463\pi\)
−0.710350 + 0.703849i \(0.751463\pi\)
\(90\) 4.63381 12.4054i 0.488446 1.30764i
\(91\) −1.44537 −0.151516
\(92\) 2.63475 + 14.9424i 0.274692 + 1.55785i
\(93\) 11.0261 1.14335
\(94\) 6.48679 + 5.44306i 0.669061 + 0.561409i
\(95\) −1.92082 5.41890i −0.197072 0.555968i
\(96\) −14.2513 5.18705i −1.45452 0.529401i
\(97\) 17.0326 1.72940 0.864702 0.502286i \(-0.167507\pi\)
0.864702 + 0.502286i \(0.167507\pi\)
\(98\) −6.04676 + 7.20625i −0.610815 + 0.727941i
\(99\) 21.9715 2.20822
\(100\) −7.55115 6.55592i −0.755115 0.655592i
\(101\) 13.9640i 1.38947i −0.719268 0.694733i \(-0.755523\pi\)
0.719268 0.694733i \(-0.244477\pi\)
\(102\) 9.67758 + 12.2770i 0.958223 + 1.21561i
\(103\) 7.16730i 0.706215i 0.935583 + 0.353107i \(0.114875\pi\)
−0.935583 + 0.353107i \(0.885125\pi\)
\(104\) 6.00000 + 3.46410i 0.588348 + 0.339683i
\(105\) −1.18183 3.33412i −0.115335 0.325376i
\(106\) 9.83022 11.7152i 0.954795 1.13788i
\(107\) 8.65923i 0.837120i 0.908189 + 0.418560i \(0.137465\pi\)
−0.908189 + 0.418560i \(0.862535\pi\)
\(108\) −6.27146 + 1.10583i −0.603472 + 0.106408i
\(109\) −4.10165 −0.392867 −0.196433 0.980517i \(-0.562936\pi\)
−0.196433 + 0.980517i \(0.562936\pi\)
\(110\) 5.80570 15.5427i 0.553552 1.48194i
\(111\) 23.4155 2.22250
\(112\) −2.21793 + 0.807262i −0.209575 + 0.0762791i
\(113\) 1.89669 0.178426 0.0892128 0.996013i \(-0.471565\pi\)
0.0892128 + 0.996013i \(0.471565\pi\)
\(114\) −6.26619 + 7.46776i −0.586883 + 0.699420i
\(115\) 15.9891 5.66759i 1.49099 0.528506i
\(116\) 1.15374 + 6.54320i 0.107122 + 0.607521i
\(117\) 10.2576 0.948319
\(118\) 8.02466 + 6.73349i 0.738730 + 0.619868i
\(119\) 2.38192 + 0.495543i 0.218350 + 0.0454263i
\(120\) −3.08484 + 16.6730i −0.281606 + 1.52203i
\(121\) 16.5282 1.50256
\(122\) 6.00433 7.15568i 0.543607 0.647845i
\(123\) −29.2114 −2.63390
\(124\) −8.10047 + 1.42833i −0.727443 + 0.128268i
\(125\) −5.83287 + 9.53822i −0.521708 + 0.853124i
\(126\) −2.24624 + 2.67697i −0.200111 + 0.238483i
\(127\) 10.0968i 0.895943i −0.894048 0.447972i \(-0.852147\pi\)
0.894048 0.447972i \(-0.147853\pi\)
\(128\) 11.1418 + 1.96460i 0.984808 + 0.173648i
\(129\) 16.3230i 1.43716i
\(130\) 2.71045 7.25627i 0.237722 0.636417i
\(131\) −3.48732 −0.304688 −0.152344 0.988327i \(-0.548682\pi\)
−0.152344 + 0.988327i \(0.548682\pi\)
\(132\) −27.7054 + 4.88520i −2.41144 + 0.425202i
\(133\) 1.51716i 0.131554i
\(134\) 6.72802 8.01814i 0.581212 0.692662i
\(135\) 2.37874 + 6.71075i 0.204729 + 0.577570i
\(136\) −8.70013 7.76581i −0.746030 0.665913i
\(137\) 6.73804i 0.575669i −0.957680 0.287835i \(-0.907065\pi\)
0.957680 0.287835i \(-0.0929354\pi\)
\(138\) −22.0344 18.4891i −1.87570 1.57390i
\(139\) −1.58506 −0.134443 −0.0672217 0.997738i \(-0.521413\pi\)
−0.0672217 + 0.997738i \(0.521413\pi\)
\(140\) 1.30015 + 2.29635i 0.109883 + 0.194077i
\(141\) −16.0529 −1.35190
\(142\) −0.259845 0.218036i −0.0218057 0.0182972i
\(143\) 12.8518 1.07472
\(144\) 15.7405 5.72906i 1.31171 0.477422i
\(145\) 7.00153 2.48181i 0.581445 0.206103i
\(146\) −5.43091 + 6.47231i −0.449466 + 0.535652i
\(147\) 17.8334i 1.47087i
\(148\) −17.2024 + 3.03326i −1.41403 + 0.249332i
\(149\) 14.8180i 1.21394i 0.794726 + 0.606968i \(0.207614\pi\)
−0.794726 + 0.606968i \(0.792386\pi\)
\(150\) 18.9547 + 0.319136i 1.54765 + 0.0260573i
\(151\) 2.36759 0.192672 0.0963359 0.995349i \(-0.469288\pi\)
0.0963359 + 0.995349i \(0.469288\pi\)
\(152\) 3.63616 6.29801i 0.294931 0.510836i
\(153\) −16.9042 3.51682i −1.36663 0.284318i
\(154\) −2.81432 + 3.35398i −0.226785 + 0.270271i
\(155\) 3.07247 + 8.66787i 0.246787 + 0.696220i
\(156\) −12.9345 + 2.28071i −1.03559 + 0.182603i
\(157\) −3.98012 −0.317648 −0.158824 0.987307i \(-0.550770\pi\)
−0.158824 + 0.987307i \(0.550770\pi\)
\(158\) 11.3633 + 9.53493i 0.904015 + 0.758559i
\(159\) 28.9918i 2.29920i
\(160\) 0.106474 12.6487i 0.00841747 0.999965i
\(161\) −4.47654 −0.352801
\(162\) −3.66021 + 4.36207i −0.287573 + 0.342717i
\(163\) 10.1715i 0.796695i 0.917235 + 0.398348i \(0.130416\pi\)
−0.917235 + 0.398348i \(0.869584\pi\)
\(164\) 21.4605 3.78406i 1.67578 0.295486i
\(165\) 10.5085 + 29.6460i 0.818087 + 2.30794i
\(166\) 6.21126 7.40229i 0.482087 0.574529i
\(167\) −13.1952 −1.02107 −0.510536 0.859856i \(-0.670553\pi\)
−0.510536 + 0.859856i \(0.670553\pi\)
\(168\) 2.23724 3.87501i 0.172606 0.298963i
\(169\) −7.00000 −0.538462
\(170\) −6.95453 + 11.0288i −0.533388 + 0.845870i
\(171\) 10.7671i 0.823382i
\(172\) 2.11449 + 11.9919i 0.161228 + 0.914370i
\(173\) 9.02967i 0.686513i −0.939242 0.343256i \(-0.888470\pi\)
0.939242 0.343256i \(-0.111530\pi\)
\(174\) −9.64876 8.09627i −0.731471 0.613777i
\(175\) 2.29170 1.85813i 0.173236 0.140461i
\(176\) 19.7212 7.17795i 1.48654 0.541058i
\(177\) −19.8587 −1.49267
\(178\) −12.1837 + 14.5200i −0.913208 + 1.08832i
\(179\) 0.650086i 0.0485897i −0.999705 0.0242948i \(-0.992266\pi\)
0.999705 0.0242948i \(-0.00773405\pi\)
\(180\) −9.22705 16.2970i −0.687744 1.21471i
\(181\) −13.6022 −1.01104 −0.505522 0.862814i \(-0.668700\pi\)
−0.505522 + 0.862814i \(0.668700\pi\)
\(182\) −1.31390 + 1.56584i −0.0973924 + 0.116068i
\(183\) 17.7083i 1.30903i
\(184\) 18.5830 + 10.7289i 1.36995 + 0.790943i
\(185\) 6.52481 + 18.4074i 0.479714 + 1.35334i
\(186\) 10.0232 11.9451i 0.734934 0.875860i
\(187\) −21.1793 4.40623i −1.54879 0.322215i
\(188\) 11.7935 2.07951i 0.860129 0.151664i
\(189\) 1.87884i 0.136666i
\(190\) −7.61667 2.84507i −0.552571 0.206403i
\(191\) −2.68686 −0.194414 −0.0972070 0.995264i \(-0.530991\pi\)
−0.0972070 + 0.995264i \(0.530991\pi\)
\(192\) −18.5744 + 10.7239i −1.34049 + 0.773933i
\(193\) 1.50477 0.108316 0.0541578 0.998532i \(-0.482753\pi\)
0.0541578 + 0.998532i \(0.482753\pi\)
\(194\) 15.4833 18.4523i 1.11164 1.32480i
\(195\) 4.90601 + 13.8406i 0.351327 + 0.991143i
\(196\) 2.31015 + 13.1015i 0.165011 + 0.935823i
\(197\) 10.7106i 0.763098i −0.924349 0.381549i \(-0.875391\pi\)
0.924349 0.381549i \(-0.124609\pi\)
\(198\) 19.9730 23.8029i 1.41942 1.69160i
\(199\) 19.4313i 1.37744i −0.725025 0.688722i \(-0.758172\pi\)
0.725025 0.688722i \(-0.241828\pi\)
\(200\) −13.9667 + 2.22095i −0.987591 + 0.157045i
\(201\) 19.8426i 1.39959i
\(202\) −15.1279 12.6938i −1.06439 0.893131i
\(203\) −1.96025 −0.137583
\(204\) 22.0976 + 0.676066i 1.54714 + 0.0473341i
\(205\) −8.13986 22.9637i −0.568513 1.60385i
\(206\) 7.76470 + 6.51535i 0.540992 + 0.453946i
\(207\) 31.7696 2.20814
\(208\) 9.20707 3.35110i 0.638395 0.232357i
\(209\) 13.4901i 0.933132i
\(210\) −4.68635 1.75050i −0.323389 0.120796i
\(211\) −12.9096 −0.888732 −0.444366 0.895845i \(-0.646571\pi\)
−0.444366 + 0.895845i \(0.646571\pi\)
\(212\) −3.75561 21.2991i −0.257937 1.46283i
\(213\) 0.643043 0.0440606
\(214\) 9.38098 + 7.87158i 0.641271 + 0.538090i
\(215\) 12.8318 4.54846i 0.875124 0.310202i
\(216\) −4.50300 + 7.79943i −0.306391 + 0.530684i
\(217\) 2.42679i 0.164741i
\(218\) −3.72856 + 4.44352i −0.252530 + 0.300953i
\(219\) 16.0171i 1.08234i
\(220\) −11.5606 20.4185i −0.779414 1.37662i
\(221\) −9.88779 2.05709i −0.665125 0.138375i
\(222\) 21.2856 25.3671i 1.42859 1.70253i
\(223\) 9.88986i 0.662274i 0.943583 + 0.331137i \(0.107432\pi\)
−0.943583 + 0.331137i \(0.892568\pi\)
\(224\) −1.14164 + 3.13663i −0.0762791 + 0.209575i
\(225\) −16.2640 + 13.1870i −1.08427 + 0.879131i
\(226\) 1.72417 2.05478i 0.114690 0.136682i
\(227\) 15.1612i 1.00629i −0.864203 0.503143i \(-0.832177\pi\)
0.864203 0.503143i \(-0.167823\pi\)
\(228\) 2.39399 + 13.5770i 0.158546 + 0.899157i
\(229\) 5.19117i 0.343042i −0.985180 0.171521i \(-0.945132\pi\)
0.985180 0.171521i \(-0.0548682\pi\)
\(230\) 8.39471 22.4738i 0.553531 1.48188i
\(231\) 8.30014i 0.546109i
\(232\) 8.13738 + 4.69812i 0.534245 + 0.308446i
\(233\) 6.57405 0.430680 0.215340 0.976539i \(-0.430914\pi\)
0.215340 + 0.976539i \(0.430914\pi\)
\(234\) 9.32459 11.1126i 0.609568 0.726455i
\(235\) −4.47322 12.6196i −0.291801 0.823211i
\(236\) 14.5895 2.57251i 0.949693 0.167456i
\(237\) −28.1209 −1.82665
\(238\) 2.70210 2.12998i 0.175151 0.138066i
\(239\) −8.86248 −0.573266 −0.286633 0.958040i \(-0.592536\pi\)
−0.286633 + 0.958040i \(0.592536\pi\)
\(240\) 15.2585 + 18.4984i 0.984933 + 1.19407i
\(241\) 19.3789i 1.24830i −0.781303 0.624152i \(-0.785445\pi\)
0.781303 0.624152i \(-0.214555\pi\)
\(242\) 15.0247 17.9058i 0.965827 1.15103i
\(243\) 20.3472i 1.30527i
\(244\) −2.29394 13.0096i −0.146855 0.832853i
\(245\) 14.0192 4.96935i 0.895656 0.317480i
\(246\) −26.5543 + 31.6461i −1.69304 + 2.01768i
\(247\) 6.29801i 0.400733i
\(248\) −5.81626 + 10.0741i −0.369333 + 0.639703i
\(249\) 18.3185i 1.16089i
\(250\) 5.03093 + 14.9897i 0.318184 + 0.948029i
\(251\) 16.7259i 1.05573i 0.849329 + 0.527864i \(0.177007\pi\)
−0.849329 + 0.527864i \(0.822993\pi\)
\(252\) 0.858173 + 4.86694i 0.0540598 + 0.306588i
\(253\) 39.8041 2.50246
\(254\) −10.9383 9.17836i −0.686332 0.575901i
\(255\) −3.33972 24.4908i −0.209141 1.53367i
\(256\) 12.2567 10.2846i 0.766044 0.642788i
\(257\) 17.7274i 1.10580i 0.833247 + 0.552901i \(0.186479\pi\)
−0.833247 + 0.552901i \(0.813521\pi\)
\(258\) −17.6835 14.8382i −1.10093 0.923786i
\(259\) 5.15361i 0.320230i
\(260\) −5.39718 9.53260i −0.334719 0.591187i
\(261\) 13.9117 0.861113
\(262\) −3.17011 + 3.77799i −0.195850 + 0.233405i
\(263\) 12.7203i 0.784367i 0.919887 + 0.392183i \(0.128280\pi\)
−0.919887 + 0.392183i \(0.871720\pi\)
\(264\) −19.8929 + 34.4555i −1.22432 + 2.12059i
\(265\) −22.7911 + 8.07867i −1.40004 + 0.496269i
\(266\) 1.64361 + 1.37915i 0.100776 + 0.0845614i
\(267\) 35.9328i 2.19905i
\(268\) −2.57043 14.5776i −0.157014 0.890469i
\(269\) −3.92774 −0.239478 −0.119739 0.992805i \(-0.538206\pi\)
−0.119739 + 0.992805i \(0.538206\pi\)
\(270\) 9.43246 + 3.52333i 0.574041 + 0.214423i
\(271\) −13.0760 −0.794312 −0.397156 0.917751i \(-0.630003\pi\)
−0.397156 + 0.917751i \(0.630003\pi\)
\(272\) −16.3218 + 2.36586i −0.989657 + 0.143451i
\(273\) 3.87501i 0.234526i
\(274\) −7.29966 6.12514i −0.440988 0.370033i
\(275\) −20.3772 + 16.5220i −1.22879 + 0.996312i
\(276\) −40.0603 + 7.06372i −2.41135 + 0.425186i
\(277\) 8.80827i 0.529238i 0.964353 + 0.264619i \(0.0852461\pi\)
−0.964353 + 0.264619i \(0.914754\pi\)
\(278\) −1.44088 + 1.71718i −0.0864185 + 0.102990i
\(279\) 17.2227i 1.03109i
\(280\) 3.66964 + 0.678955i 0.219303 + 0.0405753i
\(281\) −27.7050 −1.65274 −0.826371 0.563126i \(-0.809599\pi\)
−0.826371 + 0.563126i \(0.809599\pi\)
\(282\) −14.5928 + 17.3910i −0.868986 + 1.03562i
\(283\) 4.87332i 0.289689i 0.989454 + 0.144844i \(0.0462682\pi\)
−0.989454 + 0.144844i \(0.953732\pi\)
\(284\) −0.472419 + 0.0833002i −0.0280329 + 0.00494296i
\(285\) 14.5280 5.14968i 0.860564 0.305041i
\(286\) 11.6828 13.9230i 0.690818 0.823285i
\(287\) 6.42926i 0.379507i
\(288\) 8.10212 22.2604i 0.477422 1.31171i
\(289\) 15.5895 + 6.78004i 0.917027 + 0.398826i
\(290\) 3.67600 9.84117i 0.215862 0.577893i
\(291\) 45.6642i 2.67688i
\(292\) 2.07487 + 11.7672i 0.121423 + 0.688621i
\(293\) −16.8991 −0.987254 −0.493627 0.869674i \(-0.664329\pi\)
−0.493627 + 0.869674i \(0.664329\pi\)
\(294\) −19.3198 16.2113i −1.12676 0.945460i
\(295\) −5.53371 15.6114i −0.322185 0.908930i
\(296\) −12.3516 + 21.3936i −0.717923 + 1.24348i
\(297\) 16.7061i 0.969388i
\(298\) 16.0531 + 13.4701i 0.929929 + 0.780303i
\(299\) 18.5830 1.07468
\(300\) 17.5763 20.2445i 1.01477 1.16882i
\(301\) −3.59259 −0.207073
\(302\) 2.15223 2.56493i 0.123847 0.147595i
\(303\) 37.4371 2.15071
\(304\) −3.51754 9.66436i −0.201745 0.554289i
\(305\) −13.9209 + 4.93448i −0.797106 + 0.282547i
\(306\) −19.1766 + 15.1163i −1.09625 + 0.864140i
\(307\) −1.27785 −0.0729310 −0.0364655 0.999335i \(-0.511610\pi\)
−0.0364655 + 0.999335i \(0.511610\pi\)
\(308\) 1.07521 + 6.09779i 0.0612655 + 0.347454i
\(309\) −19.2154 −1.09313
\(310\) 12.1833 + 4.55087i 0.691967 + 0.258472i
\(311\) 28.2277i 1.60064i 0.599571 + 0.800322i \(0.295338\pi\)
−0.599571 + 0.800322i \(0.704662\pi\)
\(312\) −9.28719 + 16.0859i −0.525784 + 0.910684i
\(313\) 2.22638 0.125843 0.0629213 0.998018i \(-0.479958\pi\)
0.0629213 + 0.998018i \(0.479958\pi\)
\(314\) −3.61808 + 4.31187i −0.204180 + 0.243333i
\(315\) 5.20785 1.84601i 0.293429 0.104011i
\(316\) 20.6593 3.64280i 1.16218 0.204924i
\(317\) 27.5279i 1.54612i −0.634333 0.773060i \(-0.718725\pi\)
0.634333 0.773060i \(-0.281275\pi\)
\(318\) 31.4082 + 26.3546i 1.76129 + 1.47789i
\(319\) 17.4300 0.975893
\(320\) −13.6061 11.6135i −0.760607 0.649213i
\(321\) −23.2152 −1.29575
\(322\) −4.06935 + 4.84966i −0.226776 + 0.270261i
\(323\) −2.15926 + 10.3789i −0.120145 + 0.577497i
\(324\) 1.39838 + 7.93059i 0.0776876 + 0.440588i
\(325\) −9.51329 + 7.71345i −0.527702 + 0.427865i
\(326\) 11.0193 + 9.24631i 0.610304 + 0.512106i
\(327\) 10.9964i 0.608105i
\(328\) 15.4089 26.6891i 0.850817 1.47366i
\(329\) 3.53316i 0.194790i
\(330\) 41.6697 + 15.5650i 2.29384 + 0.856824i
\(331\) 25.4287i 1.39769i −0.715275 0.698843i \(-0.753699\pi\)
0.715275 0.698843i \(-0.246301\pi\)
\(332\) −2.37300 13.4579i −0.130235 0.738600i
\(333\) 36.5747i 2.00428i
\(334\) −11.9949 + 14.2950i −0.656333 + 0.782187i
\(335\) −15.5987 + 5.52922i −0.852249 + 0.302094i
\(336\) −2.16425 5.94624i −0.118070 0.324394i
\(337\) 13.0469 0.710708 0.355354 0.934732i \(-0.384360\pi\)
0.355354 + 0.934732i \(0.384360\pi\)
\(338\) −6.36327 + 7.58345i −0.346116 + 0.412485i
\(339\) 5.08499i 0.276179i
\(340\) 5.62611 + 17.5598i 0.305119 + 0.952314i
\(341\) 21.5783i 1.16853i
\(342\) −11.6646 9.78773i −0.630747 0.529260i
\(343\) −8.05552 −0.434957
\(344\) 14.9135 + 8.61033i 0.804084 + 0.464238i
\(345\) 15.1947 + 42.8664i 0.818056 + 2.30785i
\(346\) −9.78229 8.20832i −0.525899 0.441282i
\(347\) 26.0425i 1.39804i 0.715104 + 0.699018i \(0.246379\pi\)
−0.715104 + 0.699018i \(0.753621\pi\)
\(348\) −17.5422 + 3.09316i −0.940361 + 0.165811i
\(349\) 18.6985i 1.00091i 0.865763 + 0.500455i \(0.166834\pi\)
−0.865763 + 0.500455i \(0.833166\pi\)
\(350\) 0.0702399 4.17183i 0.00375448 0.222994i
\(351\) 7.79943i 0.416303i
\(352\) 10.1511 27.8901i 0.541058 1.48654i
\(353\) 15.1999i 0.809010i −0.914536 0.404505i \(-0.867444\pi\)
0.914536 0.404505i \(-0.132556\pi\)
\(354\) −18.0524 + 21.5140i −0.959472 + 1.14345i
\(355\) 0.179186 + 0.505510i 0.00951023 + 0.0268297i
\(356\) 4.65476 + 26.3985i 0.246702 + 1.39912i
\(357\) −1.32854 + 6.38587i −0.0703139 + 0.337976i
\(358\) −0.704271 0.590953i −0.0372219 0.0312329i
\(359\) −18.9154 −0.998317 −0.499158 0.866511i \(-0.666357\pi\)
−0.499158 + 0.866511i \(0.666357\pi\)
\(360\) −26.0431 4.81848i −1.37259 0.253956i
\(361\) 12.3892 0.652062
\(362\) −12.3649 + 14.7359i −0.649886 + 0.774504i
\(363\) 44.3117i 2.32576i
\(364\) 0.501971 + 2.84682i 0.0263104 + 0.149214i
\(365\) 12.5914 4.46323i 0.659065 0.233616i
\(366\) 19.1843 + 16.0975i 1.00278 + 0.841430i
\(367\) −12.9709 −0.677073 −0.338537 0.940953i \(-0.609932\pi\)
−0.338537 + 0.940953i \(0.609932\pi\)
\(368\) 28.5158 10.3789i 1.48649 0.541037i
\(369\) 45.6278i 2.37529i
\(370\) 25.8730 + 9.66440i 1.34507 + 0.502428i
\(371\) 6.38092 0.331281
\(372\) −3.82933 21.7172i −0.198541 1.12598i
\(373\) 3.90153 0.202014 0.101007 0.994886i \(-0.467794\pi\)
0.101007 + 0.994886i \(0.467794\pi\)
\(374\) −24.0263 + 18.9392i −1.24237 + 0.979323i
\(375\) −25.5718 15.6378i −1.32052 0.807533i
\(376\) 8.46790 14.6668i 0.436699 0.756384i
\(377\) 8.13738 0.419096
\(378\) −2.03544 1.70794i −0.104692 0.0878470i
\(379\) −19.9672 −1.02565 −0.512824 0.858494i \(-0.671401\pi\)
−0.512824 + 0.858494i \(0.671401\pi\)
\(380\) −10.0061 + 5.66524i −0.513300 + 0.290621i
\(381\) 27.0693 1.38680
\(382\) −2.44246 + 2.91081i −0.124967 + 0.148930i
\(383\) 28.0933i 1.43550i 0.696301 + 0.717750i \(0.254828\pi\)
−0.696301 + 0.717750i \(0.745172\pi\)
\(384\) −5.26707 + 29.8710i −0.268784 + 1.52435i
\(385\) 6.52492 2.31287i 0.332541 0.117875i
\(386\) 1.36789 1.63019i 0.0696240 0.0829746i
\(387\) 25.4963 1.29605
\(388\) −5.91538 33.5478i −0.300308 1.70313i
\(389\) 6.13012i 0.310810i −0.987851 0.155405i \(-0.950332\pi\)
0.987851 0.155405i \(-0.0496682\pi\)
\(390\) 19.4539 + 7.26667i 0.985088 + 0.367962i
\(391\) −30.6241 6.37115i −1.54873 0.322203i
\(392\) 16.2936 + 9.40709i 0.822949 + 0.475130i
\(393\) 9.34944i 0.471617i
\(394\) −11.6033 9.73634i −0.584567 0.490510i
\(395\) −7.83600 22.1065i −0.394272 1.11230i
\(396\) −7.63063 43.2755i −0.383454 2.17467i
\(397\) 5.63325i 0.282725i −0.989958 0.141362i \(-0.954852\pi\)
0.989958 0.141362i \(-0.0451483\pi\)
\(398\) −21.0509 17.6638i −1.05518 0.885405i
\(399\) −4.06747 −0.203628
\(400\) −10.2902 + 17.1497i −0.514508 + 0.857486i
\(401\) 1.02106i 0.0509893i −0.999675 0.0254946i \(-0.991884\pi\)
0.999675 0.0254946i \(-0.00811608\pi\)
\(402\) 21.4965 + 18.0377i 1.07215 + 0.899639i
\(403\) 10.0741i 0.501824i
\(404\) −27.5036 + 4.84963i −1.36836 + 0.241278i
\(405\) 8.48609 3.00804i 0.421677 0.149470i
\(406\) −1.78194 + 2.12364i −0.0884364 + 0.105394i
\(407\) 45.8245i 2.27143i
\(408\) 20.8200 23.3249i 1.03074 1.15475i
\(409\) 30.6157 1.51385 0.756925 0.653502i \(-0.226701\pi\)
0.756925 + 0.653502i \(0.226701\pi\)
\(410\) −32.2772 12.0566i −1.59406 0.595432i
\(411\) 18.0646 0.891059
\(412\) 14.1168 2.48918i 0.695486 0.122633i
\(413\) 4.37079i 0.215073i
\(414\) 28.8798 34.4176i 1.41936 1.69153i
\(415\) −14.4006 + 5.10453i −0.706898 + 0.250572i
\(416\) 4.73917 13.0208i 0.232357 0.638395i
\(417\) 4.24953i 0.208100i
\(418\) −14.6145 12.2631i −0.714820 0.599805i
\(419\) 16.4593 0.804088 0.402044 0.915620i \(-0.368300\pi\)
0.402044 + 0.915620i \(0.368300\pi\)
\(420\) −6.15648 + 3.48568i −0.300405 + 0.170084i
\(421\) 35.3101i 1.72091i 0.509527 + 0.860455i \(0.329820\pi\)
−0.509527 + 0.860455i \(0.670180\pi\)
\(422\) −11.7353 + 13.9856i −0.571266 + 0.680808i
\(423\) 25.0745i 1.21916i
\(424\) −26.4884 15.2931i −1.28639 0.742699i
\(425\) 18.3221 9.44987i 0.888753 0.458386i
\(426\) 0.584551 0.696641i 0.0283216 0.0337524i
\(427\) 3.89749 0.188613
\(428\) 17.0554 3.00732i 0.824402 0.145364i
\(429\) 34.4555i 1.66353i
\(430\) 6.73707 18.0361i 0.324890 0.869778i
\(431\) 8.63834i 0.416094i −0.978119 0.208047i \(-0.933289\pi\)
0.978119 0.208047i \(-0.0667108\pi\)
\(432\) 4.35611 + 11.9683i 0.209584 + 0.575826i
\(433\) 31.8980i 1.53292i 0.642292 + 0.766460i \(0.277984\pi\)
−0.642292 + 0.766460i \(0.722016\pi\)
\(434\) −2.62906 2.20604i −0.126199 0.105893i
\(435\) 6.65368 + 18.7710i 0.319019 + 0.899999i
\(436\) 1.42449 + 8.07867i 0.0682206 + 0.386898i
\(437\) 19.5059i 0.933096i
\(438\) −17.3522 14.5602i −0.829118 0.695712i
\(439\) 24.7914i 1.18323i 0.806222 + 0.591614i \(0.201509\pi\)
−0.806222 + 0.591614i \(0.798491\pi\)
\(440\) −32.6294 6.03708i −1.55555 0.287806i
\(441\) 27.8556 1.32646
\(442\) −11.2169 + 8.84196i −0.533535 + 0.420569i
\(443\) −13.4991 −0.641364 −0.320682 0.947187i \(-0.603912\pi\)
−0.320682 + 0.947187i \(0.603912\pi\)
\(444\) −8.13210 46.1195i −0.385933 2.18873i
\(445\) 28.2476 10.0128i 1.33906 0.474653i
\(446\) 10.7142 + 8.99027i 0.507331 + 0.425702i
\(447\) −39.7267 −1.87901
\(448\) 2.36028 + 4.08812i 0.111513 + 0.193145i
\(449\) 28.4034i 1.34044i −0.742163 0.670220i \(-0.766200\pi\)
0.742163 0.670220i \(-0.233800\pi\)
\(450\) −0.498486 + 29.6071i −0.0234989 + 1.39569i
\(451\) 57.1671i 2.69190i
\(452\) −0.658714 3.73575i −0.0309833 0.175715i
\(453\) 6.34747i 0.298230i
\(454\) −16.4249 13.7822i −0.770861 0.646829i
\(455\) 3.04623 1.07979i 0.142809 0.0506211i
\(456\) 16.8848 + 9.74847i 0.790705 + 0.456514i
\(457\) 8.91339i 0.416951i −0.978028 0.208475i \(-0.933150\pi\)
0.978028 0.208475i \(-0.0668501\pi\)
\(458\) −5.62386 4.71898i −0.262786 0.220503i
\(459\) 2.67403 12.8532i 0.124813 0.599935i
\(460\) −16.7159 29.5240i −0.779384 1.37656i
\(461\) 36.8616i 1.71682i −0.512968 0.858408i \(-0.671454\pi\)
0.512968 0.858408i \(-0.328546\pi\)
\(462\) −8.99196 7.54515i −0.418344 0.351032i
\(463\) 15.6345i 0.726597i −0.931673 0.363298i \(-0.881651\pi\)
0.931673 0.363298i \(-0.118349\pi\)
\(464\) 12.4869 4.54486i 0.579690 0.210990i
\(465\) −23.2384 + 8.23724i −1.07766 + 0.381993i
\(466\) 5.97606 7.12200i 0.276836 0.329920i
\(467\) −2.86172 −0.132425 −0.0662124 0.997806i \(-0.521091\pi\)
−0.0662124 + 0.997806i \(0.521091\pi\)
\(468\) −3.56244 20.2036i −0.164674 0.933912i
\(469\) 4.36725 0.201661
\(470\) −17.7378 6.62563i −0.818182 0.305617i
\(471\) 10.6706i 0.491677i
\(472\) 10.4754 18.1440i 0.482172 0.835146i
\(473\) 31.9443 1.46880
\(474\) −25.5630 + 30.4648i −1.17415 + 1.39929i
\(475\) 8.09656 + 9.98579i 0.371496 + 0.458180i
\(476\) 0.148798 4.86356i 0.00682016 0.222921i
\(477\) −45.2848 −2.07345
\(478\) −8.05634 + 9.60117i −0.368488 + 0.439147i
\(479\) 13.1532i 0.600985i −0.953784 0.300492i \(-0.902849\pi\)
0.953784 0.300492i \(-0.0971510\pi\)
\(480\) 33.9108 + 0.285454i 1.54781 + 0.0130291i
\(481\) 21.3936i 0.975465i
\(482\) −20.9941 17.6162i −0.956257 0.802395i
\(483\) 12.0015i 0.546088i
\(484\) −5.74017 32.5541i −0.260917 1.47973i
\(485\) −35.8977 + 12.7245i −1.63003 + 0.577791i
\(486\) −22.0431 18.4964i −0.999897 0.839013i
\(487\) 17.0600 0.773062 0.386531 0.922276i \(-0.373673\pi\)
0.386531 + 0.922276i \(0.373673\pi\)
\(488\) −16.1792 9.34108i −0.732399 0.422851i
\(489\) −27.2697 −1.23318
\(490\) 7.36049 19.7051i 0.332513 0.890185i
\(491\) 14.7216i 0.664376i 0.943213 + 0.332188i \(0.107787\pi\)
−0.943213 + 0.332188i \(0.892213\pi\)
\(492\) 10.1450 + 57.5351i 0.457372 + 2.59388i
\(493\) −13.4101 2.78989i −0.603961 0.125650i
\(494\) −6.82295 5.72513i −0.306979 0.257586i
\(495\) −46.3068 + 16.4142i −2.08133 + 0.737763i
\(496\) 5.62652 + 15.4587i 0.252638 + 0.694118i
\(497\) 0.141530i 0.00634849i
\(498\) 19.8454 + 16.6523i 0.889294 + 0.746206i
\(499\) −1.06323 −0.0475968 −0.0237984 0.999717i \(-0.507576\pi\)
−0.0237984 + 0.999717i \(0.507576\pi\)
\(500\) 20.8124 + 8.17592i 0.930757 + 0.365638i
\(501\) 35.3760i 1.58048i
\(502\) 18.1200 + 15.2045i 0.808734 + 0.678609i
\(503\) −27.4571 −1.22425 −0.612125 0.790761i \(-0.709685\pi\)
−0.612125 + 0.790761i \(0.709685\pi\)
\(504\) 6.05272 + 3.49454i 0.269609 + 0.155659i
\(505\) 10.4320 + 29.4301i 0.464218 + 1.30962i
\(506\) 36.1835 43.1218i 1.60855 1.91700i
\(507\) 18.7669i 0.833466i
\(508\) −19.8868 + 3.50657i −0.882332 + 0.155579i
\(509\) 16.8197i 0.745520i 0.927928 + 0.372760i \(0.121588\pi\)
−0.927928 + 0.372760i \(0.878412\pi\)
\(510\) −29.5680 18.6450i −1.30929 0.825614i
\(511\) −3.52528 −0.155949
\(512\) 22.6274i 1.00000i
\(513\) 8.18681 0.361457
\(514\) 19.2049 + 16.1149i 0.847094 + 0.710796i
\(515\) −5.35445 15.1057i −0.235945 0.665635i
\(516\) −32.1499 + 5.66890i −1.41532 + 0.249559i
\(517\) 31.4159i 1.38167i
\(518\) −5.58317 4.68483i −0.245310 0.205840i
\(519\) 24.2084 1.06263
\(520\) −15.2334 2.81847i −0.668028 0.123598i
\(521\) 29.1842i 1.27858i 0.768964 + 0.639292i \(0.220772\pi\)
−0.768964 + 0.639292i \(0.779228\pi\)
\(522\) 12.6463 15.0713i 0.553513 0.659651i
\(523\) 42.9036 1.87604 0.938021 0.346578i \(-0.112656\pi\)
0.938021 + 0.346578i \(0.112656\pi\)
\(524\) 1.21113 + 6.86868i 0.0529086 + 0.300059i
\(525\) 4.98161 + 6.14401i 0.217415 + 0.268146i
\(526\) 13.7805 + 11.5632i 0.600860 + 0.504181i
\(527\) 3.45388 16.6017i 0.150453 0.723181i
\(528\) 19.2439 + 52.8723i 0.837485 + 2.30097i
\(529\) 34.5544 1.50237
\(530\) −11.9659 + 32.0345i −0.519767 + 1.39149i
\(531\) 31.0191i 1.34611i
\(532\) 2.98821 0.526903i 0.129556 0.0228441i
\(533\) 26.6891i 1.15603i
\(534\) −38.9278 32.6643i −1.68457 1.41352i
\(535\) −6.46902 18.2500i −0.279680 0.789017i
\(536\) −18.1293 10.4669i −0.783065 0.452103i
\(537\) 1.74287 0.0752103
\(538\) −3.57047 + 4.25512i −0.153934 + 0.183451i
\(539\) 34.9003 1.50326
\(540\) 12.3915 7.01582i 0.533244 0.301913i
\(541\) 26.2365 1.12799 0.563997 0.825777i \(-0.309263\pi\)
0.563997 + 0.825777i \(0.309263\pi\)
\(542\) −11.8866 + 14.1659i −0.510574 + 0.608479i
\(543\) 36.4672i 1.56496i
\(544\) −12.2741 + 19.8329i −0.526249 + 0.850330i
\(545\) 8.64455 3.06420i 0.370292 0.131256i
\(546\) −4.19799 3.52253i −0.179657 0.150750i
\(547\) 3.46142i 0.148000i 0.997258 + 0.0739999i \(0.0235765\pi\)
−0.997258 + 0.0739999i \(0.976424\pi\)
\(548\) −13.2713 + 2.34010i −0.566924 + 0.0999640i
\(549\) −27.6601 −1.18050
\(550\) −0.624554 + 37.0947i −0.0266311 + 1.58172i
\(551\) 8.54154i 0.363882i
\(552\) −28.7639 + 49.8206i −1.22427 + 2.12051i
\(553\) 6.18925i 0.263194i
\(554\) 9.54244 + 8.00706i 0.405419 + 0.340187i
\(555\) −49.3499 + 17.4929i −2.09479 + 0.742532i
\(556\) 0.550487 + 3.12197i 0.0233458 + 0.132401i
\(557\) 4.47936 0.189797 0.0948983 0.995487i \(-0.469747\pi\)
0.0948983 + 0.995487i \(0.469747\pi\)
\(558\) 18.6582 + 15.6561i 0.789864 + 0.662774i
\(559\) 14.9135 0.630775
\(560\) 4.07139 3.35831i 0.172048 0.141915i
\(561\) 11.8130 56.7814i 0.498746 2.39731i
\(562\) −25.1849 + 30.0142i −1.06236 + 1.26607i
\(563\) 0.670970 0.0282780 0.0141390 0.999900i \(-0.495499\pi\)
0.0141390 + 0.999900i \(0.495499\pi\)
\(564\) 5.57513 + 31.6181i 0.234755 + 1.33136i
\(565\) −3.99743 + 1.41695i −0.168173 + 0.0596117i
\(566\) 5.27951 + 4.43004i 0.221915 + 0.186208i
\(567\) −2.37589 −0.0997781
\(568\) −0.339204 + 0.587519i −0.0142327 + 0.0246517i
\(569\) 22.3013 0.934919 0.467459 0.884015i \(-0.345169\pi\)
0.467459 + 0.884015i \(0.345169\pi\)
\(570\) 7.62759 20.4202i 0.319485 0.855306i
\(571\) −41.6316 −1.74223 −0.871114 0.491081i \(-0.836602\pi\)
−0.871114 + 0.491081i \(0.836602\pi\)
\(572\) −4.46339 25.3131i −0.186624 1.05839i
\(573\) 7.20341i 0.300927i
\(574\) 6.96514 + 5.84444i 0.290719 + 0.243942i
\(575\) −29.4642 + 23.8898i −1.22874 + 0.996273i
\(576\) −16.7507 29.0130i −0.697944 1.20887i
\(577\) 35.7159i 1.48687i −0.668807 0.743436i \(-0.733195\pi\)
0.668807 0.743436i \(-0.266805\pi\)
\(578\) 21.5166 10.7255i 0.894972 0.446123i
\(579\) 4.03426i 0.167658i
\(580\) −7.31981 12.9284i −0.303939 0.536822i
\(581\) 4.03181 0.167268
\(582\) 49.4704 + 41.5106i 2.05061 + 1.72067i
\(583\) −56.7374 −2.34982
\(584\) 14.6341 + 8.44900i 0.605563 + 0.349622i
\(585\) −21.6188 + 7.66314i −0.893827 + 0.316832i
\(586\) −15.3619 + 18.3076i −0.634594 + 0.756280i
\(587\) −27.8951 −1.15135 −0.575677 0.817677i \(-0.695261\pi\)
−0.575677 + 0.817677i \(0.695261\pi\)
\(588\) −35.1250 + 6.19348i −1.44853 + 0.255415i
\(589\) 10.5744 0.435711
\(590\) −21.9430 8.19641i −0.903378 0.337441i
\(591\) 28.7149 1.18117
\(592\) 11.9487 + 32.8288i 0.491088 + 1.34925i
\(593\) 10.8444i 0.445325i 0.974896 + 0.222662i \(0.0714748\pi\)
−0.974896 + 0.222662i \(0.928525\pi\)
\(594\) 18.0986 + 15.1865i 0.742594 + 0.623111i
\(595\) −5.39028 + 0.735053i −0.220980 + 0.0301342i
\(596\) 29.1857 5.14623i 1.19549 0.210798i
\(597\) 52.0948 2.13210
\(598\) 16.8926 20.1319i 0.690791 0.823253i
\(599\) 45.5313 1.86036 0.930178 0.367108i \(-0.119652\pi\)
0.930178 + 0.367108i \(0.119652\pi\)
\(600\) −5.95433 37.4443i −0.243085 1.52866i
\(601\) 6.37954i 0.260227i −0.991499 0.130113i \(-0.958466\pi\)
0.991499 0.130113i \(-0.0415341\pi\)
\(602\) −3.26580 + 3.89203i −0.133104 + 0.158627i
\(603\) −30.9939 −1.26217
\(604\) −0.822256 4.66324i −0.0334571 0.189745i
\(605\) −34.8344 + 12.3476i −1.41622 + 0.502002i
\(606\) 34.0318 40.5575i 1.38245 1.64754i
\(607\) 16.5424 0.671434 0.335717 0.941963i \(-0.391021\pi\)
0.335717 + 0.941963i \(0.391021\pi\)
\(608\) −13.6675 4.97455i −0.554289 0.201745i
\(609\) 5.25540i 0.212959i
\(610\) −7.30884 + 19.5668i −0.295926 + 0.792237i
\(611\) 14.6668i 0.593357i
\(612\) −1.05601 + 34.5162i −0.0426866 + 1.39524i
\(613\) −18.9747 −0.766379 −0.383189 0.923670i \(-0.625174\pi\)
−0.383189 + 0.923670i \(0.625174\pi\)
\(614\) −1.16162 + 1.38436i −0.0468791 + 0.0558684i
\(615\) 61.5653 21.8228i 2.48255 0.879981i
\(616\) 7.58345 + 4.37831i 0.305546 + 0.176407i
\(617\) −0.795132 −0.0320108 −0.0160054 0.999872i \(-0.505095\pi\)
−0.0160054 + 0.999872i \(0.505095\pi\)
\(618\) −17.4675 + 20.8170i −0.702648 + 0.837383i
\(619\) 1.58506 0.0637091 0.0318545 0.999493i \(-0.489859\pi\)
0.0318545 + 0.999493i \(0.489859\pi\)
\(620\) 16.0053 9.06191i 0.642789 0.363935i
\(621\) 24.1561i 0.969351i
\(622\) 30.5804 + 25.6600i 1.22616 + 1.02887i
\(623\) −7.90861 −0.316852
\(624\) 8.98424 + 24.6840i 0.359657 + 0.988150i
\(625\) 5.16756 24.4601i 0.206702 0.978404i
\(626\) 2.02387 2.41195i 0.0808901 0.0964010i
\(627\) 36.1668 1.44436
\(628\) 1.38228 + 7.83931i 0.0551590 + 0.312822i
\(629\) 7.33478 35.2559i 0.292457 1.40575i
\(630\) 2.73427 7.32002i 0.108936 0.291637i
\(631\) −24.9094 −0.991627 −0.495814 0.868429i \(-0.665130\pi\)
−0.495814 + 0.868429i \(0.665130\pi\)
\(632\) 14.8337 25.6928i 0.590054 1.02200i
\(633\) 34.6103i 1.37564i
\(634\) −29.8223 25.0239i −1.18440 0.993826i
\(635\) 7.54296 + 21.2797i 0.299333 + 0.844461i
\(636\) 57.1026 10.0687i 2.26427 0.399251i
\(637\) 16.2936 0.645574
\(638\) 15.8445 18.8828i 0.627292 0.747577i
\(639\) 1.00443i 0.0397345i
\(640\) −24.9500 + 4.18312i −0.986235 + 0.165352i
\(641\) 26.7986i 1.05848i 0.848472 + 0.529240i \(0.177523\pi\)
−0.848472 + 0.529240i \(0.822477\pi\)
\(642\) −21.1036 + 25.1502i −0.832891 + 0.992601i
\(643\) 8.22151i 0.324225i 0.986772 + 0.162112i \(0.0518307\pi\)
−0.986772 + 0.162112i \(0.948169\pi\)
\(644\) 1.55468 + 8.81706i 0.0612632 + 0.347441i
\(645\) 12.1943 + 34.4019i 0.480151 + 1.35457i
\(646\) 9.28112 + 11.7741i 0.365161 + 0.463244i
\(647\) 2.52907i 0.0994281i 0.998763 + 0.0497141i \(0.0158310\pi\)
−0.998763 + 0.0497141i \(0.984169\pi\)
\(648\) 9.86278 + 5.69428i 0.387447 + 0.223692i
\(649\) 38.8639i 1.52554i
\(650\) −0.291579 + 17.3181i −0.0114367 + 0.679270i
\(651\) 6.50617 0.254997
\(652\) 20.0340 3.53253i 0.784592 0.138345i
\(653\) 11.8623i 0.464207i 0.972691 + 0.232104i \(0.0745608\pi\)
−0.972691 + 0.232104i \(0.925439\pi\)
\(654\) −11.9130 9.99619i −0.465835 0.390882i
\(655\) 7.34980 2.60526i 0.287180 0.101796i
\(656\) −14.9063 40.9547i −0.581993 1.59901i
\(657\) 25.0186 0.976067
\(658\) 3.82765 + 3.21178i 0.149217 + 0.125208i
\(659\) 22.2352i 0.866160i −0.901356 0.433080i \(-0.857427\pi\)
0.901356 0.433080i \(-0.142573\pi\)
\(660\) 54.7417 30.9937i 2.13082 1.20643i
\(661\) 31.2369i 1.21498i 0.794329 + 0.607488i \(0.207823\pi\)
−0.794329 + 0.607488i \(0.792177\pi\)
\(662\) −27.5482 23.1157i −1.07069 0.898415i
\(663\) 5.51503 26.5090i 0.214186 1.02952i
\(664\) −16.7368 9.66300i −0.649514 0.374997i
\(665\) −1.13342 3.19753i −0.0439520 0.123995i
\(666\) 39.6232 + 33.2478i 1.53537 + 1.28833i
\(667\) 25.2028 0.975855
\(668\) 4.58263 + 25.9894i 0.177307 + 1.00556i
\(669\) −26.5145 −1.02511
\(670\) −8.18975 + 21.9251i −0.316398 + 0.847042i
\(671\) −34.6554 −1.33786
\(672\) −8.40925 3.06072i −0.324394 0.118070i
\(673\) 38.4573 1.48242 0.741210 0.671273i \(-0.234252\pi\)
0.741210 + 0.671273i \(0.234252\pi\)
\(674\) 11.8601 14.1343i 0.456834 0.544434i
\(675\) −10.0268 12.3664i −0.385930 0.475982i
\(676\) 2.43107 + 13.7873i 0.0935029 + 0.530281i
\(677\) 44.7009i 1.71799i 0.511980 + 0.858997i \(0.328912\pi\)
−0.511980 + 0.858997i \(0.671088\pi\)
\(678\) 5.50883 + 4.62246i 0.211565 + 0.177524i
\(679\) 10.0504 0.385700
\(680\) 24.1378 + 9.86750i 0.925642 + 0.378401i
\(681\) 40.6470 1.55760
\(682\) 23.3769 + 19.6155i 0.895146 + 0.751117i
\(683\) 43.2946i 1.65662i −0.560268 0.828311i \(-0.689302\pi\)
0.560268 0.828311i \(-0.310698\pi\)
\(684\) −21.2071 + 3.73938i −0.810873 + 0.142979i
\(685\) 5.03376 + 14.2010i 0.192330 + 0.542591i
\(686\) −7.32278 + 8.72695i −0.279585 + 0.333196i
\(687\) 13.9174 0.530984
\(688\) 22.8850 8.32945i 0.872482 0.317557i
\(689\) −26.4884 −1.00913
\(690\) 60.2519 + 22.5061i 2.29375 + 0.856791i
\(691\) 39.0764 1.48653 0.743267 0.668994i \(-0.233275\pi\)
0.743267 + 0.668994i \(0.233275\pi\)
\(692\) −17.7850 + 3.13597i −0.676083 + 0.119212i
\(693\) 12.9647 0.492489
\(694\) 28.2132 + 23.6737i 1.07096 + 0.898641i
\(695\) 3.34065 1.18415i 0.126718 0.0449173i
\(696\) −12.5956 + 21.8162i −0.477434 + 0.826939i
\(697\) −9.15032 + 43.9827i −0.346593 + 1.66596i
\(698\) 20.2571 + 16.9977i 0.766741 + 0.643372i
\(699\) 17.6249i 0.666635i
\(700\) −4.45570 3.86845i −0.168410 0.146214i
\(701\) 2.70302i 0.102092i 0.998696 + 0.0510458i \(0.0162554\pi\)
−0.998696 + 0.0510458i \(0.983745\pi\)
\(702\) 8.44952 + 7.08999i 0.318906 + 0.267594i
\(703\) 22.4562 0.846952
\(704\) −20.9869 36.3504i −0.790974 1.37001i
\(705\) 33.8329 11.9926i 1.27422 0.451668i
\(706\) −16.4668 13.8173i −0.619738 0.520022i
\(707\) 8.23970i 0.309886i
\(708\) 6.89686 + 39.1141i 0.259200 + 1.47000i
\(709\) −46.1190 −1.73203 −0.866017 0.500014i \(-0.833328\pi\)
−0.866017 + 0.500014i \(0.833328\pi\)
\(710\) 0.710532 + 0.265407i 0.0266658 + 0.00996054i
\(711\) 43.9245i 1.64730i
\(712\) 32.8302 + 18.9545i 1.23036 + 0.710350i
\(713\) 31.2010i 1.16848i
\(714\) 5.71044 + 7.24428i 0.213708 + 0.271110i
\(715\) −27.0862 + 9.60115i −1.01297 + 0.359063i
\(716\) −1.28042 + 0.225772i −0.0478515 + 0.00843751i
\(717\) 23.7601i 0.887339i
\(718\) −17.1948 + 20.4920i −0.641706 + 0.764755i
\(719\) 7.11654i 0.265402i 0.991156 + 0.132701i \(0.0423651\pi\)
−0.991156 + 0.132701i \(0.957635\pi\)
\(720\) −28.8943 + 23.8336i −1.07683 + 0.888227i
\(721\) 4.22920i 0.157504i
\(722\) 11.2623 13.4218i 0.419138 0.499509i
\(723\) 51.9545 1.93221
\(724\) 4.72399 + 26.7911i 0.175566 + 0.995683i
\(725\) −12.9022 + 10.4612i −0.479176 + 0.388520i
\(726\) 48.0051 + 40.2810i 1.78164 + 1.49497i
\(727\) 19.9877i 0.741301i −0.928772 0.370651i \(-0.879135\pi\)
0.928772 0.370651i \(-0.120865\pi\)
\(728\) 3.54041 + 2.04406i 0.131216 + 0.0757579i
\(729\) 42.4711 1.57300
\(730\) 6.61084 17.6982i 0.244678 0.655039i
\(731\) −24.5770 5.11309i −0.909012 0.189114i
\(732\) 34.8785 6.15001i 1.28915 0.227311i
\(733\) −42.5930 −1.57321 −0.786604 0.617458i \(-0.788163\pi\)
−0.786604 + 0.617458i \(0.788163\pi\)
\(734\) −11.7910 + 14.0520i −0.435214 + 0.518668i
\(735\) 13.3227 + 37.5853i 0.491416 + 1.38636i
\(736\) 14.6780 40.3274i 0.541037 1.48649i
\(737\) −38.8323 −1.43041
\(738\) −49.4309 41.4775i −1.81958 1.52681i
\(739\) 22.9061i 0.842614i 0.906918 + 0.421307i \(0.138428\pi\)
−0.906918 + 0.421307i \(0.861572\pi\)
\(740\) 33.9895 19.2442i 1.24948 0.707431i
\(741\) 16.8848 0.620280
\(742\) 5.80051 6.91278i 0.212943 0.253776i
\(743\) 28.2281 1.03559 0.517795 0.855505i \(-0.326753\pi\)
0.517795 + 0.855505i \(0.326753\pi\)
\(744\) −27.0083 15.5933i −0.990174 0.571677i
\(745\) −11.0700 31.2301i −0.405574 1.14418i
\(746\) 3.54665 4.22673i 0.129852 0.154751i
\(747\) −28.6134 −1.04691
\(748\) −1.32307 + 43.2454i −0.0483764 + 1.58121i
\(749\) 5.10954i 0.186699i
\(750\) −40.1870 + 13.4878i −1.46742 + 0.492506i
\(751\) 39.6316i 1.44618i −0.690754 0.723089i \(-0.742721\pi\)
0.690754 0.723089i \(-0.257279\pi\)
\(752\) −8.19167 22.5064i −0.298720 0.820725i
\(753\) −44.8418 −1.63412
\(754\) 7.39719 8.81563i 0.269390 0.321046i
\(755\) −4.98989 + 1.76875i −0.181601 + 0.0643713i
\(756\) −3.70060 + 0.652515i −0.134589 + 0.0237317i
\(757\) 23.6246 0.858649 0.429324 0.903150i \(-0.358752\pi\)
0.429324 + 0.903150i \(0.358752\pi\)
\(758\) −18.1510 + 21.6315i −0.659274 + 0.785692i
\(759\) 106.714i 3.87348i
\(760\) −2.95846 + 15.9900i −0.107315 + 0.580018i
\(761\) −38.5749 −1.39834 −0.699170 0.714955i \(-0.746447\pi\)
−0.699170 + 0.714955i \(0.746447\pi\)
\(762\) 24.6070 29.3255i 0.891418 1.06235i
\(763\) −2.42026 −0.0876191
\(764\) 0.933135 + 5.29207i 0.0337597 + 0.191461i
\(765\) 38.2543 5.21660i 1.38309 0.188607i
\(766\) 30.4349 + 25.5379i 1.09966 + 0.922722i
\(767\) 18.1440i 0.655142i
\(768\) 27.5728 + 32.8600i 0.994949 + 1.18573i
\(769\) −13.5299 −0.487901 −0.243950 0.969788i \(-0.578443\pi\)
−0.243950 + 0.969788i \(0.578443\pi\)
\(770\) 3.42576 9.17126i 0.123456 0.330509i
\(771\) −47.5267 −1.71163
\(772\) −0.522601 2.96382i −0.0188088 0.106670i
\(773\) 5.05914 0.181965 0.0909823 0.995853i \(-0.470999\pi\)
0.0909823 + 0.995853i \(0.470999\pi\)
\(774\) 23.1771 27.6214i 0.833084 0.992830i
\(775\) −12.9510 15.9729i −0.465212 0.573763i
\(776\) −41.7213 24.0878i −1.49771 0.864702i
\(777\) 13.8167 0.495673
\(778\) −6.64107 5.57252i −0.238094 0.199785i
\(779\) −28.0147 −1.00373
\(780\) 25.5567 14.4697i 0.915078 0.518100i
\(781\) 1.25845i 0.0450307i
\(782\) −34.7407 + 27.3850i −1.24232 + 0.979285i
\(783\) 10.5778i 0.378020i
\(784\) 25.0027 9.10022i 0.892952 0.325008i
\(785\) 8.38842 2.97341i 0.299396 0.106126i
\(786\) −10.1287 8.49900i −0.361279 0.303149i
\(787\) 24.0659i 0.857855i −0.903339 0.428928i \(-0.858892\pi\)
0.903339 0.428928i \(-0.141108\pi\)
\(788\) −21.0957 + 3.71975i −0.751504 + 0.132511i
\(789\) −34.1029 −1.21409
\(790\) −31.0723 11.6065i −1.10550 0.412941i
\(791\) 1.11918 0.0397934
\(792\) −53.8190 31.0724i −1.91238 1.10411i
\(793\) −16.1792 −0.574541
\(794\) −6.10279 5.12084i −0.216580 0.181732i
\(795\) −21.6588 61.1024i −0.768157 2.16708i
\(796\) −38.2721 + 6.74840i −1.35652 + 0.239191i
\(797\) −11.6549 −0.412838 −0.206419 0.978464i \(-0.566181\pi\)
−0.206419 + 0.978464i \(0.566181\pi\)
\(798\) −3.69749 + 4.40649i −0.130890 + 0.155988i
\(799\) −5.02851 + 24.1704i −0.177896 + 0.855088i
\(800\) 9.22499 + 26.7376i 0.326153 + 0.945317i
\(801\) 56.1266 1.98314
\(802\) −1.10617 0.928183i −0.0390601 0.0327753i
\(803\) 31.3458 1.10617
\(804\) 39.0823 6.89126i 1.37833 0.243036i
\(805\) 9.43466 3.34427i 0.332528 0.117870i
\(806\) 10.9137 + 9.15771i 0.384420 + 0.322566i
\(807\) 10.5302i 0.370680i
\(808\) −19.7480 + 34.2046i −0.694733 + 1.20331i
\(809\) 0.998466i 0.0351042i 0.999846 + 0.0175521i \(0.00558729\pi\)
−0.999846 + 0.0175521i \(0.994413\pi\)
\(810\) 4.45543 11.9278i 0.156548 0.419101i
\(811\) 38.7092 1.35926 0.679632 0.733553i \(-0.262139\pi\)
0.679632 + 0.733553i \(0.262139\pi\)
\(812\) 0.680788 + 3.86094i 0.0238910 + 0.135492i
\(813\) 35.0566i 1.22949i
\(814\) 49.6439 + 41.6562i 1.74002 + 1.46005i
\(815\) −7.59880 21.4373i −0.266174 0.750916i
\(816\) −6.34283 43.7586i −0.222043 1.53186i
\(817\) 15.6543i 0.547673i
\(818\) 27.8309 33.1676i 0.973084 1.15968i
\(819\) 6.05272 0.211499
\(820\) −42.4027 + 24.0076i −1.48077 + 0.838382i
\(821\) 36.8698 1.28676 0.643382 0.765545i \(-0.277531\pi\)
0.643382 + 0.765545i \(0.277531\pi\)
\(822\) 16.4214 19.5702i 0.572762 0.682591i
\(823\) 10.6486 0.371186 0.185593 0.982627i \(-0.440579\pi\)
0.185593 + 0.982627i \(0.440579\pi\)
\(824\) 10.1361 17.5562i 0.353107 0.611600i
\(825\) −44.2951 54.6308i −1.54216 1.90200i
\(826\) 4.73510 + 3.97322i 0.164755 + 0.138246i
\(827\) 0.372763i 0.0129622i 0.999979 + 0.00648112i \(0.00206302\pi\)
−0.999979 + 0.00648112i \(0.997937\pi\)
\(828\) −11.0335 62.5738i −0.383439 2.17459i
\(829\) 41.9147i 1.45576i 0.685705 + 0.727879i \(0.259494\pi\)
−0.685705 + 0.727879i \(0.740506\pi\)
\(830\) −7.56072 + 20.2411i −0.262436 + 0.702580i
\(831\) −23.6148 −0.819189
\(832\) −9.79796 16.9706i −0.339683 0.588348i
\(833\) −26.8512 5.58623i −0.930339 0.193551i
\(834\) −4.60373 3.86299i −0.159414 0.133764i
\(835\) 27.8099 9.85767i 0.962400 0.341139i
\(836\) −26.5704 + 4.68507i −0.918955 + 0.162037i
\(837\) −13.0953 −0.452640
\(838\) 14.9621 17.8312i 0.516858 0.615967i
\(839\) 20.2832i 0.700256i 0.936702 + 0.350128i \(0.113862\pi\)
−0.936702 + 0.350128i \(0.886138\pi\)
\(840\) −1.82027 + 9.83825i −0.0628051 + 0.339452i
\(841\) −17.9638 −0.619443
\(842\) 38.2532 + 32.0983i 1.31829 + 1.10618i
\(843\) 74.2766i 2.55822i
\(844\) 4.48345 + 25.4269i 0.154327 + 0.875230i
\(845\) 14.7531 5.22946i 0.507521 0.179899i
\(846\) −27.1645 22.7937i −0.933935 0.783664i
\(847\) 9.75275 0.335108
\(848\) −40.6468 + 14.7942i −1.39582 + 0.508036i
\(849\) −13.0653 −0.448399
\(850\) 6.41799 28.4396i 0.220135 0.975469i
\(851\) 66.2595i 2.27135i
\(852\) −0.223326 1.26655i −0.00765104 0.0433912i
\(853\) 43.1040i 1.47585i 0.674881 + 0.737926i \(0.264195\pi\)
−0.674881 + 0.737926i \(0.735805\pi\)
\(854\) 3.54297 4.22235i 0.121238 0.144486i
\(855\) 8.04375 + 22.6925i 0.275090 + 0.776069i
\(856\) 12.2460 21.2107i 0.418560 0.724967i
\(857\) −14.2658 −0.487310 −0.243655 0.969862i \(-0.578346\pi\)
−0.243655 + 0.969862i \(0.578346\pi\)
\(858\) 37.3273 + 31.3214i 1.27433 + 1.06929i
\(859\) 54.5523i 1.86130i −0.365912 0.930650i \(-0.619243\pi\)
0.365912 0.930650i \(-0.380757\pi\)
\(860\) −13.4152 23.6941i −0.457453 0.807963i
\(861\) −17.2367 −0.587426
\(862\) −9.35835 7.85259i −0.318747 0.267460i
\(863\) 4.40558i 0.149968i −0.997185 0.0749838i \(-0.976109\pi\)
0.997185 0.0749838i \(-0.0238905\pi\)
\(864\) 16.9258 + 6.16047i 0.575826 + 0.209584i
\(865\) 6.74576 + 19.0307i 0.229363 + 0.647065i
\(866\) 34.5567 + 28.9965i 1.17429 + 0.985342i
\(867\) −18.1772 + 41.7950i −0.617328 + 1.41943i
\(868\) −4.77983 + 0.842814i −0.162238 + 0.0286070i
\(869\) 55.0331i 1.86687i
\(870\) 26.3840 + 9.85528i 0.894501 + 0.334125i
\(871\) −18.1293 −0.614287
\(872\) 10.0469 + 5.80061i 0.340232 + 0.196433i
\(873\) −71.3270 −2.41405
\(874\) −21.1318 17.7317i −0.714793 0.599782i
\(875\) −3.44180 + 5.62821i −0.116354 + 0.190268i
\(876\) −31.5476 + 5.56269i −1.06589 + 0.187946i
\(877\) 50.7096i 1.71234i 0.516694 + 0.856170i \(0.327163\pi\)
−0.516694 + 0.856170i \(0.672837\pi\)
\(878\) 26.8577 + 22.5363i 0.906405 + 0.760564i
\(879\) 45.3061i 1.52814i
\(880\) −36.2017 + 29.8612i −1.22036 + 1.00662i
\(881\) 19.6951i 0.663545i 0.943359 + 0.331773i \(0.107647\pi\)
−0.943359 + 0.331773i \(0.892353\pi\)
\(882\) 25.3218 30.1774i 0.852630 1.01612i
\(883\) 20.3159 0.683683 0.341842 0.939758i \(-0.388949\pi\)
0.341842 + 0.939758i \(0.388949\pi\)
\(884\) −0.617691 + 20.1896i −0.0207752 + 0.679048i
\(885\) 41.8539 14.8358i 1.40690 0.498700i
\(886\) −12.2712 + 14.6243i −0.412261 + 0.491313i
\(887\) 5.06252 0.169983 0.0849914 0.996382i \(-0.472914\pi\)
0.0849914 + 0.996382i \(0.472914\pi\)
\(888\) −57.3559 33.1145i −1.92474 1.11125i
\(889\) 5.95779i 0.199818i
\(890\) 14.8308 39.7041i 0.497128 1.33088i
\(891\) 21.1258 0.707740
\(892\) 19.4792 3.43471i 0.652213 0.115003i
\(893\) −15.3953 −0.515184
\(894\) −36.1131 + 43.0380i −1.20780 + 1.43940i
\(895\) 0.485657 + 1.37011i 0.0162337 + 0.0457976i
\(896\) 6.57445 + 1.15925i 0.219637 + 0.0387279i
\(897\) 49.8206i 1.66346i
\(898\) −30.7708 25.8198i −1.02684 0.861618i
\(899\) 13.6627i 0.455677i
\(900\) 31.6217 + 27.4540i 1.05406 + 0.915133i
\(901\) 43.6520 + 9.08153i 1.45426 + 0.302550i
\(902\) −61.9320 51.9672i −2.06211 1.73032i
\(903\) 9.63167i 0.320522i
\(904\) −4.64592 2.68233i −0.154521 0.0892128i
\(905\) 28.6677 10.1617i 0.952947 0.337788i
\(906\) 6.87653 + 5.77010i 0.228457 + 0.191699i
\(907\) 40.3689i 1.34043i 0.742168 + 0.670214i \(0.233798\pi\)
−0.742168 + 0.670214i \(0.766202\pi\)
\(908\) −29.8618 + 5.26544i −0.990999 + 0.174740i
\(909\) 58.4763i 1.93954i
\(910\) 1.59935 4.28170i 0.0530181 0.141937i
\(911\) 29.5250i 0.978208i −0.872225 0.489104i \(-0.837324\pi\)
0.872225 0.489104i \(-0.162676\pi\)
\(912\) 25.9100 9.43046i 0.857965 0.312274i
\(913\) −35.8497 −1.18645
\(914\) −9.65633 8.10262i −0.319403 0.268011i
\(915\) −13.2292 37.3216i −0.437345 1.23381i
\(916\) −10.2246 + 1.80288i −0.337831 + 0.0595687i
\(917\) −2.05776 −0.0679532
\(918\) −11.4937 14.5810i −0.379349 0.481243i
\(919\) −34.2077 −1.12841 −0.564204 0.825636i \(-0.690817\pi\)
−0.564204 + 0.825636i \(0.690817\pi\)
\(920\) −47.1803 8.72926i −1.55549 0.287795i
\(921\) 3.42590i 0.112887i
\(922\) −39.9340 33.5086i −1.31516 1.10355i
\(923\) 0.587519i 0.0193384i
\(924\) −16.3481 + 2.88261i −0.537812 + 0.0948308i
\(925\) −27.5031 33.9206i −0.904297 1.11530i
\(926\) −16.9376 14.2124i −0.556605 0.467047i
\(927\) 30.0142i 0.985797i
\(928\) 6.42740 17.6591i 0.210990 0.579690i
\(929\) 32.8396i 1.07743i 0.842487 + 0.538716i \(0.181090\pi\)
−0.842487 + 0.538716i \(0.818910\pi\)
\(930\) −12.2008 + 32.6633i −0.400080 + 1.07107i
\(931\) 17.1028i 0.560522i
\(932\) −2.28314 12.9483i −0.0747868 0.424137i
\(933\) −75.6778 −2.47758
\(934\) −2.60142 + 3.10025i −0.0851210 + 0.101443i
\(935\) 47.9289 6.53588i 1.56744 0.213746i
\(936\) −25.1260 14.5065i −0.821268 0.474160i
\(937\) 47.3997i 1.54848i −0.632892 0.774240i \(-0.718132\pi\)
0.632892 0.774240i \(-0.281868\pi\)
\(938\) 3.97000 4.73126i 0.129625 0.154481i
\(939\) 5.96889i 0.194787i
\(940\) −23.3022 + 13.1933i −0.760034 + 0.430316i
\(941\) 22.1334 0.721527 0.360764 0.932657i \(-0.382516\pi\)
0.360764 + 0.932657i \(0.382516\pi\)
\(942\) −11.5600 9.70002i −0.376646 0.316044i
\(943\) 82.6604i 2.69179i
\(944\) −10.1337 27.8422i −0.329825 0.906186i
\(945\) 1.40362 + 3.95981i 0.0456597 + 0.128813i
\(946\) 29.0386 34.6069i 0.944127 1.12517i
\(947\) 1.44639i 0.0470013i 0.999724 + 0.0235006i \(0.00748117\pi\)
−0.999724 + 0.0235006i \(0.992519\pi\)
\(948\) 9.76628 + 55.3873i 0.317194 + 1.79890i
\(949\) 14.6341 0.475043
\(950\) 18.1782 + 0.306062i 0.589779 + 0.00992995i
\(951\) 73.8017 2.39318
\(952\) −5.13367 4.58236i −0.166383 0.148515i
\(953\) 31.5446i 1.02183i 0.859631 + 0.510915i \(0.170693\pi\)
−0.859631 + 0.510915i \(0.829307\pi\)
\(954\) −41.1656 + 49.0593i −1.33279 + 1.58835i
\(955\) 5.66276 2.00726i 0.183243 0.0649534i
\(956\) 3.07791 + 17.4557i 0.0995466 + 0.564557i
\(957\) 46.7295i 1.51055i
\(958\) −14.2495 11.9568i −0.460381 0.386306i
\(959\) 3.97591i 0.128389i
\(960\) 31.1355 36.4778i 1.00489 1.17732i
\(961\) 14.0856 0.454374
\(962\) 23.1768 + 19.4476i 0.747250 + 0.627017i
\(963\) 36.2620i 1.16853i
\(964\) −38.1690 + 6.73022i −1.22934 + 0.216766i
\(965\) −3.17142 + 1.12416i −0.102092 + 0.0361881i
\(966\) −13.0018 10.9098i −0.418328 0.351018i
\(967\) 30.2037i 0.971286i 0.874157 + 0.485643i \(0.161414\pi\)
−0.874157 + 0.485643i \(0.838586\pi\)
\(968\) −40.4855 23.3743i −1.30125 0.751280i
\(969\) −27.8256 5.78895i −0.893888 0.185968i
\(970\) −18.8473 + 50.4568i −0.605149 + 1.62007i
\(971\) 38.3436i 1.23050i −0.788331 0.615252i \(-0.789054\pi\)
0.788331 0.615252i \(-0.210946\pi\)
\(972\) −40.0761 + 7.06651i −1.28544 + 0.226658i
\(973\) −0.935297 −0.0299842
\(974\) 15.5082 18.4819i 0.496915 0.592200i
\(975\) −20.6796 25.5050i −0.662278 0.816812i
\(976\) −24.8272 + 9.03636i −0.794700 + 0.289247i
\(977\) 12.1582i 0.388975i −0.980905 0.194487i \(-0.937696\pi\)
0.980905 0.194487i \(-0.0623043\pi\)
\(978\) −24.7892 + 29.5426i −0.792671 + 0.944669i
\(979\) 70.3211 2.24747
\(980\) −14.6565 25.8867i −0.468186 0.826919i
\(981\) 17.1763 0.548398
\(982\) 15.9486 + 13.3825i 0.508941 + 0.427052i
\(983\) 42.5044 1.35568 0.677839 0.735210i \(-0.262917\pi\)
0.677839 + 0.735210i \(0.262917\pi\)
\(984\) 71.5529 + 41.3111i 2.28102 + 1.31695i
\(985\) 8.00152 + 22.5734i 0.254950 + 0.719249i
\(986\) −15.2127 + 11.9917i −0.484472 + 0.381894i
\(987\) −9.47235 −0.301508
\(988\) −12.4047 + 2.18727i −0.394645 + 0.0695865i
\(989\) 46.1896 1.46874
\(990\) −24.3123 + 65.0876i −0.772696 + 2.06862i
\(991\) 40.8846i 1.29874i 0.760472 + 0.649371i \(0.224968\pi\)
−0.760472 + 0.649371i \(0.775032\pi\)
\(992\) 21.8620 + 7.95711i 0.694118 + 0.252638i
\(993\) 68.1738 2.16343
\(994\) −0.153327 0.128656i −0.00486323 0.00408073i
\(995\) 14.5164 + 40.9529i 0.460202 + 1.29829i
\(996\) 36.0805 6.36196i 1.14325 0.201586i
\(997\) 6.50535i 0.206026i 0.994680 + 0.103013i \(0.0328484\pi\)
−0.994680 + 0.103013i \(0.967152\pi\)
\(998\) −0.966519 + 1.15185i −0.0305946 + 0.0364613i
\(999\) −27.8097 −0.879860
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 680.2.h.c.509.36 yes 48
5.4 even 2 inner 680.2.h.c.509.13 yes 48
8.5 even 2 inner 680.2.h.c.509.9 48
17.16 even 2 inner 680.2.h.c.509.33 yes 48
40.29 even 2 inner 680.2.h.c.509.40 yes 48
85.84 even 2 inner 680.2.h.c.509.16 yes 48
136.101 even 2 inner 680.2.h.c.509.12 yes 48
680.509 even 2 inner 680.2.h.c.509.37 yes 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
680.2.h.c.509.9 48 8.5 even 2 inner
680.2.h.c.509.12 yes 48 136.101 even 2 inner
680.2.h.c.509.13 yes 48 5.4 even 2 inner
680.2.h.c.509.16 yes 48 85.84 even 2 inner
680.2.h.c.509.33 yes 48 17.16 even 2 inner
680.2.h.c.509.36 yes 48 1.1 even 1 trivial
680.2.h.c.509.37 yes 48 680.509 even 2 inner
680.2.h.c.509.40 yes 48 40.29 even 2 inner