Properties

Label 680.2.h.c.509.11
Level $680$
Weight $2$
Character 680.509
Analytic conductor $5.430$
Analytic rank $0$
Dimension $48$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [680,2,Mod(509,680)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(680, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("680.509"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 680 = 2^{3} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 680.h (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.42982733745\)
Analytic rank: \(0\)
Dimension: \(48\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 509.11
Character \(\chi\) \(=\) 680.509
Dual form 680.2.h.c.509.14

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.909039 - 1.08335i) q^{2} +1.45525i q^{3} +(-0.347296 + 1.96962i) q^{4} +(0.747066 - 2.10758i) q^{5} +(1.57654 - 1.32288i) q^{6} +4.94720 q^{7} +(2.44949 - 1.41421i) q^{8} +0.882256 q^{9} +(-2.96236 + 1.10654i) q^{10} -4.73901 q^{11} +(-2.86628 - 0.505402i) q^{12} +2.44949 q^{13} +(-4.49720 - 5.35955i) q^{14} +(3.06705 + 1.08717i) q^{15} +(-3.75877 - 1.36808i) q^{16} +(3.07637 - 2.74517i) q^{17} +(-0.802005 - 0.955793i) q^{18} -2.57115i q^{19} +(3.89167 + 2.20339i) q^{20} +7.19939i q^{21} +(4.30795 + 5.13401i) q^{22} -5.78168 q^{23} +(2.05803 + 3.56461i) q^{24} +(-3.88378 - 3.14900i) q^{25} +(-2.22668 - 2.65366i) q^{26} +5.64964i q^{27} +(-1.71814 + 9.74408i) q^{28} +5.76104 q^{29} +(-1.61029 - 4.31096i) q^{30} +6.40633i q^{31} +(1.93476 + 5.31570i) q^{32} -6.89643i q^{33} +(-5.77052 - 0.837319i) q^{34} +(3.69588 - 10.4266i) q^{35} +(-0.306404 + 1.73771i) q^{36} -2.99523i q^{37} +(-2.78546 + 2.33728i) q^{38} +3.56461i q^{39} +(-1.15064 - 6.21901i) q^{40} +1.53509i q^{41} +(7.79947 - 6.54453i) q^{42} +1.18389 q^{43} +(1.64584 - 9.33403i) q^{44} +(0.659104 - 1.85943i) q^{45} +(5.25577 + 6.26359i) q^{46} -12.1672i q^{47} +(1.99090 - 5.46994i) q^{48} +17.4748 q^{49} +(0.119037 + 7.07007i) q^{50} +(3.99490 + 4.47688i) q^{51} +(-0.850699 + 4.82455i) q^{52} +3.30819 q^{53} +(6.12054 - 5.13574i) q^{54} +(-3.54036 + 9.98784i) q^{55} +(12.1181 - 6.99639i) q^{56} +3.74166 q^{57} +(-5.23701 - 6.24123i) q^{58} -0.471202i q^{59} +(-3.20647 + 5.66334i) q^{60} -3.52280 q^{61} +(6.94030 - 5.82360i) q^{62} +4.36470 q^{63} +(4.00000 - 6.92820i) q^{64} +(1.82993 - 5.16249i) q^{65} +(-7.47125 + 6.26913i) q^{66} +14.2350 q^{67} +(4.33852 + 7.01265i) q^{68} -8.41377i q^{69} +(-14.6554 + 5.47426i) q^{70} +3.40562i q^{71} +(2.16108 - 1.24770i) q^{72} +2.04886 q^{73} +(-3.24488 + 2.72278i) q^{74} +(4.58258 - 5.65186i) q^{75} +(5.06418 + 0.892951i) q^{76} -23.4448 q^{77} +(3.86172 - 3.24037i) q^{78} +11.5822i q^{79} +(-5.69139 + 6.89986i) q^{80} -5.57485 q^{81} +(1.66304 - 1.39546i) q^{82} -8.53610 q^{83} +(-14.1800 - 2.50032i) q^{84} +(-3.48741 - 8.53452i) q^{85} +(-1.07620 - 1.28257i) q^{86} +8.38374i q^{87} +(-11.6082 + 6.70197i) q^{88} -2.93764 q^{89} +(-2.61356 + 0.976250i) q^{90} +12.1181 q^{91} +(2.00796 - 11.3877i) q^{92} -9.32279 q^{93} +(-13.1814 + 11.0605i) q^{94} +(-5.41890 - 1.92082i) q^{95} +(-7.73566 + 2.81555i) q^{96} -5.58663 q^{97} +(-15.8852 - 18.9313i) q^{98} -4.18102 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 96 q^{9} - 48 q^{15} + 24 q^{34} - 96 q^{36} + 96 q^{49} + 48 q^{60} + 192 q^{64} - 144 q^{66} - 96 q^{70} + 96 q^{76} - 192 q^{84} - 192 q^{86} - 48 q^{89} - 144 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/680\mathbb{Z}\right)^\times\).

\(n\) \(137\) \(241\) \(341\) \(511\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.909039 1.08335i −0.642788 0.766044i
\(3\) 1.45525i 0.840187i 0.907481 + 0.420094i \(0.138003\pi\)
−0.907481 + 0.420094i \(0.861997\pi\)
\(4\) −0.347296 + 1.96962i −0.173648 + 0.984808i
\(5\) 0.747066 2.10758i 0.334098 0.942538i
\(6\) 1.57654 1.32288i 0.643621 0.540062i
\(7\) 4.94720 1.86987 0.934933 0.354826i \(-0.115460\pi\)
0.934933 + 0.354826i \(0.115460\pi\)
\(8\) 2.44949 1.41421i 0.866025 0.500000i
\(9\) 0.882256 0.294085
\(10\) −2.96236 + 1.10654i −0.936780 + 0.349918i
\(11\) −4.73901 −1.42887 −0.714433 0.699704i \(-0.753315\pi\)
−0.714433 + 0.699704i \(0.753315\pi\)
\(12\) −2.86628 0.505402i −0.827423 0.145897i
\(13\) 2.44949 0.679366 0.339683 0.940540i \(-0.389680\pi\)
0.339683 + 0.940540i \(0.389680\pi\)
\(14\) −4.49720 5.35955i −1.20193 1.43240i
\(15\) 3.06705 + 1.08717i 0.791909 + 0.280705i
\(16\) −3.75877 1.36808i −0.939693 0.342020i
\(17\) 3.07637 2.74517i 0.746129 0.665801i
\(18\) −0.802005 0.955793i −0.189034 0.225283i
\(19\) 2.57115i 0.589862i −0.955518 0.294931i \(-0.904703\pi\)
0.955518 0.294931i \(-0.0952967\pi\)
\(20\) 3.89167 + 2.20339i 0.870203 + 0.492693i
\(21\) 7.19939i 1.57104i
\(22\) 4.30795 + 5.13401i 0.918457 + 1.09457i
\(23\) −5.78168 −1.20556 −0.602782 0.797906i \(-0.705941\pi\)
−0.602782 + 0.797906i \(0.705941\pi\)
\(24\) 2.05803 + 3.56461i 0.420094 + 0.727623i
\(25\) −3.88378 3.14900i −0.776757 0.629801i
\(26\) −2.22668 2.65366i −0.436688 0.520425i
\(27\) 5.64964i 1.08727i
\(28\) −1.71814 + 9.74408i −0.324699 + 1.84146i
\(29\) 5.76104 1.06980 0.534899 0.844916i \(-0.320350\pi\)
0.534899 + 0.844916i \(0.320350\pi\)
\(30\) −1.61029 4.31096i −0.293997 0.787071i
\(31\) 6.40633i 1.15061i 0.817939 + 0.575305i \(0.195117\pi\)
−0.817939 + 0.575305i \(0.804883\pi\)
\(32\) 1.93476 + 5.31570i 0.342020 + 0.939693i
\(33\) 6.89643i 1.20051i
\(34\) −5.77052 0.837319i −0.989636 0.143599i
\(35\) 3.69588 10.4266i 0.624719 1.76242i
\(36\) −0.306404 + 1.73771i −0.0510674 + 0.289618i
\(37\) 2.99523i 0.492412i −0.969218 0.246206i \(-0.920816\pi\)
0.969218 0.246206i \(-0.0791840\pi\)
\(38\) −2.78546 + 2.33728i −0.451861 + 0.379156i
\(39\) 3.56461i 0.570795i
\(40\) −1.15064 6.21901i −0.181932 0.983311i
\(41\) 1.53509i 0.239741i 0.992790 + 0.119870i \(0.0382479\pi\)
−0.992790 + 0.119870i \(0.961752\pi\)
\(42\) 7.79947 6.54453i 1.20348 1.00984i
\(43\) 1.18389 0.180541 0.0902707 0.995917i \(-0.471227\pi\)
0.0902707 + 0.995917i \(0.471227\pi\)
\(44\) 1.64584 9.33403i 0.248120 1.40716i
\(45\) 0.659104 1.85943i 0.0982534 0.277187i
\(46\) 5.25577 + 6.26359i 0.774922 + 0.923516i
\(47\) 12.1672i 1.77477i −0.461025 0.887387i \(-0.652518\pi\)
0.461025 0.887387i \(-0.347482\pi\)
\(48\) 1.99090 5.46994i 0.287361 0.789518i
\(49\) 17.4748 2.49640
\(50\) 0.119037 + 7.07007i 0.0168343 + 0.999858i
\(51\) 3.99490 + 4.47688i 0.559398 + 0.626888i
\(52\) −0.850699 + 4.82455i −0.117971 + 0.669045i
\(53\) 3.30819 0.454414 0.227207 0.973846i \(-0.427041\pi\)
0.227207 + 0.973846i \(0.427041\pi\)
\(54\) 6.12054 5.13574i 0.832900 0.698886i
\(55\) −3.54036 + 9.98784i −0.477381 + 1.34676i
\(56\) 12.1181 6.99639i 1.61935 0.934933i
\(57\) 3.74166 0.495595
\(58\) −5.23701 6.24123i −0.687653 0.819513i
\(59\) 0.471202i 0.0613452i −0.999529 0.0306726i \(-0.990235\pi\)
0.999529 0.0306726i \(-0.00976493\pi\)
\(60\) −3.20647 + 5.66334i −0.413954 + 0.731134i
\(61\) −3.52280 −0.451048 −0.225524 0.974238i \(-0.572409\pi\)
−0.225524 + 0.974238i \(0.572409\pi\)
\(62\) 6.94030 5.82360i 0.881418 0.739598i
\(63\) 4.36470 0.549900
\(64\) 4.00000 6.92820i 0.500000 0.866025i
\(65\) 1.82993 5.16249i 0.226975 0.640329i
\(66\) −7.47125 + 6.26913i −0.919648 + 0.771676i
\(67\) 14.2350 1.73908 0.869540 0.493863i \(-0.164415\pi\)
0.869540 + 0.493863i \(0.164415\pi\)
\(68\) 4.33852 + 7.01265i 0.526123 + 0.850409i
\(69\) 8.41377i 1.01290i
\(70\) −14.6554 + 5.47426i −1.75165 + 0.654299i
\(71\) 3.40562i 0.404173i 0.979368 + 0.202086i \(0.0647722\pi\)
−0.979368 + 0.202086i \(0.935228\pi\)
\(72\) 2.16108 1.24770i 0.254685 0.147043i
\(73\) 2.04886 0.239800 0.119900 0.992786i \(-0.461743\pi\)
0.119900 + 0.992786i \(0.461743\pi\)
\(74\) −3.24488 + 2.72278i −0.377210 + 0.316516i
\(75\) 4.58258 5.65186i 0.529150 0.652621i
\(76\) 5.06418 + 0.892951i 0.580901 + 0.102429i
\(77\) −23.4448 −2.67179
\(78\) 3.86172 3.24037i 0.437254 0.366900i
\(79\) 11.5822i 1.30309i 0.758608 + 0.651547i \(0.225880\pi\)
−0.758608 + 0.651547i \(0.774120\pi\)
\(80\) −5.69139 + 6.89986i −0.636317 + 0.771428i
\(81\) −5.57485 −0.619428
\(82\) 1.66304 1.39546i 0.183652 0.154103i
\(83\) −8.53610 −0.936959 −0.468479 0.883474i \(-0.655198\pi\)
−0.468479 + 0.883474i \(0.655198\pi\)
\(84\) −14.1800 2.50032i −1.54717 0.272808i
\(85\) −3.48741 8.53452i −0.378263 0.925698i
\(86\) −1.07620 1.28257i −0.116050 0.138303i
\(87\) 8.38374i 0.898831i
\(88\) −11.6082 + 6.70197i −1.23743 + 0.714433i
\(89\) −2.93764 −0.311389 −0.155694 0.987805i \(-0.549762\pi\)
−0.155694 + 0.987805i \(0.549762\pi\)
\(90\) −2.61356 + 0.976250i −0.275493 + 0.102906i
\(91\) 12.1181 1.27032
\(92\) 2.00796 11.3877i 0.209344 1.18725i
\(93\) −9.32279 −0.966728
\(94\) −13.1814 + 11.0605i −1.35956 + 1.14080i
\(95\) −5.41890 1.92082i −0.555968 0.197072i
\(96\) −7.73566 + 2.81555i −0.789518 + 0.287361i
\(97\) −5.58663 −0.567236 −0.283618 0.958937i \(-0.591535\pi\)
−0.283618 + 0.958937i \(0.591535\pi\)
\(98\) −15.8852 18.9313i −1.60465 1.91235i
\(99\) −4.18102 −0.420209
\(100\) 7.55115 6.55592i 0.755115 0.655592i
\(101\) 2.77372i 0.275996i 0.990433 + 0.137998i \(0.0440667\pi\)
−0.990433 + 0.137998i \(0.955933\pi\)
\(102\) 1.21851 8.39753i 0.120650 0.831479i
\(103\) 2.49275i 0.245618i −0.992430 0.122809i \(-0.960810\pi\)
0.992430 0.122809i \(-0.0391902\pi\)
\(104\) 6.00000 3.46410i 0.588348 0.339683i
\(105\) 15.1733 + 5.37842i 1.48076 + 0.524881i
\(106\) −3.00727 3.58392i −0.292092 0.348102i
\(107\) 10.0490i 0.971475i 0.874105 + 0.485737i \(0.161449\pi\)
−0.874105 + 0.485737i \(0.838551\pi\)
\(108\) −11.1276 1.96210i −1.07076 0.188803i
\(109\) −3.53991 −0.339062 −0.169531 0.985525i \(-0.554225\pi\)
−0.169531 + 0.985525i \(0.554225\pi\)
\(110\) 14.0387 5.24389i 1.33853 0.499986i
\(111\) 4.35879 0.413718
\(112\) −18.5954 6.76817i −1.75710 0.639532i
\(113\) −3.49425 −0.328711 −0.164356 0.986401i \(-0.552554\pi\)
−0.164356 + 0.986401i \(0.552554\pi\)
\(114\) −3.40131 4.05353i −0.318562 0.379648i
\(115\) −4.31930 + 12.1854i −0.402777 + 1.13629i
\(116\) −2.00079 + 11.3470i −0.185769 + 1.05355i
\(117\) 2.16108 0.199792
\(118\) −0.510476 + 0.428341i −0.0469932 + 0.0394319i
\(119\) 15.2194 13.5809i 1.39516 1.24496i
\(120\) 9.05019 1.67446i 0.826165 0.152857i
\(121\) 11.4582 1.04166
\(122\) 3.20236 + 3.81642i 0.289928 + 0.345523i
\(123\) −2.23394 −0.201427
\(124\) −12.6180 2.22489i −1.13313 0.199801i
\(125\) −9.53822 + 5.83287i −0.853124 + 0.521708i
\(126\) −3.96768 4.72850i −0.353469 0.421248i
\(127\) 17.7182i 1.57224i 0.618075 + 0.786119i \(0.287913\pi\)
−0.618075 + 0.786119i \(0.712087\pi\)
\(128\) −11.1418 + 1.96460i −0.984808 + 0.173648i
\(129\) 1.72285i 0.151689i
\(130\) −7.25627 + 2.71045i −0.636417 + 0.237722i
\(131\) 10.2738 0.897622 0.448811 0.893627i \(-0.351848\pi\)
0.448811 + 0.893627i \(0.351848\pi\)
\(132\) 13.5833 + 2.39511i 1.18228 + 0.208467i
\(133\) 12.7200i 1.10296i
\(134\) −12.9402 15.4215i −1.11786 1.33221i
\(135\) 11.9071 + 4.22066i 1.02480 + 0.363256i
\(136\) 3.65328 11.0749i 0.313266 0.949665i
\(137\) 7.60186i 0.649471i 0.945805 + 0.324735i \(0.105275\pi\)
−0.945805 + 0.324735i \(0.894725\pi\)
\(138\) −9.11507 + 7.64845i −0.775926 + 0.651079i
\(139\) −7.84711 −0.665583 −0.332791 0.943000i \(-0.607991\pi\)
−0.332791 + 0.943000i \(0.607991\pi\)
\(140\) 19.2529 + 10.9006i 1.62716 + 0.921269i
\(141\) 17.7063 1.49114
\(142\) 3.68948 3.09584i 0.309614 0.259797i
\(143\) −11.6082 −0.970723
\(144\) −3.31620 1.20700i −0.276350 0.100583i
\(145\) 4.30388 12.1419i 0.357418 1.00833i
\(146\) −1.86249 2.21963i −0.154141 0.183698i
\(147\) 25.4301i 2.09744i
\(148\) 5.89944 + 1.04023i 0.484931 + 0.0855065i
\(149\) 5.15361i 0.422200i 0.977464 + 0.211100i \(0.0677046\pi\)
−0.977464 + 0.211100i \(0.932295\pi\)
\(150\) −10.2887 + 0.173228i −0.840068 + 0.0141440i
\(151\) 5.88912 0.479250 0.239625 0.970866i \(-0.422976\pi\)
0.239625 + 0.970866i \(0.422976\pi\)
\(152\) −3.63616 6.29801i −0.294931 0.510836i
\(153\) 2.71415 2.42194i 0.219426 0.195803i
\(154\) 21.3123 + 25.3990i 1.71739 + 2.04671i
\(155\) 13.5018 + 4.78595i 1.08449 + 0.384417i
\(156\) −7.02092 1.23798i −0.562123 0.0991175i
\(157\) −10.1419 −0.809414 −0.404707 0.914447i \(-0.632626\pi\)
−0.404707 + 0.914447i \(0.632626\pi\)
\(158\) 12.5475 10.5286i 0.998228 0.837613i
\(159\) 4.81423i 0.381793i
\(160\) 12.6487 0.106474i 0.999965 0.00841747i
\(161\) −28.6031 −2.25424
\(162\) 5.06776 + 6.03952i 0.398161 + 0.474510i
\(163\) 17.9031i 1.40228i −0.713024 0.701139i \(-0.752675\pi\)
0.713024 0.701139i \(-0.247325\pi\)
\(164\) −3.02354 0.533132i −0.236099 0.0416306i
\(165\) −14.5348 5.15209i −1.13153 0.401090i
\(166\) 7.75965 + 9.24759i 0.602265 + 0.717752i
\(167\) −4.98132 −0.385466 −0.192733 0.981251i \(-0.561735\pi\)
−0.192733 + 0.981251i \(0.561735\pi\)
\(168\) 10.1815 + 17.6348i 0.785518 + 1.36056i
\(169\) −7.00000 −0.538462
\(170\) −6.07568 + 11.5363i −0.465983 + 0.884794i
\(171\) 2.26841i 0.173470i
\(172\) −0.411160 + 2.33181i −0.0313507 + 0.177798i
\(173\) 14.1029i 1.07223i 0.844146 + 0.536114i \(0.180108\pi\)
−0.844146 + 0.536114i \(0.819892\pi\)
\(174\) 9.08253 7.62114i 0.688545 0.577757i
\(175\) −19.2138 15.5787i −1.45243 1.17764i
\(176\) 17.8129 + 6.48335i 1.34269 + 0.488701i
\(177\) 0.685715 0.0515415
\(178\) 2.67043 + 3.18249i 0.200157 + 0.238538i
\(179\) 16.9126i 1.26411i −0.774924 0.632055i \(-0.782212\pi\)
0.774924 0.632055i \(-0.217788\pi\)
\(180\) 3.43345 + 1.94395i 0.255914 + 0.144894i
\(181\) −13.1779 −0.979505 −0.489752 0.871862i \(-0.662913\pi\)
−0.489752 + 0.871862i \(0.662913\pi\)
\(182\) −11.0158 13.1282i −0.816548 0.973124i
\(183\) 5.12654i 0.378965i
\(184\) −14.1622 + 8.17653i −1.04405 + 0.602782i
\(185\) −6.31268 2.23763i −0.464117 0.164514i
\(186\) 8.47478 + 10.0998i 0.621401 + 0.740556i
\(187\) −14.5789 + 13.0094i −1.06612 + 0.951341i
\(188\) 23.9648 + 4.22564i 1.74781 + 0.308186i
\(189\) 27.9499i 2.03306i
\(190\) 2.84507 + 7.61667i 0.206403 + 0.552571i
\(191\) −16.3482 −1.18292 −0.591458 0.806336i \(-0.701447\pi\)
−0.591458 + 0.806336i \(0.701447\pi\)
\(192\) 10.0822 + 5.82099i 0.727623 + 0.420094i
\(193\) −18.1514 −1.30656 −0.653282 0.757115i \(-0.726608\pi\)
−0.653282 + 0.757115i \(0.726608\pi\)
\(194\) 5.07846 + 6.05227i 0.364612 + 0.434528i
\(195\) 7.51270 + 2.66300i 0.537996 + 0.190702i
\(196\) −6.06892 + 34.4186i −0.433494 + 2.45847i
\(197\) 13.8965i 0.990083i −0.868869 0.495042i \(-0.835153\pi\)
0.868869 0.495042i \(-0.164847\pi\)
\(198\) 3.80071 + 4.52951i 0.270105 + 0.321898i
\(199\) 18.3730i 1.30242i 0.758896 + 0.651212i \(0.225739\pi\)
−0.758896 + 0.651212i \(0.774261\pi\)
\(200\) −13.9667 2.22095i −0.987591 0.157045i
\(201\) 20.7154i 1.46115i
\(202\) 3.00492 2.52142i 0.211425 0.177407i
\(203\) 28.5010 2.00038
\(204\) −10.2051 + 6.31361i −0.714503 + 0.442041i
\(205\) 3.23533 + 1.14681i 0.225965 + 0.0800970i
\(206\) −2.70052 + 2.26600i −0.188154 + 0.157880i
\(207\) −5.10093 −0.354539
\(208\) −9.20707 3.35110i −0.638395 0.232357i
\(209\) 12.1847i 0.842834i
\(210\) −7.96640 21.3272i −0.549734 1.47172i
\(211\) −0.0206361 −0.00142065 −0.000710324 1.00000i \(-0.500226\pi\)
−0.000710324 1.00000i \(0.500226\pi\)
\(212\) −1.14892 + 6.51585i −0.0789082 + 0.447511i
\(213\) −4.95602 −0.339581
\(214\) 10.8866 9.13494i 0.744193 0.624452i
\(215\) 0.884443 2.49514i 0.0603185 0.170167i
\(216\) 7.98980 + 13.8387i 0.543637 + 0.941607i
\(217\) 31.6934i 2.15149i
\(218\) 3.21792 + 3.83497i 0.217945 + 0.259737i
\(219\) 2.98159i 0.201477i
\(220\) −18.4427 10.4419i −1.24340 0.703992i
\(221\) 7.53553 6.72427i 0.506895 0.452323i
\(222\) −3.96231 4.72210i −0.265933 0.316927i
\(223\) 9.43023i 0.631495i −0.948843 0.315748i \(-0.897745\pi\)
0.948843 0.315748i \(-0.102255\pi\)
\(224\) 9.57163 + 26.2978i 0.639532 + 1.75710i
\(225\) −3.42649 2.77823i −0.228433 0.185215i
\(226\) 3.17641 + 3.78549i 0.211291 + 0.251807i
\(227\) 24.4475i 1.62263i −0.584606 0.811317i \(-0.698751\pi\)
0.584606 0.811317i \(-0.301249\pi\)
\(228\) −1.29946 + 7.36963i −0.0860591 + 0.488066i
\(229\) 3.59019i 0.237246i −0.992939 0.118623i \(-0.962152\pi\)
0.992939 0.118623i \(-0.0378480\pi\)
\(230\) 17.1274 6.39765i 1.12935 0.421848i
\(231\) 34.1180i 2.24480i
\(232\) 14.1116 8.14734i 0.926473 0.534899i
\(233\) 26.3245 1.72458 0.862289 0.506416i \(-0.169030\pi\)
0.862289 + 0.506416i \(0.169030\pi\)
\(234\) −1.96450 2.34120i −0.128424 0.153049i
\(235\) −25.6434 9.08973i −1.67279 0.592949i
\(236\) 0.928086 + 0.163647i 0.0604132 + 0.0106525i
\(237\) −16.8549 −1.09484
\(238\) −28.5479 4.14238i −1.85049 0.268511i
\(239\) −17.7793 −1.15005 −0.575024 0.818137i \(-0.695007\pi\)
−0.575024 + 0.818137i \(0.695007\pi\)
\(240\) −10.0410 8.28238i −0.648144 0.534625i
\(241\) 11.2427i 0.724204i −0.932138 0.362102i \(-0.882059\pi\)
0.932138 0.362102i \(-0.117941\pi\)
\(242\) −10.4160 12.4133i −0.669565 0.797956i
\(243\) 8.83613i 0.566838i
\(244\) 1.22345 6.93856i 0.0783237 0.444195i
\(245\) 13.0548 36.8295i 0.834041 2.35295i
\(246\) 2.03074 + 2.42014i 0.129475 + 0.154302i
\(247\) 6.29801i 0.400733i
\(248\) 9.05991 + 15.6922i 0.575305 + 0.996457i
\(249\) 12.4221i 0.787221i
\(250\) 14.9897 + 5.03093i 0.948029 + 0.318184i
\(251\) 16.2812i 1.02766i 0.857891 + 0.513831i \(0.171774\pi\)
−0.857891 + 0.513831i \(0.828226\pi\)
\(252\) −1.51584 + 8.59677i −0.0954891 + 0.541546i
\(253\) 27.3995 1.72259
\(254\) 19.1950 16.1066i 1.20440 1.01062i
\(255\) 12.4198 5.07505i 0.777760 0.317812i
\(256\) 12.2567 + 10.2846i 0.766044 + 0.642788i
\(257\) 26.2126i 1.63510i −0.575858 0.817550i \(-0.695332\pi\)
0.575858 0.817550i \(-0.304668\pi\)
\(258\) 1.86645 1.56614i 0.116200 0.0975035i
\(259\) 14.8180i 0.920744i
\(260\) 9.53260 + 5.39718i 0.591187 + 0.334719i
\(261\) 5.08272 0.314612
\(262\) −9.33924 11.1301i −0.576980 0.687619i
\(263\) 26.1954i 1.61528i 0.589678 + 0.807638i \(0.299255\pi\)
−0.589678 + 0.807638i \(0.700745\pi\)
\(264\) −9.75303 16.8927i −0.600257 1.03968i
\(265\) 2.47143 6.97227i 0.151819 0.428303i
\(266\) −13.7802 + 11.5630i −0.844919 + 0.708971i
\(267\) 4.27499i 0.261625i
\(268\) −4.94376 + 28.0374i −0.301988 + 1.71266i
\(269\) −11.2525 −0.686078 −0.343039 0.939321i \(-0.611456\pi\)
−0.343039 + 0.939321i \(0.611456\pi\)
\(270\) −6.25154 16.7363i −0.380457 1.01854i
\(271\) 7.85440 0.477121 0.238560 0.971128i \(-0.423324\pi\)
0.238560 + 0.971128i \(0.423324\pi\)
\(272\) −15.3190 + 6.10974i −0.928849 + 0.370458i
\(273\) 17.6348i 1.06731i
\(274\) 8.23548 6.91039i 0.497523 0.417472i
\(275\) 18.4053 + 14.9232i 1.10988 + 0.899901i
\(276\) 16.5719 + 2.92207i 0.997511 + 0.175888i
\(277\) 18.6472i 1.12040i 0.828356 + 0.560202i \(0.189276\pi\)
−0.828356 + 0.560202i \(0.810724\pi\)
\(278\) 7.13333 + 8.50117i 0.427828 + 0.509866i
\(279\) 5.65202i 0.338378i
\(280\) −5.69243 30.7667i −0.340188 1.83866i
\(281\) −2.03004 −0.121102 −0.0605509 0.998165i \(-0.519286\pi\)
−0.0605509 + 0.998165i \(0.519286\pi\)
\(282\) −16.0957 19.1822i −0.958488 1.14228i
\(283\) 18.2762i 1.08641i −0.839600 0.543205i \(-0.817211\pi\)
0.839600 0.543205i \(-0.182789\pi\)
\(284\) −6.70776 1.18276i −0.398032 0.0701839i
\(285\) 2.79527 7.88584i 0.165577 0.467117i
\(286\) 10.5523 + 12.5757i 0.623969 + 0.743617i
\(287\) 7.59440i 0.448283i
\(288\) 1.70695 + 4.68981i 0.100583 + 0.276350i
\(289\) 1.92809 16.8903i 0.113417 0.993547i
\(290\) −17.0663 + 6.37481i −1.00217 + 0.374342i
\(291\) 8.12992i 0.476584i
\(292\) −0.711560 + 4.03546i −0.0416409 + 0.236157i
\(293\) 28.4115 1.65981 0.829907 0.557901i \(-0.188393\pi\)
0.829907 + 0.557901i \(0.188393\pi\)
\(294\) 27.5497 23.1170i 1.60673 1.34821i
\(295\) −0.993095 0.352019i −0.0578202 0.0204953i
\(296\) −4.23589 7.33678i −0.246206 0.426441i
\(297\) 26.7737i 1.55357i
\(298\) 5.58317 4.68483i 0.323424 0.271385i
\(299\) −14.1622 −0.819019
\(300\) 9.54049 + 10.9888i 0.550820 + 0.634438i
\(301\) 5.85693 0.337588
\(302\) −5.35344 6.37998i −0.308056 0.367127i
\(303\) −4.03645 −0.231888
\(304\) −3.51754 + 9.66436i −0.201745 + 0.554289i
\(305\) −2.63176 + 7.42458i −0.150694 + 0.425130i
\(306\) −5.09108 0.738730i −0.291038 0.0422304i
\(307\) −25.2629 −1.44183 −0.720915 0.693023i \(-0.756278\pi\)
−0.720915 + 0.693023i \(0.756278\pi\)
\(308\) 8.14230 46.1773i 0.463951 2.63120i
\(309\) 3.62756 0.206365
\(310\) −7.08884 18.9778i −0.402619 1.07787i
\(311\) 1.42370i 0.0807308i −0.999185 0.0403654i \(-0.987148\pi\)
0.999185 0.0403654i \(-0.0128522\pi\)
\(312\) 5.04112 + 8.73148i 0.285397 + 0.494323i
\(313\) −23.4725 −1.32674 −0.663372 0.748290i \(-0.730875\pi\)
−0.663372 + 0.748290i \(0.730875\pi\)
\(314\) 9.21940 + 10.9873i 0.520281 + 0.620047i
\(315\) 3.26072 9.19895i 0.183721 0.518302i
\(316\) −22.8124 4.02244i −1.28330 0.226280i
\(317\) 22.1764i 1.24555i 0.782400 + 0.622777i \(0.213995\pi\)
−0.782400 + 0.622777i \(0.786005\pi\)
\(318\) 5.21550 4.37632i 0.292470 0.245412i
\(319\) −27.3016 −1.52860
\(320\) −11.6135 13.6061i −0.649213 0.760607i
\(321\) −14.6238 −0.816221
\(322\) 26.0014 + 30.9872i 1.44900 + 1.72685i
\(323\) −7.05824 7.90981i −0.392731 0.440113i
\(324\) 1.93613 10.9803i 0.107563 0.610018i
\(325\) −9.51329 7.71345i −0.527702 0.427865i
\(326\) −19.3953 + 16.2746i −1.07421 + 0.901367i
\(327\) 5.15145i 0.284876i
\(328\) 2.17095 + 3.76019i 0.119870 + 0.207622i
\(329\) 60.1937i 3.31859i
\(330\) 7.63116 + 20.4297i 0.420082 + 1.12462i
\(331\) 12.3931i 0.681189i 0.940210 + 0.340594i \(0.110628\pi\)
−0.940210 + 0.340594i \(0.889372\pi\)
\(332\) 2.96456 16.8128i 0.162701 0.922724i
\(333\) 2.64256i 0.144811i
\(334\) 4.52822 + 5.39652i 0.247773 + 0.295284i
\(335\) 10.6345 30.0014i 0.581023 1.63915i
\(336\) 9.84935 27.0609i 0.537326 1.47629i
\(337\) 9.05864 0.493455 0.246728 0.969085i \(-0.420645\pi\)
0.246728 + 0.969085i \(0.420645\pi\)
\(338\) 6.36327 + 7.58345i 0.346116 + 0.412485i
\(339\) 5.08499i 0.276179i
\(340\) 18.0209 3.90486i 0.977319 0.211771i
\(341\) 30.3597i 1.64407i
\(342\) −2.45749 + 2.06208i −0.132886 + 0.111504i
\(343\) 51.8207 2.79806
\(344\) 2.89992 1.67427i 0.156353 0.0902707i
\(345\) −17.7327 6.28565i −0.954696 0.338408i
\(346\) 15.2784 12.8201i 0.821374 0.689214i
\(347\) 21.1707i 1.13650i 0.822855 + 0.568251i \(0.192380\pi\)
−0.822855 + 0.568251i \(0.807620\pi\)
\(348\) −16.5127 2.91164i −0.885176 0.156080i
\(349\) 1.13582i 0.0607989i −0.999538 0.0303994i \(-0.990322\pi\)
0.999538 0.0303994i \(-0.00967793\pi\)
\(350\) 0.588899 + 34.9770i 0.0314780 + 1.86960i
\(351\) 13.8387i 0.738657i
\(352\) −9.16884 25.1912i −0.488701 1.34269i
\(353\) 6.77008i 0.360335i 0.983636 + 0.180167i \(0.0576640\pi\)
−0.983636 + 0.180167i \(0.942336\pi\)
\(354\) −0.623341 0.742869i −0.0331302 0.0394831i
\(355\) 7.17762 + 2.54422i 0.380948 + 0.135033i
\(356\) 1.02023 5.78601i 0.0540721 0.306658i
\(357\) 19.7636 + 22.1480i 1.04600 + 1.17220i
\(358\) −18.3223 + 15.3742i −0.968364 + 0.812554i
\(359\) −30.9290 −1.63237 −0.816185 0.577790i \(-0.803915\pi\)
−0.816185 + 0.577790i \(0.803915\pi\)
\(360\) −1.01516 5.48676i −0.0535034 0.289178i
\(361\) 12.3892 0.652062
\(362\) 11.9792 + 14.2763i 0.629614 + 0.750344i
\(363\) 16.6746i 0.875187i
\(364\) −4.20858 + 23.8680i −0.220589 + 1.25102i
\(365\) 1.53063 4.31813i 0.0801169 0.226021i
\(366\) −5.55384 + 4.66022i −0.290304 + 0.243594i
\(367\) −7.04986 −0.368000 −0.184000 0.982926i \(-0.558905\pi\)
−0.184000 + 0.982926i \(0.558905\pi\)
\(368\) 21.7320 + 7.90981i 1.13286 + 0.412327i
\(369\) 1.35434i 0.0705043i
\(370\) 3.31433 + 8.87294i 0.172304 + 0.461282i
\(371\) 16.3663 0.849693
\(372\) 3.23777 18.3623i 0.167871 0.952041i
\(373\) −32.1456 −1.66444 −0.832219 0.554448i \(-0.812930\pi\)
−0.832219 + 0.554448i \(0.812930\pi\)
\(374\) 27.3466 + 3.96806i 1.41406 + 0.205184i
\(375\) −8.48827 13.8805i −0.438332 0.716784i
\(376\) −17.2071 29.8035i −0.887387 1.53700i
\(377\) 14.1116 0.726785
\(378\) 30.2795 25.4075i 1.55741 1.30682i
\(379\) 14.3052 0.734808 0.367404 0.930061i \(-0.380247\pi\)
0.367404 + 0.930061i \(0.380247\pi\)
\(380\) 5.66524 10.0061i 0.290621 0.513300i
\(381\) −25.7844 −1.32097
\(382\) 14.8612 + 17.7109i 0.760364 + 0.906166i
\(383\) 10.8031i 0.552015i 0.961156 + 0.276007i \(0.0890114\pi\)
−0.961156 + 0.276007i \(0.910989\pi\)
\(384\) −2.85899 16.2141i −0.145897 0.827423i
\(385\) −17.5148 + 49.4118i −0.892639 + 2.51826i
\(386\) 16.5003 + 19.6643i 0.839843 + 1.00089i
\(387\) 1.04449 0.0530946
\(388\) 1.94021 11.0035i 0.0984995 0.558618i
\(389\) 17.3203i 0.878177i 0.898444 + 0.439088i \(0.144698\pi\)
−0.898444 + 0.439088i \(0.855302\pi\)
\(390\) −3.94438 10.5597i −0.199731 0.534709i
\(391\) −17.7866 + 15.8717i −0.899506 + 0.802666i
\(392\) 42.8043 24.7131i 2.16194 1.24820i
\(393\) 14.9509i 0.754171i
\(394\) −15.0548 + 12.6324i −0.758448 + 0.636413i
\(395\) 24.4103 + 8.65264i 1.22822 + 0.435361i
\(396\) 1.45205 8.23501i 0.0729685 0.413825i
\(397\) 17.7930i 0.893006i −0.894782 0.446503i \(-0.852669\pi\)
0.894782 0.446503i \(-0.147331\pi\)
\(398\) 19.9044 16.7017i 0.997715 0.837182i
\(399\) 18.5107 0.926695
\(400\) 10.2902 + 17.1497i 0.514508 + 0.857486i
\(401\) 6.10499i 0.304869i −0.988314 0.152434i \(-0.951289\pi\)
0.988314 0.152434i \(-0.0487113\pi\)
\(402\) 22.4421 18.8311i 1.11931 0.939211i
\(403\) 15.6922i 0.781686i
\(404\) −5.46317 0.963304i −0.271803 0.0479262i
\(405\) −4.16479 + 11.7495i −0.206950 + 0.583835i
\(406\) −25.9085 30.8766i −1.28582 1.53238i
\(407\) 14.1944i 0.703591i
\(408\) 16.1167 + 5.31642i 0.797897 + 0.263202i
\(409\) −2.10231 −0.103952 −0.0519762 0.998648i \(-0.516552\pi\)
−0.0519762 + 0.998648i \(0.516552\pi\)
\(410\) −1.69864 4.54749i −0.0838896 0.224585i
\(411\) −11.0626 −0.545677
\(412\) 4.90975 + 0.865722i 0.241886 + 0.0426511i
\(413\) 2.33113i 0.114707i
\(414\) 4.63694 + 5.52609i 0.227893 + 0.271592i
\(415\) −6.37703 + 17.9905i −0.313036 + 0.883119i
\(416\) 4.73917 + 13.0208i 0.232357 + 0.638395i
\(417\) 11.4195i 0.559214i
\(418\) 13.2003 11.0764i 0.645648 0.541763i
\(419\) −3.07410 −0.150180 −0.0750899 0.997177i \(-0.523924\pi\)
−0.0750899 + 0.997177i \(0.523924\pi\)
\(420\) −15.8631 + 28.0177i −0.774038 + 1.36712i
\(421\) 27.2865i 1.32986i 0.746904 + 0.664932i \(0.231540\pi\)
−0.746904 + 0.664932i \(0.768460\pi\)
\(422\) 0.0187590 + 0.0223561i 0.000913174 + 0.00108828i
\(423\) 10.7346i 0.521935i
\(424\) 8.10337 4.67848i 0.393534 0.227207i
\(425\) −20.5925 + 0.974152i −0.998883 + 0.0472533i
\(426\) 4.50521 + 5.36910i 0.218278 + 0.260134i
\(427\) −17.4280 −0.843399
\(428\) −19.7927 3.48999i −0.956716 0.168695i
\(429\) 16.8927i 0.815589i
\(430\) −3.50710 + 1.31002i −0.169128 + 0.0631746i
\(431\) 3.13668i 0.151088i −0.997142 0.0755442i \(-0.975931\pi\)
0.997142 0.0755442i \(-0.0240694\pi\)
\(432\) 7.72917 21.2357i 0.371870 1.02170i
\(433\) 23.7320i 1.14049i −0.821476 0.570243i \(-0.806849\pi\)
0.821476 0.570243i \(-0.193151\pi\)
\(434\) 34.3350 28.8105i 1.64813 1.38295i
\(435\) 17.6694 + 6.26321i 0.847183 + 0.300298i
\(436\) 1.22940 6.97227i 0.0588775 0.333911i
\(437\) 14.8656i 0.711117i
\(438\) 3.23011 2.71038i 0.154340 0.129507i
\(439\) 1.83356i 0.0875111i −0.999042 0.0437555i \(-0.986068\pi\)
0.999042 0.0437555i \(-0.0139323\pi\)
\(440\) 5.45288 + 29.4719i 0.259956 + 1.40502i
\(441\) 15.4172 0.734154
\(442\) −14.1348 2.05100i −0.672325 0.0975563i
\(443\) −29.7733 −1.41457 −0.707286 0.706927i \(-0.750081\pi\)
−0.707286 + 0.706927i \(0.750081\pi\)
\(444\) −1.51379 + 8.58515i −0.0718414 + 0.407433i
\(445\) −2.19461 + 6.19130i −0.104034 + 0.293496i
\(446\) −10.2162 + 8.57245i −0.483753 + 0.405917i
\(447\) −7.49978 −0.354727
\(448\) 19.7888 34.2752i 0.934933 1.61935i
\(449\) 11.6844i 0.551423i −0.961240 0.275711i \(-0.911087\pi\)
0.961240 0.275711i \(-0.0889134\pi\)
\(450\) 0.105021 + 6.23761i 0.00495074 + 0.294044i
\(451\) 7.27482i 0.342558i
\(452\) 1.21354 6.88232i 0.0570801 0.323717i
\(453\) 8.57012i 0.402660i
\(454\) −26.4852 + 22.2237i −1.24301 + 1.04301i
\(455\) 9.05303 25.5399i 0.424413 1.19733i
\(456\) 9.16515 5.29150i 0.429198 0.247797i
\(457\) 15.6232i 0.730822i −0.930846 0.365411i \(-0.880928\pi\)
0.930846 0.365411i \(-0.119072\pi\)
\(458\) −3.88943 + 3.26362i −0.181741 + 0.152499i
\(459\) 15.5092 + 17.3804i 0.723909 + 0.811247i
\(460\) −22.5004 12.7393i −1.04909 0.593972i
\(461\) 19.2989i 0.898838i 0.893321 + 0.449419i \(0.148369\pi\)
−0.893321 + 0.449419i \(0.851631\pi\)
\(462\) −36.9618 + 31.0146i −1.71962 + 1.44293i
\(463\) 37.9048i 1.76159i −0.473500 0.880794i \(-0.657010\pi\)
0.473500 0.880794i \(-0.342990\pi\)
\(464\) −21.6544 7.88157i −1.00528 0.365893i
\(465\) −6.96474 + 19.6485i −0.322982 + 0.911178i
\(466\) −23.9300 28.5187i −1.10854 1.32110i
\(467\) −22.1812 −1.02642 −0.513211 0.858263i \(-0.671544\pi\)
−0.513211 + 0.858263i \(0.671544\pi\)
\(468\) −0.750534 + 4.25649i −0.0346935 + 0.196756i
\(469\) 70.4233 3.25184
\(470\) 13.4635 + 36.0437i 0.621025 + 1.66257i
\(471\) 14.7590i 0.680059i
\(472\) −0.666380 1.15420i −0.0306726 0.0531265i
\(473\) −5.61046 −0.257969
\(474\) 15.3218 + 18.2598i 0.703751 + 0.838698i
\(475\) −8.09656 + 9.98579i −0.371496 + 0.458180i
\(476\) 21.4635 + 34.6930i 0.983778 + 1.59015i
\(477\) 2.91867 0.133637
\(478\) 16.1621 + 19.2612i 0.739236 + 0.880987i
\(479\) 0.0664941i 0.00303819i 0.999999 + 0.00151910i \(0.000483544\pi\)
−0.999999 + 0.00151910i \(0.999516\pi\)
\(480\) 0.154945 + 18.4069i 0.00707225 + 0.840157i
\(481\) 7.33678i 0.334528i
\(482\) −12.1798 + 10.2200i −0.554773 + 0.465510i
\(483\) 41.6246i 1.89399i
\(484\) −3.97940 + 22.5683i −0.180882 + 1.02583i
\(485\) −4.17358 + 11.7743i −0.189512 + 0.534642i
\(486\) 9.57263 8.03239i 0.434223 0.364357i
\(487\) −15.3571 −0.695896 −0.347948 0.937514i \(-0.613121\pi\)
−0.347948 + 0.937514i \(0.613121\pi\)
\(488\) −8.62905 + 4.98199i −0.390619 + 0.225524i
\(489\) 26.0534 1.17818
\(490\) −51.7665 + 19.3365i −2.33857 + 0.873533i
\(491\) 25.2216i 1.13823i 0.822256 + 0.569117i \(0.192715\pi\)
−0.822256 + 0.569117i \(0.807285\pi\)
\(492\) 0.775838 4.40000i 0.0349775 0.198367i
\(493\) 17.7231 15.8150i 0.798208 0.712273i
\(494\) −6.82295 + 5.72513i −0.306979 + 0.257586i
\(495\) −3.12350 + 8.81184i −0.140391 + 0.396063i
\(496\) 8.76437 24.0799i 0.393532 1.08122i
\(497\) 16.8483i 0.755748i
\(498\) −13.4575 + 11.2922i −0.603046 + 0.506016i
\(499\) −8.80324 −0.394087 −0.197044 0.980395i \(-0.563134\pi\)
−0.197044 + 0.980395i \(0.563134\pi\)
\(500\) −8.17592 20.8124i −0.365638 0.930757i
\(501\) 7.24905i 0.323864i
\(502\) 17.6383 14.8003i 0.787235 0.660569i
\(503\) 14.5657 0.649454 0.324727 0.945808i \(-0.394728\pi\)
0.324727 + 0.945808i \(0.394728\pi\)
\(504\) 10.6913 6.17261i 0.476227 0.274950i
\(505\) 5.84584 + 2.07216i 0.260137 + 0.0922097i
\(506\) −24.9072 29.6832i −1.10726 1.31958i
\(507\) 10.1867i 0.452409i
\(508\) −34.8981 6.15348i −1.54835 0.273016i
\(509\) 26.8141i 1.18851i 0.804276 + 0.594257i \(0.202554\pi\)
−0.804276 + 0.594257i \(0.797446\pi\)
\(510\) −16.7882 8.84161i −0.743392 0.391513i
\(511\) 10.1361 0.448394
\(512\) 22.6274i 1.00000i
\(513\) 14.5261 0.641342
\(514\) −28.3975 + 23.8283i −1.25256 + 1.05102i
\(515\) −5.25366 1.86225i −0.231504 0.0820604i
\(516\) −3.39335 0.598340i −0.149384 0.0263404i
\(517\) 57.6607i 2.53591i
\(518\) −16.0531 + 13.4701i −0.705331 + 0.591843i
\(519\) −20.5233 −0.900872
\(520\) −2.81847 15.2334i −0.123598 0.668028i
\(521\) 34.1951i 1.49812i 0.662504 + 0.749058i \(0.269494\pi\)
−0.662504 + 0.749058i \(0.730506\pi\)
\(522\) −4.62039 5.50636i −0.202229 0.241007i
\(523\) 10.3834 0.454034 0.227017 0.973891i \(-0.427103\pi\)
0.227017 + 0.973891i \(0.427103\pi\)
\(524\) −3.56804 + 20.2353i −0.155870 + 0.883985i
\(525\) 22.6709 27.9609i 0.989440 1.22031i
\(526\) 28.3788 23.8126i 1.23737 1.03828i
\(527\) 17.5865 + 19.7082i 0.766078 + 0.858503i
\(528\) −9.43488 + 25.9221i −0.410600 + 1.12811i
\(529\) 10.4278 0.453384
\(530\) −9.80004 + 3.66063i −0.425686 + 0.159008i
\(531\) 0.415721i 0.0180407i
\(532\) 25.0535 + 4.41761i 1.08621 + 0.191528i
\(533\) 3.76019i 0.162872i
\(534\) −4.63131 + 3.88613i −0.200416 + 0.168169i
\(535\) 21.1791 + 7.50728i 0.915652 + 0.324568i
\(536\) 34.8684 20.1313i 1.50609 0.869540i
\(537\) 24.6121 1.06209
\(538\) 10.2290 + 12.1904i 0.441002 + 0.525566i
\(539\) −82.8131 −3.56701
\(540\) −12.4484 + 21.9865i −0.535692 + 0.946150i
\(541\) −6.38412 −0.274475 −0.137237 0.990538i \(-0.543822\pi\)
−0.137237 + 0.990538i \(0.543822\pi\)
\(542\) −7.13996 8.50907i −0.306687 0.365496i
\(543\) 19.1771i 0.822968i
\(544\) 20.5445 + 11.0418i 0.880840 + 0.473414i
\(545\) −2.64455 + 7.46065i −0.113280 + 0.319579i
\(546\) 19.1047 16.0308i 0.817606 0.686053i
\(547\) 30.5569i 1.30652i −0.757134 0.653259i \(-0.773401\pi\)
0.757134 0.653259i \(-0.226599\pi\)
\(548\) −14.9727 2.64010i −0.639604 0.112779i
\(549\) −3.10801 −0.132647
\(550\) −0.564117 33.5051i −0.0240540 1.42866i
\(551\) 14.8125i 0.631034i
\(552\) −11.8989 20.6095i −0.506450 0.877197i
\(553\) 57.2992i 2.43661i
\(554\) 20.2015 16.9511i 0.858279 0.720182i
\(555\) 3.25631 9.18650i 0.138223 0.389945i
\(556\) 2.72527 15.4558i 0.115577 0.655471i
\(557\) 20.3581 0.862599 0.431300 0.902209i \(-0.358055\pi\)
0.431300 + 0.902209i \(0.358055\pi\)
\(558\) 6.12312 5.13791i 0.259212 0.217505i
\(559\) 2.89992 0.122654
\(560\) −28.1564 + 34.1350i −1.18983 + 1.44247i
\(561\) −18.9319 21.2160i −0.799305 0.895739i
\(562\) 1.84538 + 2.19924i 0.0778428 + 0.0927694i
\(563\) −2.37430 −0.100065 −0.0500323 0.998748i \(-0.515932\pi\)
−0.0500323 + 0.998748i \(0.515932\pi\)
\(564\) −6.14935 + 34.8747i −0.258934 + 1.46849i
\(565\) −2.61043 + 7.36441i −0.109822 + 0.309823i
\(566\) −19.7996 + 16.6138i −0.832238 + 0.698331i
\(567\) −27.5799 −1.15825
\(568\) 4.81627 + 8.34203i 0.202086 + 0.350024i
\(569\) 22.3013 0.934919 0.467459 0.884015i \(-0.345169\pi\)
0.467459 + 0.884015i \(0.345169\pi\)
\(570\) −11.0841 + 4.14029i −0.464264 + 0.173417i
\(571\) −36.2364 −1.51645 −0.758223 0.651995i \(-0.773932\pi\)
−0.758223 + 0.651995i \(0.773932\pi\)
\(572\) 4.03147 22.8636i 0.168564 0.955976i
\(573\) 23.7907i 0.993871i
\(574\) 8.22740 6.90361i 0.343405 0.288151i
\(575\) 22.4548 + 18.2065i 0.936430 + 0.759265i
\(576\) 3.52903 6.11245i 0.147043 0.254685i
\(577\) 32.5244i 1.35401i 0.735979 + 0.677004i \(0.236722\pi\)
−0.735979 + 0.677004i \(0.763278\pi\)
\(578\) −20.0508 + 13.2652i −0.834004 + 0.551758i
\(579\) 26.4147i 1.09776i
\(580\) 22.4201 + 12.6938i 0.930942 + 0.527082i
\(581\) −42.2298 −1.75199
\(582\) −8.80755 + 7.39041i −0.365085 + 0.306343i
\(583\) −15.6775 −0.649297
\(584\) 5.01865 2.89752i 0.207673 0.119900i
\(585\) 1.61447 4.55464i 0.0667501 0.188311i
\(586\) −25.8271 30.7796i −1.06691 1.27149i
\(587\) 27.8951 1.15135 0.575677 0.817677i \(-0.304739\pi\)
0.575677 + 0.817677i \(0.304739\pi\)
\(588\) −50.0875 8.83178i −2.06557 0.364217i
\(589\) 16.4716 0.678702
\(590\) 0.521402 + 1.39587i 0.0214658 + 0.0574670i
\(591\) 20.2228 0.831855
\(592\) −4.09771 + 11.2584i −0.168415 + 0.462716i
\(593\) 8.65462i 0.355402i 0.984084 + 0.177701i \(0.0568661\pi\)
−0.984084 + 0.177701i \(0.943134\pi\)
\(594\) −29.0053 + 24.3384i −1.19010 + 0.998615i
\(595\) −17.2529 42.2219i −0.707301 1.73093i
\(596\) −10.1506 1.78983i −0.415786 0.0733143i
\(597\) −26.7372 −1.09428
\(598\) 12.8740 + 15.3426i 0.526456 + 0.627405i
\(599\) −2.72192 −0.111215 −0.0556073 0.998453i \(-0.517709\pi\)
−0.0556073 + 0.998453i \(0.517709\pi\)
\(600\) 3.23203 20.3249i 0.131947 0.829762i
\(601\) 29.7746i 1.21453i 0.794499 + 0.607266i \(0.207734\pi\)
−0.794499 + 0.607266i \(0.792266\pi\)
\(602\) −5.32418 6.34511i −0.216997 0.258607i
\(603\) 12.5589 0.511438
\(604\) −2.04527 + 11.5993i −0.0832209 + 0.471969i
\(605\) 8.56006 24.1491i 0.348016 0.981802i
\(606\) 3.66929 + 4.37289i 0.149055 + 0.177637i
\(607\) 44.1777 1.79312 0.896559 0.442925i \(-0.146059\pi\)
0.896559 + 0.442925i \(0.146059\pi\)
\(608\) 13.6675 4.97455i 0.554289 0.201745i
\(609\) 41.4760i 1.68069i
\(610\) 10.4358 3.89811i 0.422533 0.157830i
\(611\) 29.8035i 1.20572i
\(612\) 3.82768 + 6.18696i 0.154725 + 0.250093i
\(613\) 1.05984 0.0428066 0.0214033 0.999771i \(-0.493187\pi\)
0.0214033 + 0.999771i \(0.493187\pi\)
\(614\) 22.9650 + 27.3686i 0.926791 + 1.10451i
\(615\) −1.66890 + 4.70820i −0.0672965 + 0.189853i
\(616\) −57.4279 + 33.1560i −2.31383 + 1.33589i
\(617\) −33.4848 −1.34805 −0.674023 0.738710i \(-0.735435\pi\)
−0.674023 + 0.738710i \(0.735435\pi\)
\(618\) −3.29760 3.92992i −0.132649 0.158085i
\(619\) 7.84711 0.315402 0.157701 0.987487i \(-0.449592\pi\)
0.157701 + 0.987487i \(0.449592\pi\)
\(620\) −14.1156 + 24.9313i −0.566897 + 1.00126i
\(621\) 32.6644i 1.31078i
\(622\) −1.54237 + 1.29420i −0.0618434 + 0.0518928i
\(623\) −14.5331 −0.582255
\(624\) 4.87668 13.3986i 0.195223 0.536372i
\(625\) 5.16756 + 24.4601i 0.206702 + 0.978404i
\(626\) 21.3374 + 25.4289i 0.852814 + 1.01634i
\(627\) −17.7318 −0.708138
\(628\) 3.52225 19.9757i 0.140553 0.797117i
\(629\) −8.22240 9.21442i −0.327849 0.367403i
\(630\) −12.9298 + 4.82970i −0.515136 + 0.192420i
\(631\) 49.0188 1.95141 0.975703 0.219098i \(-0.0703113\pi\)
0.975703 + 0.219098i \(0.0703113\pi\)
\(632\) 16.3796 + 28.3704i 0.651547 + 1.12851i
\(633\) 0.0300306i 0.00119361i
\(634\) 24.0249 20.1593i 0.954149 0.800626i
\(635\) 37.3426 + 13.2367i 1.48189 + 0.525282i
\(636\) −9.48218 1.67196i −0.375993 0.0662977i
\(637\) 42.8043 1.69597
\(638\) 24.8183 + 29.5772i 0.982564 + 1.17097i
\(639\) 3.00463i 0.118861i
\(640\) −4.18312 + 24.9500i −0.165352 + 0.986235i
\(641\) 21.3815i 0.844518i 0.906475 + 0.422259i \(0.138763\pi\)
−0.906475 + 0.422259i \(0.861237\pi\)
\(642\) 13.2936 + 15.8427i 0.524657 + 0.625261i
\(643\) 21.4973i 0.847772i 0.905716 + 0.423886i \(0.139334\pi\)
−0.905716 + 0.423886i \(0.860666\pi\)
\(644\) 9.93376 56.3372i 0.391445 2.21999i
\(645\) 3.63104 + 1.28708i 0.142972 + 0.0506789i
\(646\) −2.15287 + 14.8369i −0.0847036 + 0.583749i
\(647\) 34.9460i 1.37387i −0.726720 0.686934i \(-0.758956\pi\)
0.726720 0.686934i \(-0.241044\pi\)
\(648\) −13.6555 + 7.88404i −0.536441 + 0.309714i
\(649\) 2.23303i 0.0876541i
\(650\) 0.291579 + 17.3181i 0.0114367 + 0.679270i
\(651\) −46.1217 −1.80765
\(652\) 35.2622 + 6.21768i 1.38097 + 0.243503i
\(653\) 12.0189i 0.470335i 0.971955 + 0.235168i \(0.0755639\pi\)
−0.971955 + 0.235168i \(0.924436\pi\)
\(654\) −5.58082 + 4.68287i −0.218227 + 0.183115i
\(655\) 7.67518 21.6528i 0.299894 0.846043i
\(656\) 2.10013 5.77006i 0.0819962 0.225283i
\(657\) 1.80762 0.0705218
\(658\) −65.2109 + 54.7184i −2.54219 + 2.13315i
\(659\) 22.2352i 0.866160i −0.901356 0.433080i \(-0.857427\pi\)
0.901356 0.433080i \(-0.142573\pi\)
\(660\) 15.1955 26.8386i 0.591485 1.04469i
\(661\) 8.70623i 0.338633i 0.985562 + 0.169317i \(0.0541560\pi\)
−0.985562 + 0.169317i \(0.945844\pi\)
\(662\) 13.4261 11.2659i 0.521821 0.437860i
\(663\) 9.78547 + 10.9661i 0.380036 + 0.425887i
\(664\) −20.9091 + 12.0719i −0.811430 + 0.468479i
\(665\) −26.8084 9.50268i −1.03958 0.368498i
\(666\) −2.86282 + 2.40219i −0.110932 + 0.0930829i
\(667\) −33.3085 −1.28971
\(668\) 1.72999 9.81129i 0.0669355 0.379610i
\(669\) 13.7233 0.530574
\(670\) −42.1691 + 15.7515i −1.62914 + 0.608535i
\(671\) 16.6946 0.644487
\(672\) −38.2699 + 13.9291i −1.47629 + 0.537326i
\(673\) −31.3331 −1.20780 −0.603901 0.797059i \(-0.706388\pi\)
−0.603901 + 0.797059i \(0.706388\pi\)
\(674\) −8.23465 9.81368i −0.317187 0.378009i
\(675\) 17.7907 21.9420i 0.684766 0.844548i
\(676\) 2.43107 13.7873i 0.0935029 0.530281i
\(677\) 14.4106i 0.553844i −0.960892 0.276922i \(-0.910686\pi\)
0.960892 0.276922i \(-0.0893144\pi\)
\(678\) −5.50883 + 4.62246i −0.211565 + 0.177524i
\(679\) −27.6381 −1.06065
\(680\) −20.6120 15.9733i −0.790434 0.612547i
\(681\) 35.5771 1.36332
\(682\) −32.8901 + 27.5981i −1.25943 + 1.05679i
\(683\) 11.9338i 0.456634i −0.973587 0.228317i \(-0.926678\pi\)
0.973587 0.228317i \(-0.0733222\pi\)
\(684\) 4.46790 + 0.787812i 0.170835 + 0.0301227i
\(685\) 16.0215 + 5.67909i 0.612151 + 0.216987i
\(686\) −47.1071 56.1400i −1.79856 2.14344i
\(687\) 5.22461 0.199331
\(688\) −4.44997 1.61966i −0.169653 0.0617488i
\(689\) 8.10337 0.308714
\(690\) 9.31016 + 24.9246i 0.354432 + 0.948864i
\(691\) 13.7386 0.522641 0.261321 0.965252i \(-0.415842\pi\)
0.261321 + 0.965252i \(0.415842\pi\)
\(692\) −27.7774 4.89790i −1.05594 0.186190i
\(693\) −20.6843 −0.785733
\(694\) 22.9353 19.2450i 0.870612 0.730530i
\(695\) −5.86231 + 16.5384i −0.222370 + 0.627337i
\(696\) 11.8564 + 20.5359i 0.449416 + 0.778411i
\(697\) 4.21409 + 4.72251i 0.159620 + 0.178878i
\(698\) −1.23049 + 1.03250i −0.0465746 + 0.0390808i
\(699\) 38.3087i 1.44897i
\(700\) 37.3570 32.4335i 1.41196 1.22587i
\(701\) 37.5554i 1.41845i −0.704983 0.709224i \(-0.749045\pi\)
0.704983 0.709224i \(-0.250955\pi\)
\(702\) 14.9922 12.5800i 0.565844 0.474800i
\(703\) −7.70118 −0.290455
\(704\) −18.9560 + 32.8328i −0.714433 + 1.23743i
\(705\) 13.2278 37.3175i 0.498188 1.40546i
\(706\) 7.33437 6.15427i 0.276033 0.231619i
\(707\) 13.7222i 0.516075i
\(708\) −0.238146 + 1.35059i −0.00895008 + 0.0507584i
\(709\) 39.7775 1.49388 0.746938 0.664894i \(-0.231523\pi\)
0.746938 + 0.664894i \(0.231523\pi\)
\(710\) −3.76845 10.0887i −0.141427 0.378621i
\(711\) 10.2184i 0.383221i
\(712\) −7.19571 + 4.15445i −0.269671 + 0.155694i
\(713\) 37.0393i 1.38713i
\(714\) 6.02819 41.5442i 0.225599 1.55475i
\(715\) −8.67207 + 24.4651i −0.324317 + 0.914944i
\(716\) 33.3114 + 5.87370i 1.24490 + 0.219510i
\(717\) 25.8733i 0.966255i
\(718\) 28.1157 + 33.5070i 1.04927 + 1.25047i
\(719\) 1.06554i 0.0397381i −0.999803 0.0198690i \(-0.993675\pi\)
0.999803 0.0198690i \(-0.00632493\pi\)
\(720\) −5.02126 + 6.08745i −0.187131 + 0.226866i
\(721\) 12.3321i 0.459272i
\(722\) −11.2623 13.4218i −0.419138 0.499509i
\(723\) 16.3609 0.608467
\(724\) 4.57663 25.9554i 0.170089 0.964624i
\(725\) −22.3746 18.1415i −0.830973 0.673760i
\(726\) 18.0644 15.1578i 0.670432 0.562560i
\(727\) 19.9877i 0.741301i −0.928772 0.370651i \(-0.879135\pi\)
0.928772 0.370651i \(-0.120865\pi\)
\(728\) 29.6832 17.1376i 1.10013 0.635162i
\(729\) −29.5833 −1.09568
\(730\) −6.06945 + 2.26713i −0.224640 + 0.0839104i
\(731\) 3.64208 3.24998i 0.134707 0.120205i
\(732\) 10.0973 + 1.78043i 0.373207 + 0.0658065i
\(733\) 40.8897 1.51029 0.755147 0.655555i \(-0.227565\pi\)
0.755147 + 0.655555i \(0.227565\pi\)
\(734\) 6.40860 + 7.63747i 0.236546 + 0.281904i
\(735\) 53.5960 + 18.9980i 1.97692 + 0.700751i
\(736\) −11.1862 30.7337i −0.412327 1.13286i
\(737\) −67.4597 −2.48491
\(738\) 1.46723 1.23115i 0.0540094 0.0453193i
\(739\) 25.3149i 0.931225i −0.884989 0.465613i \(-0.845834\pi\)
0.884989 0.465613i \(-0.154166\pi\)
\(740\) 6.59964 11.6564i 0.242608 0.428499i
\(741\) 9.16515 0.336690
\(742\) −14.8776 17.7304i −0.546172 0.650903i
\(743\) −29.7101 −1.08996 −0.544979 0.838450i \(-0.683462\pi\)
−0.544979 + 0.838450i \(0.683462\pi\)
\(744\) −22.8361 + 13.1844i −0.837211 + 0.483364i
\(745\) 10.8616 + 3.85009i 0.397940 + 0.141056i
\(746\) 29.2216 + 34.8250i 1.06988 + 1.27503i
\(747\) −7.53103 −0.275546
\(748\) −20.5603 33.2330i −0.751758 1.21512i
\(749\) 49.7145i 1.81653i
\(750\) −7.32124 + 21.8136i −0.267334 + 0.796522i
\(751\) 14.1647i 0.516877i 0.966028 + 0.258438i \(0.0832079\pi\)
−0.966028 + 0.258438i \(0.916792\pi\)
\(752\) −16.6458 + 45.7339i −0.607008 + 1.66774i
\(753\) −23.6932 −0.863429
\(754\) −12.8280 15.2878i −0.467168 0.556750i
\(755\) 4.39956 12.4118i 0.160116 0.451711i
\(756\) −55.0505 9.70690i −2.00217 0.353036i
\(757\) 29.4570 1.07063 0.535316 0.844652i \(-0.320193\pi\)
0.535316 + 0.844652i \(0.320193\pi\)
\(758\) −13.0040 15.4975i −0.472325 0.562895i
\(759\) 39.8730i 1.44730i
\(760\) −15.9900 + 2.95846i −0.580018 + 0.107315i
\(761\) 38.5494 1.39741 0.698707 0.715408i \(-0.253759\pi\)
0.698707 + 0.715408i \(0.253759\pi\)
\(762\) 23.4390 + 27.9335i 0.849106 + 1.01193i
\(763\) −17.5126 −0.634000
\(764\) 5.67768 32.1997i 0.205411 1.16494i
\(765\) −3.07679 7.52963i −0.111242 0.272234i
\(766\) 11.7036 9.82047i 0.422868 0.354828i
\(767\) 1.15420i 0.0416759i
\(768\) −14.9666 + 17.8365i −0.540062 + 0.643621i
\(769\) 21.9595 0.791881 0.395941 0.918276i \(-0.370419\pi\)
0.395941 + 0.918276i \(0.370419\pi\)
\(770\) 69.4520 25.9426i 2.50288 0.934906i
\(771\) 38.1459 1.37379
\(772\) 6.30390 35.7512i 0.226882 1.28671i
\(773\) 0.160158 0.00576050 0.00288025 0.999996i \(-0.499083\pi\)
0.00288025 + 0.999996i \(0.499083\pi\)
\(774\) −0.949485 1.13155i −0.0341285 0.0406728i
\(775\) 20.1735 24.8808i 0.724655 0.893744i
\(776\) −13.6844 + 7.90068i −0.491241 + 0.283618i
\(777\) 21.5638 0.773597
\(778\) 18.7640 15.7449i 0.672722 0.564481i
\(779\) 3.94695 0.141414
\(780\) −7.85422 + 13.8723i −0.281226 + 0.496708i
\(781\) 16.1393i 0.577509i
\(782\) 33.3633 + 4.84111i 1.19307 + 0.173118i
\(783\) 32.5478i 1.16316i
\(784\) −65.6836 23.9069i −2.34584 0.853817i
\(785\) −7.57669 + 21.3749i −0.270424 + 0.762903i
\(786\) 16.1970 13.5909i 0.577728 0.484772i
\(787\) 10.2694i 0.366066i −0.983107 0.183033i \(-0.941408\pi\)
0.983107 0.183033i \(-0.0585916\pi\)
\(788\) 27.3707 + 4.82620i 0.975041 + 0.171926i
\(789\) −38.1208 −1.35713
\(790\) −12.8161 34.3105i −0.455976 1.22071i
\(791\) −17.2867 −0.614646
\(792\) −10.2414 + 5.91286i −0.363911 + 0.210104i
\(793\) −8.62905 −0.306427
\(794\) −19.2761 + 16.1745i −0.684082 + 0.574013i
\(795\) 10.1464 + 3.59655i 0.359855 + 0.127556i
\(796\) −36.1877 6.38086i −1.28264 0.226164i
\(797\) −48.3492 −1.71262 −0.856309 0.516464i \(-0.827248\pi\)
−0.856309 + 0.516464i \(0.827248\pi\)
\(798\) −16.8270 20.0536i −0.595668 0.709890i
\(799\) −33.4011 37.4309i −1.18165 1.32421i
\(800\) 9.22499 26.7376i 0.326153 0.945317i
\(801\) −2.59175 −0.0915749
\(802\) −6.61384 + 5.54967i −0.233543 + 0.195966i
\(803\) −9.70955 −0.342643
\(804\) −40.8014 7.19439i −1.43895 0.253726i
\(805\) −21.3684 + 60.2834i −0.753138 + 2.12471i
\(806\) 17.0002 14.2648i 0.598806 0.502458i
\(807\) 16.3752i 0.576434i
\(808\) 3.92264 + 6.79421i 0.137998 + 0.239019i
\(809\) 33.2009i 1.16728i −0.812012 0.583641i \(-0.801627\pi\)
0.812012 0.583641i \(-0.198373\pi\)
\(810\) 16.5147 6.16879i 0.580268 0.216749i
\(811\) 6.21778 0.218336 0.109168 0.994023i \(-0.465181\pi\)
0.109168 + 0.994023i \(0.465181\pi\)
\(812\) −9.89830 + 56.1360i −0.347362 + 1.96999i
\(813\) 11.4301i 0.400871i
\(814\) 15.3775 12.9033i 0.538982 0.452259i
\(815\) −37.7322 13.3748i −1.32170 0.468499i
\(816\) −8.89119 22.2929i −0.311254 0.780407i
\(817\) 3.04396i 0.106495i
\(818\) 1.91108 + 2.27753i 0.0668193 + 0.0796321i
\(819\) 10.6913 0.373584
\(820\) −3.38240 + 5.97407i −0.118119 + 0.208623i
\(821\) 37.7686 1.31813 0.659067 0.752084i \(-0.270951\pi\)
0.659067 + 0.752084i \(0.270951\pi\)
\(822\) 10.0563 + 11.9847i 0.350754 + 0.418013i
\(823\) 1.29018 0.0449727 0.0224864 0.999747i \(-0.492842\pi\)
0.0224864 + 0.999747i \(0.492842\pi\)
\(824\) −3.52528 6.10596i −0.122809 0.212711i
\(825\) −21.7169 + 26.7843i −0.756085 + 0.932508i
\(826\) −2.52543 + 2.11909i −0.0878709 + 0.0737324i
\(827\) 18.1062i 0.629614i 0.949156 + 0.314807i \(0.101940\pi\)
−0.949156 + 0.314807i \(0.898060\pi\)
\(828\) 1.77153 10.0469i 0.0615650 0.349153i
\(829\) 26.7609i 0.929444i −0.885457 0.464722i \(-0.846154\pi\)
0.885457 0.464722i \(-0.153846\pi\)
\(830\) 25.2870 9.44551i 0.877725 0.327859i
\(831\) −27.1363 −0.941349
\(832\) 9.79796 16.9706i 0.339683 0.588348i
\(833\) 53.7588 47.9712i 1.86263 1.66210i
\(834\) −12.3713 + 10.3807i −0.428383 + 0.359456i
\(835\) −3.72138 + 10.4985i −0.128784 + 0.363317i
\(836\) −23.9992 4.23171i −0.830030 0.146357i
\(837\) −36.1934 −1.25103
\(838\) 2.79448 + 3.33033i 0.0965337 + 0.115044i
\(839\) 45.5709i 1.57328i 0.617410 + 0.786642i \(0.288182\pi\)
−0.617410 + 0.786642i \(0.711818\pi\)
\(840\) 44.7731 8.28389i 1.54482 0.285821i
\(841\) 4.18960 0.144469
\(842\) 29.5609 24.8045i 1.01874 0.854820i
\(843\) 2.95421i 0.101748i
\(844\) 0.00716684 0.0406452i 0.000246693 0.00139906i
\(845\) −5.22946 + 14.7531i −0.179899 + 0.507521i
\(846\) −11.6294 + 9.75819i −0.399826 + 0.335493i
\(847\) 56.6861 1.94776
\(848\) −12.4347 4.52586i −0.427010 0.155419i
\(849\) 26.5964 0.912787
\(850\) 19.7747 + 21.4234i 0.678268 + 0.734815i
\(851\) 17.3174i 0.593634i
\(852\) 1.72121 9.76145i 0.0589676 0.334422i
\(853\) 16.6460i 0.569947i 0.958535 + 0.284973i \(0.0919848\pi\)
−0.958535 + 0.284973i \(0.908015\pi\)
\(854\) 15.8427 + 18.8806i 0.542126 + 0.646081i
\(855\) −4.78086 1.69466i −0.163502 0.0579560i
\(856\) 14.2114 + 24.6150i 0.485737 + 0.841322i
\(857\) −5.93229 −0.202643 −0.101322 0.994854i \(-0.532307\pi\)
−0.101322 + 0.994854i \(0.532307\pi\)
\(858\) −18.3008 + 15.3562i −0.624778 + 0.524251i
\(859\) 32.1718i 1.09769i 0.835925 + 0.548844i \(0.184932\pi\)
−0.835925 + 0.548844i \(0.815068\pi\)
\(860\) 4.60730 + 2.60857i 0.157108 + 0.0889514i
\(861\) −11.0517 −0.376642
\(862\) −3.39812 + 2.85136i −0.115740 + 0.0971177i
\(863\) 1.43942i 0.0489984i 0.999700 + 0.0244992i \(0.00779911\pi\)
−0.999700 + 0.0244992i \(0.992201\pi\)
\(864\) −30.0318 + 10.9307i −1.02170 + 0.371870i
\(865\) 29.7231 + 10.5358i 1.01062 + 0.358229i
\(866\) −25.7101 + 21.5733i −0.873663 + 0.733090i
\(867\) 24.5796 + 2.80584i 0.834766 + 0.0952914i
\(868\) −62.4237 11.0070i −2.11880 0.373602i
\(869\) 54.8880i 1.86195i
\(870\) −9.27692 24.8356i −0.314517 0.842007i
\(871\) 34.8684 1.18147
\(872\) −8.67098 + 5.00619i −0.293636 + 0.169531i
\(873\) −4.92884 −0.166816
\(874\) 16.1046 13.5134i 0.544747 0.457097i
\(875\) −47.1875 + 28.8564i −1.59523 + 0.975523i
\(876\) −5.87259 1.03550i −0.198416 0.0349861i
\(877\) 11.1491i 0.376477i −0.982123 0.188239i \(-0.939722\pi\)
0.982123 0.188239i \(-0.0602778\pi\)
\(878\) −1.98639 + 1.66678i −0.0670374 + 0.0562510i
\(879\) 41.3457i 1.39456i
\(880\) 26.9716 32.6985i 0.909211 1.10227i
\(881\) 25.0028i 0.842367i −0.906975 0.421183i \(-0.861615\pi\)
0.906975 0.421183i \(-0.138385\pi\)
\(882\) −14.0149 16.7023i −0.471905 0.562394i
\(883\) −7.10014 −0.238939 −0.119469 0.992838i \(-0.538119\pi\)
−0.119469 + 0.992838i \(0.538119\pi\)
\(884\) 10.6272 + 17.1774i 0.357430 + 0.577739i
\(885\) 0.512274 1.44520i 0.0172199 0.0485798i
\(886\) 27.0651 + 32.2549i 0.909270 + 1.08363i
\(887\) 46.1557 1.54976 0.774878 0.632111i \(-0.217811\pi\)
0.774878 + 0.632111i \(0.217811\pi\)
\(888\) 10.6768 6.16426i 0.358291 0.206859i
\(889\) 87.6556i 2.93987i
\(890\) 8.70234 3.25060i 0.291703 0.108961i
\(891\) 26.4193 0.885080
\(892\) 18.5739 + 3.27509i 0.621901 + 0.109658i
\(893\) −31.2838 −1.04687
\(894\) 6.81759 + 8.12489i 0.228014 + 0.271737i
\(895\) −35.6447 12.6349i −1.19147 0.422337i
\(896\) −55.1208 + 9.71929i −1.84146 + 0.324699i
\(897\) 20.6095i 0.688130i
\(898\) −12.6583 + 10.6216i −0.422414 + 0.354448i
\(899\) 36.9071i 1.23092i
\(900\) 6.66205 5.78401i 0.222068 0.192800i
\(901\) 10.1772 9.08153i 0.339052 0.302550i
\(902\) −7.88117 + 6.61309i −0.262414 + 0.220192i
\(903\) 8.52328i 0.283637i
\(904\) −8.55912 + 4.94161i −0.284672 + 0.164356i
\(905\) −9.84476 + 27.7735i −0.327251 + 0.923221i
\(906\) 9.28445 7.79058i 0.308455 0.258825i
\(907\) 51.7736i 1.71912i −0.511039 0.859558i \(-0.670739\pi\)
0.511039 0.859558i \(-0.329261\pi\)
\(908\) 48.1521 + 8.49051i 1.59798 + 0.281768i
\(909\) 2.44714i 0.0811664i
\(910\) −35.8982 + 13.4091i −1.19001 + 0.444509i
\(911\) 53.5985i 1.77580i −0.460039 0.887899i \(-0.652165\pi\)
0.460039 0.887899i \(-0.347835\pi\)
\(912\) −14.0640 5.11889i −0.465707 0.169503i
\(913\) 40.4527 1.33879
\(914\) −16.9254 + 14.2021i −0.559842 + 0.469763i
\(915\) −10.8046 3.82986i −0.357189 0.126611i
\(916\) 7.07128 + 1.24686i 0.233642 + 0.0411974i
\(917\) 50.8263 1.67843
\(918\) 4.73055 32.6014i 0.156131 1.07601i
\(919\) 9.30095 0.306810 0.153405 0.988163i \(-0.450976\pi\)
0.153405 + 0.988163i \(0.450976\pi\)
\(920\) 6.65261 + 35.9563i 0.219330 + 1.18544i
\(921\) 36.7638i 1.21141i
\(922\) 20.9075 17.5434i 0.688550 0.577762i
\(923\) 8.34203i 0.274581i
\(924\) 67.1994 + 11.8491i 2.21070 + 0.389806i
\(925\) −9.43198 + 11.6328i −0.310121 + 0.382484i
\(926\) −41.0642 + 34.4570i −1.34945 + 1.13233i
\(927\) 2.19924i 0.0722326i
\(928\) 11.1462 + 30.6240i 0.365893 + 1.00528i
\(929\) 20.5786i 0.675163i −0.941296 0.337581i \(-0.890391\pi\)
0.941296 0.337581i \(-0.109609\pi\)
\(930\) 27.6174 10.3160i 0.905612 0.338275i
\(931\) 44.9303i 1.47253i
\(932\) −9.14242 + 51.8492i −0.299470 + 1.69838i
\(933\) 2.07184 0.0678290
\(934\) 20.1635 + 24.0300i 0.659771 + 0.786285i
\(935\) 16.5269 + 40.4452i 0.540487 + 1.32270i
\(936\) 5.29354 3.05623i 0.173025 0.0998959i
\(937\) 42.3504i 1.38353i 0.722123 + 0.691764i \(0.243166\pi\)
−0.722123 + 0.691764i \(0.756834\pi\)
\(938\) −64.0175 76.2931i −2.09025 2.49106i
\(939\) 34.1583i 1.11471i
\(940\) 26.8091 47.3509i 0.874418 1.54441i
\(941\) −38.3381 −1.24979 −0.624893 0.780711i \(-0.714857\pi\)
−0.624893 + 0.780711i \(0.714857\pi\)
\(942\) −15.9892 + 13.4165i −0.520955 + 0.437133i
\(943\) 8.87541i 0.289023i
\(944\) −0.644642 + 1.77114i −0.0209813 + 0.0576456i
\(945\) 58.9066 + 20.8804i 1.91623 + 0.679240i
\(946\) 5.10013 + 6.07810i 0.165819 + 0.197616i
\(947\) 16.9252i 0.549994i 0.961445 + 0.274997i \(0.0886769\pi\)
−0.961445 + 0.274997i \(0.911323\pi\)
\(948\) 5.85364 33.1977i 0.190117 1.07821i
\(949\) 5.01865 0.162912
\(950\) 18.1782 0.306062i 0.589779 0.00992995i
\(951\) −32.2722 −1.04650
\(952\) 18.0735 54.7898i 0.585765 1.77575i
\(953\) 41.0752i 1.33056i −0.746595 0.665278i \(-0.768313\pi\)
0.746595 0.665278i \(-0.231687\pi\)
\(954\) −2.65318 3.16194i −0.0859000 0.102372i
\(955\) −12.2132 + 34.4552i −0.395210 + 1.11494i
\(956\) 6.17469 35.0184i 0.199704 1.13258i
\(957\) 39.7306i 1.28431i
\(958\) 0.0720364 0.0604457i 0.00232739 0.00195291i
\(959\) 37.6079i 1.21442i
\(960\) 19.8003 16.9005i 0.639052 0.545460i
\(961\) −10.0410 −0.323903
\(962\) −7.94830 + 6.66941i −0.256263 + 0.215031i
\(963\) 8.86580i 0.285697i
\(964\) 22.1437 + 3.90454i 0.713202 + 0.125757i
\(965\) −13.5603 + 38.2554i −0.436521 + 1.23149i
\(966\) −45.0940 + 37.8384i −1.45088 + 1.21743i
\(967\) 24.2611i 0.780186i −0.920776 0.390093i \(-0.872443\pi\)
0.920776 0.390093i \(-0.127557\pi\)
\(968\) 28.0668 16.2044i 0.902102 0.520829i
\(969\) 11.5107 10.2715i 0.369778 0.329968i
\(970\) 16.5496 6.18181i 0.531375 0.198486i
\(971\) 25.2618i 0.810690i −0.914164 0.405345i \(-0.867151\pi\)
0.914164 0.405345i \(-0.132849\pi\)
\(972\) −17.4038 3.06876i −0.558227 0.0984304i
\(973\) −38.8212 −1.24455
\(974\) 13.9602 + 16.6371i 0.447313 + 0.533087i
\(975\) 11.2250 13.8442i 0.359487 0.443369i
\(976\) 13.2414 + 4.81947i 0.423846 + 0.154267i
\(977\) 45.6616i 1.46084i 0.682997 + 0.730422i \(0.260676\pi\)
−0.682997 + 0.730422i \(0.739324\pi\)
\(978\) −23.6836 28.2250i −0.757317 0.902535i
\(979\) 13.9215 0.444933
\(980\) 68.0060 + 38.5037i 2.17237 + 1.22996i
\(981\) −3.12311 −0.0997132
\(982\) 27.3238 22.9274i 0.871938 0.731643i
\(983\) −54.8613 −1.74980 −0.874901 0.484302i \(-0.839074\pi\)
−0.874901 + 0.484302i \(0.839074\pi\)
\(984\) −5.47201 + 3.15926i −0.174441 + 0.100714i
\(985\) −29.2879 10.3816i −0.933191 0.330785i
\(986\) −33.2442 4.82383i −1.05871 0.153622i
\(987\) 87.5967 2.78824
\(988\) 12.4047 + 2.18727i 0.394645 + 0.0695865i
\(989\) −6.84487 −0.217654
\(990\) 12.3857 4.62646i 0.393643 0.147039i
\(991\) 39.4679i 1.25374i −0.779124 0.626870i \(-0.784336\pi\)
0.779124 0.626870i \(-0.215664\pi\)
\(992\) −34.0541 + 12.3947i −1.08122 + 0.393532i
\(993\) −18.0351 −0.572326
\(994\) 18.2526 15.3157i 0.578937 0.485786i
\(995\) 38.7225 + 13.7258i 1.22758 + 0.435138i
\(996\) 24.4668 + 4.31416i 0.775261 + 0.136699i
\(997\) 0.717186i 0.0227135i −0.999936 0.0113567i \(-0.996385\pi\)
0.999936 0.0113567i \(-0.00361504\pi\)
\(998\) 8.00249 + 9.53700i 0.253314 + 0.301888i
\(999\) 16.9220 0.535387
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 680.2.h.c.509.11 yes 48
5.4 even 2 inner 680.2.h.c.509.38 yes 48
8.5 even 2 inner 680.2.h.c.509.34 yes 48
17.16 even 2 inner 680.2.h.c.509.10 48
40.29 even 2 inner 680.2.h.c.509.15 yes 48
85.84 even 2 inner 680.2.h.c.509.39 yes 48
136.101 even 2 inner 680.2.h.c.509.35 yes 48
680.509 even 2 inner 680.2.h.c.509.14 yes 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
680.2.h.c.509.10 48 17.16 even 2 inner
680.2.h.c.509.11 yes 48 1.1 even 1 trivial
680.2.h.c.509.14 yes 48 680.509 even 2 inner
680.2.h.c.509.15 yes 48 40.29 even 2 inner
680.2.h.c.509.34 yes 48 8.5 even 2 inner
680.2.h.c.509.35 yes 48 136.101 even 2 inner
680.2.h.c.509.38 yes 48 5.4 even 2 inner
680.2.h.c.509.39 yes 48 85.84 even 2 inner