Properties

Label 680.2.h.b.509.37
Level $680$
Weight $2$
Character 680.509
Analytic conductor $5.430$
Analytic rank $0$
Dimension $40$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [680,2,Mod(509,680)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(680, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("680.509"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 680 = 2^{3} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 680.h (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [40] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.42982733745\)
Analytic rank: \(0\)
Dimension: \(40\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 509.37
Character \(\chi\) \(=\) 680.509
Dual form 680.2.h.b.509.40

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.36282 - 0.377781i) q^{2} -0.944008i q^{3} +(1.71456 - 1.02970i) q^{4} +(-0.0976904 - 2.23393i) q^{5} +(-0.356628 - 1.28651i) q^{6} -2.88614 q^{7} +(1.94764 - 2.05102i) q^{8} +2.10885 q^{9} +(-0.977072 - 3.00755i) q^{10} +2.86893 q^{11} +(-0.972041 - 1.61856i) q^{12} -3.06569 q^{13} +(-3.93329 + 1.09033i) q^{14} +(-2.10885 + 0.0922205i) q^{15} +(1.87945 - 3.53096i) q^{16} +(1.50020 + 3.84050i) q^{17} +(2.87398 - 0.796683i) q^{18} -3.89224i q^{19} +(-2.46777 - 3.72963i) q^{20} +2.72453i q^{21} +(3.90984 - 1.08383i) q^{22} -5.12547 q^{23} +(-1.93618 - 1.83859i) q^{24} +(-4.98091 + 0.436468i) q^{25} +(-4.17799 + 1.15816i) q^{26} -4.82279i q^{27} +(-4.94846 + 2.97184i) q^{28} +2.76061 q^{29} +(-2.83915 + 0.922364i) q^{30} -3.49238i q^{31} +(1.22743 - 5.52208i) q^{32} -2.70829i q^{33} +(3.49537 + 4.66716i) q^{34} +(0.281948 + 6.44743i) q^{35} +(3.61576 - 2.17147i) q^{36} +7.07698i q^{37} +(-1.47041 - 5.30443i) q^{38} +2.89404i q^{39} +(-4.77211 - 4.15054i) q^{40} +4.23564i q^{41} +(1.02928 + 3.71305i) q^{42} +4.28164 q^{43} +(4.91896 - 2.95413i) q^{44} +(-0.206014 - 4.71103i) q^{45} +(-6.98510 + 1.93631i) q^{46} -0.586236i q^{47} +(-3.33325 - 1.77422i) q^{48} +1.32978 q^{49} +(-6.62320 + 2.47652i) q^{50} +(3.62546 - 1.41620i) q^{51} +(-5.25632 + 3.15673i) q^{52} +13.9162 q^{53} +(-1.82196 - 6.57260i) q^{54} +(-0.280267 - 6.40900i) q^{55} +(-5.62116 + 5.91952i) q^{56} -3.67430 q^{57} +(3.76221 - 1.04290i) q^{58} +7.50051i q^{59} +(-3.52080 + 2.32959i) q^{60} +12.3026 q^{61} +(-1.31935 - 4.75948i) q^{62} -6.08643 q^{63} +(-0.413374 - 7.98931i) q^{64} +(0.299489 + 6.84855i) q^{65} +(-1.02314 - 3.69092i) q^{66} -5.37694 q^{67} +(6.52673 + 5.04002i) q^{68} +4.83848i q^{69} +(2.81996 + 8.68018i) q^{70} +7.98364i q^{71} +(4.10729 - 4.32529i) q^{72} +13.4366 q^{73} +(2.67355 + 9.64466i) q^{74} +(0.412029 + 4.70202i) q^{75} +(-4.00782 - 6.67349i) q^{76} -8.28012 q^{77} +(1.09331 + 3.94405i) q^{78} +11.6592i q^{79} +(-8.07153 - 3.85363i) q^{80} +1.77380 q^{81} +(1.60015 + 5.77242i) q^{82} +2.53572 q^{83} +(2.80544 + 4.67138i) q^{84} +(8.43285 - 3.72652i) q^{85} +(5.83511 - 1.61752i) q^{86} -2.60603i q^{87} +(5.58765 - 5.88423i) q^{88} -10.2124 q^{89} +(-2.06050 - 6.34246i) q^{90} +8.84800 q^{91} +(-8.78794 + 5.27768i) q^{92} -3.29683 q^{93} +(-0.221469 - 0.798935i) q^{94} +(-8.69500 + 0.380235i) q^{95} +(-5.21289 - 1.15870i) q^{96} +5.19643 q^{97} +(1.81225 - 0.502365i) q^{98} +6.05014 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q + 12 q^{4} - 56 q^{9} + 56 q^{15} - 4 q^{16} - 36 q^{26} - 28 q^{30} + 24 q^{34} + 88 q^{36} + 8 q^{49} - 16 q^{50} - 88 q^{55} - 88 q^{60} - 132 q^{64} + 208 q^{66} + 72 q^{70} - 20 q^{76} - 56 q^{81}+ \cdots - 36 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/680\mathbb{Z}\right)^\times\).

\(n\) \(137\) \(241\) \(341\) \(511\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.36282 0.377781i 0.963660 0.267132i
\(3\) 0.944008i 0.545023i −0.962153 0.272512i \(-0.912146\pi\)
0.962153 0.272512i \(-0.0878543\pi\)
\(4\) 1.71456 1.02970i 0.857281 0.514848i
\(5\) −0.0976904 2.23393i −0.0436885 0.999045i
\(6\) −0.356628 1.28651i −0.145593 0.525217i
\(7\) −2.88614 −1.09086 −0.545428 0.838157i \(-0.683633\pi\)
−0.545428 + 0.838157i \(0.683633\pi\)
\(8\) 1.94764 2.05102i 0.688596 0.725145i
\(9\) 2.10885 0.702950
\(10\) −0.977072 3.00755i −0.308977 0.951069i
\(11\) 2.86893 0.865015 0.432507 0.901630i \(-0.357629\pi\)
0.432507 + 0.901630i \(0.357629\pi\)
\(12\) −0.972041 1.61856i −0.280604 0.467238i
\(13\) −3.06569 −0.850270 −0.425135 0.905130i \(-0.639773\pi\)
−0.425135 + 0.905130i \(0.639773\pi\)
\(14\) −3.93329 + 1.09033i −1.05122 + 0.291402i
\(15\) −2.10885 + 0.0922205i −0.544503 + 0.0238112i
\(16\) 1.87945 3.53096i 0.469863 0.882739i
\(17\) 1.50020 + 3.84050i 0.363852 + 0.931457i
\(18\) 2.87398 0.796683i 0.677405 0.187780i
\(19\) 3.89224i 0.892941i −0.894798 0.446471i \(-0.852681\pi\)
0.894798 0.446471i \(-0.147319\pi\)
\(20\) −2.46777 3.72963i −0.551810 0.833970i
\(21\) 2.72453i 0.594542i
\(22\) 3.90984 1.08383i 0.833580 0.231073i
\(23\) −5.12547 −1.06873 −0.534367 0.845252i \(-0.679450\pi\)
−0.534367 + 0.845252i \(0.679450\pi\)
\(24\) −1.93618 1.83859i −0.395221 0.375301i
\(25\) −4.98091 + 0.436468i −0.996183 + 0.0872936i
\(26\) −4.17799 + 1.15816i −0.819371 + 0.227134i
\(27\) 4.82279i 0.928147i
\(28\) −4.94846 + 2.97184i −0.935171 + 0.561625i
\(29\) 2.76061 0.512632 0.256316 0.966593i \(-0.417491\pi\)
0.256316 + 0.966593i \(0.417491\pi\)
\(30\) −2.83915 + 0.922364i −0.518355 + 0.168400i
\(31\) 3.49238i 0.627249i −0.949547 0.313625i \(-0.898457\pi\)
0.949547 0.313625i \(-0.101543\pi\)
\(32\) 1.22743 5.52208i 0.216981 0.976176i
\(33\) 2.70829i 0.471453i
\(34\) 3.49537 + 4.66716i 0.599451 + 0.800412i
\(35\) 0.281948 + 6.44743i 0.0476579 + 1.08982i
\(36\) 3.61576 2.17147i 0.602626 0.361912i
\(37\) 7.07698i 1.16345i 0.813386 + 0.581724i \(0.197622\pi\)
−0.813386 + 0.581724i \(0.802378\pi\)
\(38\) −1.47041 5.30443i −0.238533 0.860492i
\(39\) 2.89404i 0.463417i
\(40\) −4.77211 4.15054i −0.754537 0.656258i
\(41\) 4.23564i 0.661496i 0.943719 + 0.330748i \(0.107301\pi\)
−0.943719 + 0.330748i \(0.892699\pi\)
\(42\) 1.02928 + 3.71305i 0.158821 + 0.572936i
\(43\) 4.28164 0.652944 0.326472 0.945207i \(-0.394140\pi\)
0.326472 + 0.945207i \(0.394140\pi\)
\(44\) 4.91896 2.95413i 0.741561 0.445351i
\(45\) −0.206014 4.71103i −0.0307108 0.702279i
\(46\) −6.98510 + 1.93631i −1.02990 + 0.285493i
\(47\) 0.586236i 0.0855113i −0.999086 0.0427556i \(-0.986386\pi\)
0.999086 0.0427556i \(-0.0136137\pi\)
\(48\) −3.33325 1.77422i −0.481113 0.256086i
\(49\) 1.32978 0.189968
\(50\) −6.62320 + 2.47652i −0.936663 + 0.350233i
\(51\) 3.62546 1.41620i 0.507665 0.198308i
\(52\) −5.25632 + 3.15673i −0.728920 + 0.437760i
\(53\) 13.9162 1.91154 0.955771 0.294112i \(-0.0950238\pi\)
0.955771 + 0.294112i \(0.0950238\pi\)
\(54\) −1.82196 6.57260i −0.247937 0.894418i
\(55\) −0.280267 6.40900i −0.0377912 0.864189i
\(56\) −5.62116 + 5.91952i −0.751159 + 0.791030i
\(57\) −3.67430 −0.486673
\(58\) 3.76221 1.04290i 0.494003 0.136940i
\(59\) 7.50051i 0.976483i 0.872708 + 0.488242i \(0.162362\pi\)
−0.872708 + 0.488242i \(0.837638\pi\)
\(60\) −3.52080 + 2.32959i −0.454533 + 0.300749i
\(61\) 12.3026 1.57518 0.787590 0.616199i \(-0.211328\pi\)
0.787590 + 0.616199i \(0.211328\pi\)
\(62\) −1.31935 4.75948i −0.167558 0.604455i
\(63\) −6.08643 −0.766818
\(64\) −0.413374 7.98931i −0.0516717 0.998664i
\(65\) 0.299489 + 6.84855i 0.0371470 + 0.849458i
\(66\) −1.02314 3.69092i −0.125940 0.454320i
\(67\) −5.37694 −0.656897 −0.328449 0.944522i \(-0.606526\pi\)
−0.328449 + 0.944522i \(0.606526\pi\)
\(68\) 6.52673 + 5.04002i 0.791482 + 0.611192i
\(69\) 4.83848i 0.582485i
\(70\) 2.81996 + 8.68018i 0.337050 + 1.03748i
\(71\) 7.98364i 0.947484i 0.880664 + 0.473742i \(0.157097\pi\)
−0.880664 + 0.473742i \(0.842903\pi\)
\(72\) 4.10729 4.32529i 0.484048 0.509741i
\(73\) 13.4366 1.57263 0.786315 0.617825i \(-0.211986\pi\)
0.786315 + 0.617825i \(0.211986\pi\)
\(74\) 2.67355 + 9.64466i 0.310794 + 1.12117i
\(75\) 0.412029 + 4.70202i 0.0475770 + 0.542942i
\(76\) −4.00782 6.67349i −0.459729 0.765502i
\(77\) −8.28012 −0.943607
\(78\) 1.09331 + 3.94405i 0.123793 + 0.446576i
\(79\) 11.6592i 1.31176i 0.754863 + 0.655882i \(0.227703\pi\)
−0.754863 + 0.655882i \(0.772297\pi\)
\(80\) −8.07153 3.85363i −0.902424 0.430849i
\(81\) 1.77380 0.197088
\(82\) 1.60015 + 5.77242i 0.176706 + 0.637457i
\(83\) 2.53572 0.278332 0.139166 0.990269i \(-0.455558\pi\)
0.139166 + 0.990269i \(0.455558\pi\)
\(84\) 2.80544 + 4.67138i 0.306099 + 0.509690i
\(85\) 8.43285 3.72652i 0.914671 0.404198i
\(86\) 5.83511 1.61752i 0.629216 0.174422i
\(87\) 2.60603i 0.279396i
\(88\) 5.58765 5.88423i 0.595645 0.627261i
\(89\) −10.2124 −1.08251 −0.541257 0.840857i \(-0.682052\pi\)
−0.541257 + 0.840857i \(0.682052\pi\)
\(90\) −2.06050 6.34246i −0.217196 0.668554i
\(91\) 8.84800 0.927522
\(92\) −8.78794 + 5.27768i −0.916206 + 0.550236i
\(93\) −3.29683 −0.341865
\(94\) −0.221469 0.798935i −0.0228428 0.0824038i
\(95\) −8.69500 + 0.380235i −0.892088 + 0.0390112i
\(96\) −5.21289 1.15870i −0.532038 0.118260i
\(97\) 5.19643 0.527618 0.263809 0.964575i \(-0.415021\pi\)
0.263809 + 0.964575i \(0.415021\pi\)
\(98\) 1.81225 0.502365i 0.183065 0.0507465i
\(99\) 6.05014 0.608062
\(100\) −8.09066 + 5.87718i −0.809066 + 0.587718i
\(101\) 13.3414i 1.32752i −0.747946 0.663760i \(-0.768960\pi\)
0.747946 0.663760i \(-0.231040\pi\)
\(102\) 4.40584 3.29966i 0.436243 0.326715i
\(103\) 16.0191i 1.57841i −0.614128 0.789207i \(-0.710492\pi\)
0.614128 0.789207i \(-0.289508\pi\)
\(104\) −5.97087 + 6.28780i −0.585492 + 0.616569i
\(105\) 6.08643 0.266161i 0.593974 0.0259746i
\(106\) 18.9653 5.25729i 1.84208 0.510633i
\(107\) 10.5592i 1.02079i −0.859939 0.510397i \(-0.829498\pi\)
0.859939 0.510397i \(-0.170502\pi\)
\(108\) −4.96601 8.26898i −0.477855 0.795683i
\(109\) −9.47164 −0.907218 −0.453609 0.891201i \(-0.649864\pi\)
−0.453609 + 0.891201i \(0.649864\pi\)
\(110\) −2.80315 8.62844i −0.267270 0.822689i
\(111\) 6.68072 0.634106
\(112\) −5.42435 + 10.1908i −0.512553 + 0.962942i
\(113\) 13.1039 1.23271 0.616356 0.787467i \(-0.288608\pi\)
0.616356 + 0.787467i \(0.288608\pi\)
\(114\) −5.00742 + 1.38808i −0.468988 + 0.130006i
\(115\) 0.500709 + 11.4500i 0.0466914 + 1.06771i
\(116\) 4.73323 2.84258i 0.439470 0.263927i
\(117\) −6.46508 −0.597697
\(118\) 2.83355 + 10.2219i 0.260850 + 0.940998i
\(119\) −4.32978 11.0842i −0.396910 1.01609i
\(120\) −3.91814 + 4.50491i −0.357676 + 0.411240i
\(121\) −2.76924 −0.251750
\(122\) 16.7662 4.64767i 1.51794 0.420780i
\(123\) 3.99848 0.360531
\(124\) −3.59609 5.98790i −0.322938 0.537729i
\(125\) 1.46163 + 11.0844i 0.130732 + 0.991418i
\(126\) −8.29471 + 2.29934i −0.738952 + 0.204841i
\(127\) 20.7857i 1.84443i 0.386676 + 0.922215i \(0.373623\pi\)
−0.386676 + 0.922215i \(0.626377\pi\)
\(128\) −3.58157 10.7318i −0.316569 0.948570i
\(129\) 4.04190i 0.355870i
\(130\) 2.99540 + 9.22020i 0.262714 + 0.808665i
\(131\) −9.68301 −0.846008 −0.423004 0.906128i \(-0.639024\pi\)
−0.423004 + 0.906128i \(0.639024\pi\)
\(132\) −2.78872 4.64354i −0.242727 0.404168i
\(133\) 11.2335i 0.974071i
\(134\) −7.32780 + 2.03130i −0.633026 + 0.175478i
\(135\) −10.7738 + 0.471141i −0.927261 + 0.0405493i
\(136\) 10.7988 + 4.40297i 0.925988 + 0.377552i
\(137\) 17.9552i 1.53401i 0.641639 + 0.767007i \(0.278255\pi\)
−0.641639 + 0.767007i \(0.721745\pi\)
\(138\) 1.82789 + 6.59399i 0.155600 + 0.561317i
\(139\) −8.02149 −0.680374 −0.340187 0.940358i \(-0.610490\pi\)
−0.340187 + 0.940358i \(0.610490\pi\)
\(140\) 7.12231 + 10.7642i 0.601945 + 0.909742i
\(141\) −0.553411 −0.0466056
\(142\) 3.01607 + 10.8803i 0.253103 + 0.913052i
\(143\) −8.79525 −0.735496
\(144\) 3.96348 7.44626i 0.330290 0.620522i
\(145\) −0.269685 6.16701i −0.0223961 0.512142i
\(146\) 18.3116 5.07608i 1.51548 0.420099i
\(147\) 1.25532i 0.103537i
\(148\) 7.28714 + 12.1339i 0.598999 + 0.997403i
\(149\) 2.32968i 0.190855i 0.995436 + 0.0954274i \(0.0304218\pi\)
−0.995436 + 0.0954274i \(0.969578\pi\)
\(150\) 2.33786 + 6.25236i 0.190885 + 0.510503i
\(151\) 19.0166 1.54755 0.773775 0.633461i \(-0.218366\pi\)
0.773775 + 0.633461i \(0.218366\pi\)
\(152\) −7.98306 7.58069i −0.647512 0.614875i
\(153\) 3.16369 + 8.09903i 0.255770 + 0.654768i
\(154\) −11.2843 + 3.12807i −0.909317 + 0.252067i
\(155\) −7.80173 + 0.341172i −0.626650 + 0.0274036i
\(156\) 2.97998 + 4.96201i 0.238589 + 0.397278i
\(157\) −8.86354 −0.707388 −0.353694 0.935361i \(-0.615075\pi\)
−0.353694 + 0.935361i \(0.615075\pi\)
\(158\) 4.40463 + 15.8894i 0.350414 + 1.26410i
\(159\) 13.1370i 1.04183i
\(160\) −12.4559 2.20254i −0.984723 0.174126i
\(161\) 14.7928 1.16584
\(162\) 2.41737 0.670107i 0.189926 0.0526485i
\(163\) 15.7662i 1.23490i 0.786610 + 0.617450i \(0.211834\pi\)
−0.786610 + 0.617450i \(0.788166\pi\)
\(164\) 4.36142 + 7.26227i 0.340570 + 0.567088i
\(165\) −6.05014 + 0.264574i −0.471003 + 0.0205971i
\(166\) 3.45574 0.957949i 0.268217 0.0743512i
\(167\) −11.9251 −0.922795 −0.461397 0.887194i \(-0.652652\pi\)
−0.461397 + 0.887194i \(0.652652\pi\)
\(168\) 5.58808 + 5.30642i 0.431129 + 0.409399i
\(169\) −3.60154 −0.277042
\(170\) 10.0847 8.26436i 0.773458 0.633847i
\(171\) 8.20815i 0.627693i
\(172\) 7.34114 4.40879i 0.559757 0.336167i
\(173\) 1.90308i 0.144689i −0.997380 0.0723443i \(-0.976952\pi\)
0.997380 0.0723443i \(-0.0230480\pi\)
\(174\) −0.984510 3.55156i −0.0746355 0.269243i
\(175\) 14.3756 1.25971i 1.08669 0.0952248i
\(176\) 5.39202 10.1301i 0.406438 0.763583i
\(177\) 7.08054 0.532206
\(178\) −13.9177 + 3.85806i −1.04318 + 0.289174i
\(179\) 13.9270i 1.04095i −0.853875 0.520477i \(-0.825754\pi\)
0.853875 0.520477i \(-0.174246\pi\)
\(180\) −5.20415 7.86522i −0.387895 0.586239i
\(181\) −8.52747 −0.633842 −0.316921 0.948452i \(-0.602649\pi\)
−0.316921 + 0.948452i \(0.602649\pi\)
\(182\) 12.0582 3.34261i 0.893816 0.247770i
\(183\) 11.6137i 0.858510i
\(184\) −9.98259 + 10.5124i −0.735926 + 0.774988i
\(185\) 15.8095 0.691353i 1.16234 0.0508293i
\(186\) −4.49299 + 1.24548i −0.329442 + 0.0913230i
\(187\) 4.30397 + 11.0181i 0.314737 + 0.805724i
\(188\) −0.603645 1.00514i −0.0440253 0.0733072i
\(189\) 13.9192i 1.01248i
\(190\) −11.7061 + 3.80300i −0.849249 + 0.275899i
\(191\) −18.9784 −1.37323 −0.686616 0.727020i \(-0.740905\pi\)
−0.686616 + 0.727020i \(0.740905\pi\)
\(192\) −7.54197 + 0.390228i −0.544295 + 0.0281623i
\(193\) 10.4508 0.752267 0.376134 0.926565i \(-0.377253\pi\)
0.376134 + 0.926565i \(0.377253\pi\)
\(194\) 7.08181 1.96311i 0.508444 0.140943i
\(195\) 6.46508 0.282720i 0.462974 0.0202460i
\(196\) 2.27999 1.36927i 0.162856 0.0978048i
\(197\) 3.38131i 0.240908i 0.992719 + 0.120454i \(0.0384351\pi\)
−0.992719 + 0.120454i \(0.961565\pi\)
\(198\) 8.24526 2.28563i 0.585965 0.162433i
\(199\) 0.616510i 0.0437033i −0.999761 0.0218516i \(-0.993044\pi\)
0.999761 0.0218516i \(-0.00695614\pi\)
\(200\) −8.80584 + 11.0660i −0.622667 + 0.782487i
\(201\) 5.07587i 0.358024i
\(202\) −5.04013 18.1820i −0.354623 1.27928i
\(203\) −7.96748 −0.559208
\(204\) 4.75782 6.16128i 0.333114 0.431376i
\(205\) 9.46214 0.413782i 0.660865 0.0288998i
\(206\) −6.05173 21.8312i −0.421644 1.52105i
\(207\) −10.8088 −0.751267
\(208\) −5.76182 + 10.8248i −0.399510 + 0.750566i
\(209\) 11.1666i 0.772407i
\(210\) 8.19416 2.66207i 0.565451 0.183700i
\(211\) −7.06378 −0.486291 −0.243145 0.969990i \(-0.578179\pi\)
−0.243145 + 0.969990i \(0.578179\pi\)
\(212\) 23.8603 14.3295i 1.63873 0.984154i
\(213\) 7.53662 0.516401
\(214\) −3.98906 14.3903i −0.272686 0.983698i
\(215\) −0.418275 9.56490i −0.0285261 0.652321i
\(216\) −9.89165 9.39308i −0.673041 0.639118i
\(217\) 10.0795i 0.684239i
\(218\) −12.9082 + 3.57821i −0.874250 + 0.242347i
\(219\) 12.6842i 0.857120i
\(220\) −7.07985 10.7000i −0.477324 0.721396i
\(221\) −4.59915 11.7738i −0.309372 0.791989i
\(222\) 9.10463 2.52385i 0.611063 0.169390i
\(223\) 7.91167i 0.529804i 0.964275 + 0.264902i \(0.0853397\pi\)
−0.964275 + 0.264902i \(0.914660\pi\)
\(224\) −3.54252 + 15.9375i −0.236695 + 1.06487i
\(225\) −10.5040 + 0.920445i −0.700266 + 0.0613630i
\(226\) 17.8583 4.95041i 1.18792 0.329296i
\(227\) 16.8384i 1.11760i −0.829302 0.558801i \(-0.811262\pi\)
0.829302 0.558801i \(-0.188738\pi\)
\(228\) −6.29982 + 3.78342i −0.417216 + 0.250563i
\(229\) 20.7187i 1.36913i 0.728953 + 0.684564i \(0.240007\pi\)
−0.728953 + 0.684564i \(0.759993\pi\)
\(230\) 5.00795 + 15.4151i 0.330215 + 1.01644i
\(231\) 7.81650i 0.514288i
\(232\) 5.37667 5.66206i 0.352996 0.371732i
\(233\) −2.65309 −0.173809 −0.0869047 0.996217i \(-0.527698\pi\)
−0.0869047 + 0.996217i \(0.527698\pi\)
\(234\) −8.81075 + 2.44239i −0.575977 + 0.159664i
\(235\) −1.30961 + 0.0572696i −0.0854296 + 0.00373586i
\(236\) 7.72325 + 12.8601i 0.502741 + 0.837121i
\(237\) 11.0064 0.714942
\(238\) −10.0881 13.4701i −0.653915 0.873134i
\(239\) 6.79891 0.439785 0.219893 0.975524i \(-0.429429\pi\)
0.219893 + 0.975524i \(0.429429\pi\)
\(240\) −3.63786 + 7.61958i −0.234823 + 0.491842i
\(241\) 6.77933i 0.436695i 0.975871 + 0.218347i \(0.0700666\pi\)
−0.975871 + 0.218347i \(0.929933\pi\)
\(242\) −3.77399 + 1.04617i −0.242601 + 0.0672502i
\(243\) 16.1429i 1.03556i
\(244\) 21.0935 12.6679i 1.35037 0.810979i
\(245\) −0.129907 2.97064i −0.00829943 0.189787i
\(246\) 5.44921 1.51055i 0.347429 0.0963091i
\(247\) 11.9324i 0.759241i
\(248\) −7.16294 6.80190i −0.454847 0.431921i
\(249\) 2.39374i 0.151697i
\(250\) 6.17941 + 14.5539i 0.390820 + 0.920467i
\(251\) 2.78071i 0.175517i 0.996142 + 0.0877584i \(0.0279703\pi\)
−0.996142 + 0.0877584i \(0.972030\pi\)
\(252\) −10.4356 + 6.26717i −0.657379 + 0.394795i
\(253\) −14.7046 −0.924471
\(254\) 7.85244 + 28.3272i 0.492706 + 1.77740i
\(255\) −3.51787 7.96068i −0.220297 0.498517i
\(256\) −8.93532 13.2725i −0.558457 0.829533i
\(257\) 5.39189i 0.336337i 0.985758 + 0.168168i \(0.0537852\pi\)
−0.985758 + 0.168168i \(0.946215\pi\)
\(258\) −1.52695 5.50839i −0.0950640 0.342937i
\(259\) 20.4251i 1.26916i
\(260\) 7.56541 + 11.4339i 0.469187 + 0.709099i
\(261\) 5.82170 0.360354
\(262\) −13.1962 + 3.65806i −0.815264 + 0.225995i
\(263\) 11.0291i 0.680081i −0.940411 0.340040i \(-0.889559\pi\)
0.940411 0.340040i \(-0.110441\pi\)
\(264\) −5.55476 5.27478i −0.341872 0.324641i
\(265\) −1.35948 31.0879i −0.0835124 1.90972i
\(266\) 4.24382 + 15.3093i 0.260205 + 0.938673i
\(267\) 9.64061i 0.589996i
\(268\) −9.21910 + 5.53661i −0.563146 + 0.338202i
\(269\) −21.6904 −1.32249 −0.661245 0.750170i \(-0.729971\pi\)
−0.661245 + 0.750170i \(0.729971\pi\)
\(270\) −14.5048 + 4.71222i −0.882732 + 0.286776i
\(271\) 6.24532 0.379376 0.189688 0.981844i \(-0.439252\pi\)
0.189688 + 0.981844i \(0.439252\pi\)
\(272\) 16.3802 + 1.92089i 0.993194 + 0.116471i
\(273\) 8.35258i 0.505521i
\(274\) 6.78313 + 24.4697i 0.409784 + 1.47827i
\(275\) −14.2899 + 1.25220i −0.861713 + 0.0755102i
\(276\) 4.98217 + 8.29588i 0.299891 + 0.499353i
\(277\) 15.4647i 0.929182i −0.885525 0.464591i \(-0.846201\pi\)
0.885525 0.464591i \(-0.153799\pi\)
\(278\) −10.9319 + 3.03037i −0.655649 + 0.181749i
\(279\) 7.36490i 0.440925i
\(280\) 13.7730 + 11.9790i 0.823091 + 0.715883i
\(281\) 9.41962 0.561928 0.280964 0.959718i \(-0.409346\pi\)
0.280964 + 0.959718i \(0.409346\pi\)
\(282\) −0.754200 + 0.209068i −0.0449120 + 0.0124498i
\(283\) 14.8670i 0.883752i −0.897076 0.441876i \(-0.854313\pi\)
0.897076 0.441876i \(-0.145687\pi\)
\(284\) 8.22072 + 13.6885i 0.487810 + 0.812260i
\(285\) 0.358944 + 8.20815i 0.0212620 + 0.486209i
\(286\) −11.9864 + 3.32268i −0.708768 + 0.196474i
\(287\) 12.2246i 0.721597i
\(288\) 2.58846 11.6452i 0.152527 0.686203i
\(289\) −12.4988 + 11.5230i −0.735224 + 0.677824i
\(290\) −2.69731 8.30265i −0.158392 0.487548i
\(291\) 4.90547i 0.287564i
\(292\) 23.0378 13.8356i 1.34819 0.809666i
\(293\) −12.3249 −0.720029 −0.360014 0.932947i \(-0.617228\pi\)
−0.360014 + 0.932947i \(0.617228\pi\)
\(294\) −0.474236 1.71078i −0.0276580 0.0997746i
\(295\) 16.7556 0.732728i 0.975551 0.0426611i
\(296\) 14.5150 + 13.7834i 0.843669 + 0.801145i
\(297\) 13.8363i 0.802861i
\(298\) 0.880108 + 3.17494i 0.0509833 + 0.183919i
\(299\) 15.7131 0.908712
\(300\) 5.54810 + 7.63764i 0.320320 + 0.440960i
\(301\) −12.3574 −0.712268
\(302\) 25.9162 7.18412i 1.49131 0.413399i
\(303\) −12.5944 −0.723529
\(304\) −13.7433 7.31528i −0.788234 0.419560i
\(305\) −1.20184 27.4831i −0.0688173 1.57368i
\(306\) 7.37121 + 9.84234i 0.421384 + 0.562649i
\(307\) −21.3733 −1.21984 −0.609919 0.792464i \(-0.708798\pi\)
−0.609919 + 0.792464i \(0.708798\pi\)
\(308\) −14.1968 + 8.52601i −0.808937 + 0.485814i
\(309\) −15.1222 −0.860272
\(310\) −10.5035 + 3.41230i −0.596558 + 0.193806i
\(311\) 0.518584i 0.0294062i −0.999892 0.0147031i \(-0.995320\pi\)
0.999892 0.0147031i \(-0.00468031\pi\)
\(312\) 5.93573 + 5.63655i 0.336044 + 0.319107i
\(313\) −23.0605 −1.30345 −0.651727 0.758454i \(-0.725955\pi\)
−0.651727 + 0.758454i \(0.725955\pi\)
\(314\) −12.0794 + 3.34848i −0.681681 + 0.188966i
\(315\) 0.594586 + 13.5967i 0.0335011 + 0.766085i
\(316\) 12.0055 + 19.9905i 0.675360 + 1.12455i
\(317\) 16.1043i 0.904509i −0.891889 0.452254i \(-0.850620\pi\)
0.891889 0.452254i \(-0.149380\pi\)
\(318\) −4.96292 17.9034i −0.278307 1.00397i
\(319\) 7.91998 0.443434
\(320\) −17.8072 + 1.70393i −0.995453 + 0.0952525i
\(321\) −9.96794 −0.556356
\(322\) 20.1599 5.58844i 1.12347 0.311432i
\(323\) 14.9481 5.83914i 0.831736 0.324898i
\(324\) 3.04128 1.82647i 0.168960 0.101471i
\(325\) 15.2699 1.33808i 0.847024 0.0742231i
\(326\) 5.95615 + 21.4864i 0.329881 + 1.19002i
\(327\) 8.94130i 0.494455i
\(328\) 8.68739 + 8.24952i 0.479681 + 0.455503i
\(329\) 1.69196i 0.0932806i
\(330\) −8.14531 + 2.64620i −0.448384 + 0.145668i
\(331\) 11.3323i 0.622880i 0.950266 + 0.311440i \(0.100811\pi\)
−0.950266 + 0.311440i \(0.899189\pi\)
\(332\) 4.34766 2.61103i 0.238609 0.143299i
\(333\) 14.9243i 0.817846i
\(334\) −16.2518 + 4.50509i −0.889260 + 0.246508i
\(335\) 0.525275 + 12.0117i 0.0286989 + 0.656270i
\(336\) 9.62021 + 5.12063i 0.524826 + 0.279353i
\(337\) −33.1037 −1.80327 −0.901637 0.432494i \(-0.857634\pi\)
−0.901637 + 0.432494i \(0.857634\pi\)
\(338\) −4.90826 + 1.36059i −0.266974 + 0.0740066i
\(339\) 12.3702i 0.671857i
\(340\) 10.6215 15.0726i 0.576030 0.817428i
\(341\) 10.0194i 0.542580i
\(342\) −3.10088 11.1862i −0.167677 0.604882i
\(343\) 16.3650 0.883628
\(344\) 8.33911 8.78174i 0.449615 0.473479i
\(345\) 10.8088 0.472673i 0.581929 0.0254479i
\(346\) −0.718948 2.59356i −0.0386509 0.139431i
\(347\) 11.8594i 0.636644i 0.947983 + 0.318322i \(0.103119\pi\)
−0.947983 + 0.318322i \(0.896881\pi\)
\(348\) −2.68342 4.46821i −0.143846 0.239521i
\(349\) 0.0652143i 0.00349084i 0.999998 + 0.00174542i \(0.000555585\pi\)
−0.999998 + 0.00174542i \(0.999444\pi\)
\(350\) 19.1155 7.14758i 1.02176 0.382054i
\(351\) 14.7852i 0.789175i
\(352\) 3.52141 15.8425i 0.187692 0.844407i
\(353\) 18.2936i 0.973673i 0.873493 + 0.486836i \(0.161849\pi\)
−0.873493 + 0.486836i \(0.838151\pi\)
\(354\) 9.64951 2.67489i 0.512866 0.142169i
\(355\) 17.8349 0.779925i 0.946579 0.0413941i
\(356\) −17.5098 + 10.5157i −0.928020 + 0.557331i
\(357\) −10.4636 + 4.08734i −0.553790 + 0.216325i
\(358\) −5.26137 18.9800i −0.278072 1.00313i
\(359\) 8.34651 0.440512 0.220256 0.975442i \(-0.429311\pi\)
0.220256 + 0.975442i \(0.429311\pi\)
\(360\) −10.0637 8.75286i −0.530402 0.461316i
\(361\) 3.85047 0.202656
\(362\) −11.6214 + 3.22152i −0.610808 + 0.169319i
\(363\) 2.61419i 0.137209i
\(364\) 15.1705 9.11075i 0.795148 0.477533i
\(365\) −1.31262 30.0164i −0.0687059 1.57113i
\(366\) −4.38744 15.8274i −0.229335 0.827312i
\(367\) −6.57511 −0.343218 −0.171609 0.985165i \(-0.554897\pi\)
−0.171609 + 0.985165i \(0.554897\pi\)
\(368\) −9.63308 + 18.0978i −0.502159 + 0.943414i
\(369\) 8.93233i 0.464999i
\(370\) 21.2843 6.91472i 1.10652 0.359479i
\(371\) −40.1641 −2.08522
\(372\) −5.65262 + 3.39473i −0.293075 + 0.176009i
\(373\) 6.67146 0.345435 0.172718 0.984971i \(-0.444745\pi\)
0.172718 + 0.984971i \(0.444745\pi\)
\(374\) 10.0280 + 13.3898i 0.518534 + 0.692368i
\(375\) 10.4637 1.37979i 0.540346 0.0712519i
\(376\) −1.20238 1.14178i −0.0620081 0.0588827i
\(377\) −8.46316 −0.435875
\(378\) 5.25842 + 18.9694i 0.270464 + 0.975682i
\(379\) 25.2216 1.29555 0.647774 0.761833i \(-0.275700\pi\)
0.647774 + 0.761833i \(0.275700\pi\)
\(380\) −14.5166 + 9.60515i −0.744686 + 0.492734i
\(381\) 19.6218 1.00526
\(382\) −25.8642 + 7.16969i −1.32333 + 0.366834i
\(383\) 12.0576i 0.616114i 0.951368 + 0.308057i \(0.0996788\pi\)
−0.951368 + 0.308057i \(0.900321\pi\)
\(384\) −10.1309 + 3.38102i −0.516992 + 0.172537i
\(385\) 0.808888 + 18.4972i 0.0412248 + 0.942706i
\(386\) 14.2426 3.94813i 0.724930 0.200954i
\(387\) 9.02934 0.458987
\(388\) 8.90961 5.35075i 0.452317 0.271643i
\(389\) 14.8108i 0.750936i 0.926835 + 0.375468i \(0.122518\pi\)
−0.926835 + 0.375468i \(0.877482\pi\)
\(390\) 8.70394 2.82768i 0.440741 0.143185i
\(391\) −7.68923 19.6843i −0.388861 0.995480i
\(392\) 2.58993 2.72740i 0.130811 0.137755i
\(393\) 9.14083i 0.461094i
\(394\) 1.27740 + 4.60812i 0.0643542 + 0.232154i
\(395\) 26.0459 1.13899i 1.31051 0.0573090i
\(396\) 10.3733 6.22981i 0.521280 0.313060i
\(397\) 27.5794i 1.38417i −0.721816 0.692085i \(-0.756692\pi\)
0.721816 0.692085i \(-0.243308\pi\)
\(398\) −0.232906 0.840193i −0.0116745 0.0421151i
\(399\) 10.6045 0.530891
\(400\) −7.82024 + 18.4077i −0.391012 + 0.920386i
\(401\) 28.7380i 1.43511i −0.696503 0.717553i \(-0.745262\pi\)
0.696503 0.717553i \(-0.254738\pi\)
\(402\) 1.91757 + 6.91750i 0.0956395 + 0.345014i
\(403\) 10.7065i 0.533331i
\(404\) −13.7376 22.8747i −0.683471 1.13806i
\(405\) −0.173283 3.96254i −0.00861050 0.196900i
\(406\) −10.8583 + 3.00996i −0.538886 + 0.149382i
\(407\) 20.3034i 1.00640i
\(408\) 4.15644 10.1941i 0.205774 0.504685i
\(409\) −2.56137 −0.126652 −0.0633258 0.997993i \(-0.520171\pi\)
−0.0633258 + 0.997993i \(0.520171\pi\)
\(410\) 12.7389 4.13853i 0.629129 0.204387i
\(411\) 16.9498 0.836073
\(412\) −16.4949 27.4658i −0.812643 1.35314i
\(413\) 21.6475i 1.06520i
\(414\) −14.7305 + 4.08338i −0.723966 + 0.200687i
\(415\) −0.247716 5.66464i −0.0121599 0.278066i
\(416\) −3.76292 + 16.9290i −0.184492 + 0.830013i
\(417\) 7.57234i 0.370819i
\(418\) −4.21851 15.2180i −0.206334 0.744338i
\(419\) −39.4186 −1.92572 −0.962861 0.269996i \(-0.912978\pi\)
−0.962861 + 0.269996i \(0.912978\pi\)
\(420\) 10.1615 6.72352i 0.495830 0.328074i
\(421\) 21.2325i 1.03481i −0.855741 0.517405i \(-0.826898\pi\)
0.855741 0.517405i \(-0.173102\pi\)
\(422\) −9.62667 + 2.66856i −0.468619 + 0.129904i
\(423\) 1.23628i 0.0601101i
\(424\) 27.1039 28.5425i 1.31628 1.38615i
\(425\) −9.14861 18.4744i −0.443773 0.896139i
\(426\) 10.2711 2.84719i 0.497635 0.137947i
\(427\) −35.5068 −1.71830
\(428\) −10.8727 18.1044i −0.525554 0.875108i
\(429\) 8.30278i 0.400862i
\(430\) −4.18347 12.8772i −0.201745 0.620995i
\(431\) 36.8583i 1.77540i −0.460423 0.887700i \(-0.652302\pi\)
0.460423 0.887700i \(-0.347698\pi\)
\(432\) −17.0291 9.06421i −0.819312 0.436102i
\(433\) 22.3041i 1.07187i −0.844260 0.535934i \(-0.819960\pi\)
0.844260 0.535934i \(-0.180040\pi\)
\(434\) 3.80783 + 13.7365i 0.182782 + 0.659374i
\(435\) −5.82170 + 0.254584i −0.279129 + 0.0122064i
\(436\) −16.2397 + 9.75291i −0.777742 + 0.467080i
\(437\) 19.9496i 0.954317i
\(438\) −4.79186 17.2863i −0.228964 0.825972i
\(439\) 37.0018i 1.76600i 0.469373 + 0.883000i \(0.344480\pi\)
−0.469373 + 0.883000i \(0.655520\pi\)
\(440\) −13.6908 11.9076i −0.652685 0.567673i
\(441\) 2.80430 0.133538
\(442\) −10.7157 14.3081i −0.509695 0.680566i
\(443\) −22.5999 −1.07376 −0.536878 0.843660i \(-0.680396\pi\)
−0.536878 + 0.843660i \(0.680396\pi\)
\(444\) 11.4545 6.87911i 0.543607 0.326468i
\(445\) 0.997656 + 22.8139i 0.0472934 + 1.08148i
\(446\) 2.98888 + 10.7822i 0.141527 + 0.510551i
\(447\) 2.19923 0.104020
\(448\) 1.19305 + 23.0582i 0.0563664 + 1.08940i
\(449\) 17.0085i 0.802679i −0.915929 0.401340i \(-0.868545\pi\)
0.915929 0.401340i \(-0.131455\pi\)
\(450\) −13.9673 + 5.22261i −0.658427 + 0.246196i
\(451\) 12.1518i 0.572204i
\(452\) 22.4675 13.4931i 1.05678 0.634660i
\(453\) 17.9518i 0.843450i
\(454\) −6.36121 22.9477i −0.298546 1.07699i
\(455\) −0.864365 19.7658i −0.0405220 0.926637i
\(456\) −7.15623 + 7.53607i −0.335121 + 0.352909i
\(457\) 26.3883i 1.23439i 0.786809 + 0.617196i \(0.211731\pi\)
−0.786809 + 0.617196i \(0.788269\pi\)
\(458\) 7.82711 + 28.2358i 0.365737 + 1.31937i
\(459\) 18.5219 7.23515i 0.864529 0.337708i
\(460\) 12.6485 + 19.1161i 0.589738 + 0.891292i
\(461\) 15.1560i 0.705885i −0.935645 0.352942i \(-0.885181\pi\)
0.935645 0.352942i \(-0.114819\pi\)
\(462\) 2.95292 + 10.6525i 0.137382 + 0.495598i
\(463\) 17.0335i 0.791615i 0.918334 + 0.395807i \(0.129535\pi\)
−0.918334 + 0.395807i \(0.870465\pi\)
\(464\) 5.18843 9.74758i 0.240867 0.452520i
\(465\) 0.322069 + 7.36490i 0.0149356 + 0.341539i
\(466\) −3.61568 + 1.00229i −0.167493 + 0.0464300i
\(467\) 4.39784 0.203508 0.101754 0.994810i \(-0.467555\pi\)
0.101754 + 0.994810i \(0.467555\pi\)
\(468\) −11.0848 + 6.65707i −0.512395 + 0.307723i
\(469\) 15.5186 0.716581
\(470\) −1.76313 + 0.572795i −0.0813272 + 0.0264210i
\(471\) 8.36725i 0.385543i
\(472\) 15.3837 + 14.6083i 0.708093 + 0.672402i
\(473\) 12.2837 0.564806
\(474\) 14.9997 4.15801i 0.688961 0.190984i
\(475\) 1.69884 + 19.3869i 0.0779480 + 0.889532i
\(476\) −18.8370 14.5462i −0.863394 0.666723i
\(477\) 29.3472 1.34372
\(478\) 9.26570 2.56850i 0.423803 0.117480i
\(479\) 8.24757i 0.376841i −0.982088 0.188420i \(-0.939663\pi\)
0.982088 0.188420i \(-0.0603368\pi\)
\(480\) −2.07921 + 11.7584i −0.0949026 + 0.536697i
\(481\) 21.6958i 0.989245i
\(482\) 2.56110 + 9.23901i 0.116655 + 0.420825i
\(483\) 13.9645i 0.635407i
\(484\) −4.74804 + 2.85148i −0.215820 + 0.129613i
\(485\) −0.507642 11.6085i −0.0230508 0.527114i
\(486\) −6.09846 21.9998i −0.276632 0.997932i
\(487\) 29.6417 1.34320 0.671598 0.740916i \(-0.265608\pi\)
0.671598 + 0.740916i \(0.265608\pi\)
\(488\) 23.9610 25.2328i 1.08466 1.14224i
\(489\) 14.8834 0.673049
\(490\) −1.29929 3.99937i −0.0586959 0.180673i
\(491\) 34.2977i 1.54784i 0.633286 + 0.773918i \(0.281706\pi\)
−0.633286 + 0.773918i \(0.718294\pi\)
\(492\) 6.85564 4.11722i 0.309076 0.185618i
\(493\) 4.14146 + 10.6021i 0.186522 + 0.477494i
\(494\) 4.50784 + 16.2617i 0.202817 + 0.731650i
\(495\) −0.591041 13.5156i −0.0265653 0.607481i
\(496\) −12.3314 6.56375i −0.553698 0.294721i
\(497\) 23.0419i 1.03357i
\(498\) −0.904311 3.26224i −0.0405231 0.146185i
\(499\) −2.30863 −0.103348 −0.0516741 0.998664i \(-0.516456\pi\)
−0.0516741 + 0.998664i \(0.516456\pi\)
\(500\) 13.9196 + 17.4998i 0.622504 + 0.782617i
\(501\) 11.2574i 0.502944i
\(502\) 1.05050 + 3.78961i 0.0468861 + 0.169139i
\(503\) −0.640049 −0.0285384 −0.0142692 0.999898i \(-0.504542\pi\)
−0.0142692 + 0.999898i \(0.504542\pi\)
\(504\) −11.8542 + 12.4834i −0.528027 + 0.556054i
\(505\) −29.8038 + 1.30333i −1.32625 + 0.0579974i
\(506\) −20.0398 + 5.55512i −0.890876 + 0.246955i
\(507\) 3.39988i 0.150994i
\(508\) 21.4029 + 35.6384i 0.949602 + 1.58120i
\(509\) 13.9844i 0.619850i 0.950761 + 0.309925i \(0.100304\pi\)
−0.950761 + 0.309925i \(0.899696\pi\)
\(510\) −7.80162 9.52000i −0.345461 0.421553i
\(511\) −38.7797 −1.71551
\(512\) −17.1914 14.7125i −0.759758 0.650206i
\(513\) −18.7715 −0.828780
\(514\) 2.03695 + 7.34818i 0.0898461 + 0.324114i
\(515\) −35.7857 + 1.56492i −1.57691 + 0.0689585i
\(516\) −4.16193 6.93009i −0.183219 0.305080i
\(517\) 1.68187i 0.0739685i
\(518\) −7.71622 27.8358i −0.339031 1.22303i
\(519\) −1.79652 −0.0788586
\(520\) 14.6298 + 12.7243i 0.641560 + 0.557996i
\(521\) 22.6377i 0.991777i 0.868386 + 0.495888i \(0.165158\pi\)
−0.868386 + 0.495888i \(0.834842\pi\)
\(522\) 7.93394 2.19933i 0.347259 0.0962620i
\(523\) 28.4555 1.24427 0.622137 0.782908i \(-0.286265\pi\)
0.622137 + 0.782908i \(0.286265\pi\)
\(524\) −16.6021 + 9.97055i −0.725267 + 0.435566i
\(525\) −1.18917 13.5707i −0.0518997 0.592272i
\(526\) −4.16657 15.0306i −0.181671 0.655367i
\(527\) 13.4125 5.23926i 0.584256 0.228226i
\(528\) −9.56286 5.09010i −0.416170 0.221518i
\(529\) 3.27044 0.142193
\(530\) −13.5972 41.8537i −0.590623 1.81801i
\(531\) 15.8175i 0.686419i
\(532\) 11.5671 + 19.2606i 0.501498 + 0.835053i
\(533\) 12.9852i 0.562450i
\(534\) 3.64204 + 13.1384i 0.157606 + 0.568555i
\(535\) −23.5885 + 1.03153i −1.01982 + 0.0445969i
\(536\) −10.4724 + 11.0282i −0.452337 + 0.476346i
\(537\) −13.1472 −0.567344
\(538\) −29.5602 + 8.19423i −1.27443 + 0.353279i
\(539\) 3.81504 0.164325
\(540\) −17.9872 + 11.9015i −0.774047 + 0.512161i
\(541\) 9.54279 0.410277 0.205138 0.978733i \(-0.434236\pi\)
0.205138 + 0.978733i \(0.434236\pi\)
\(542\) 8.51126 2.35936i 0.365590 0.101343i
\(543\) 8.04999i 0.345458i
\(544\) 23.0489 3.57029i 0.988215 0.153075i
\(545\) 0.925289 + 21.1590i 0.0396350 + 0.906352i
\(546\) −3.15545 11.3831i −0.135041 0.487150i
\(547\) 14.2853i 0.610794i 0.952225 + 0.305397i \(0.0987891\pi\)
−0.952225 + 0.305397i \(0.901211\pi\)
\(548\) 18.4884 + 30.7853i 0.789784 + 1.31508i
\(549\) 25.9442 1.10727
\(550\) −19.0015 + 7.10497i −0.810227 + 0.302957i
\(551\) 10.7449i 0.457750i
\(552\) 9.92383 + 9.42364i 0.422386 + 0.401097i
\(553\) 33.6501i 1.43095i
\(554\) −5.84226 21.0756i −0.248214 0.895416i
\(555\) −0.652643 14.9243i −0.0277031 0.633501i
\(556\) −13.7533 + 8.25969i −0.583272 + 0.350289i
\(557\) −8.19911 −0.347407 −0.173704 0.984798i \(-0.555574\pi\)
−0.173704 + 0.984798i \(0.555574\pi\)
\(558\) −2.78232 10.0370i −0.117785 0.424902i
\(559\) −13.1262 −0.555179
\(560\) 23.2955 + 11.1221i 0.984415 + 0.469994i
\(561\) 10.4012 4.06298i 0.439138 0.171539i
\(562\) 12.8373 3.55856i 0.541507 0.150109i
\(563\) −35.9134 −1.51357 −0.756784 0.653665i \(-0.773230\pi\)
−0.756784 + 0.653665i \(0.773230\pi\)
\(564\) −0.948858 + 0.569845i −0.0399541 + 0.0239948i
\(565\) −1.28013 29.2733i −0.0538554 1.23154i
\(566\) −5.61648 20.2611i −0.236078 0.851637i
\(567\) −5.11942 −0.214995
\(568\) 16.3746 + 15.5493i 0.687064 + 0.652433i
\(569\) 3.85286 0.161520 0.0807602 0.996734i \(-0.474265\pi\)
0.0807602 + 0.996734i \(0.474265\pi\)
\(570\) 3.59006 + 11.0506i 0.150371 + 0.462860i
\(571\) 7.18893 0.300848 0.150424 0.988622i \(-0.451936\pi\)
0.150424 + 0.988622i \(0.451936\pi\)
\(572\) −15.0800 + 9.05643i −0.630527 + 0.378669i
\(573\) 17.9158i 0.748443i
\(574\) −4.61824 16.6600i −0.192761 0.695375i
\(575\) 25.5295 2.23710i 1.06465 0.0932936i
\(576\) −0.871743 16.8483i −0.0363226 0.702011i
\(577\) 13.1871i 0.548984i 0.961589 + 0.274492i \(0.0885097\pi\)
−0.961589 + 0.274492i \(0.911490\pi\)
\(578\) −12.6805 + 20.4256i −0.527438 + 0.849594i
\(579\) 9.86566i 0.410003i
\(580\) −6.81253 10.2960i −0.282875 0.427519i
\(581\) −7.31844 −0.303620
\(582\) −1.85319 6.68528i −0.0768174 0.277114i
\(583\) 39.9247 1.65351
\(584\) 26.1696 27.5587i 1.08291 1.14039i
\(585\) 0.631577 + 14.4426i 0.0261125 + 0.597126i
\(586\) −16.7966 + 4.65612i −0.693863 + 0.192342i
\(587\) 27.2958 1.12662 0.563310 0.826246i \(-0.309528\pi\)
0.563310 + 0.826246i \(0.309528\pi\)
\(588\) −1.29260 2.15233i −0.0533059 0.0887605i
\(589\) −13.5932 −0.560097
\(590\) 22.5581 7.32854i 0.928704 0.301711i
\(591\) 3.19198 0.131301
\(592\) 24.9885 + 13.3008i 1.02702 + 0.546661i
\(593\) 29.1916i 1.19876i −0.800466 0.599378i \(-0.795415\pi\)
0.800466 0.599378i \(-0.204585\pi\)
\(594\) −5.22707 18.8563i −0.214469 0.773685i
\(595\) −24.3384 + 10.7553i −0.997775 + 0.440922i
\(596\) 2.39886 + 3.99438i 0.0982612 + 0.163616i
\(597\) −0.581990 −0.0238193
\(598\) 21.4142 5.93611i 0.875690 0.242746i
\(599\) 16.4164 0.670756 0.335378 0.942084i \(-0.391136\pi\)
0.335378 + 0.942084i \(0.391136\pi\)
\(600\) 10.4464 + 8.31278i 0.426474 + 0.339368i
\(601\) 24.1491i 0.985062i 0.870295 + 0.492531i \(0.163928\pi\)
−0.870295 + 0.492531i \(0.836072\pi\)
\(602\) −16.8409 + 4.66839i −0.686385 + 0.190269i
\(603\) −11.3391 −0.461766
\(604\) 32.6052 19.5813i 1.32669 0.796753i
\(605\) 0.270529 + 6.18631i 0.0109986 + 0.251509i
\(606\) −17.1639 + 4.75792i −0.697236 + 0.193277i
\(607\) 13.0482 0.529609 0.264805 0.964302i \(-0.414693\pi\)
0.264805 + 0.964302i \(0.414693\pi\)
\(608\) −21.4933 4.77745i −0.871667 0.193751i
\(609\) 7.52136i 0.304781i
\(610\) −12.0205 37.0005i −0.486695 1.49811i
\(611\) 1.79722i 0.0727076i
\(612\) 13.7639 + 10.6286i 0.556372 + 0.429638i
\(613\) −2.86925 −0.115888 −0.0579440 0.998320i \(-0.518454\pi\)
−0.0579440 + 0.998320i \(0.518454\pi\)
\(614\) −29.1280 + 8.07442i −1.17551 + 0.325857i
\(615\) −0.390613 8.93233i −0.0157510 0.360186i
\(616\) −16.1267 + 16.9827i −0.649764 + 0.684252i
\(617\) 5.43171 0.218672 0.109336 0.994005i \(-0.465127\pi\)
0.109336 + 0.994005i \(0.465127\pi\)
\(618\) −20.6088 + 5.71288i −0.829009 + 0.229806i
\(619\) 43.4998 1.74841 0.874203 0.485561i \(-0.161385\pi\)
0.874203 + 0.485561i \(0.161385\pi\)
\(620\) −13.0253 + 8.61838i −0.523107 + 0.346122i
\(621\) 24.7191i 0.991942i
\(622\) −0.195911 0.706737i −0.00785532 0.0283376i
\(623\) 29.4744 1.18087
\(624\) 10.2187 + 5.43920i 0.409076 + 0.217742i
\(625\) 24.6190 4.34802i 0.984760 0.173921i
\(626\) −31.4273 + 8.71180i −1.25609 + 0.348194i
\(627\) −10.5413 −0.420980
\(628\) −15.1971 + 9.12675i −0.606430 + 0.364197i
\(629\) −27.1791 + 10.6169i −1.08370 + 0.423323i
\(630\) 5.94688 + 18.3052i 0.236929 + 0.729297i
\(631\) −2.76768 −0.110180 −0.0550899 0.998481i \(-0.517545\pi\)
−0.0550899 + 0.998481i \(0.517545\pi\)
\(632\) 23.9133 + 22.7080i 0.951220 + 0.903276i
\(633\) 6.66826i 0.265040i
\(634\) −6.08391 21.9473i −0.241623 0.871639i
\(635\) 46.4338 2.03056i 1.84267 0.0805804i
\(636\) −13.5271 22.5243i −0.536386 0.893145i
\(637\) −4.07669 −0.161524
\(638\) 10.7935 2.99202i 0.427319 0.118455i
\(639\) 16.8363i 0.666034i
\(640\) −23.6243 + 9.04938i −0.933834 + 0.357708i
\(641\) 33.2524i 1.31339i −0.754155 0.656696i \(-0.771953\pi\)
0.754155 0.656696i \(-0.228047\pi\)
\(642\) −13.5845 + 3.76570i −0.536138 + 0.148620i
\(643\) 23.1775i 0.914030i 0.889459 + 0.457015i \(0.151081\pi\)
−0.889459 + 0.457015i \(0.848919\pi\)
\(644\) 25.3632 15.2321i 0.999450 0.600228i
\(645\) −9.02934 + 0.394855i −0.355530 + 0.0155474i
\(646\) 18.1657 13.6048i 0.714720 0.535274i
\(647\) 7.80320i 0.306776i 0.988166 + 0.153388i \(0.0490184\pi\)
−0.988166 + 0.153388i \(0.950982\pi\)
\(648\) 3.45472 3.63809i 0.135714 0.142918i
\(649\) 21.5184i 0.844673i
\(650\) 20.3047 7.59225i 0.796416 0.297793i
\(651\) 9.51510 0.372926
\(652\) 16.2343 + 27.0321i 0.635786 + 1.05866i
\(653\) 5.63478i 0.220506i 0.993904 + 0.110253i \(0.0351661\pi\)
−0.993904 + 0.110253i \(0.964834\pi\)
\(654\) 3.37785 + 12.1854i 0.132085 + 0.476487i
\(655\) 0.945937 + 21.6312i 0.0369608 + 0.845200i
\(656\) 14.9559 + 7.96069i 0.583929 + 0.310813i
\(657\) 28.3357 1.10548
\(658\) 0.639189 + 2.30583i 0.0249182 + 0.0898907i
\(659\) 27.2916i 1.06313i −0.847017 0.531566i \(-0.821604\pi\)
0.847017 0.531566i \(-0.178396\pi\)
\(660\) −10.1009 + 6.68343i −0.393178 + 0.260152i
\(661\) 14.3284i 0.557311i 0.960391 + 0.278656i \(0.0898888\pi\)
−0.960391 + 0.278656i \(0.910111\pi\)
\(662\) 4.28113 + 15.4439i 0.166391 + 0.600244i
\(663\) −11.1145 + 4.34163i −0.431652 + 0.168615i
\(664\) 4.93869 5.20082i 0.191658 0.201831i
\(665\) 25.0950 1.09741i 0.973141 0.0425557i
\(666\) 5.63811 + 20.3391i 0.218472 + 0.788125i
\(667\) −14.1494 −0.547867
\(668\) −20.4464 + 12.2793i −0.791095 + 0.475099i
\(669\) 7.46867 0.288756
\(670\) 5.25365 + 16.1714i 0.202966 + 0.624755i
\(671\) 35.2952 1.36255
\(672\) 15.0451 + 3.34417i 0.580378 + 0.129004i
\(673\) −41.8173 −1.61194 −0.805969 0.591958i \(-0.798355\pi\)
−0.805969 + 0.591958i \(0.798355\pi\)
\(674\) −45.1144 + 12.5060i −1.73774 + 0.481711i
\(675\) 2.10499 + 24.0219i 0.0810212 + 0.924604i
\(676\) −6.17507 + 3.70849i −0.237503 + 0.142634i
\(677\) 2.49652i 0.0959492i −0.998849 0.0479746i \(-0.984723\pi\)
0.998849 0.0479746i \(-0.0152766\pi\)
\(678\) −4.67323 16.8584i −0.179474 0.647442i
\(679\) −14.9976 −0.575555
\(680\) 8.78101 24.5539i 0.336736 0.941599i
\(681\) −15.8955 −0.609118
\(682\) −3.78513 13.6546i −0.144940 0.522863i
\(683\) 45.0742i 1.72472i 0.506299 + 0.862358i \(0.331013\pi\)
−0.506299 + 0.862358i \(0.668987\pi\)
\(684\) −8.45190 14.0734i −0.323166 0.538109i
\(685\) 40.1107 1.75405i 1.53255 0.0670188i
\(686\) 22.3026 6.18240i 0.851517 0.236045i
\(687\) 19.5586 0.746206
\(688\) 8.04714 15.1183i 0.306794 0.576379i
\(689\) −42.6629 −1.62533
\(690\) 14.5520 4.72755i 0.553983 0.179975i
\(691\) −15.6346 −0.594769 −0.297385 0.954758i \(-0.596114\pi\)
−0.297385 + 0.954758i \(0.596114\pi\)
\(692\) −1.95959 3.26295i −0.0744926 0.124039i
\(693\) −17.4615 −0.663309
\(694\) 4.48024 + 16.1622i 0.170068 + 0.613508i
\(695\) 0.783623 + 17.9195i 0.0297245 + 0.679724i
\(696\) −5.34503 5.07562i −0.202603 0.192391i
\(697\) −16.2670 + 6.35431i −0.616155 + 0.240687i
\(698\) 0.0246367 + 0.0888754i 0.000932514 + 0.00336398i
\(699\) 2.50453i 0.0947301i
\(700\) 23.3507 16.9623i 0.882575 0.641116i
\(701\) 9.79056i 0.369784i −0.982759 0.184892i \(-0.940806\pi\)
0.982759 0.184892i \(-0.0591936\pi\)
\(702\) 5.58557 + 20.1496i 0.210814 + 0.760497i
\(703\) 27.5453 1.03889
\(704\) −1.18594 22.9208i −0.0446968 0.863859i
\(705\) 0.0540630 + 1.23628i 0.00203613 + 0.0465611i
\(706\) 6.91099 + 24.9310i 0.260099 + 0.938289i
\(707\) 38.5051i 1.44813i
\(708\) 12.1400 7.29080i 0.456250 0.274005i
\(709\) 43.9669 1.65121 0.825606 0.564247i \(-0.190833\pi\)
0.825606 + 0.564247i \(0.190833\pi\)
\(710\) 24.0112 7.80059i 0.901123 0.292751i
\(711\) 24.5875i 0.922105i
\(712\) −19.8902 + 20.9459i −0.745415 + 0.784981i
\(713\) 17.9001i 0.670363i
\(714\) −12.7158 + 9.52325i −0.475878 + 0.356399i
\(715\) 0.859212 + 19.6480i 0.0321327 + 0.734793i
\(716\) −14.3406 23.8788i −0.535933 0.892391i
\(717\) 6.41823i 0.239693i
\(718\) 11.3748 3.15315i 0.424504 0.117675i
\(719\) 46.3088i 1.72703i 0.504327 + 0.863513i \(0.331741\pi\)
−0.504327 + 0.863513i \(0.668259\pi\)
\(720\) −17.0216 8.12673i −0.634359 0.302865i
\(721\) 46.2334i 1.72182i
\(722\) 5.24750 1.45463i 0.195292 0.0541359i
\(723\) 6.39974 0.238009
\(724\) −14.6209 + 8.78070i −0.543381 + 0.326332i
\(725\) −13.7503 + 1.20492i −0.510675 + 0.0447494i
\(726\) 0.987591 + 3.56267i 0.0366529 + 0.132223i
\(727\) 47.1238i 1.74773i 0.486172 + 0.873863i \(0.338393\pi\)
−0.486172 + 0.873863i \(0.661607\pi\)
\(728\) 17.2327 18.1474i 0.638688 0.672589i
\(729\) −9.91759 −0.367318
\(730\) −13.1285 40.4111i −0.485907 1.49568i
\(731\) 6.42331 + 16.4436i 0.237575 + 0.608189i
\(732\) −11.9586 19.9124i −0.442002 0.735985i
\(733\) 44.5039 1.64379 0.821895 0.569639i \(-0.192917\pi\)
0.821895 + 0.569639i \(0.192917\pi\)
\(734\) −8.96069 + 2.48395i −0.330745 + 0.0916843i
\(735\) −2.80430 + 0.122633i −0.103438 + 0.00452338i
\(736\) −6.29115 + 28.3033i −0.231895 + 1.04327i
\(737\) −15.4260 −0.568226
\(738\) 3.37447 + 12.1732i 0.124216 + 0.448101i
\(739\) 39.7198i 1.46112i −0.682851 0.730558i \(-0.739260\pi\)
0.682851 0.730558i \(-0.260740\pi\)
\(740\) 26.3945 17.4643i 0.970281 0.642002i
\(741\) 11.2643 0.413804
\(742\) −54.7365 + 15.1733i −2.00944 + 0.557028i
\(743\) −41.5257 −1.52343 −0.761715 0.647913i \(-0.775642\pi\)
−0.761715 + 0.647913i \(0.775642\pi\)
\(744\) −6.42105 + 6.76187i −0.235407 + 0.247902i
\(745\) 5.20435 0.227587i 0.190672 0.00833815i
\(746\) 9.09201 2.52035i 0.332882 0.0922767i
\(747\) 5.34746 0.195653
\(748\) 18.7247 + 14.4595i 0.684644 + 0.528690i
\(749\) 30.4752i 1.11354i
\(750\) 13.7390 5.83341i 0.501676 0.213006i
\(751\) 13.9080i 0.507512i 0.967268 + 0.253756i \(0.0816660\pi\)
−0.967268 + 0.253756i \(0.918334\pi\)
\(752\) −2.06997 1.10180i −0.0754842 0.0401786i
\(753\) 2.62501 0.0956607
\(754\) −11.5338 + 3.19722i −0.420035 + 0.116436i
\(755\) −1.85774 42.4818i −0.0676101 1.54607i
\(756\) 14.3326 + 23.8654i 0.521271 + 0.867976i
\(757\) −50.5775 −1.83827 −0.919136 0.393940i \(-0.871112\pi\)
−0.919136 + 0.393940i \(0.871112\pi\)
\(758\) 34.3725 9.52825i 1.24847 0.346082i
\(759\) 13.8813i 0.503858i
\(760\) −16.1549 + 18.5742i −0.586000 + 0.673757i
\(761\) −49.2403 −1.78496 −0.892479 0.451089i \(-0.851036\pi\)
−0.892479 + 0.451089i \(0.851036\pi\)
\(762\) 26.7411 7.41276i 0.968726 0.268536i
\(763\) 27.3364 0.989645
\(764\) −32.5397 + 19.5420i −1.17725 + 0.707006i
\(765\) 17.7836 7.85868i 0.642968 0.284131i
\(766\) 4.55513 + 16.4323i 0.164583 + 0.593724i
\(767\) 22.9942i 0.830274i
\(768\) −12.5294 + 8.43501i −0.452115 + 0.304372i
\(769\) 29.6731 1.07004 0.535019 0.844840i \(-0.320304\pi\)
0.535019 + 0.844840i \(0.320304\pi\)
\(770\) 8.09027 + 24.9028i 0.291553 + 0.897436i
\(771\) 5.08998 0.183311
\(772\) 17.9186 10.7612i 0.644905 0.387303i
\(773\) 9.30255 0.334590 0.167295 0.985907i \(-0.446497\pi\)
0.167295 + 0.985907i \(0.446497\pi\)
\(774\) 12.3054 3.41111i 0.442307 0.122610i
\(775\) 1.52431 + 17.3952i 0.0547548 + 0.624855i
\(776\) 10.1208 10.6580i 0.363315 0.382600i
\(777\) −19.2815 −0.691719
\(778\) 5.59523 + 20.1844i 0.200599 + 0.723647i
\(779\) 16.4861 0.590677
\(780\) 10.7937 7.14181i 0.386475 0.255718i
\(781\) 22.9045i 0.819588i
\(782\) −17.9154 23.9214i −0.640654 0.855427i
\(783\) 13.3138i 0.475797i
\(784\) 2.49926 4.69539i 0.0892591 0.167693i
\(785\) 0.865883 + 19.8006i 0.0309047 + 0.706712i
\(786\) 3.45323 + 12.4573i 0.123173 + 0.444338i
\(787\) 22.3169i 0.795511i −0.917492 0.397755i \(-0.869789\pi\)
0.917492 0.397755i \(-0.130211\pi\)
\(788\) 3.48172 + 5.79747i 0.124031 + 0.206526i
\(789\) −10.4115 −0.370660
\(790\) 35.0656 11.3919i 1.24758 0.405306i
\(791\) −37.8197 −1.34471
\(792\) 11.7835 12.4090i 0.418709 0.440933i
\(793\) −37.7158 −1.33933
\(794\) −10.4190 37.5858i −0.369756 1.33387i
\(795\) −29.3472 + 1.28336i −1.04084 + 0.0455162i
\(796\) −0.634818 1.05705i −0.0225005 0.0374660i
\(797\) 8.09672 0.286801 0.143400 0.989665i \(-0.454196\pi\)
0.143400 + 0.989665i \(0.454196\pi\)
\(798\) 14.4521 4.00619i 0.511598 0.141818i
\(799\) 2.25144 0.879471i 0.0796501 0.0311134i
\(800\) −3.70350 + 28.0408i −0.130939 + 0.991390i
\(801\) −21.5365 −0.760954
\(802\) −10.8567 39.1647i −0.383362 1.38296i
\(803\) 38.5486 1.36035
\(804\) 5.22660 + 8.70290i 0.184328 + 0.306927i
\(805\) −1.44512 33.0461i −0.0509336 1.16472i
\(806\) 4.04473 + 14.5911i 0.142470 + 0.513950i
\(807\) 20.4759i 0.720787i
\(808\) −27.3635 25.9843i −0.962645 0.914125i
\(809\) 30.7913i 1.08256i −0.840842 0.541281i \(-0.817939\pi\)
0.840842 0.541281i \(-0.182061\pi\)
\(810\) −1.73313 5.33477i −0.0608959 0.187445i
\(811\) 11.4867 0.403351 0.201676 0.979452i \(-0.435361\pi\)
0.201676 + 0.979452i \(0.435361\pi\)
\(812\) −13.6607 + 8.20408i −0.479398 + 0.287907i
\(813\) 5.89563i 0.206769i
\(814\) 7.67022 + 27.6698i 0.268841 + 0.969827i
\(815\) 35.2205 1.54020i 1.23372 0.0539509i
\(816\) 1.81333 15.4630i 0.0634793 0.541314i
\(817\) 16.6652i 0.583041i
\(818\) −3.49069 + 0.967638i −0.122049 + 0.0338327i
\(819\) 18.6591 0.652002
\(820\) 15.7974 10.4526i 0.551668 0.365020i
\(821\) −0.485038 −0.0169280 −0.00846398 0.999964i \(-0.502694\pi\)
−0.00846398 + 0.999964i \(0.502694\pi\)
\(822\) 23.0996 6.40332i 0.805690 0.223341i
\(823\) 46.5510 1.62267 0.811333 0.584585i \(-0.198743\pi\)
0.811333 + 0.584585i \(0.198743\pi\)
\(824\) −32.8556 31.1996i −1.14458 1.08689i
\(825\) 1.18208 + 13.4898i 0.0411548 + 0.469653i
\(826\) −8.17801 29.5017i −0.284549 1.02649i
\(827\) 36.8656i 1.28194i −0.767565 0.640972i \(-0.778532\pi\)
0.767565 0.640972i \(-0.221468\pi\)
\(828\) −18.5324 + 11.1298i −0.644047 + 0.386788i
\(829\) 44.6114i 1.54942i 0.632318 + 0.774709i \(0.282104\pi\)
−0.632318 + 0.774709i \(0.717896\pi\)
\(830\) −2.47759 7.62631i −0.0859982 0.264713i
\(831\) −14.5988 −0.506426
\(832\) 1.26728 + 24.4928i 0.0439349 + 0.849134i
\(833\) 1.99493 + 5.10701i 0.0691203 + 0.176947i
\(834\) 2.86069 + 10.3198i 0.0990575 + 0.357344i
\(835\) 1.16497 + 26.6400i 0.0403155 + 0.921914i
\(836\) −11.4982 19.1458i −0.397672 0.662170i
\(837\) −16.8430 −0.582179
\(838\) −53.7205 + 14.8916i −1.85574 + 0.514421i
\(839\) 38.0112i 1.31229i −0.754633 0.656147i \(-0.772185\pi\)
0.754633 0.656147i \(-0.227815\pi\)
\(840\) 11.3083 13.0018i 0.390173 0.448604i
\(841\) −21.3791 −0.737209
\(842\) −8.02124 28.9361i −0.276430 0.997204i
\(843\) 8.89220i 0.306264i
\(844\) −12.1113 + 7.27355i −0.416888 + 0.250366i
\(845\) 0.351836 + 8.04560i 0.0121035 + 0.276777i
\(846\) −0.467044 1.68483i −0.0160573 0.0579257i
\(847\) 7.99242 0.274623
\(848\) 26.1549 49.1376i 0.898163 1.68739i
\(849\) −14.0346 −0.481665
\(850\) −19.4472 21.7211i −0.667033 0.745028i
\(851\) 36.2728i 1.24342i
\(852\) 12.9220 7.76043i 0.442701 0.265868i
\(853\) 18.0880i 0.619321i 0.950847 + 0.309660i \(0.100215\pi\)
−0.950847 + 0.309660i \(0.899785\pi\)
\(854\) −48.3895 + 13.4138i −1.65585 + 0.459011i
\(855\) −18.3365 + 0.801858i −0.627093 + 0.0274230i
\(856\) −21.6571 20.5655i −0.740224 0.702914i
\(857\) 25.9872 0.887707 0.443853 0.896099i \(-0.353611\pi\)
0.443853 + 0.896099i \(0.353611\pi\)
\(858\) 3.13663 + 11.3152i 0.107083 + 0.386295i
\(859\) 17.9911i 0.613848i −0.951734 0.306924i \(-0.900700\pi\)
0.951734 0.306924i \(-0.0992998\pi\)
\(860\) −10.5661 15.9689i −0.360301 0.544536i
\(861\) −11.5401 −0.393287
\(862\) −13.9244 50.2312i −0.474265 1.71088i
\(863\) 0.213466i 0.00726648i 0.999993 + 0.00363324i \(0.00115650\pi\)
−0.999993 + 0.00363324i \(0.998844\pi\)
\(864\) −26.6319 5.91963i −0.906035 0.201390i
\(865\) −4.25135 + 0.185913i −0.144550 + 0.00632122i
\(866\) −8.42607 30.3965i −0.286329 1.03292i
\(867\) 10.8778 + 11.7990i 0.369430 + 0.400714i
\(868\) 10.3788 + 17.2819i 0.352279 + 0.586585i
\(869\) 33.4495i 1.13470i
\(870\) −7.83776 + 2.54628i −0.265725 + 0.0863270i
\(871\) 16.4840 0.558540
\(872\) −18.4474 + 19.4265i −0.624707 + 0.657865i
\(873\) 10.9585 0.370889
\(874\) 7.53656 + 27.1877i 0.254928 + 0.919637i
\(875\) −4.21845 31.9910i −0.142610 1.08149i
\(876\) −13.0609 21.7479i −0.441287 0.734793i
\(877\) 17.2333i 0.581928i 0.956734 + 0.290964i \(0.0939760\pi\)
−0.956734 + 0.290964i \(0.906024\pi\)
\(878\) 13.9786 + 50.4268i 0.471754 + 1.70182i
\(879\) 11.6348i 0.392432i
\(880\) −23.1566 11.0558i −0.780610 0.372691i
\(881\) 26.9750i 0.908812i −0.890795 0.454406i \(-0.849852\pi\)
0.890795 0.454406i \(-0.150148\pi\)
\(882\) 3.82176 1.05941i 0.128685 0.0356723i
\(883\) −22.7907 −0.766969 −0.383484 0.923547i \(-0.625276\pi\)
−0.383484 + 0.923547i \(0.625276\pi\)
\(884\) −20.0089 15.4511i −0.672973 0.519678i
\(885\) −0.691701 15.8175i −0.0232513 0.531698i
\(886\) −30.7997 + 8.53783i −1.03474 + 0.286834i
\(887\) −51.7486 −1.73755 −0.868774 0.495209i \(-0.835091\pi\)
−0.868774 + 0.495209i \(0.835091\pi\)
\(888\) 13.0117 13.7023i 0.436643 0.459819i
\(889\) 59.9903i 2.01201i
\(890\) 9.97828 + 30.7143i 0.334473 + 1.02955i
\(891\) 5.08890 0.170484
\(892\) 8.14661 + 13.5651i 0.272769 + 0.454191i
\(893\) −2.28177 −0.0763565
\(894\) 2.99716 0.830829i 0.100240 0.0277871i
\(895\) −31.1120 + 1.36054i −1.03996 + 0.0454777i
\(896\) 10.3369 + 30.9735i 0.345331 + 1.03475i
\(897\) 14.8333i 0.495269i
\(898\) −6.42548 23.1795i −0.214421 0.773510i
\(899\) 9.64107i 0.321548i
\(900\) −17.0620 + 12.3941i −0.568733 + 0.413136i
\(901\) 20.8771 + 53.4452i 0.695518 + 1.78052i
\(902\) 4.59070 + 16.5607i 0.152854 + 0.551410i
\(903\) 11.6655i 0.388203i
\(904\) 25.5218 26.8764i 0.848841 0.893896i
\(905\) 0.833052 + 19.0498i 0.0276916 + 0.633236i
\(906\) −6.78186 24.4651i −0.225312 0.812799i
\(907\) 14.4689i 0.480433i −0.970719 0.240216i \(-0.922782\pi\)
0.970719 0.240216i \(-0.0772184\pi\)
\(908\) −17.3384 28.8704i −0.575395 0.958099i
\(909\) 28.1350i 0.933180i
\(910\) −8.64513 26.6108i −0.286583 0.882138i
\(911\) 12.4799i 0.413478i −0.978396 0.206739i \(-0.933715\pi\)
0.978396 0.206739i \(-0.0662852\pi\)
\(912\) −6.90568 + 12.9738i −0.228670 + 0.429606i
\(913\) 7.27481 0.240761
\(914\) 9.96900 + 35.9625i 0.329745 + 1.18953i
\(915\) −25.9442 + 1.13455i −0.857690 + 0.0375070i
\(916\) 21.3339 + 35.5234i 0.704892 + 1.17373i
\(917\) 27.9465 0.922874
\(918\) 22.5088 16.8574i 0.742899 0.556379i
\(919\) 25.5411 0.842524 0.421262 0.906939i \(-0.361587\pi\)
0.421262 + 0.906939i \(0.361587\pi\)
\(920\) 24.4593 + 21.2735i 0.806399 + 0.701365i
\(921\) 20.1765i 0.664839i
\(922\) −5.72565 20.6549i −0.188564 0.680233i
\(923\) 24.4754i 0.805617i
\(924\) 8.04861 + 13.4019i 0.264780 + 0.440889i
\(925\) −3.08887 35.2498i −0.101562 1.15901i
\(926\) 6.43494 + 23.2136i 0.211465 + 0.762848i
\(927\) 33.7820i 1.10955i
\(928\) 3.38845 15.2443i 0.111231 0.500419i
\(929\) 50.9512i 1.67165i 0.548993 + 0.835827i \(0.315012\pi\)
−0.548993 + 0.835827i \(0.684988\pi\)
\(930\) 3.22124 + 9.91537i 0.105629 + 0.325138i
\(931\) 5.17582i 0.169631i
\(932\) −4.54888 + 2.73187i −0.149004 + 0.0894854i
\(933\) −0.489547 −0.0160270
\(934\) 5.99347 1.66142i 0.196112 0.0543634i
\(935\) 24.1933 10.6911i 0.791204 0.349637i
\(936\) −12.5917 + 13.2600i −0.411572 + 0.433417i
\(937\) 44.2126i 1.44436i −0.691703 0.722182i \(-0.743139\pi\)
0.691703 0.722182i \(-0.256861\pi\)
\(938\) 21.1490 5.86262i 0.690540 0.191421i
\(939\) 21.7692i 0.710412i
\(940\) −2.18644 + 1.44669i −0.0713138 + 0.0471860i
\(941\) −10.6780 −0.348092 −0.174046 0.984738i \(-0.555684\pi\)
−0.174046 + 0.984738i \(0.555684\pi\)
\(942\) 3.16099 + 11.4031i 0.102991 + 0.371532i
\(943\) 21.7097i 0.706964i
\(944\) 26.4840 + 14.0969i 0.861980 + 0.458814i
\(945\) 31.0946 1.35978i 1.01151 0.0442335i
\(946\) 16.7405 4.64056i 0.544281 0.150878i
\(947\) 10.5198i 0.341848i 0.985284 + 0.170924i \(0.0546753\pi\)
−0.985284 + 0.170924i \(0.945325\pi\)
\(948\) 18.8712 11.3332i 0.612907 0.368086i
\(949\) −41.1923 −1.33716
\(950\) 9.63922 + 25.7791i 0.312738 + 0.836384i
\(951\) −15.2026 −0.492978
\(952\) −31.1668 12.7076i −1.01012 0.411855i
\(953\) 5.19626i 0.168323i −0.996452 0.0841616i \(-0.973179\pi\)
0.996452 0.0841616i \(-0.0268212\pi\)
\(954\) 39.9951 11.0868i 1.29489 0.358950i
\(955\) 1.85401 + 42.3966i 0.0599944 + 1.37192i
\(956\) 11.6572 7.00081i 0.377020 0.226423i
\(957\) 7.47652i 0.241682i
\(958\) −3.11577 11.2400i −0.100666 0.363147i
\(959\) 51.8211i 1.67339i
\(960\) 1.60852 + 16.8101i 0.0519148 + 0.542545i
\(961\) 18.8033 0.606558
\(962\) −8.19627 29.5675i −0.264258 0.953295i
\(963\) 22.2677i 0.717567i
\(964\) 6.98065 + 11.6236i 0.224831 + 0.374370i
\(965\) −1.02095 23.3465i −0.0328654 0.751549i
\(966\) −5.27553 19.0311i −0.169737 0.612317i
\(967\) 10.2630i 0.330036i −0.986291 0.165018i \(-0.947232\pi\)
0.986291 0.165018i \(-0.0527682\pi\)
\(968\) −5.39350 + 5.67978i −0.173354 + 0.182555i
\(969\) −5.51219 14.1111i −0.177077 0.453315i
\(970\) −5.07729 15.6285i −0.163022 0.501801i
\(971\) 3.83731i 0.123145i 0.998103 + 0.0615726i \(0.0196116\pi\)
−0.998103 + 0.0615726i \(0.980388\pi\)
\(972\) −16.6222 27.6779i −0.533158 0.887770i
\(973\) 23.1511 0.742190
\(974\) 40.3964 11.1981i 1.29438 0.358810i
\(975\) −1.26315 14.4149i −0.0404533 0.461647i
\(976\) 23.1221 43.4398i 0.740119 1.39047i
\(977\) 35.7392i 1.14340i 0.820463 + 0.571700i \(0.193716\pi\)
−0.820463 + 0.571700i \(0.806284\pi\)
\(978\) 20.2834 5.62266i 0.648591 0.179793i
\(979\) −29.2987 −0.936391
\(980\) −3.28159 4.95958i −0.104826 0.158428i
\(981\) −19.9743 −0.637729
\(982\) 12.9570 + 46.7417i 0.413476 + 1.49159i
\(983\) −7.72185 −0.246289 −0.123144 0.992389i \(-0.539298\pi\)
−0.123144 + 0.992389i \(0.539298\pi\)
\(984\) 7.78761 8.20096i 0.248260 0.261437i
\(985\) 7.55362 0.330322i 0.240678 0.0105249i
\(986\) 9.64934 + 12.8842i 0.307297 + 0.410316i
\(987\) 1.59722 0.0508401
\(988\) 12.2867 + 20.4589i 0.390894 + 0.650883i
\(989\) −21.9454 −0.697824
\(990\) −5.91142 18.1961i −0.187877 0.578309i
\(991\) 37.2508i 1.18331i 0.806192 + 0.591655i \(0.201525\pi\)
−0.806192 + 0.591655i \(0.798475\pi\)
\(992\) −19.2852 4.28664i −0.612306 0.136101i
\(993\) 10.6978 0.339484
\(994\) −8.70478 31.4020i −0.276099 0.996009i
\(995\) −1.37724 + 0.0602272i −0.0436615 + 0.00190933i
\(996\) −2.46483 4.10422i −0.0781010 0.130047i
\(997\) 6.30628i 0.199722i 0.995001 + 0.0998610i \(0.0318398\pi\)
−0.995001 + 0.0998610i \(0.968160\pi\)
\(998\) −3.14624 + 0.872155i −0.0995926 + 0.0276076i
\(999\) 34.1308 1.07985
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 680.2.h.b.509.37 yes 40
5.4 even 2 inner 680.2.h.b.509.4 yes 40
8.5 even 2 inner 680.2.h.b.509.2 yes 40
17.16 even 2 inner 680.2.h.b.509.38 yes 40
40.29 even 2 inner 680.2.h.b.509.39 yes 40
85.84 even 2 inner 680.2.h.b.509.3 yes 40
136.101 even 2 inner 680.2.h.b.509.1 40
680.509 even 2 inner 680.2.h.b.509.40 yes 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
680.2.h.b.509.1 40 136.101 even 2 inner
680.2.h.b.509.2 yes 40 8.5 even 2 inner
680.2.h.b.509.3 yes 40 85.84 even 2 inner
680.2.h.b.509.4 yes 40 5.4 even 2 inner
680.2.h.b.509.37 yes 40 1.1 even 1 trivial
680.2.h.b.509.38 yes 40 17.16 even 2 inner
680.2.h.b.509.39 yes 40 40.29 even 2 inner
680.2.h.b.509.40 yes 40 680.509 even 2 inner