Properties

Label 680.2.h.b.509.14
Level $680$
Weight $2$
Character 680.509
Analytic conductor $5.430$
Analytic rank $0$
Dimension $40$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [680,2,Mod(509,680)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(680, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("680.509"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 680 = 2^{3} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 680.h (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [40] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.42982733745\)
Analytic rank: \(0\)
Dimension: \(40\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 509.14
Character \(\chi\) \(=\) 680.509
Dual form 680.2.h.b.509.15

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.870262 - 1.11474i) q^{2} +3.10853i q^{3} +(-0.485287 + 1.94023i) q^{4} +(0.636925 - 2.14344i) q^{5} +(3.46520 - 2.70523i) q^{6} -1.38296 q^{7} +(2.58518 - 1.14754i) q^{8} -6.66293 q^{9} +(-2.94367 + 1.15535i) q^{10} +3.17005 q^{11} +(-6.03126 - 1.50853i) q^{12} -4.69324 q^{13} +(1.20354 + 1.54164i) q^{14} +(6.66293 + 1.97990i) q^{15} +(-3.52899 - 1.88314i) q^{16} +(-1.50938 + 3.83690i) q^{17} +(5.79850 + 7.42743i) q^{18} +7.70050i q^{19} +(3.84967 + 2.27596i) q^{20} -4.29898i q^{21} +(-2.75878 - 3.53378i) q^{22} -4.95047 q^{23} +(3.56716 + 8.03609i) q^{24} +(-4.18865 - 2.73042i) q^{25} +(4.08435 + 5.23174i) q^{26} -11.3863i q^{27} +(0.671134 - 2.68327i) q^{28} -1.71066 q^{29} +(-3.59143 - 9.15046i) q^{30} -6.13233i q^{31} +(0.971942 + 5.57273i) q^{32} +9.85419i q^{33} +(5.59069 - 1.65655i) q^{34} +(-0.880844 + 2.96430i) q^{35} +(3.23343 - 12.9276i) q^{36} +3.98650i q^{37} +(8.58404 - 6.70145i) q^{38} -14.5891i q^{39} +(-0.813118 - 6.27207i) q^{40} -4.75338i q^{41} +(-4.79224 + 3.74124i) q^{42} -10.3919 q^{43} +(-1.53839 + 6.15064i) q^{44} +(-4.24379 + 14.2816i) q^{45} +(4.30821 + 5.51849i) q^{46} -5.75119i q^{47} +(5.85378 - 10.9700i) q^{48} -5.08741 q^{49} +(0.601520 + 7.04544i) q^{50} +(-11.9271 - 4.69193i) q^{51} +(2.27757 - 9.10597i) q^{52} -0.856688 q^{53} +(-12.6928 + 9.90908i) q^{54} +(2.01909 - 6.79481i) q^{55} +(-3.57521 + 1.58701i) q^{56} -23.9372 q^{57} +(1.48872 + 1.90694i) q^{58} +3.40819i q^{59} +(-7.07490 + 11.9668i) q^{60} -4.33987 q^{61} +(-6.83595 + 5.33674i) q^{62} +9.21459 q^{63} +(5.36630 - 5.93320i) q^{64} +(-2.98924 + 10.0597i) q^{65} +(10.9849 - 8.57573i) q^{66} +7.67601 q^{67} +(-6.71199 - 4.79054i) q^{68} -15.3887i q^{69} +(4.07098 - 1.59780i) q^{70} +12.8320i q^{71} +(-17.2249 + 7.64599i) q^{72} +8.29467 q^{73} +(4.44390 - 3.46930i) q^{74} +(8.48758 - 13.0205i) q^{75} +(-14.9407 - 3.73695i) q^{76} -4.38407 q^{77} +(-16.2630 + 12.6963i) q^{78} -9.37764i q^{79} +(-6.28409 + 6.36476i) q^{80} +15.4059 q^{81} +(-5.29878 + 4.13669i) q^{82} +5.94240 q^{83} +(8.34101 + 2.08624i) q^{84} +(7.26279 + 5.67907i) q^{85} +(9.04371 + 11.5843i) q^{86} -5.31764i q^{87} +(8.19515 - 3.63777i) q^{88} -8.65552 q^{89} +(19.6134 - 7.69800i) q^{90} +6.49058 q^{91} +(2.40240 - 9.60506i) q^{92} +19.0625 q^{93} +(-6.41108 + 5.00505i) q^{94} +(16.5055 + 4.90464i) q^{95} +(-17.3230 + 3.02131i) q^{96} +10.7647 q^{97} +(4.42738 + 5.67114i) q^{98} -21.1218 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q + 12 q^{4} - 56 q^{9} + 56 q^{15} - 4 q^{16} - 36 q^{26} - 28 q^{30} + 24 q^{34} + 88 q^{36} + 8 q^{49} - 16 q^{50} - 88 q^{55} - 88 q^{60} - 132 q^{64} + 208 q^{66} + 72 q^{70} - 20 q^{76} - 56 q^{81}+ \cdots - 36 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/680\mathbb{Z}\right)^\times\).

\(n\) \(137\) \(241\) \(341\) \(511\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.870262 1.11474i −0.615368 0.788240i
\(3\) 3.10853i 1.79471i 0.441311 + 0.897354i \(0.354513\pi\)
−0.441311 + 0.897354i \(0.645487\pi\)
\(4\) −0.485287 + 1.94023i −0.242644 + 0.970116i
\(5\) 0.636925 2.14344i 0.284842 0.958575i
\(6\) 3.46520 2.70523i 1.41466 1.10441i
\(7\) −1.38296 −0.522711 −0.261356 0.965243i \(-0.584169\pi\)
−0.261356 + 0.965243i \(0.584169\pi\)
\(8\) 2.58518 1.14754i 0.913999 0.405717i
\(9\) −6.66293 −2.22098
\(10\) −2.94367 + 1.15535i −0.930869 + 0.365353i
\(11\) 3.17005 0.955807 0.477904 0.878412i \(-0.341397\pi\)
0.477904 + 0.878412i \(0.341397\pi\)
\(12\) −6.03126 1.50853i −1.74107 0.435474i
\(13\) −4.69324 −1.30167 −0.650835 0.759219i \(-0.725581\pi\)
−0.650835 + 0.759219i \(0.725581\pi\)
\(14\) 1.20354 + 1.54164i 0.321660 + 0.412022i
\(15\) 6.66293 + 1.97990i 1.72036 + 0.511208i
\(16\) −3.52899 1.88314i −0.882248 0.470784i
\(17\) −1.50938 + 3.83690i −0.366077 + 0.930584i
\(18\) 5.79850 + 7.42743i 1.36672 + 1.75066i
\(19\) 7.70050i 1.76661i 0.468794 + 0.883307i \(0.344689\pi\)
−0.468794 + 0.883307i \(0.655311\pi\)
\(20\) 3.84967 + 2.27596i 0.860813 + 0.508921i
\(21\) 4.29898i 0.938114i
\(22\) −2.75878 3.53378i −0.588173 0.753405i
\(23\) −4.95047 −1.03225 −0.516123 0.856515i \(-0.672625\pi\)
−0.516123 + 0.856515i \(0.672625\pi\)
\(24\) 3.56716 + 8.03609i 0.728144 + 1.64036i
\(25\) −4.18865 2.73042i −0.837730 0.546084i
\(26\) 4.08435 + 5.23174i 0.801007 + 1.02603i
\(27\) 11.3863i 2.19130i
\(28\) 0.671134 2.68327i 0.126832 0.507090i
\(29\) −1.71066 −0.317662 −0.158831 0.987306i \(-0.550772\pi\)
−0.158831 + 0.987306i \(0.550772\pi\)
\(30\) −3.59143 9.15046i −0.655702 1.67064i
\(31\) 6.13233i 1.10140i −0.834703 0.550700i \(-0.814361\pi\)
0.834703 0.550700i \(-0.185639\pi\)
\(32\) 0.971942 + 5.57273i 0.171817 + 0.985129i
\(33\) 9.85419i 1.71539i
\(34\) 5.59069 1.65655i 0.958796 0.284095i
\(35\) −0.880844 + 2.96430i −0.148890 + 0.501058i
\(36\) 3.23343 12.9276i 0.538906 2.15460i
\(37\) 3.98650i 0.655376i 0.944786 + 0.327688i \(0.106269\pi\)
−0.944786 + 0.327688i \(0.893731\pi\)
\(38\) 8.58404 6.70145i 1.39252 1.08712i
\(39\) 14.5891i 2.33612i
\(40\) −0.813118 6.27207i −0.128565 0.991701i
\(41\) 4.75338i 0.742353i −0.928562 0.371176i \(-0.878954\pi\)
0.928562 0.371176i \(-0.121046\pi\)
\(42\) −4.79224 + 3.74124i −0.739458 + 0.577286i
\(43\) −10.3919 −1.58475 −0.792377 0.610031i \(-0.791157\pi\)
−0.792377 + 0.610031i \(0.791157\pi\)
\(44\) −1.53839 + 6.15064i −0.231920 + 0.927243i
\(45\) −4.24379 + 14.2816i −0.632627 + 2.12897i
\(46\) 4.30821 + 5.51849i 0.635211 + 0.813657i
\(47\) 5.75119i 0.838898i −0.907779 0.419449i \(-0.862223\pi\)
0.907779 0.419449i \(-0.137777\pi\)
\(48\) 5.85378 10.9700i 0.844921 1.58338i
\(49\) −5.08741 −0.726773
\(50\) 0.601520 + 7.04544i 0.0850678 + 0.996375i
\(51\) −11.9271 4.69193i −1.67013 0.657002i
\(52\) 2.27757 9.10597i 0.315842 1.26277i
\(53\) −0.856688 −0.117675 −0.0588376 0.998268i \(-0.518739\pi\)
−0.0588376 + 0.998268i \(0.518739\pi\)
\(54\) −12.6928 + 9.90908i −1.72727 + 1.34846i
\(55\) 2.01909 6.79481i 0.272254 0.916212i
\(56\) −3.57521 + 1.58701i −0.477757 + 0.212073i
\(57\) −23.9372 −3.17056
\(58\) 1.48872 + 1.90694i 0.195479 + 0.250394i
\(59\) 3.40819i 0.443708i 0.975080 + 0.221854i \(0.0712109\pi\)
−0.975080 + 0.221854i \(0.928789\pi\)
\(60\) −7.07490 + 11.9668i −0.913365 + 1.54491i
\(61\) −4.33987 −0.555663 −0.277832 0.960630i \(-0.589616\pi\)
−0.277832 + 0.960630i \(0.589616\pi\)
\(62\) −6.83595 + 5.33674i −0.868167 + 0.677767i
\(63\) 9.21459 1.16093
\(64\) 5.36630 5.93320i 0.670787 0.741650i
\(65\) −2.98924 + 10.0597i −0.370770 + 1.24775i
\(66\) 10.9849 8.57573i 1.35214 1.05560i
\(67\) 7.67601 0.937774 0.468887 0.883258i \(-0.344655\pi\)
0.468887 + 0.883258i \(0.344655\pi\)
\(68\) −6.71199 4.79054i −0.813948 0.580938i
\(69\) 15.3887i 1.85258i
\(70\) 4.07098 1.59780i 0.486576 0.190974i
\(71\) 12.8320i 1.52288i 0.648234 + 0.761441i \(0.275508\pi\)
−0.648234 + 0.761441i \(0.724492\pi\)
\(72\) −17.2249 + 7.64599i −2.02997 + 0.901089i
\(73\) 8.29467 0.970818 0.485409 0.874287i \(-0.338671\pi\)
0.485409 + 0.874287i \(0.338671\pi\)
\(74\) 4.44390 3.46930i 0.516593 0.403298i
\(75\) 8.48758 13.0205i 0.980061 1.50348i
\(76\) −14.9407 3.73695i −1.71382 0.428658i
\(77\) −4.38407 −0.499611
\(78\) −16.2630 + 12.6963i −1.84142 + 1.43757i
\(79\) 9.37764i 1.05507i −0.849534 0.527534i \(-0.823117\pi\)
0.849534 0.527534i \(-0.176883\pi\)
\(80\) −6.28409 + 6.36476i −0.702583 + 0.711602i
\(81\) 15.4059 1.71176
\(82\) −5.29878 + 4.13669i −0.585152 + 0.456821i
\(83\) 5.94240 0.652263 0.326131 0.945324i \(-0.394255\pi\)
0.326131 + 0.945324i \(0.394255\pi\)
\(84\) 8.34101 + 2.08624i 0.910079 + 0.227627i
\(85\) 7.26279 + 5.67907i 0.787760 + 0.615982i
\(86\) 9.04371 + 11.5843i 0.975208 + 1.24917i
\(87\) 5.31764i 0.570111i
\(88\) 8.19515 3.63777i 0.873606 0.387787i
\(89\) −8.65552 −0.917483 −0.458742 0.888570i \(-0.651700\pi\)
−0.458742 + 0.888570i \(0.651700\pi\)
\(90\) 19.6134 7.69800i 2.06744 0.811441i
\(91\) 6.49058 0.680398
\(92\) 2.40240 9.60506i 0.250468 1.00140i
\(93\) 19.0625 1.97669
\(94\) −6.41108 + 5.00505i −0.661252 + 0.516231i
\(95\) 16.5055 + 4.90464i 1.69343 + 0.503206i
\(96\) −17.3230 + 3.02131i −1.76802 + 0.308361i
\(97\) 10.7647 1.09299 0.546493 0.837464i \(-0.315963\pi\)
0.546493 + 0.837464i \(0.315963\pi\)
\(98\) 4.42738 + 5.67114i 0.447233 + 0.572871i
\(99\) −21.1218 −2.12283
\(100\) 7.33034 6.80192i 0.733034 0.680192i
\(101\) 10.3161i 1.02649i 0.858242 + 0.513245i \(0.171557\pi\)
−0.858242 + 0.513245i \(0.828443\pi\)
\(102\) 5.14942 + 17.3788i 0.509868 + 1.72076i
\(103\) 14.3112i 1.41013i 0.709145 + 0.705063i \(0.249081\pi\)
−0.709145 + 0.705063i \(0.750919\pi\)
\(104\) −12.1329 + 5.38569i −1.18973 + 0.528110i
\(105\) −9.21459 2.73813i −0.899252 0.267214i
\(106\) 0.745543 + 0.954984i 0.0724136 + 0.0927562i
\(107\) 3.91968i 0.378930i 0.981887 + 0.189465i \(0.0606754\pi\)
−0.981887 + 0.189465i \(0.939325\pi\)
\(108\) 22.0921 + 5.52563i 2.12581 + 0.531704i
\(109\) 0.706273 0.0676487 0.0338243 0.999428i \(-0.489231\pi\)
0.0338243 + 0.999428i \(0.489231\pi\)
\(110\) −9.33158 + 3.66251i −0.889731 + 0.349207i
\(111\) −12.3921 −1.17621
\(112\) 4.88047 + 2.60431i 0.461161 + 0.246084i
\(113\) −1.50130 −0.141231 −0.0706153 0.997504i \(-0.522496\pi\)
−0.0706153 + 0.997504i \(0.522496\pi\)
\(114\) 20.8316 + 26.6837i 1.95106 + 2.49916i
\(115\) −3.15308 + 10.6110i −0.294026 + 0.989484i
\(116\) 0.830162 3.31908i 0.0770786 0.308169i
\(117\) 31.2707 2.89098
\(118\) 3.79924 2.96602i 0.349749 0.273044i
\(119\) 2.08741 5.30629i 0.191353 0.486427i
\(120\) 19.4969 2.52760i 1.77981 0.230737i
\(121\) −0.950762 −0.0864329
\(122\) 3.77682 + 4.83782i 0.341938 + 0.437996i
\(123\) 14.7760 1.33231
\(124\) 11.8981 + 2.97594i 1.06849 + 0.267248i
\(125\) −8.52034 + 7.23904i −0.762083 + 0.647480i
\(126\) −8.01911 10.2719i −0.714399 0.915091i
\(127\) 10.0514i 0.891917i 0.895054 + 0.445958i \(0.147137\pi\)
−0.895054 + 0.445958i \(0.852863\pi\)
\(128\) −11.2841 0.818582i −0.997379 0.0723531i
\(129\) 32.3036i 2.84417i
\(130\) 13.8153 5.42232i 1.21168 0.475569i
\(131\) −16.3077 −1.42481 −0.712405 0.701769i \(-0.752394\pi\)
−0.712405 + 0.701769i \(0.752394\pi\)
\(132\) −19.1194 4.78211i −1.66413 0.416229i
\(133\) 10.6495i 0.923429i
\(134\) −6.68014 8.55675i −0.577076 0.739190i
\(135\) −24.4059 7.25223i −2.10052 0.624173i
\(136\) 0.500992 + 11.6511i 0.0429597 + 0.999077i
\(137\) 7.51003i 0.641625i −0.947143 0.320812i \(-0.896044\pi\)
0.947143 0.320812i \(-0.103956\pi\)
\(138\) −17.1544 + 13.3922i −1.46028 + 1.14002i
\(139\) 21.7915 1.84833 0.924167 0.381989i \(-0.124761\pi\)
0.924167 + 0.381989i \(0.124761\pi\)
\(140\) −5.32396 3.14758i −0.449957 0.266019i
\(141\) 17.8777 1.50558
\(142\) 14.3044 11.1672i 1.20040 0.937134i
\(143\) −14.8778 −1.24415
\(144\) 23.5134 + 12.5472i 1.95945 + 1.04560i
\(145\) −1.08956 + 3.66670i −0.0904834 + 0.304503i
\(146\) −7.21854 9.24639i −0.597410 0.765237i
\(147\) 15.8144i 1.30435i
\(148\) −7.73472 1.93459i −0.635790 0.159023i
\(149\) 16.2760i 1.33338i 0.745335 + 0.666691i \(0.232290\pi\)
−0.745335 + 0.666691i \(0.767710\pi\)
\(150\) −21.9009 + 1.86984i −1.78820 + 0.152672i
\(151\) −2.67240 −0.217477 −0.108739 0.994070i \(-0.534681\pi\)
−0.108739 + 0.994070i \(0.534681\pi\)
\(152\) 8.83664 + 19.9072i 0.716746 + 1.61468i
\(153\) 10.0569 25.5650i 0.813050 2.06681i
\(154\) 3.81529 + 4.88709i 0.307445 + 0.393813i
\(155\) −13.1443 3.90584i −1.05577 0.313725i
\(156\) 28.3061 + 7.07988i 2.26630 + 0.566844i
\(157\) −7.44951 −0.594536 −0.297268 0.954794i \(-0.596075\pi\)
−0.297268 + 0.954794i \(0.596075\pi\)
\(158\) −10.4536 + 8.16101i −0.831646 + 0.649255i
\(159\) 2.66304i 0.211193i
\(160\) 12.5639 + 1.46612i 0.993260 + 0.115907i
\(161\) 6.84633 0.539566
\(162\) −13.4071 17.1735i −1.05336 1.34928i
\(163\) 3.76177i 0.294644i 0.989089 + 0.147322i \(0.0470654\pi\)
−0.989089 + 0.147322i \(0.952935\pi\)
\(164\) 9.22265 + 2.30675i 0.720168 + 0.180127i
\(165\) 21.1218 + 6.27638i 1.64433 + 0.488616i
\(166\) −5.17144 6.62422i −0.401382 0.514139i
\(167\) 14.6443 1.13321 0.566606 0.823989i \(-0.308256\pi\)
0.566606 + 0.823989i \(0.308256\pi\)
\(168\) −4.93326 11.1136i −0.380609 0.857435i
\(169\) 9.02650 0.694346
\(170\) 0.0101492 13.0384i 0.000778411 1.00000i
\(171\) 51.3079i 3.92361i
\(172\) 5.04307 20.1627i 0.384530 1.53740i
\(173\) 0.791181i 0.0601524i −0.999548 0.0300762i \(-0.990425\pi\)
0.999548 0.0300762i \(-0.00957499\pi\)
\(174\) −5.92778 + 4.62774i −0.449384 + 0.350828i
\(175\) 5.79275 + 3.77607i 0.437891 + 0.285444i
\(176\) −11.1871 5.96965i −0.843259 0.449979i
\(177\) −10.5944 −0.796327
\(178\) 7.53257 + 9.64865i 0.564590 + 0.723197i
\(179\) 3.76938i 0.281736i −0.990028 0.140868i \(-0.955011\pi\)
0.990028 0.140868i \(-0.0449894\pi\)
\(180\) −25.6501 15.1646i −1.91185 1.13030i
\(181\) −19.7192 −1.46571 −0.732857 0.680383i \(-0.761813\pi\)
−0.732857 + 0.680383i \(0.761813\pi\)
\(182\) −5.64851 7.23530i −0.418695 0.536316i
\(183\) 13.4906i 0.997253i
\(184\) −12.7979 + 5.68087i −0.943471 + 0.418800i
\(185\) 8.54481 + 2.53910i 0.628227 + 0.186678i
\(186\) −16.5894 21.2497i −1.21639 1.55811i
\(187\) −4.78480 + 12.1632i −0.349899 + 0.889459i
\(188\) 11.1586 + 2.79098i 0.813828 + 0.203553i
\(189\) 15.7469i 1.14542i
\(190\) −8.89675 22.6677i −0.645438 1.64449i
\(191\) 4.29510 0.310783 0.155391 0.987853i \(-0.450336\pi\)
0.155391 + 0.987853i \(0.450336\pi\)
\(192\) 18.4435 + 16.6813i 1.33105 + 1.20387i
\(193\) 2.32215 0.167152 0.0835759 0.996501i \(-0.473366\pi\)
0.0835759 + 0.996501i \(0.473366\pi\)
\(194\) −9.36808 11.9998i −0.672589 0.861535i
\(195\) −31.2707 9.29214i −2.23934 0.665424i
\(196\) 2.46885 9.87075i 0.176347 0.705054i
\(197\) 7.58033i 0.540076i 0.962850 + 0.270038i \(0.0870363\pi\)
−0.962850 + 0.270038i \(0.912964\pi\)
\(198\) 18.3815 + 23.5454i 1.30632 + 1.67330i
\(199\) 0.856138i 0.0606900i −0.999539 0.0303450i \(-0.990339\pi\)
0.999539 0.0303450i \(-0.00966060\pi\)
\(200\) −13.9617 2.25197i −0.987240 0.159238i
\(201\) 23.8611i 1.68303i
\(202\) 11.4998 8.97771i 0.809120 0.631670i
\(203\) 2.36578 0.166045
\(204\) 14.8915 20.8644i 1.04261 1.46080i
\(205\) −10.1886 3.02755i −0.711601 0.211453i
\(206\) 15.9533 12.4545i 1.11152 0.867747i
\(207\) 32.9847 2.29259
\(208\) 16.5624 + 8.83802i 1.14840 + 0.612806i
\(209\) 24.4110i 1.68854i
\(210\) 4.96681 + 12.6548i 0.342743 + 0.873261i
\(211\) 8.34696 0.574628 0.287314 0.957836i \(-0.407238\pi\)
0.287314 + 0.957836i \(0.407238\pi\)
\(212\) 0.415740 1.66217i 0.0285531 0.114159i
\(213\) −39.8887 −2.73313
\(214\) 4.36943 3.41115i 0.298688 0.233182i
\(215\) −6.61888 + 22.2745i −0.451404 + 1.51911i
\(216\) −13.0663 29.4357i −0.889047 2.00284i
\(217\) 8.48079i 0.575714i
\(218\) −0.614643 0.787310i −0.0416289 0.0533234i
\(219\) 25.7842i 1.74233i
\(220\) 12.2037 + 7.21493i 0.822771 + 0.486430i
\(221\) 7.08386 18.0075i 0.476512 1.21131i
\(222\) 10.7844 + 13.8140i 0.723802 + 0.927134i
\(223\) 2.03912i 0.136550i 0.997667 + 0.0682749i \(0.0217495\pi\)
−0.997667 + 0.0682749i \(0.978250\pi\)
\(224\) −1.34416 7.70688i −0.0898105 0.514938i
\(225\) 27.9087 + 18.1926i 1.86058 + 1.21284i
\(226\) 1.30653 + 1.67356i 0.0869089 + 0.111324i
\(227\) 1.48744i 0.0987248i −0.998781 0.0493624i \(-0.984281\pi\)
0.998781 0.0493624i \(-0.0157189\pi\)
\(228\) 11.6164 46.4437i 0.769315 3.07581i
\(229\) 12.6208i 0.834006i −0.908905 0.417003i \(-0.863080\pi\)
0.908905 0.417003i \(-0.136920\pi\)
\(230\) 14.5725 5.71952i 0.960885 0.377134i
\(231\) 13.6280i 0.896656i
\(232\) −4.42237 + 1.96306i −0.290343 + 0.128881i
\(233\) 3.82345 0.250482 0.125241 0.992126i \(-0.460030\pi\)
0.125241 + 0.992126i \(0.460030\pi\)
\(234\) −27.2137 34.8587i −1.77902 2.27879i
\(235\) −12.3273 3.66308i −0.804146 0.238953i
\(236\) −6.61267 1.65395i −0.430448 0.107663i
\(237\) 29.1506 1.89354
\(238\) −7.73172 + 2.29094i −0.501173 + 0.148500i
\(239\) 2.65346 0.171638 0.0858190 0.996311i \(-0.472649\pi\)
0.0858190 + 0.996311i \(0.472649\pi\)
\(240\) −19.7850 19.5343i −1.27712 1.26093i
\(241\) 17.4604i 1.12473i −0.826890 0.562363i \(-0.809892\pi\)
0.826890 0.562363i \(-0.190108\pi\)
\(242\) 0.827413 + 1.05985i 0.0531881 + 0.0681299i
\(243\) 13.7306i 0.880817i
\(244\) 2.10608 8.42035i 0.134828 0.539057i
\(245\) −3.24030 + 10.9046i −0.207015 + 0.696666i
\(246\) −12.8590 16.4714i −0.819860 1.05018i
\(247\) 36.1403i 2.29955i
\(248\) −7.03711 15.8532i −0.446857 1.00668i
\(249\) 18.4721i 1.17062i
\(250\) 15.4846 + 3.19810i 0.979331 + 0.202265i
\(251\) 5.05359i 0.318980i 0.987200 + 0.159490i \(0.0509849\pi\)
−0.987200 + 0.159490i \(0.949015\pi\)
\(252\) −4.47172 + 17.8784i −0.281692 + 1.12624i
\(253\) −15.6933 −0.986627
\(254\) 11.2047 8.74734i 0.703044 0.548857i
\(255\) −17.6535 + 22.5766i −1.10551 + 1.41380i
\(256\) 8.90758 + 13.2912i 0.556724 + 0.830698i
\(257\) 6.10715i 0.380953i 0.981692 + 0.190477i \(0.0610034\pi\)
−0.981692 + 0.190477i \(0.938997\pi\)
\(258\) −36.0101 + 28.1126i −2.24189 + 1.75021i
\(259\) 5.51318i 0.342572i
\(260\) −18.0674 10.6816i −1.12049 0.662448i
\(261\) 11.3980 0.705520
\(262\) 14.1920 + 18.1788i 0.876782 + 1.12309i
\(263\) 18.6270i 1.14859i 0.818649 + 0.574294i \(0.194723\pi\)
−0.818649 + 0.574294i \(0.805277\pi\)
\(264\) 11.3081 + 25.4748i 0.695965 + 1.56787i
\(265\) −0.545646 + 1.83626i −0.0335188 + 0.112800i
\(266\) −11.8714 + 9.26786i −0.727883 + 0.568249i
\(267\) 26.9059i 1.64661i
\(268\) −3.72507 + 14.8932i −0.227545 + 0.909749i
\(269\) 22.7079 1.38452 0.692262 0.721647i \(-0.256614\pi\)
0.692262 + 0.721647i \(0.256614\pi\)
\(270\) 13.1552 + 33.5175i 0.800597 + 2.03981i
\(271\) 22.2596 1.35217 0.676087 0.736822i \(-0.263674\pi\)
0.676087 + 0.736822i \(0.263674\pi\)
\(272\) 12.5520 10.6980i 0.761076 0.648663i
\(273\) 20.1761i 1.22112i
\(274\) −8.37172 + 6.53569i −0.505754 + 0.394836i
\(275\) −13.2783 8.65558i −0.800709 0.521951i
\(276\) 29.8576 + 7.46792i 1.79722 + 0.449516i
\(277\) 22.2912i 1.33935i 0.742655 + 0.669674i \(0.233566\pi\)
−0.742655 + 0.669674i \(0.766434\pi\)
\(278\) −18.9644 24.2919i −1.13741 1.45693i
\(279\) 40.8593i 2.44618i
\(280\) 1.12451 + 8.67404i 0.0672025 + 0.518373i
\(281\) 15.8092 0.943098 0.471549 0.881840i \(-0.343695\pi\)
0.471549 + 0.881840i \(0.343695\pi\)
\(282\) −15.5583 19.9290i −0.926484 1.18675i
\(283\) 22.8987i 1.36118i 0.732662 + 0.680592i \(0.238278\pi\)
−0.732662 + 0.680592i \(0.761722\pi\)
\(284\) −24.8971 6.22722i −1.47737 0.369518i
\(285\) −15.2462 + 51.3079i −0.903107 + 3.03922i
\(286\) 12.9476 + 16.5849i 0.765608 + 0.980685i
\(287\) 6.57375i 0.388036i
\(288\) −6.47598 37.1307i −0.381601 2.18795i
\(289\) −12.4436 11.5826i −0.731975 0.681332i
\(290\) 5.03562 1.97641i 0.295702 0.116059i
\(291\) 33.4622i 1.96159i
\(292\) −4.02529 + 16.0936i −0.235563 + 0.941805i
\(293\) 2.83599 0.165680 0.0828400 0.996563i \(-0.473601\pi\)
0.0828400 + 0.996563i \(0.473601\pi\)
\(294\) −17.6289 + 13.7626i −1.02814 + 0.802653i
\(295\) 7.30524 + 2.17076i 0.425328 + 0.126387i
\(296\) 4.57467 + 10.3058i 0.265897 + 0.599013i
\(297\) 36.0952i 2.09446i
\(298\) 18.1435 14.1644i 1.05102 0.820521i
\(299\) 23.2338 1.34364
\(300\) 21.1439 + 22.7866i 1.22075 + 1.31558i
\(301\) 14.3717 0.828369
\(302\) 2.32569 + 2.97903i 0.133829 + 0.171424i
\(303\) −32.0679 −1.84225
\(304\) 14.5011 27.1750i 0.831695 1.55859i
\(305\) −2.76417 + 9.30224i −0.158276 + 0.532645i
\(306\) −37.2504 + 11.0375i −2.12946 + 0.630969i
\(307\) −2.85382 −0.162876 −0.0814380 0.996678i \(-0.525951\pi\)
−0.0814380 + 0.996678i \(0.525951\pi\)
\(308\) 2.12753 8.50610i 0.121227 0.484680i
\(309\) −44.4868 −2.53077
\(310\) 7.08498 + 18.0515i 0.402400 + 1.02526i
\(311\) 1.91623i 0.108659i −0.998523 0.0543297i \(-0.982698\pi\)
0.998523 0.0543297i \(-0.0173022\pi\)
\(312\) −16.7415 37.7153i −0.947803 2.13521i
\(313\) −12.2883 −0.694578 −0.347289 0.937758i \(-0.612898\pi\)
−0.347289 + 0.937758i \(0.612898\pi\)
\(314\) 6.48303 + 8.30426i 0.365858 + 0.468637i
\(315\) 5.86901 19.7509i 0.330681 1.11284i
\(316\) 18.1948 + 4.55085i 1.02354 + 0.256005i
\(317\) 4.56223i 0.256240i 0.991759 + 0.128120i \(0.0408943\pi\)
−0.991759 + 0.128120i \(0.959106\pi\)
\(318\) −2.96859 + 2.31754i −0.166470 + 0.129961i
\(319\) −5.42289 −0.303624
\(320\) −9.29951 15.2813i −0.519859 0.854252i
\(321\) −12.1844 −0.680069
\(322\) −5.95810 7.63187i −0.332032 0.425307i
\(323\) −29.5460 11.6229i −1.64398 0.646718i
\(324\) −7.47627 + 29.8909i −0.415348 + 1.66061i
\(325\) 19.6583 + 12.8145i 1.09045 + 0.710821i
\(326\) 4.19339 3.27373i 0.232250 0.181315i
\(327\) 2.19547i 0.121410i
\(328\) −5.45470 12.2883i −0.301185 0.678510i
\(329\) 7.95369i 0.438501i
\(330\) −11.3850 29.0075i −0.626725 1.59681i
\(331\) 29.9051i 1.64373i 0.569681 + 0.821866i \(0.307067\pi\)
−0.569681 + 0.821866i \(0.692933\pi\)
\(332\) −2.88377 + 11.5296i −0.158267 + 0.632770i
\(333\) 26.5618i 1.45558i
\(334\) −12.7444 16.3246i −0.697342 0.893242i
\(335\) 4.88904 16.4530i 0.267117 0.898926i
\(336\) −8.09557 + 15.1711i −0.441649 + 0.827649i
\(337\) 28.1199 1.53179 0.765895 0.642966i \(-0.222296\pi\)
0.765895 + 0.642966i \(0.222296\pi\)
\(338\) −7.85542 10.0622i −0.427279 0.547311i
\(339\) 4.66684i 0.253468i
\(340\) −14.5432 + 11.3355i −0.788718 + 0.614755i
\(341\) 19.4398i 1.05273i
\(342\) −57.1949 + 44.6513i −3.09275 + 2.41447i
\(343\) 16.7164 0.902603
\(344\) −26.8650 + 11.9252i −1.44846 + 0.642962i
\(345\) −32.9847 9.80144i −1.77584 0.527692i
\(346\) −0.881960 + 0.688535i −0.0474145 + 0.0370159i
\(347\) 17.8743i 0.959543i −0.877394 0.479771i \(-0.840720\pi\)
0.877394 0.479771i \(-0.159280\pi\)
\(348\) 10.3174 + 2.58058i 0.553073 + 0.138334i
\(349\) 30.7262i 1.64474i −0.568955 0.822369i \(-0.692652\pi\)
0.568955 0.822369i \(-0.307348\pi\)
\(350\) −0.831880 9.74358i −0.0444659 0.520816i
\(351\) 53.4387i 2.85235i
\(352\) 3.08111 + 17.6659i 0.164224 + 0.941593i
\(353\) 12.4620i 0.663287i 0.943405 + 0.331643i \(0.107603\pi\)
−0.943405 + 0.331643i \(0.892397\pi\)
\(354\) 9.21994 + 11.8100i 0.490035 + 0.627697i
\(355\) 27.5047 + 8.17305i 1.45980 + 0.433780i
\(356\) 4.20041 16.7937i 0.222621 0.890065i
\(357\) 16.4947 + 6.48877i 0.872994 + 0.343422i
\(358\) −4.20187 + 3.28035i −0.222076 + 0.173372i
\(359\) 31.4652 1.66067 0.830335 0.557265i \(-0.188149\pi\)
0.830335 + 0.557265i \(0.188149\pi\)
\(360\) 5.41775 + 41.7904i 0.285541 + 2.20255i
\(361\) −40.2976 −2.12093
\(362\) 17.1608 + 21.9817i 0.901954 + 1.15533i
\(363\) 2.95547i 0.155122i
\(364\) −3.14979 + 12.5932i −0.165094 + 0.660064i
\(365\) 5.28308 17.7791i 0.276529 0.930601i
\(366\) −15.0385 + 11.7404i −0.786075 + 0.613678i
\(367\) −16.3289 −0.852360 −0.426180 0.904638i \(-0.640141\pi\)
−0.426180 + 0.904638i \(0.640141\pi\)
\(368\) 17.4702 + 9.32243i 0.910697 + 0.485965i
\(369\) 31.6714i 1.64875i
\(370\) −4.60579 11.7349i −0.239444 0.610069i
\(371\) 1.18477 0.0615101
\(372\) −9.25079 + 36.9857i −0.479631 + 1.91762i
\(373\) −12.0595 −0.624415 −0.312207 0.950014i \(-0.601068\pi\)
−0.312207 + 0.950014i \(0.601068\pi\)
\(374\) 17.7228 5.25134i 0.916424 0.271540i
\(375\) −22.5027 26.4857i −1.16204 1.36772i
\(376\) −6.59973 14.8679i −0.340355 0.766751i
\(377\) 8.02855 0.413491
\(378\) 17.5536 13.7039i 0.902862 0.704853i
\(379\) −22.3559 −1.14834 −0.574172 0.818735i \(-0.694676\pi\)
−0.574172 + 0.818735i \(0.694676\pi\)
\(380\) −17.5261 + 29.6444i −0.899068 + 1.52073i
\(381\) −31.2450 −1.60073
\(382\) −3.73786 4.78792i −0.191246 0.244971i
\(383\) 23.7458i 1.21335i −0.794949 0.606676i \(-0.792502\pi\)
0.794949 0.606676i \(-0.207498\pi\)
\(384\) 2.54458 35.0768i 0.129853 1.79000i
\(385\) −2.79232 + 9.39698i −0.142310 + 0.478914i
\(386\) −2.02088 2.58859i −0.102860 0.131756i
\(387\) 69.2407 3.51970
\(388\) −5.22395 + 20.8859i −0.265206 + 1.06032i
\(389\) 19.1770i 0.972314i 0.873871 + 0.486157i \(0.161602\pi\)
−0.873871 + 0.486157i \(0.838398\pi\)
\(390\) 16.8554 + 42.9453i 0.853508 + 2.17462i
\(391\) 7.47213 18.9945i 0.377882 0.960591i
\(392\) −13.1519 + 5.83802i −0.664270 + 0.294864i
\(393\) 50.6929i 2.55712i
\(394\) 8.45010 6.59688i 0.425710 0.332346i
\(395\) −20.1004 5.97286i −1.01136 0.300527i
\(396\) 10.2502 40.9813i 0.515090 2.05939i
\(397\) 33.6020i 1.68643i −0.537573 0.843217i \(-0.680659\pi\)
0.537573 0.843217i \(-0.319341\pi\)
\(398\) −0.954371 + 0.745065i −0.0478383 + 0.0373467i
\(399\) 33.1043 1.65729
\(400\) 9.63997 + 17.5234i 0.481998 + 0.876172i
\(401\) 26.1862i 1.30767i 0.756635 + 0.653837i \(0.226842\pi\)
−0.756635 + 0.653837i \(0.773158\pi\)
\(402\) 26.5989 20.7654i 1.32663 1.03568i
\(403\) 28.7805i 1.43366i
\(404\) −20.0156 5.00627i −0.995814 0.249071i
\(405\) 9.81239 33.0215i 0.487581 1.64085i
\(406\) −2.05885 2.63723i −0.102179 0.130884i
\(407\) 12.6374i 0.626413i
\(408\) −36.2179 + 1.55735i −1.79305 + 0.0771002i
\(409\) −17.7503 −0.877698 −0.438849 0.898561i \(-0.644614\pi\)
−0.438849 + 0.898561i \(0.644614\pi\)
\(410\) 5.49180 + 13.9924i 0.271221 + 0.691033i
\(411\) 23.3451 1.15153
\(412\) −27.7671 6.94505i −1.36799 0.342158i
\(413\) 4.71340i 0.231931i
\(414\) −28.7053 36.7693i −1.41079 1.80711i
\(415\) 3.78486 12.7372i 0.185792 0.625243i
\(416\) −4.56156 26.1542i −0.223649 1.28231i
\(417\) 67.7396i 3.31722i
\(418\) 27.2119 21.2440i 1.33098 1.03908i
\(419\) −6.75433 −0.329970 −0.164985 0.986296i \(-0.552758\pi\)
−0.164985 + 0.986296i \(0.552758\pi\)
\(420\) 9.78432 16.5497i 0.477426 0.807541i
\(421\) 16.0671i 0.783061i −0.920165 0.391531i \(-0.871946\pi\)
0.920165 0.391531i \(-0.128054\pi\)
\(422\) −7.26405 9.30468i −0.353608 0.452945i
\(423\) 38.3198i 1.86317i
\(424\) −2.21469 + 0.983085i −0.107555 + 0.0477428i
\(425\) 16.7986 11.9502i 0.814851 0.579670i
\(426\) 34.7136 + 44.4655i 1.68188 + 2.15436i
\(427\) 6.00188 0.290451
\(428\) −7.60509 1.90217i −0.367606 0.0919449i
\(429\) 46.2481i 2.23288i
\(430\) 30.5904 12.0063i 1.47520 0.578995i
\(431\) 16.5890i 0.799062i −0.916720 0.399531i \(-0.869173\pi\)
0.916720 0.399531i \(-0.130827\pi\)
\(432\) −21.4420 + 40.1822i −1.03163 + 1.93327i
\(433\) 1.90705i 0.0916468i −0.998950 0.0458234i \(-0.985409\pi\)
0.998950 0.0458234i \(-0.0145911\pi\)
\(434\) 9.45387 7.38052i 0.453801 0.354276i
\(435\) −11.3980 3.38694i −0.546493 0.162391i
\(436\) −0.342745 + 1.37033i −0.0164145 + 0.0656270i
\(437\) 38.1211i 1.82358i
\(438\) 28.7426 22.4390i 1.37338 1.07218i
\(439\) 2.19597i 0.104808i −0.998626 0.0524041i \(-0.983312\pi\)
0.998626 0.0524041i \(-0.0166884\pi\)
\(440\) −2.57763 19.8828i −0.122884 0.947875i
\(441\) 33.8971 1.61415
\(442\) −26.2385 + 7.77457i −1.24804 + 0.369799i
\(443\) 0.504565 0.0239726 0.0119863 0.999928i \(-0.496185\pi\)
0.0119863 + 0.999928i \(0.496185\pi\)
\(444\) 6.01374 24.0436i 0.285399 1.14106i
\(445\) −5.51292 + 18.5526i −0.261337 + 0.879476i
\(446\) 2.27309 1.77457i 0.107634 0.0840285i
\(447\) −50.5943 −2.39303
\(448\) −7.42139 + 8.20540i −0.350628 + 0.387669i
\(449\) 21.6668i 1.02252i 0.859426 + 0.511260i \(0.170821\pi\)
−0.859426 + 0.511260i \(0.829179\pi\)
\(450\) −4.00789 46.9433i −0.188934 2.21293i
\(451\) 15.0685i 0.709546i
\(452\) 0.728562 2.91287i 0.0342687 0.137010i
\(453\) 8.30724i 0.390308i
\(454\) −1.65811 + 1.29446i −0.0778188 + 0.0607521i
\(455\) 4.13401 13.9122i 0.193806 0.652212i
\(456\) −61.8819 + 27.4689i −2.89789 + 1.28635i
\(457\) 32.0636i 1.49987i −0.661511 0.749935i \(-0.730085\pi\)
0.661511 0.749935i \(-0.269915\pi\)
\(458\) −14.0689 + 10.9834i −0.657397 + 0.513221i
\(459\) 43.6881 + 17.1862i 2.03919 + 0.802185i
\(460\) −19.0577 11.2671i −0.888570 0.525332i
\(461\) 5.37334i 0.250261i −0.992140 0.125131i \(-0.960065\pi\)
0.992140 0.125131i \(-0.0399350\pi\)
\(462\) −15.1917 + 11.8599i −0.706780 + 0.551774i
\(463\) 9.07513i 0.421757i −0.977512 0.210878i \(-0.932368\pi\)
0.977512 0.210878i \(-0.0676324\pi\)
\(464\) 6.03691 + 3.22141i 0.280257 + 0.149550i
\(465\) 12.1414 40.8593i 0.563044 1.89481i
\(466\) −3.32740 4.26215i −0.154139 0.197440i
\(467\) 4.23729 0.196078 0.0980391 0.995183i \(-0.468743\pi\)
0.0980391 + 0.995183i \(0.468743\pi\)
\(468\) −15.1753 + 60.6725i −0.701478 + 2.80459i
\(469\) −10.6156 −0.490185
\(470\) 6.64463 + 16.9296i 0.306494 + 0.780904i
\(471\) 23.1570i 1.06702i
\(472\) 3.91104 + 8.81078i 0.180020 + 0.405549i
\(473\) −32.9430 −1.51472
\(474\) −25.3687 32.4954i −1.16522 1.49256i
\(475\) 21.0256 32.2547i 0.964720 1.47995i
\(476\) 9.28243 + 6.62513i 0.425460 + 0.303663i
\(477\) 5.70805 0.261354
\(478\) −2.30921 2.95791i −0.105621 0.135292i
\(479\) 37.2651i 1.70268i 0.524611 + 0.851342i \(0.324211\pi\)
−0.524611 + 0.851342i \(0.675789\pi\)
\(480\) −4.55746 + 39.0551i −0.208019 + 1.78261i
\(481\) 18.7096i 0.853084i
\(482\) −19.4638 + 15.1952i −0.886554 + 0.692121i
\(483\) 21.2820i 0.968363i
\(484\) 0.461393 1.84470i 0.0209724 0.0838499i
\(485\) 6.85629 23.0734i 0.311328 1.04771i
\(486\) 15.3060 11.9492i 0.694295 0.542027i
\(487\) −21.5041 −0.974446 −0.487223 0.873278i \(-0.661990\pi\)
−0.487223 + 0.873278i \(0.661990\pi\)
\(488\) −11.2193 + 4.98018i −0.507875 + 0.225442i
\(489\) −11.6936 −0.528801
\(490\) 14.9756 5.87773i 0.676531 0.265529i
\(491\) 12.5827i 0.567848i 0.958847 + 0.283924i \(0.0916363\pi\)
−0.958847 + 0.283924i \(0.908364\pi\)
\(492\) −7.17060 + 28.6689i −0.323276 + 1.29249i
\(493\) 2.58203 6.56364i 0.116289 0.295611i
\(494\) −40.2870 + 31.4515i −1.81260 + 1.41507i
\(495\) −13.4530 + 45.2734i −0.604669 + 2.03489i
\(496\) −11.5480 + 21.6410i −0.518522 + 0.971708i
\(497\) 17.7462i 0.796027i
\(498\) 20.5916 16.0756i 0.922730 0.720363i
\(499\) 18.1299 0.811606 0.405803 0.913961i \(-0.366992\pi\)
0.405803 + 0.913961i \(0.366992\pi\)
\(500\) −9.91060 20.0444i −0.443216 0.896415i
\(501\) 45.5222i 2.03378i
\(502\) 5.63344 4.39795i 0.251433 0.196290i
\(503\) −30.9286 −1.37904 −0.689520 0.724267i \(-0.742179\pi\)
−0.689520 + 0.724267i \(0.742179\pi\)
\(504\) 23.8214 10.5741i 1.06109 0.471009i
\(505\) 22.1119 + 6.57059i 0.983968 + 0.292387i
\(506\) 13.6573 + 17.4939i 0.607139 + 0.777699i
\(507\) 28.0591i 1.24615i
\(508\) −19.5020 4.87781i −0.865262 0.216418i
\(509\) 14.9794i 0.663949i −0.943288 0.331975i \(-0.892285\pi\)
0.943288 0.331975i \(-0.107715\pi\)
\(510\) 40.5302 + 0.0315492i 1.79471 + 0.00139702i
\(511\) −11.4712 −0.507457
\(512\) 7.06424 21.4964i 0.312198 0.950017i
\(513\) 87.6803 3.87118
\(514\) 6.80788 5.31482i 0.300283 0.234427i
\(515\) 30.6752 + 9.11518i 1.35171 + 0.401663i
\(516\) 62.6764 + 15.6765i 2.75918 + 0.690120i
\(517\) 18.2316i 0.801824i
\(518\) −6.14576 + 4.79791i −0.270029 + 0.210808i
\(519\) 2.45941 0.107956
\(520\) 3.81616 + 29.4363i 0.167350 + 1.29087i
\(521\) 9.75940i 0.427567i −0.976881 0.213784i \(-0.931421\pi\)
0.976881 0.213784i \(-0.0685787\pi\)
\(522\) −9.91927 12.7058i −0.434155 0.556119i
\(523\) 21.4234 0.936781 0.468390 0.883522i \(-0.344834\pi\)
0.468390 + 0.883522i \(0.344834\pi\)
\(524\) 7.91391 31.6407i 0.345721 1.38223i
\(525\) −11.7380 + 18.0069i −0.512289 + 0.785886i
\(526\) 20.7642 16.2104i 0.905363 0.706805i
\(527\) 23.5291 + 9.25600i 1.02495 + 0.403198i
\(528\) 18.5568 34.7754i 0.807581 1.51340i
\(529\) 1.50719 0.0655302
\(530\) 2.52180 0.989773i 0.109540 0.0429930i
\(531\) 22.7085i 0.985466i
\(532\) 20.6625 + 5.16807i 0.895833 + 0.224064i
\(533\) 22.3087i 0.966299i
\(534\) −29.9931 + 23.4152i −1.29793 + 1.01327i
\(535\) 8.40160 + 2.49655i 0.363233 + 0.107935i
\(536\) 19.8438 8.80854i 0.857124 0.380471i
\(537\) 11.7172 0.505635
\(538\) −19.7618 25.3134i −0.851992 1.09134i
\(539\) −16.1274 −0.694655
\(540\) 25.9149 43.8336i 1.11520 1.88630i
\(541\) −37.7525 −1.62310 −0.811552 0.584280i \(-0.801377\pi\)
−0.811552 + 0.584280i \(0.801377\pi\)
\(542\) −19.3717 24.8136i −0.832085 1.06584i
\(543\) 61.2975i 2.63053i
\(544\) −22.8490 4.68210i −0.979644 0.200744i
\(545\) 0.449843 1.51385i 0.0192692 0.0648463i
\(546\) 22.4911 17.5585i 0.962531 0.751436i
\(547\) 16.0703i 0.687115i 0.939132 + 0.343558i \(0.111632\pi\)
−0.939132 + 0.343558i \(0.888368\pi\)
\(548\) 14.5712 + 3.64452i 0.622450 + 0.155686i
\(549\) 28.9162 1.23412
\(550\) 1.90685 + 22.3344i 0.0813084 + 0.952342i
\(551\) 13.1729i 0.561186i
\(552\) −17.6591 39.7825i −0.751623 1.69325i
\(553\) 12.9689i 0.551495i
\(554\) 24.8489 19.3992i 1.05573 0.824193i
\(555\) −7.89286 + 26.5618i −0.335033 + 1.12748i
\(556\) −10.5752 + 42.2806i −0.448486 + 1.79310i
\(557\) −42.2565 −1.79047 −0.895233 0.445598i \(-0.852991\pi\)
−0.895233 + 0.445598i \(0.852991\pi\)
\(558\) 45.5475 35.5583i 1.92818 1.50530i
\(559\) 48.7718 2.06283
\(560\) 8.69067 8.80223i 0.367248 0.371962i
\(561\) −37.8095 14.8737i −1.59632 0.627967i
\(562\) −13.7581 17.6231i −0.580352 0.743387i
\(563\) −9.77006 −0.411759 −0.205879 0.978577i \(-0.566005\pi\)
−0.205879 + 0.978577i \(0.566005\pi\)
\(564\) −8.67583 + 34.6869i −0.365318 + 1.46058i
\(565\) −0.956217 + 3.21795i −0.0402284 + 0.135380i
\(566\) 25.5260 19.9279i 1.07294 0.837630i
\(567\) −21.3057 −0.894757
\(568\) 14.7253 + 33.1731i 0.617860 + 1.39191i
\(569\) −40.1848 −1.68463 −0.842317 0.538983i \(-0.818809\pi\)
−0.842317 + 0.538983i \(0.818809\pi\)
\(570\) 70.4631 27.6558i 2.95137 1.15837i
\(571\) −20.3017 −0.849599 −0.424800 0.905287i \(-0.639655\pi\)
−0.424800 + 0.905287i \(0.639655\pi\)
\(572\) 7.22001 28.8664i 0.301884 1.20697i
\(573\) 13.3514i 0.557764i
\(574\) 7.32802 5.72089i 0.305865 0.238785i
\(575\) 20.7358 + 13.5169i 0.864743 + 0.563693i
\(576\) −35.7553 + 39.5325i −1.48980 + 1.64719i
\(577\) 5.50626i 0.229229i −0.993410 0.114614i \(-0.963437\pi\)
0.993410 0.114614i \(-0.0365632\pi\)
\(578\) −2.08246 + 23.9513i −0.0866189 + 0.996242i
\(579\) 7.21845i 0.299989i
\(580\) −6.58549 3.89341i −0.273448 0.161665i
\(581\) −8.21812 −0.340945
\(582\) 37.3017 29.1209i 1.54620 1.20710i
\(583\) −2.71575 −0.112475
\(584\) 21.4432 9.51848i 0.887326 0.393877i
\(585\) 19.9171 67.0269i 0.823472 2.77122i
\(586\) −2.46805 3.16138i −0.101954 0.130596i
\(587\) 41.6032 1.71715 0.858574 0.512690i \(-0.171351\pi\)
0.858574 + 0.512690i \(0.171351\pi\)
\(588\) 30.6835 + 7.67450i 1.26537 + 0.316491i
\(589\) 47.2220 1.94575
\(590\) −3.93764 10.0326i −0.162110 0.413034i
\(591\) −23.5637 −0.969280
\(592\) 7.50712 14.0683i 0.308541 0.578204i
\(593\) 5.38912i 0.221305i −0.993859 0.110652i \(-0.964706\pi\)
0.993859 0.110652i \(-0.0352940\pi\)
\(594\) −40.2368 + 31.4123i −1.65093 + 1.28886i
\(595\) −10.0442 7.85395i −0.411771 0.321980i
\(596\) −31.5792 7.89853i −1.29353 0.323536i
\(597\) 2.66133 0.108921
\(598\) −20.2195 25.8996i −0.826836 1.05911i
\(599\) 2.90781 0.118810 0.0594050 0.998234i \(-0.481080\pi\)
0.0594050 + 0.998234i \(0.481080\pi\)
\(600\) 7.00031 43.4003i 0.285786 1.77181i
\(601\) 21.9861i 0.896833i −0.893825 0.448417i \(-0.851988\pi\)
0.893825 0.448417i \(-0.148012\pi\)
\(602\) −12.5071 16.0207i −0.509752 0.652953i
\(603\) −51.1447 −2.08277
\(604\) 1.29688 5.18508i 0.0527694 0.210978i
\(605\) −0.605565 + 2.03790i −0.0246197 + 0.0828524i
\(606\) 27.9075 + 35.7473i 1.13366 + 1.45213i
\(607\) −29.4172 −1.19401 −0.597003 0.802239i \(-0.703642\pi\)
−0.597003 + 0.802239i \(0.703642\pi\)
\(608\) −42.9128 + 7.48444i −1.74034 + 0.303534i
\(609\) 7.35410i 0.298003i
\(610\) 12.7751 5.01406i 0.517250 0.203013i
\(611\) 26.9917i 1.09197i
\(612\) 44.7215 + 31.9190i 1.80776 + 1.29025i
\(613\) −12.5726 −0.507803 −0.253901 0.967230i \(-0.581714\pi\)
−0.253901 + 0.967230i \(0.581714\pi\)
\(614\) 2.48357 + 3.18126i 0.100229 + 0.128385i
\(615\) 9.41121 31.6714i 0.379497 1.27712i
\(616\) −11.3336 + 5.03090i −0.456644 + 0.202701i
\(617\) −31.1520 −1.25413 −0.627065 0.778967i \(-0.715744\pi\)
−0.627065 + 0.778967i \(0.715744\pi\)
\(618\) 38.7152 + 49.5912i 1.55735 + 1.99485i
\(619\) −2.39088 −0.0960975 −0.0480487 0.998845i \(-0.515300\pi\)
−0.0480487 + 0.998845i \(0.515300\pi\)
\(620\) 13.9570 23.6075i 0.560526 0.948099i
\(621\) 56.3677i 2.26196i
\(622\) −2.13610 + 1.66762i −0.0856496 + 0.0668655i
\(623\) 11.9703 0.479579
\(624\) −27.4732 + 51.4847i −1.09981 + 2.06104i
\(625\) 10.0896 + 22.8736i 0.403585 + 0.914942i
\(626\) 10.6941 + 13.6983i 0.427421 + 0.547494i
\(627\) −75.8822 −3.03044
\(628\) 3.61515 14.4538i 0.144260 0.576768i
\(629\) −15.2958 6.01712i −0.609883 0.239918i
\(630\) −27.1247 + 10.6461i −1.08067 + 0.424149i
\(631\) −12.5987 −0.501548 −0.250774 0.968046i \(-0.580685\pi\)
−0.250774 + 0.968046i \(0.580685\pi\)
\(632\) −10.7612 24.2429i −0.428059 0.964330i
\(633\) 25.9467i 1.03129i
\(634\) 5.08569 3.97034i 0.201979 0.157682i
\(635\) 21.5445 + 6.40198i 0.854968 + 0.254055i
\(636\) 5.16691 + 1.29234i 0.204881 + 0.0512445i
\(637\) 23.8764 0.946019
\(638\) 4.71934 + 6.04511i 0.186840 + 0.239328i
\(639\) 85.4990i 3.38229i
\(640\) −8.94168 + 23.6653i −0.353451 + 0.935453i
\(641\) 1.97957i 0.0781885i 0.999236 + 0.0390942i \(0.0124473\pi\)
−0.999236 + 0.0390942i \(0.987553\pi\)
\(642\) 10.6037 + 13.5825i 0.418493 + 0.536057i
\(643\) 33.0730i 1.30427i −0.758102 0.652136i \(-0.773873\pi\)
0.758102 0.652136i \(-0.226127\pi\)
\(644\) −3.32243 + 13.2835i −0.130922 + 0.523441i
\(645\) −69.2407 20.5750i −2.72635 0.810139i
\(646\) 12.7562 + 43.0511i 0.501887 + 1.69382i
\(647\) 35.0894i 1.37951i 0.724044 + 0.689753i \(0.242281\pi\)
−0.724044 + 0.689753i \(0.757719\pi\)
\(648\) 39.8269 17.6789i 1.56455 0.694492i
\(649\) 10.8041i 0.424100i
\(650\) −2.82308 33.0659i −0.110730 1.29695i
\(651\) −26.3628 −1.03324
\(652\) −7.29870 1.82554i −0.285839 0.0714936i
\(653\) 7.84685i 0.307071i −0.988143 0.153535i \(-0.950934\pi\)
0.988143 0.153535i \(-0.0490659\pi\)
\(654\) 2.44737 1.91063i 0.0956999 0.0747117i
\(655\) −10.3868 + 34.9545i −0.405845 + 1.36579i
\(656\) −8.95127 + 16.7746i −0.349488 + 0.654940i
\(657\) −55.2668 −2.15616
\(658\) 8.86629 6.92180i 0.345644 0.269840i
\(659\) 26.4942i 1.03207i 0.856569 + 0.516033i \(0.172592\pi\)
−0.856569 + 0.516033i \(0.827408\pi\)
\(660\) −22.4278 + 37.9354i −0.873001 + 1.47663i
\(661\) 0.681758i 0.0265173i −0.999912 0.0132587i \(-0.995780\pi\)
0.999912 0.0132587i \(-0.00422049\pi\)
\(662\) 33.3364 26.0253i 1.29565 1.01150i
\(663\) 55.9767 + 22.0204i 2.17396 + 0.855200i
\(664\) 15.3622 6.81915i 0.596167 0.264634i
\(665\) −22.8266 6.78294i −0.885176 0.263031i
\(666\) −29.6094 + 23.1157i −1.14734 + 0.895715i
\(667\) 8.46859 0.327905
\(668\) −7.10670 + 28.4134i −0.274966 + 1.09935i
\(669\) −6.33867 −0.245067
\(670\) −22.5956 + 8.86846i −0.872944 + 0.342618i
\(671\) −13.7576 −0.531107
\(672\) 23.9570 4.17836i 0.924163 0.161184i
\(673\) −17.0552 −0.657431 −0.328715 0.944429i \(-0.606616\pi\)
−0.328715 + 0.944429i \(0.606616\pi\)
\(674\) −24.4717 31.3464i −0.942615 1.20742i
\(675\) −31.0894 + 47.6933i −1.19663 + 1.83572i
\(676\) −4.38044 + 17.5135i −0.168479 + 0.673596i
\(677\) 20.0992i 0.772476i 0.922399 + 0.386238i \(0.126226\pi\)
−0.922399 + 0.386238i \(0.873774\pi\)
\(678\) −5.20231 + 4.06137i −0.199793 + 0.155976i
\(679\) −14.8871 −0.571316
\(680\) 25.2926 + 6.34706i 0.969926 + 0.243399i
\(681\) 4.62374 0.177182
\(682\) −21.6703 + 16.9177i −0.829800 + 0.647814i
\(683\) 21.4520i 0.820836i −0.911897 0.410418i \(-0.865383\pi\)
0.911897 0.410418i \(-0.134617\pi\)
\(684\) 99.5491 + 24.8990i 3.80636 + 0.952039i
\(685\) −16.0973 4.78333i −0.615045 0.182762i
\(686\) −14.5477 18.6345i −0.555434 0.711468i
\(687\) 39.2321 1.49680
\(688\) 36.6731 + 19.5694i 1.39815 + 0.746078i
\(689\) 4.02064 0.153174
\(690\) 17.7793 + 45.2991i 0.676845 + 1.72451i
\(691\) 1.68049 0.0639289 0.0319645 0.999489i \(-0.489824\pi\)
0.0319645 + 0.999489i \(0.489824\pi\)
\(692\) 1.53507 + 0.383950i 0.0583547 + 0.0145956i
\(693\) 29.2107 1.10962
\(694\) −19.9252 + 15.5553i −0.756350 + 0.590472i
\(695\) 13.8796 46.7088i 0.526483 1.77177i
\(696\) −6.10221 13.7470i −0.231304 0.521080i
\(697\) 18.2382 + 7.17464i 0.690822 + 0.271759i
\(698\) −34.2517 + 26.7399i −1.29645 + 1.01212i
\(699\) 11.8853i 0.449543i
\(700\) −10.1376 + 9.40680i −0.383165 + 0.355544i
\(701\) 40.1735i 1.51733i 0.651479 + 0.758667i \(0.274149\pi\)
−0.651479 + 0.758667i \(0.725851\pi\)
\(702\) 59.5702 46.5057i 2.24833 1.75524i
\(703\) −30.6980 −1.15780
\(704\) 17.0114 18.8086i 0.641143 0.708874i
\(705\) 11.3868 38.3198i 0.428851 1.44321i
\(706\) 13.8919 10.8452i 0.522829 0.408166i
\(707\) 14.2668i 0.536558i
\(708\) 5.14135 20.5557i 0.193224 0.772529i
\(709\) −36.6335 −1.37580 −0.687900 0.725806i \(-0.741467\pi\)
−0.687900 + 0.725806i \(0.741467\pi\)
\(710\) −14.8255 37.7732i −0.556390 1.41760i
\(711\) 62.4826i 2.34328i
\(712\) −22.3761 + 9.93257i −0.838579 + 0.372239i
\(713\) 30.3580i 1.13691i
\(714\) −7.12146 24.0343i −0.266514 0.899460i
\(715\) −9.47606 + 31.8897i −0.354385 + 1.19261i
\(716\) 7.31346 + 1.82923i 0.273317 + 0.0683615i
\(717\) 8.24835i 0.308040i
\(718\) −27.3830 35.0755i −1.02192 1.30901i
\(719\) 22.4385i 0.836817i 0.908259 + 0.418408i \(0.137412\pi\)
−0.908259 + 0.418408i \(0.862588\pi\)
\(720\) 41.8705 42.4080i 1.56042 1.58045i
\(721\) 19.7919i 0.737089i
\(722\) 35.0695 + 44.9214i 1.30515 + 1.67180i
\(723\) 54.2762 2.01856
\(724\) 9.56945 38.2597i 0.355646 1.42191i
\(725\) 7.16537 + 4.67083i 0.266115 + 0.173470i
\(726\) −3.29458 + 2.57203i −0.122273 + 0.0954571i
\(727\) 29.6872i 1.10104i −0.834823 0.550519i \(-0.814430\pi\)
0.834823 0.550519i \(-0.185570\pi\)
\(728\) 16.7793 7.44821i 0.621882 0.276049i
\(729\) 3.53576 0.130954
\(730\) −24.4167 + 9.58323i −0.903704 + 0.354691i
\(731\) 15.6853 39.8728i 0.580143 1.47475i
\(732\) 26.1749 + 6.54681i 0.967451 + 0.241977i
\(733\) 30.5411 1.12806 0.564030 0.825754i \(-0.309250\pi\)
0.564030 + 0.825754i \(0.309250\pi\)
\(734\) 14.2104 + 18.2024i 0.524516 + 0.671864i
\(735\) −33.8971 10.0726i −1.25031 0.371532i
\(736\) −4.81157 27.5877i −0.177357 1.01689i
\(737\) 24.3334 0.896330
\(738\) 35.3054 27.5625i 1.29961 1.01459i
\(739\) 0.177926i 0.00654510i −0.999995 0.00327255i \(-0.998958\pi\)
0.999995 0.00327255i \(-0.00104169\pi\)
\(740\) −9.07313 + 15.3467i −0.333535 + 0.564156i
\(741\) 112.343 4.12702
\(742\) −1.03106 1.32071i −0.0378514 0.0484847i
\(743\) 39.2895 1.44139 0.720696 0.693251i \(-0.243822\pi\)
0.720696 + 0.693251i \(0.243822\pi\)
\(744\) 49.2800 21.8750i 1.80669 0.801978i
\(745\) 34.8866 + 10.3666i 1.27815 + 0.379803i
\(746\) 10.4949 + 13.4431i 0.384245 + 0.492188i
\(747\) −39.5938 −1.44866
\(748\) −21.2774 15.1863i −0.777977 0.555264i
\(749\) 5.42078i 0.198071i
\(750\) −9.94136 + 48.1342i −0.363007 + 1.75761i
\(751\) 3.75737i 0.137108i 0.997647 + 0.0685541i \(0.0218386\pi\)
−0.997647 + 0.0685541i \(0.978161\pi\)
\(752\) −10.8303 + 20.2959i −0.394940 + 0.740116i
\(753\) −15.7092 −0.572476
\(754\) −6.98694 8.94974i −0.254449 0.325930i
\(755\) −1.70212 + 5.72813i −0.0619466 + 0.208468i
\(756\) −30.5525 7.64175i −1.11119 0.277928i
\(757\) −20.7558 −0.754384 −0.377192 0.926135i \(-0.623110\pi\)
−0.377192 + 0.926135i \(0.623110\pi\)
\(758\) 19.4555 + 24.9210i 0.706655 + 0.905171i
\(759\) 48.7829i 1.77071i
\(760\) 48.2980 6.26141i 1.75195 0.227125i
\(761\) 30.9329 1.12132 0.560659 0.828047i \(-0.310548\pi\)
0.560659 + 0.828047i \(0.310548\pi\)
\(762\) 27.1913 + 34.8300i 0.985039 + 1.26176i
\(763\) −0.976750 −0.0353607
\(764\) −2.08436 + 8.33349i −0.0754094 + 0.301495i
\(765\) −48.3915 37.8393i −1.74960 1.36808i
\(766\) −26.4704 + 20.6651i −0.956413 + 0.746659i
\(767\) 15.9954i 0.577562i
\(768\) −41.3159 + 27.6895i −1.49086 + 0.999157i
\(769\) 26.4764 0.954763 0.477382 0.878696i \(-0.341586\pi\)
0.477382 + 0.878696i \(0.341586\pi\)
\(770\) 12.9052 5.06512i 0.465072 0.182534i
\(771\) −18.9842 −0.683700
\(772\) −1.12691 + 4.50550i −0.0405583 + 0.162156i
\(773\) 16.9821 0.610805 0.305403 0.952223i \(-0.401209\pi\)
0.305403 + 0.952223i \(0.401209\pi\)
\(774\) −60.2576 77.1854i −2.16591 2.77437i
\(775\) −16.7438 + 25.6862i −0.601457 + 0.922676i
\(776\) 27.8286 12.3529i 0.998988 0.443443i
\(777\) 17.1379 0.614817
\(778\) 21.3774 16.6891i 0.766417 0.598332i
\(779\) 36.6034 1.31145
\(780\) 33.2042 56.1631i 1.18890 2.01096i
\(781\) 40.6782i 1.45558i
\(782\) −27.6766 + 8.20069i −0.989713 + 0.293256i
\(783\) 19.4781i 0.696092i
\(784\) 17.9534 + 9.58030i 0.641194 + 0.342154i
\(785\) −4.74478 + 15.9676i −0.169349 + 0.569907i
\(786\) −56.5093 + 44.1161i −2.01562 + 1.57357i
\(787\) 51.6950i 1.84273i 0.388703 + 0.921363i \(0.372923\pi\)
−0.388703 + 0.921363i \(0.627077\pi\)
\(788\) −14.7076 3.67864i −0.523937 0.131046i
\(789\) −57.9024 −2.06138
\(790\) 10.8344 + 27.6046i 0.385472 + 0.982129i
\(791\) 2.07625 0.0738228
\(792\) −54.6038 + 24.2382i −1.94026 + 0.861267i
\(793\) 20.3680 0.723290
\(794\) −37.4574 + 29.2425i −1.32931 + 1.03778i
\(795\) −5.70805 1.69616i −0.202444 0.0601564i
\(796\) 1.66111 + 0.415473i 0.0588764 + 0.0147260i
\(797\) 11.8705 0.420476 0.210238 0.977650i \(-0.432576\pi\)
0.210238 + 0.977650i \(0.432576\pi\)
\(798\) −28.8094 36.9026i −1.01984 1.30634i
\(799\) 22.0667 + 8.68071i 0.780665 + 0.307102i
\(800\) 11.1448 25.9960i 0.394027 0.919099i
\(801\) 57.6711 2.03771
\(802\) 29.1907 22.7888i 1.03076 0.804701i
\(803\) 26.2945 0.927914
\(804\) −46.2960 11.5795i −1.63273 0.408376i
\(805\) 4.36060 14.6747i 0.153691 0.517214i
\(806\) 32.0828 25.0466i 1.13007 0.882229i
\(807\) 70.5880i 2.48481i
\(808\) 11.8382 + 26.6690i 0.416465 + 0.938211i
\(809\) 1.09134i 0.0383693i 0.999816 + 0.0191847i \(0.00610704\pi\)
−0.999816 + 0.0191847i \(0.993893\pi\)
\(810\) −45.3497 + 17.7991i −1.59343 + 0.625398i
\(811\) 5.52216 0.193909 0.0969546 0.995289i \(-0.469090\pi\)
0.0969546 + 0.995289i \(0.469090\pi\)
\(812\) −1.14808 + 4.59017i −0.0402898 + 0.161083i
\(813\) 69.1945i 2.42676i
\(814\) 14.0874 10.9979i 0.493764 0.385475i
\(815\) 8.06312 + 2.39597i 0.282439 + 0.0839270i
\(816\) 33.2551 + 39.0182i 1.16416 + 1.36591i
\(817\) 80.0230i 2.79965i
\(818\) 15.4475 + 19.7870i 0.540108 + 0.691836i
\(819\) −43.2463 −1.51115
\(820\) 10.8185 18.2990i 0.377799 0.639027i
\(821\) 14.8268 0.517458 0.258729 0.965950i \(-0.416696\pi\)
0.258729 + 0.965950i \(0.416696\pi\)
\(822\) −20.3164 26.0237i −0.708615 0.907681i
\(823\) −25.8182 −0.899966 −0.449983 0.893037i \(-0.648570\pi\)
−0.449983 + 0.893037i \(0.648570\pi\)
\(824\) 16.4227 + 36.9971i 0.572112 + 1.28885i
\(825\) 26.9061 41.2758i 0.936749 1.43704i
\(826\) −5.25421 + 4.10190i −0.182817 + 0.142723i
\(827\) 26.3763i 0.917193i 0.888645 + 0.458596i \(0.151648\pi\)
−0.888645 + 0.458596i \(0.848352\pi\)
\(828\) −16.0070 + 63.9979i −0.556283 + 2.22408i
\(829\) 9.59045i 0.333090i 0.986034 + 0.166545i \(0.0532611\pi\)
−0.986034 + 0.166545i \(0.946739\pi\)
\(830\) −17.4924 + 6.86553i −0.607171 + 0.238306i
\(831\) −69.2928 −2.40374
\(832\) −25.1853 + 27.8459i −0.873144 + 0.965384i
\(833\) 7.67882 19.5199i 0.266055 0.676324i
\(834\) 75.5119 58.9512i 2.61476 2.04131i
\(835\) 9.32734 31.3892i 0.322786 1.08627i
\(836\) −47.3629 11.8463i −1.63808 0.409714i
\(837\) −69.8247 −2.41350
\(838\) 5.87803 + 7.52931i 0.203053 + 0.260096i
\(839\) 10.3436i 0.357099i 0.983931 + 0.178550i \(0.0571405\pi\)
−0.983931 + 0.178550i \(0.942859\pi\)
\(840\) −26.9635 + 3.49558i −0.930328 + 0.120609i
\(841\) −26.0736 −0.899091
\(842\) −17.9106 + 13.9826i −0.617240 + 0.481871i
\(843\) 49.1433i 1.69258i
\(844\) −4.05067 + 16.1950i −0.139430 + 0.557456i
\(845\) 5.74921 19.3477i 0.197779 0.665582i
\(846\) 42.7166 33.3483i 1.46863 1.14654i
\(847\) 1.31487 0.0451795
\(848\) 3.02325 + 1.61326i 0.103819 + 0.0553996i
\(849\) −71.1811 −2.44293
\(850\) −27.9405 8.32624i −0.958353 0.285588i
\(851\) 19.7350i 0.676509i
\(852\) 19.3575 77.3933i 0.663176 2.65145i
\(853\) 40.4041i 1.38341i −0.722180 0.691705i \(-0.756860\pi\)
0.722180 0.691705i \(-0.243140\pi\)
\(854\) −5.22321 6.69053i −0.178735 0.228945i
\(855\) −109.975 32.6793i −3.76107 1.11761i
\(856\) 4.49800 + 10.1331i 0.153738 + 0.346342i
\(857\) 29.9227 1.02214 0.511071 0.859539i \(-0.329249\pi\)
0.511071 + 0.859539i \(0.329249\pi\)
\(858\) −51.5546 + 40.2480i −1.76004 + 1.37404i
\(859\) 7.12681i 0.243164i −0.992581 0.121582i \(-0.961203\pi\)
0.992581 0.121582i \(-0.0387967\pi\)
\(860\) −40.0055 23.6517i −1.36418 0.806515i
\(861\) −20.4347 −0.696412
\(862\) −18.4924 + 14.4367i −0.629852 + 0.491717i
\(863\) 19.4379i 0.661674i −0.943688 0.330837i \(-0.892669\pi\)
0.943688 0.330837i \(-0.107331\pi\)
\(864\) 63.4529 11.0668i 2.15871 0.376502i
\(865\) −1.69585 0.503923i −0.0576605 0.0171339i
\(866\) −2.12586 + 1.65963i −0.0722396 + 0.0563965i
\(867\) 36.0049 38.6811i 1.22279 1.31368i
\(868\) −16.4547 4.11562i −0.558509 0.139693i
\(869\) 29.7276i 1.00844i
\(870\) 6.14372 + 15.6533i 0.208292 + 0.530698i
\(871\) −36.0253 −1.22067
\(872\) 1.82584 0.810478i 0.0618308 0.0274462i
\(873\) −71.7242 −2.42750
\(874\) −42.4951 + 33.1754i −1.43742 + 1.12217i
\(875\) 11.7833 10.0113i 0.398349 0.338445i
\(876\) −50.0273 12.5127i −1.69027 0.422766i
\(877\) 54.0672i 1.82572i −0.408272 0.912860i \(-0.633869\pi\)
0.408272 0.912860i \(-0.366131\pi\)
\(878\) −2.44794 + 1.91107i −0.0826139 + 0.0644956i
\(879\) 8.81573i 0.297347i
\(880\) −19.9209 + 20.1766i −0.671534 + 0.680154i
\(881\) 42.3386i 1.42642i −0.700948 0.713212i \(-0.747240\pi\)
0.700948 0.713212i \(-0.252760\pi\)
\(882\) −29.4994 37.7864i −0.993295 1.27233i
\(883\) 20.6175 0.693833 0.346917 0.937896i \(-0.387229\pi\)
0.346917 + 0.937896i \(0.387229\pi\)
\(884\) 31.5010 + 22.4831i 1.05949 + 0.756189i
\(885\) −6.74787 + 22.7085i −0.226827 + 0.763339i
\(886\) −0.439104 0.562458i −0.0147520 0.0188962i
\(887\) −42.1816 −1.41632 −0.708159 0.706053i \(-0.750474\pi\)
−0.708159 + 0.706053i \(0.750474\pi\)
\(888\) −32.0359 + 14.2205i −1.07505 + 0.477208i
\(889\) 13.9007i 0.466215i
\(890\) 25.4790 10.0001i 0.854057 0.335205i
\(891\) 48.8374 1.63611
\(892\) −3.95637 0.989561i −0.132469 0.0331329i
\(893\) 44.2870 1.48201
\(894\) 44.0304 + 56.3995i 1.47260 + 1.88628i
\(895\) −8.07943 2.40081i −0.270065 0.0802503i
\(896\) 15.6054 + 1.13207i 0.521341 + 0.0378198i
\(897\) 72.2227i 2.41145i
\(898\) 24.1529 18.8558i 0.805991 0.629227i
\(899\) 10.4904i 0.349873i
\(900\) −48.8416 + 45.3207i −1.62805 + 1.51069i
\(901\) 1.29306 3.28702i 0.0430782 0.109507i
\(902\) −16.7974 + 13.1135i −0.559292 + 0.436632i
\(903\) 44.6747i 1.48668i
\(904\) −3.88113 + 1.72281i −0.129085 + 0.0572997i
\(905\) −12.5596 + 42.2668i −0.417496 + 1.40500i
\(906\) −9.26040 + 7.22948i −0.307656 + 0.240183i
\(907\) 8.18606i 0.271814i −0.990722 0.135907i \(-0.956605\pi\)
0.990722 0.135907i \(-0.0433948\pi\)
\(908\) 2.88597 + 0.721835i 0.0957744 + 0.0239549i
\(909\) 68.7355i 2.27981i
\(910\) −19.1061 + 7.49887i −0.633361 + 0.248585i
\(911\) 56.9039i 1.88531i −0.333770 0.942655i \(-0.608321\pi\)
0.333770 0.942655i \(-0.391679\pi\)
\(912\) 84.4742 + 45.0770i 2.79722 + 1.49265i
\(913\) 18.8377 0.623437
\(914\) −35.7425 + 27.9037i −1.18226 + 0.922973i
\(915\) −28.9162 8.59250i −0.955942 0.284059i
\(916\) 24.4873 + 6.12471i 0.809082 + 0.202366i
\(917\) 22.5529 0.744763
\(918\) −18.8620 63.6574i −0.622538 2.10101i
\(919\) 13.0090 0.429126 0.214563 0.976710i \(-0.431167\pi\)
0.214563 + 0.976710i \(0.431167\pi\)
\(920\) 4.02532 + 31.0497i 0.132711 + 1.02368i
\(921\) 8.87117i 0.292315i
\(922\) −5.98987 + 4.67621i −0.197266 + 0.154003i
\(923\) 60.2238i 1.98229i
\(924\) 26.4414 + 6.61349i 0.869860 + 0.217568i
\(925\) 10.8848 16.6980i 0.357890 0.549028i
\(926\) −10.1164 + 7.89774i −0.332446 + 0.259536i
\(927\) 95.3547i 3.13186i
\(928\) −1.66266 9.53306i −0.0545796 0.312938i
\(929\) 0.796980i 0.0261481i −0.999915 0.0130740i \(-0.995838\pi\)
0.999915 0.0130740i \(-0.00416171\pi\)
\(930\) −56.1137 + 22.0238i −1.84004 + 0.722190i
\(931\) 39.1756i 1.28393i
\(932\) −1.85547 + 7.41837i −0.0607779 + 0.242997i
\(933\) 5.95665 0.195012
\(934\) −3.68755 4.72347i −0.120660 0.154557i
\(935\) 23.0234 + 18.0030i 0.752947 + 0.588760i
\(936\) 80.8404 35.8845i 2.64235 1.17292i
\(937\) 15.8558i 0.517985i 0.965879 + 0.258992i \(0.0833905\pi\)
−0.965879 + 0.258992i \(0.916610\pi\)
\(938\) 9.23839 + 11.8337i 0.301644 + 0.386383i
\(939\) 38.1986i 1.24656i
\(940\) 13.0895 22.1402i 0.426933 0.722134i
\(941\) −32.1862 −1.04924 −0.524620 0.851337i \(-0.675793\pi\)
−0.524620 + 0.851337i \(0.675793\pi\)
\(942\) −25.8140 + 20.1527i −0.841066 + 0.656609i
\(943\) 23.5315i 0.766290i
\(944\) 6.41809 12.0275i 0.208891 0.391461i
\(945\) 33.7524 + 10.0296i 1.09797 + 0.326262i
\(946\) 28.6690 + 36.7228i 0.932111 + 1.19396i
\(947\) 49.5549i 1.61032i 0.593058 + 0.805159i \(0.297920\pi\)
−0.593058 + 0.805159i \(0.702080\pi\)
\(948\) −14.1464 + 56.5590i −0.459455 + 1.83695i
\(949\) −38.9289 −1.26368
\(950\) −54.2534 + 4.63200i −1.76021 + 0.150282i
\(951\) −14.1818 −0.459876
\(952\) −0.692854 16.1131i −0.0224555 0.522228i
\(953\) 2.51887i 0.0815941i 0.999167 + 0.0407970i \(0.0129897\pi\)
−0.999167 + 0.0407970i \(0.987010\pi\)
\(954\) −4.96750 6.36299i −0.160829 0.206009i
\(955\) 2.73566 9.20628i 0.0885238 0.297908i
\(956\) −1.28769 + 5.14832i −0.0416468 + 0.166509i
\(957\) 16.8572i 0.544916i
\(958\) 41.5408 32.4304i 1.34212 1.04778i
\(959\) 10.3861i 0.335384i
\(960\) 47.5024 28.9078i 1.53313 0.932995i
\(961\) −6.60553 −0.213082
\(962\) −20.8563 + 16.2822i −0.672434 + 0.524961i
\(963\) 26.1166i 0.841595i
\(964\) 33.8773 + 8.47333i 1.09111 + 0.272907i
\(965\) 1.47903 4.97738i 0.0476118 0.160227i
\(966\) 23.7239 18.5209i 0.763302 0.595900i
\(967\) 19.8500i 0.638334i 0.947698 + 0.319167i \(0.103403\pi\)
−0.947698 + 0.319167i \(0.896597\pi\)
\(968\) −2.45789 + 1.09104i −0.0789996 + 0.0350673i
\(969\) 36.1302 91.8445i 1.16067 2.95047i
\(970\) −31.6876 + 12.4369i −1.01743 + 0.399326i
\(971\) 45.1544i 1.44907i −0.689236 0.724537i \(-0.742054\pi\)
0.689236 0.724537i \(-0.257946\pi\)
\(972\) −26.6405 6.66327i −0.854494 0.213724i
\(973\) −30.1369 −0.966145
\(974\) 18.7142 + 23.9715i 0.599643 + 0.768097i
\(975\) −39.8342 + 61.1085i −1.27572 + 1.95704i
\(976\) 15.3154 + 8.17257i 0.490233 + 0.261598i
\(977\) 22.4461i 0.718115i −0.933315 0.359057i \(-0.883098\pi\)
0.933315 0.359057i \(-0.116902\pi\)
\(978\) 10.1765 + 13.0353i 0.325407 + 0.416822i
\(979\) −27.4385 −0.876937
\(980\) −19.5849 11.5788i −0.625616 0.369870i
\(981\) −4.70585 −0.150246
\(982\) 14.0264 10.9502i 0.447600 0.349436i
\(983\) 9.53411 0.304091 0.152045 0.988373i \(-0.451414\pi\)
0.152045 + 0.988373i \(0.451414\pi\)
\(984\) 38.1986 16.9561i 1.21773 0.540540i
\(985\) 16.2480 + 4.82811i 0.517704 + 0.153836i
\(986\) −9.56379 + 2.83379i −0.304573 + 0.0902463i
\(987\) −24.7242 −0.786981
\(988\) 70.1205 + 17.5384i 2.23083 + 0.557971i
\(989\) 51.4450 1.63586
\(990\) 62.1757 24.4031i 1.97607 0.775581i
\(991\) 20.1528i 0.640176i −0.947388 0.320088i \(-0.896287\pi\)
0.947388 0.320088i \(-0.103713\pi\)
\(992\) 34.1739 5.96027i 1.08502 0.189239i
\(993\) −92.9607 −2.95002
\(994\) −19.7824 + 15.4439i −0.627460 + 0.489850i
\(995\) −1.83508 0.545296i −0.0581759 0.0172871i
\(996\) −35.8401 8.96427i −1.13564 0.284044i
\(997\) 57.3800i 1.81724i −0.417622 0.908621i \(-0.637136\pi\)
0.417622 0.908621i \(-0.362864\pi\)
\(998\) −15.7778 20.2101i −0.499437 0.639740i
\(999\) 45.3915 1.43612
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 680.2.h.b.509.14 yes 40
5.4 even 2 inner 680.2.h.b.509.27 yes 40
8.5 even 2 inner 680.2.h.b.509.25 yes 40
17.16 even 2 inner 680.2.h.b.509.13 40
40.29 even 2 inner 680.2.h.b.509.16 yes 40
85.84 even 2 inner 680.2.h.b.509.28 yes 40
136.101 even 2 inner 680.2.h.b.509.26 yes 40
680.509 even 2 inner 680.2.h.b.509.15 yes 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
680.2.h.b.509.13 40 17.16 even 2 inner
680.2.h.b.509.14 yes 40 1.1 even 1 trivial
680.2.h.b.509.15 yes 40 680.509 even 2 inner
680.2.h.b.509.16 yes 40 40.29 even 2 inner
680.2.h.b.509.25 yes 40 8.5 even 2 inner
680.2.h.b.509.26 yes 40 136.101 even 2 inner
680.2.h.b.509.27 yes 40 5.4 even 2 inner
680.2.h.b.509.28 yes 40 85.84 even 2 inner