Properties

Label 680.2.f.e.341.4
Level $680$
Weight $2$
Character 680.341
Analytic conductor $5.430$
Analytic rank $0$
Dimension $30$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [680,2,Mod(341,680)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(680, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("680.341"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 680 = 2^{3} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 680.f (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [30,0,0,-2,0,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.42982733745\)
Analytic rank: \(0\)
Dimension: \(30\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 341.4
Character \(\chi\) \(=\) 680.341
Dual form 680.2.f.e.341.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.25557 + 0.650807i) q^{2} +2.99039i q^{3} +(1.15290 - 1.63426i) q^{4} +1.00000i q^{5} +(-1.94617 - 3.75464i) q^{6} +4.36351 q^{7} +(-0.383952 + 2.80225i) q^{8} -5.94243 q^{9} +(-0.650807 - 1.25557i) q^{10} -4.18839i q^{11} +(4.88709 + 3.44762i) q^{12} +4.81117i q^{13} +(-5.47868 + 2.83980i) q^{14} -2.99039 q^{15} +(-1.34164 - 3.76829i) q^{16} +1.00000 q^{17} +(7.46112 - 3.86737i) q^{18} +7.77516i q^{19} +(1.63426 + 1.15290i) q^{20} +13.0486i q^{21} +(2.72584 + 5.25881i) q^{22} -4.68001 q^{23} +(-8.37980 - 1.14817i) q^{24} -1.00000 q^{25} +(-3.13114 - 6.04075i) q^{26} -8.79900i q^{27} +(5.03069 - 7.13113i) q^{28} +2.81555i q^{29} +(3.75464 - 1.94617i) q^{30} +0.493346 q^{31} +(4.13695 + 3.85819i) q^{32} +12.5249 q^{33} +(-1.25557 + 0.650807i) q^{34} +4.36351i q^{35} +(-6.85102 + 9.71150i) q^{36} -3.31941i q^{37} +(-5.06013 - 9.76224i) q^{38} -14.3873 q^{39} +(-2.80225 - 0.383952i) q^{40} +3.11630 q^{41} +(-8.49212 - 16.3834i) q^{42} +11.3358i q^{43} +(-6.84494 - 4.82880i) q^{44} -5.94243i q^{45} +(5.87607 - 3.04579i) q^{46} -4.84720 q^{47} +(11.2686 - 4.01204i) q^{48} +12.0402 q^{49} +(1.25557 - 0.650807i) q^{50} +2.99039i q^{51} +(7.86273 + 5.54680i) q^{52} -6.60759i q^{53} +(5.72645 + 11.0477i) q^{54} +4.18839 q^{55} +(-1.67538 + 12.2276i) q^{56} -23.2508 q^{57} +(-1.83238 - 3.53511i) q^{58} -13.5676i q^{59} +(-3.44762 + 4.88709i) q^{60} -6.61720i q^{61} +(-0.619430 + 0.321073i) q^{62} -25.9298 q^{63} +(-7.70516 - 2.15186i) q^{64} -4.81117 q^{65} +(-15.7259 + 8.15131i) q^{66} +0.623932i q^{67} +(1.15290 - 1.63426i) q^{68} -13.9951i q^{69} +(-2.83980 - 5.47868i) q^{70} -1.10092 q^{71} +(2.28161 - 16.6521i) q^{72} +1.75123 q^{73} +(2.16030 + 4.16774i) q^{74} -2.99039i q^{75} +(12.7067 + 8.96398i) q^{76} -18.2761i q^{77} +(18.0642 - 9.36334i) q^{78} -3.27909 q^{79} +(3.76829 - 1.34164i) q^{80} +8.48515 q^{81} +(-3.91272 + 2.02811i) q^{82} -3.08423i q^{83} +(21.3249 + 15.0437i) q^{84} +1.00000i q^{85} +(-7.37739 - 14.2328i) q^{86} -8.41957 q^{87} +(11.7369 + 1.60814i) q^{88} +4.89985 q^{89} +(3.86737 + 7.46112i) q^{90} +20.9936i q^{91} +(-5.39559 + 7.64838i) q^{92} +1.47530i q^{93} +(6.08599 - 3.15460i) q^{94} -7.77516 q^{95} +(-11.5375 + 12.3711i) q^{96} +15.8455 q^{97} +(-15.1173 + 7.83586i) q^{98} +24.8892i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 30 q - 2 q^{4} - 8 q^{6} + 12 q^{7} + 6 q^{8} - 36 q^{9} + 2 q^{10} + 8 q^{12} - 10 q^{14} - 14 q^{15} - 2 q^{16} + 30 q^{17} + 6 q^{18} + 4 q^{20} - 6 q^{22} + 12 q^{23} - 46 q^{24} - 30 q^{25} + 4 q^{26}+ \cdots - 16 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/680\mathbb{Z}\right)^\times\).

\(n\) \(137\) \(241\) \(341\) \(511\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.25557 + 0.650807i −0.887820 + 0.460190i
\(3\) 2.99039i 1.72650i 0.504775 + 0.863251i \(0.331575\pi\)
−0.504775 + 0.863251i \(0.668425\pi\)
\(4\) 1.15290 1.63426i 0.576450 0.817132i
\(5\) 1.00000i 0.447214i
\(6\) −1.94617 3.75464i −0.794519 1.53282i
\(7\) 4.36351 1.64925 0.824626 0.565678i \(-0.191386\pi\)
0.824626 + 0.565678i \(0.191386\pi\)
\(8\) −0.383952 + 2.80225i −0.135748 + 0.990743i
\(9\) −5.94243 −1.98081
\(10\) −0.650807 1.25557i −0.205803 0.397045i
\(11\) 4.18839i 1.26285i −0.775438 0.631424i \(-0.782471\pi\)
0.775438 0.631424i \(-0.217529\pi\)
\(12\) 4.88709 + 3.44762i 1.41078 + 0.995242i
\(13\) 4.81117i 1.33438i 0.744888 + 0.667189i \(0.232503\pi\)
−0.744888 + 0.667189i \(0.767497\pi\)
\(14\) −5.47868 + 2.83980i −1.46424 + 0.758970i
\(15\) −2.99039 −0.772115
\(16\) −1.34164 3.76829i −0.335411 0.942072i
\(17\) 1.00000 0.242536
\(18\) 7.46112 3.86737i 1.75860 0.911549i
\(19\) 7.77516i 1.78374i 0.452288 + 0.891872i \(0.350608\pi\)
−0.452288 + 0.891872i \(0.649392\pi\)
\(20\) 1.63426 + 1.15290i 0.365433 + 0.257796i
\(21\) 13.0486i 2.84744i
\(22\) 2.72584 + 5.25881i 0.581150 + 1.12118i
\(23\) −4.68001 −0.975851 −0.487925 0.872885i \(-0.662246\pi\)
−0.487925 + 0.872885i \(0.662246\pi\)
\(24\) −8.37980 1.14817i −1.71052 0.234368i
\(25\) −1.00000 −0.200000
\(26\) −3.13114 6.04075i −0.614068 1.18469i
\(27\) 8.79900i 1.69337i
\(28\) 5.03069 7.13113i 0.950711 1.34766i
\(29\) 2.81555i 0.522834i 0.965226 + 0.261417i \(0.0841897\pi\)
−0.965226 + 0.261417i \(0.915810\pi\)
\(30\) 3.75464 1.94617i 0.685499 0.355320i
\(31\) 0.493346 0.0886076 0.0443038 0.999018i \(-0.485893\pi\)
0.0443038 + 0.999018i \(0.485893\pi\)
\(32\) 4.13695 + 3.85819i 0.731317 + 0.682038i
\(33\) 12.5249 2.18031
\(34\) −1.25557 + 0.650807i −0.215328 + 0.111613i
\(35\) 4.36351i 0.737568i
\(36\) −6.85102 + 9.71150i −1.14184 + 1.61858i
\(37\) 3.31941i 0.545707i −0.962056 0.272854i \(-0.912032\pi\)
0.962056 0.272854i \(-0.0879675\pi\)
\(38\) −5.06013 9.76224i −0.820862 1.58364i
\(39\) −14.3873 −2.30381
\(40\) −2.80225 0.383952i −0.443074 0.0607082i
\(41\) 3.11630 0.486684 0.243342 0.969941i \(-0.421756\pi\)
0.243342 + 0.969941i \(0.421756\pi\)
\(42\) −8.49212 16.3834i −1.31036 2.52801i
\(43\) 11.3358i 1.72869i 0.502903 + 0.864343i \(0.332265\pi\)
−0.502903 + 0.864343i \(0.667735\pi\)
\(44\) −6.84494 4.82880i −1.03191 0.727969i
\(45\) 5.94243i 0.885845i
\(46\) 5.87607 3.04579i 0.866380 0.449077i
\(47\) −4.84720 −0.707037 −0.353519 0.935427i \(-0.615015\pi\)
−0.353519 + 0.935427i \(0.615015\pi\)
\(48\) 11.2686 4.01204i 1.62649 0.579088i
\(49\) 12.0402 1.72003
\(50\) 1.25557 0.650807i 0.177564 0.0920380i
\(51\) 2.99039i 0.418738i
\(52\) 7.86273 + 5.54680i 1.09036 + 0.769202i
\(53\) 6.60759i 0.907622i −0.891098 0.453811i \(-0.850064\pi\)
0.891098 0.453811i \(-0.149936\pi\)
\(54\) 5.72645 + 11.0477i 0.779271 + 1.50341i
\(55\) 4.18839 0.564763
\(56\) −1.67538 + 12.2276i −0.223882 + 1.63399i
\(57\) −23.2508 −3.07964
\(58\) −1.83238 3.53511i −0.240603 0.464182i
\(59\) 13.5676i 1.76636i −0.469037 0.883178i \(-0.655399\pi\)
0.469037 0.883178i \(-0.344601\pi\)
\(60\) −3.44762 + 4.88709i −0.445086 + 0.630920i
\(61\) 6.61720i 0.847246i −0.905839 0.423623i \(-0.860758\pi\)
0.905839 0.423623i \(-0.139242\pi\)
\(62\) −0.619430 + 0.321073i −0.0786677 + 0.0407764i
\(63\) −25.9298 −3.26685
\(64\) −7.70516 2.15186i −0.963145 0.268982i
\(65\) −4.81117 −0.596752
\(66\) −15.7259 + 8.15131i −1.93572 + 1.00336i
\(67\) 0.623932i 0.0762254i 0.999273 + 0.0381127i \(0.0121346\pi\)
−0.999273 + 0.0381127i \(0.987865\pi\)
\(68\) 1.15290 1.63426i 0.139810 0.198184i
\(69\) 13.9951i 1.68481i
\(70\) −2.83980 5.47868i −0.339422 0.654828i
\(71\) −1.10092 −0.130655 −0.0653277 0.997864i \(-0.520809\pi\)
−0.0653277 + 0.997864i \(0.520809\pi\)
\(72\) 2.28161 16.6521i 0.268890 1.96247i
\(73\) 1.75123 0.204965 0.102483 0.994735i \(-0.467321\pi\)
0.102483 + 0.994735i \(0.467321\pi\)
\(74\) 2.16030 + 4.16774i 0.251129 + 0.484490i
\(75\) 2.99039i 0.345300i
\(76\) 12.7067 + 8.96398i 1.45756 + 1.02824i
\(77\) 18.2761i 2.08275i
\(78\) 18.0642 9.36334i 2.04537 1.06019i
\(79\) −3.27909 −0.368927 −0.184463 0.982839i \(-0.559055\pi\)
−0.184463 + 0.982839i \(0.559055\pi\)
\(80\) 3.76829 1.34164i 0.421307 0.150000i
\(81\) 8.48515 0.942794
\(82\) −3.91272 + 2.02811i −0.432088 + 0.223967i
\(83\) 3.08423i 0.338539i −0.985570 0.169269i \(-0.945859\pi\)
0.985570 0.169269i \(-0.0541408\pi\)
\(84\) 21.3249 + 15.0437i 2.32673 + 1.64140i
\(85\) 1.00000i 0.108465i
\(86\) −7.37739 14.2328i −0.795524 1.53476i
\(87\) −8.41957 −0.902673
\(88\) 11.7369 + 1.60814i 1.25116 + 0.171429i
\(89\) 4.89985 0.519383 0.259691 0.965692i \(-0.416379\pi\)
0.259691 + 0.965692i \(0.416379\pi\)
\(90\) 3.86737 + 7.46112i 0.407657 + 0.786471i
\(91\) 20.9936i 2.20073i
\(92\) −5.39559 + 7.64838i −0.562529 + 0.797399i
\(93\) 1.47530i 0.152981i
\(94\) 6.08599 3.15460i 0.627722 0.325372i
\(95\) −7.77516 −0.797715
\(96\) −11.5375 + 12.3711i −1.17754 + 1.26262i
\(97\) 15.8455 1.60887 0.804434 0.594042i \(-0.202469\pi\)
0.804434 + 0.594042i \(0.202469\pi\)
\(98\) −15.1173 + 7.83586i −1.52708 + 0.791542i
\(99\) 24.8892i 2.50146i
\(100\) −1.15290 + 1.63426i −0.115290 + 0.163426i
\(101\) 15.4817i 1.54048i 0.637753 + 0.770241i \(0.279864\pi\)
−0.637753 + 0.770241i \(0.720136\pi\)
\(102\) −1.94617 3.75464i −0.192699 0.371764i
\(103\) −13.9708 −1.37658 −0.688291 0.725435i \(-0.741639\pi\)
−0.688291 + 0.725435i \(0.741639\pi\)
\(104\) −13.4821 1.84726i −1.32203 0.181139i
\(105\) −13.0486 −1.27341
\(106\) 4.30027 + 8.29627i 0.417679 + 0.805805i
\(107\) 2.65718i 0.256879i 0.991717 + 0.128440i \(0.0409968\pi\)
−0.991717 + 0.128440i \(0.959003\pi\)
\(108\) −14.3799 10.1444i −1.38371 0.976142i
\(109\) 1.67198i 0.160147i −0.996789 0.0800734i \(-0.974485\pi\)
0.996789 0.0800734i \(-0.0255155\pi\)
\(110\) −5.25881 + 2.72584i −0.501408 + 0.259898i
\(111\) 9.92632 0.942165
\(112\) −5.85428 16.4430i −0.553177 1.55371i
\(113\) 14.1116 1.32750 0.663752 0.747952i \(-0.268963\pi\)
0.663752 + 0.747952i \(0.268963\pi\)
\(114\) 29.1929 15.1318i 2.73417 1.41722i
\(115\) 4.68001i 0.436414i
\(116\) 4.60135 + 3.24604i 0.427224 + 0.301387i
\(117\) 28.5900i 2.64315i
\(118\) 8.82992 + 17.0351i 0.812860 + 1.56821i
\(119\) 4.36351 0.400002
\(120\) 1.14817 8.37980i 0.104813 0.764968i
\(121\) −6.54263 −0.594785
\(122\) 4.30652 + 8.30834i 0.389894 + 0.752202i
\(123\) 9.31894i 0.840260i
\(124\) 0.568779 0.806259i 0.0510779 0.0724042i
\(125\) 1.00000i 0.0894427i
\(126\) 32.5567 16.8753i 2.90038 1.50337i
\(127\) 5.77442 0.512397 0.256198 0.966624i \(-0.417530\pi\)
0.256198 + 0.966624i \(0.417530\pi\)
\(128\) 11.0748 2.31277i 0.978883 0.204422i
\(129\) −33.8983 −2.98458
\(130\) 6.04075 3.13114i 0.529809 0.274619i
\(131\) 6.58384i 0.575232i −0.957746 0.287616i \(-0.907137\pi\)
0.957746 0.287616i \(-0.0928628\pi\)
\(132\) 14.4400 20.4690i 1.25684 1.78160i
\(133\) 33.9270i 2.94184i
\(134\) −0.406059 0.783389i −0.0350782 0.0676745i
\(135\) 8.79900 0.757297
\(136\) −0.383952 + 2.80225i −0.0329236 + 0.240291i
\(137\) 10.4560 0.893314 0.446657 0.894705i \(-0.352614\pi\)
0.446657 + 0.894705i \(0.352614\pi\)
\(138\) 9.10809 + 17.5717i 0.775332 + 1.49581i
\(139\) 10.0894i 0.855770i −0.903833 0.427885i \(-0.859259\pi\)
0.903833 0.427885i \(-0.140741\pi\)
\(140\) 7.13113 + 5.03069i 0.602691 + 0.425171i
\(141\) 14.4950i 1.22070i
\(142\) 1.38228 0.716488i 0.115999 0.0601263i
\(143\) 20.1511 1.68512
\(144\) 7.97262 + 22.3928i 0.664385 + 1.86606i
\(145\) −2.81555 −0.233818
\(146\) −2.19878 + 1.13971i −0.181972 + 0.0943231i
\(147\) 36.0049i 2.96964i
\(148\) −5.42479 3.82695i −0.445915 0.314573i
\(149\) 18.8017i 1.54029i 0.637866 + 0.770147i \(0.279817\pi\)
−0.637866 + 0.770147i \(0.720183\pi\)
\(150\) 1.94617 + 3.75464i 0.158904 + 0.306565i
\(151\) 17.1539 1.39596 0.697980 0.716117i \(-0.254082\pi\)
0.697980 + 0.716117i \(0.254082\pi\)
\(152\) −21.7879 2.98529i −1.76723 0.242139i
\(153\) −5.94243 −0.480417
\(154\) 11.8942 + 22.9469i 0.958463 + 1.84911i
\(155\) 0.493346i 0.0396265i
\(156\) −16.5871 + 23.5126i −1.32803 + 1.88252i
\(157\) 17.1493i 1.36866i −0.729170 0.684332i \(-0.760094\pi\)
0.729170 0.684332i \(-0.239906\pi\)
\(158\) 4.11712 2.13406i 0.327541 0.169777i
\(159\) 19.7593 1.56701
\(160\) −3.85819 + 4.13695i −0.305017 + 0.327055i
\(161\) −20.4213 −1.60942
\(162\) −10.6537 + 5.52220i −0.837032 + 0.433865i
\(163\) 9.99860i 0.783151i −0.920146 0.391575i \(-0.871930\pi\)
0.920146 0.391575i \(-0.128070\pi\)
\(164\) 3.59278 5.09285i 0.280549 0.397685i
\(165\) 12.5249i 0.975064i
\(166\) 2.00724 + 3.87247i 0.155792 + 0.300562i
\(167\) 3.26637 0.252759 0.126380 0.991982i \(-0.459664\pi\)
0.126380 + 0.991982i \(0.459664\pi\)
\(168\) −36.5654 5.01004i −2.82108 0.386533i
\(169\) −10.1473 −0.780565
\(170\) −0.650807 1.25557i −0.0499146 0.0962976i
\(171\) 46.2033i 3.53326i
\(172\) 18.5256 + 13.0690i 1.41257 + 0.996501i
\(173\) 8.32496i 0.632935i 0.948603 + 0.316468i \(0.102497\pi\)
−0.948603 + 0.316468i \(0.897503\pi\)
\(174\) 10.5713 5.47952i 0.801412 0.415401i
\(175\) −4.36351 −0.329850
\(176\) −15.7831 + 5.61933i −1.18969 + 0.423573i
\(177\) 40.5725 3.04962
\(178\) −6.15209 + 3.18886i −0.461119 + 0.239015i
\(179\) 15.9643i 1.19323i 0.802528 + 0.596614i \(0.203488\pi\)
−0.802528 + 0.596614i \(0.796512\pi\)
\(180\) −9.71150 6.85102i −0.723852 0.510645i
\(181\) 7.10280i 0.527947i −0.964530 0.263974i \(-0.914967\pi\)
0.964530 0.263974i \(-0.0850332\pi\)
\(182\) −13.6628 26.3589i −1.01275 1.95385i
\(183\) 19.7880 1.46277
\(184\) 1.79690 13.1146i 0.132469 0.966818i
\(185\) 3.31941 0.244048
\(186\) −0.960134 1.85234i −0.0704005 0.135820i
\(187\) 4.18839i 0.306286i
\(188\) −5.58834 + 7.92162i −0.407572 + 0.577743i
\(189\) 38.3945i 2.79279i
\(190\) 9.76224 5.06013i 0.708227 0.367100i
\(191\) −6.67502 −0.482987 −0.241494 0.970402i \(-0.577637\pi\)
−0.241494 + 0.970402i \(0.577637\pi\)
\(192\) 6.43489 23.0414i 0.464398 1.66287i
\(193\) 9.52535 0.685650 0.342825 0.939399i \(-0.388616\pi\)
0.342825 + 0.939399i \(0.388616\pi\)
\(194\) −19.8951 + 10.3124i −1.42839 + 0.740385i
\(195\) 14.3873i 1.03029i
\(196\) 13.8812 19.6769i 0.991512 1.40549i
\(197\) 9.72890i 0.693156i 0.938021 + 0.346578i \(0.112656\pi\)
−0.938021 + 0.346578i \(0.887344\pi\)
\(198\) −16.1981 31.2501i −1.15115 2.22085i
\(199\) −5.98787 −0.424469 −0.212234 0.977219i \(-0.568074\pi\)
−0.212234 + 0.977219i \(0.568074\pi\)
\(200\) 0.383952 2.80225i 0.0271495 0.198149i
\(201\) −1.86580 −0.131603
\(202\) −10.0756 19.4383i −0.708915 1.36767i
\(203\) 12.2857i 0.862284i
\(204\) 4.88709 + 3.44762i 0.342165 + 0.241382i
\(205\) 3.11630i 0.217652i
\(206\) 17.5413 9.09229i 1.22216 0.633490i
\(207\) 27.8106 1.93297
\(208\) 18.1299 6.45488i 1.25708 0.447565i
\(209\) 32.5654 2.25260
\(210\) 16.3834 8.49212i 1.13056 0.586012i
\(211\) 6.99229i 0.481369i −0.970603 0.240685i \(-0.922628\pi\)
0.970603 0.240685i \(-0.0773719\pi\)
\(212\) −10.7986 7.61789i −0.741648 0.523199i
\(213\) 3.29218i 0.225577i
\(214\) −1.72931 3.33627i −0.118213 0.228063i
\(215\) −11.3358 −0.773092
\(216\) 24.6570 + 3.37839i 1.67769 + 0.229871i
\(217\) 2.15272 0.146136
\(218\) 1.08814 + 2.09929i 0.0736980 + 0.142182i
\(219\) 5.23685i 0.353873i
\(220\) 4.82880 6.84494i 0.325557 0.461486i
\(221\) 4.81117i 0.323634i
\(222\) −12.4632 + 6.46012i −0.836473 + 0.433575i
\(223\) 3.00057 0.200933 0.100467 0.994940i \(-0.467966\pi\)
0.100467 + 0.994940i \(0.467966\pi\)
\(224\) 18.0516 + 16.8352i 1.20613 + 1.12485i
\(225\) 5.94243 0.396162
\(226\) −17.7180 + 9.18391i −1.17859 + 0.610905i
\(227\) 9.76049i 0.647826i 0.946087 + 0.323913i \(0.104999\pi\)
−0.946087 + 0.323913i \(0.895001\pi\)
\(228\) −26.8058 + 37.9979i −1.77526 + 2.51647i
\(229\) 7.46158i 0.493075i −0.969133 0.246537i \(-0.920707\pi\)
0.969133 0.246537i \(-0.0792928\pi\)
\(230\) 3.04579 + 5.87607i 0.200833 + 0.387457i
\(231\) 54.6526 3.59588
\(232\) −7.88985 1.08103i −0.517994 0.0709734i
\(233\) 8.79729 0.576330 0.288165 0.957581i \(-0.406955\pi\)
0.288165 + 0.957581i \(0.406955\pi\)
\(234\) 18.6066 + 35.8967i 1.21635 + 2.34664i
\(235\) 4.84720i 0.316197i
\(236\) −22.1731 15.6421i −1.44335 1.01822i
\(237\) 9.80577i 0.636953i
\(238\) −5.47868 + 2.83980i −0.355130 + 0.184077i
\(239\) 8.87913 0.574343 0.287172 0.957879i \(-0.407285\pi\)
0.287172 + 0.957879i \(0.407285\pi\)
\(240\) 4.01204 + 11.2686i 0.258976 + 0.727388i
\(241\) −1.28824 −0.0829830 −0.0414915 0.999139i \(-0.513211\pi\)
−0.0414915 + 0.999139i \(0.513211\pi\)
\(242\) 8.21471 4.25799i 0.528062 0.273714i
\(243\) 1.02310i 0.0656319i
\(244\) −10.8143 7.62897i −0.692312 0.488395i
\(245\) 12.0402i 0.769222i
\(246\) −6.06483 11.7006i −0.386680 0.746000i
\(247\) −37.4076 −2.38019
\(248\) −0.189421 + 1.38248i −0.0120283 + 0.0877874i
\(249\) 9.22306 0.584488
\(250\) 0.650807 + 1.25557i 0.0411607 + 0.0794091i
\(251\) 2.81168i 0.177472i −0.996055 0.0887358i \(-0.971717\pi\)
0.996055 0.0887358i \(-0.0282827\pi\)
\(252\) −29.8945 + 42.3762i −1.88318 + 2.66945i
\(253\) 19.6017i 1.23235i
\(254\) −7.25017 + 3.75803i −0.454916 + 0.235800i
\(255\) −2.99039 −0.187265
\(256\) −12.4000 + 10.1114i −0.774999 + 0.631962i
\(257\) −7.05348 −0.439984 −0.219992 0.975502i \(-0.570603\pi\)
−0.219992 + 0.975502i \(0.570603\pi\)
\(258\) 42.5616 22.0613i 2.64977 1.37347i
\(259\) 14.4843i 0.900009i
\(260\) −5.54680 + 7.86273i −0.343998 + 0.487626i
\(261\) 16.7312i 1.03563i
\(262\) 4.28481 + 8.26645i 0.264716 + 0.510703i
\(263\) −27.9727 −1.72487 −0.862434 0.506169i \(-0.831061\pi\)
−0.862434 + 0.506169i \(0.831061\pi\)
\(264\) −4.80897 + 35.0979i −0.295972 + 2.16013i
\(265\) 6.60759 0.405901
\(266\) −22.0799 42.5976i −1.35381 2.61183i
\(267\) 14.6525i 0.896716i
\(268\) 1.01967 + 0.719331i 0.0622863 + 0.0439401i
\(269\) 3.16241i 0.192815i −0.995342 0.0964077i \(-0.969265\pi\)
0.995342 0.0964077i \(-0.0307353\pi\)
\(270\) −11.0477 + 5.72645i −0.672344 + 0.348501i
\(271\) −11.8882 −0.722158 −0.361079 0.932535i \(-0.617592\pi\)
−0.361079 + 0.932535i \(0.617592\pi\)
\(272\) −1.34164 3.76829i −0.0813491 0.228486i
\(273\) −62.7790 −3.79956
\(274\) −13.1282 + 6.80482i −0.793102 + 0.411094i
\(275\) 4.18839i 0.252570i
\(276\) −22.8716 16.1349i −1.37671 0.971207i
\(277\) 5.65931i 0.340035i −0.985441 0.170018i \(-0.945618\pi\)
0.985441 0.170018i \(-0.0543825\pi\)
\(278\) 6.56624 + 12.6679i 0.393817 + 0.759770i
\(279\) −2.93167 −0.175515
\(280\) −12.2276 1.67538i −0.730741 0.100123i
\(281\) 7.47960 0.446196 0.223098 0.974796i \(-0.428383\pi\)
0.223098 + 0.974796i \(0.428383\pi\)
\(282\) 9.43347 + 18.1995i 0.561755 + 1.08376i
\(283\) 23.5049i 1.39722i 0.715502 + 0.698611i \(0.246198\pi\)
−0.715502 + 0.698611i \(0.753802\pi\)
\(284\) −1.26925 + 1.79920i −0.0753163 + 0.106763i
\(285\) 23.2508i 1.37726i
\(286\) −25.3010 + 13.1145i −1.49608 + 0.775474i
\(287\) 13.5980 0.802664
\(288\) −24.5835 22.9270i −1.44860 1.35099i
\(289\) 1.00000 0.0588235
\(290\) 3.53511 1.83238i 0.207589 0.107601i
\(291\) 47.3842i 2.77771i
\(292\) 2.01899 2.86197i 0.118152 0.167484i
\(293\) 21.4042i 1.25045i −0.780445 0.625224i \(-0.785007\pi\)
0.780445 0.625224i \(-0.214993\pi\)
\(294\) −23.4323 45.2066i −1.36660 2.63651i
\(295\) 13.5676 0.789939
\(296\) 9.30180 + 1.27449i 0.540656 + 0.0740785i
\(297\) −36.8537 −2.13847
\(298\) −12.2363 23.6068i −0.708828 1.36750i
\(299\) 22.5163i 1.30215i
\(300\) −4.88709 3.44762i −0.282156 0.199048i
\(301\) 49.4637i 2.85104i
\(302\) −21.5378 + 11.1639i −1.23936 + 0.642407i
\(303\) −46.2962 −2.65965
\(304\) 29.2990 10.4315i 1.68042 0.598287i
\(305\) 6.61720 0.378900
\(306\) 7.46112 3.86737i 0.426524 0.221083i
\(307\) 19.5375i 1.11507i 0.830155 + 0.557533i \(0.188252\pi\)
−0.830155 + 0.557533i \(0.811748\pi\)
\(308\) −29.8680 21.0705i −1.70189 1.20060i
\(309\) 41.7781i 2.37667i
\(310\) −0.321073 0.619430i −0.0182357 0.0351812i
\(311\) −17.4418 −0.989032 −0.494516 0.869168i \(-0.664655\pi\)
−0.494516 + 0.869168i \(0.664655\pi\)
\(312\) 5.52402 40.3167i 0.312736 2.28248i
\(313\) 20.1621 1.13963 0.569813 0.821774i \(-0.307016\pi\)
0.569813 + 0.821774i \(0.307016\pi\)
\(314\) 11.1609 + 21.5321i 0.629846 + 1.21513i
\(315\) 25.9298i 1.46098i
\(316\) −3.78047 + 5.35891i −0.212668 + 0.301462i
\(317\) 9.04681i 0.508119i 0.967189 + 0.254060i \(0.0817660\pi\)
−0.967189 + 0.254060i \(0.918234\pi\)
\(318\) −24.8091 + 12.8595i −1.39122 + 0.721123i
\(319\) 11.7926 0.660259
\(320\) 2.15186 7.70516i 0.120292 0.430732i
\(321\) −7.94600 −0.443502
\(322\) 25.6403 13.2903i 1.42888 0.740641i
\(323\) 7.77516i 0.432622i
\(324\) 9.78253 13.8670i 0.543474 0.770388i
\(325\) 4.81117i 0.266876i
\(326\) 6.50716 + 12.5539i 0.360398 + 0.695297i
\(327\) 4.99987 0.276494
\(328\) −1.19651 + 8.73263i −0.0660662 + 0.482179i
\(329\) −21.1508 −1.16608
\(330\) −8.15131 15.7259i −0.448715 0.865682i
\(331\) 13.8518i 0.761365i −0.924706 0.380683i \(-0.875689\pi\)
0.924706 0.380683i \(-0.124311\pi\)
\(332\) −5.04046 3.55581i −0.276631 0.195151i
\(333\) 19.7253i 1.08094i
\(334\) −4.10115 + 2.12578i −0.224405 + 0.116317i
\(335\) −0.623932 −0.0340890
\(336\) 49.1709 17.5066i 2.68249 0.955061i
\(337\) 13.4344 0.731817 0.365908 0.930651i \(-0.380758\pi\)
0.365908 + 0.930651i \(0.380758\pi\)
\(338\) 12.7407 6.60397i 0.693002 0.359208i
\(339\) 42.1991i 2.29194i
\(340\) 1.63426 + 1.15290i 0.0886305 + 0.0625248i
\(341\) 2.06633i 0.111898i
\(342\) 30.0695 + 58.0114i 1.62597 + 3.13690i
\(343\) 21.9931 1.18751
\(344\) −31.7656 4.35239i −1.71268 0.234665i
\(345\) 13.9951 0.753469
\(346\) −5.41795 10.4526i −0.291271 0.561933i
\(347\) 35.7242i 1.91778i 0.283784 + 0.958888i \(0.408410\pi\)
−0.283784 + 0.958888i \(0.591590\pi\)
\(348\) −9.70693 + 13.7598i −0.520346 + 0.737604i
\(349\) 31.2387i 1.67217i −0.548600 0.836085i \(-0.684839\pi\)
0.548600 0.836085i \(-0.315161\pi\)
\(350\) 5.47868 2.83980i 0.292848 0.151794i
\(351\) 42.3335 2.25959
\(352\) 16.1596 17.3272i 0.861310 0.923542i
\(353\) 17.1251 0.911480 0.455740 0.890113i \(-0.349375\pi\)
0.455740 + 0.890113i \(0.349375\pi\)
\(354\) −50.9416 + 26.4049i −2.70751 + 1.40340i
\(355\) 1.10092i 0.0584309i
\(356\) 5.64903 8.00765i 0.299398 0.424405i
\(357\) 13.0486i 0.690605i
\(358\) −10.3897 20.0443i −0.549112 1.05937i
\(359\) 3.17882 0.167772 0.0838859 0.996475i \(-0.473267\pi\)
0.0838859 + 0.996475i \(0.473267\pi\)
\(360\) 16.6521 + 2.28161i 0.877645 + 0.120251i
\(361\) −41.4531 −2.18174
\(362\) 4.62255 + 8.91805i 0.242956 + 0.468722i
\(363\) 19.5650i 1.02690i
\(364\) 34.3091 + 24.2035i 1.79828 + 1.26861i
\(365\) 1.75123i 0.0916633i
\(366\) −24.8452 + 12.8782i −1.29868 + 0.673153i
\(367\) 2.79725 0.146015 0.0730076 0.997331i \(-0.476740\pi\)
0.0730076 + 0.997331i \(0.476740\pi\)
\(368\) 6.27891 + 17.6356i 0.327311 + 0.919321i
\(369\) −18.5184 −0.964027
\(370\) −4.16774 + 2.16030i −0.216671 + 0.112308i
\(371\) 28.8323i 1.49690i
\(372\) 2.41103 + 1.70087i 0.125006 + 0.0881860i
\(373\) 23.0371i 1.19282i −0.802681 0.596409i \(-0.796594\pi\)
0.802681 0.596409i \(-0.203406\pi\)
\(374\) 2.72584 + 5.25881i 0.140950 + 0.271927i
\(375\) 2.99039 0.154423
\(376\) 1.86109 13.5831i 0.0959786 0.700493i
\(377\) −13.5461 −0.697658
\(378\) 24.9874 + 48.2069i 1.28521 + 2.47950i
\(379\) 9.09953i 0.467411i −0.972307 0.233706i \(-0.924915\pi\)
0.972307 0.233706i \(-0.0750852\pi\)
\(380\) −8.96398 + 12.7067i −0.459843 + 0.651839i
\(381\) 17.2678i 0.884654i
\(382\) 8.38093 4.34415i 0.428806 0.222266i
\(383\) 11.4168 0.583373 0.291687 0.956514i \(-0.405784\pi\)
0.291687 + 0.956514i \(0.405784\pi\)
\(384\) 6.91609 + 33.1179i 0.352935 + 1.69004i
\(385\) 18.2761 0.931436
\(386\) −11.9597 + 6.19917i −0.608734 + 0.315529i
\(387\) 67.3619i 3.42420i
\(388\) 18.2683 25.8958i 0.927432 1.31466i
\(389\) 12.0723i 0.612090i 0.952017 + 0.306045i \(0.0990058\pi\)
−0.952017 + 0.306045i \(0.900994\pi\)
\(390\) 9.36334 + 18.0642i 0.474131 + 0.914716i
\(391\) −4.68001 −0.236679
\(392\) −4.62287 + 33.7397i −0.233490 + 1.70411i
\(393\) 19.6882 0.993140
\(394\) −6.33164 12.2153i −0.318983 0.615398i
\(395\) 3.27909i 0.164989i
\(396\) 40.6756 + 28.6948i 2.04402 + 1.44197i
\(397\) 28.8479i 1.44783i 0.689887 + 0.723917i \(0.257660\pi\)
−0.689887 + 0.723917i \(0.742340\pi\)
\(398\) 7.51817 3.89695i 0.376852 0.195336i
\(399\) −101.455 −5.07910
\(400\) 1.34164 + 3.76829i 0.0670822 + 0.188414i
\(401\) 19.8245 0.989988 0.494994 0.868896i \(-0.335170\pi\)
0.494994 + 0.868896i \(0.335170\pi\)
\(402\) 2.34264 1.21428i 0.116840 0.0605626i
\(403\) 2.37357i 0.118236i
\(404\) 25.3011 + 17.8488i 1.25878 + 0.888011i
\(405\) 8.48515i 0.421630i
\(406\) −7.99560 15.4255i −0.396815 0.765554i
\(407\) −13.9030 −0.689145
\(408\) −8.37980 1.14817i −0.414862 0.0568427i
\(409\) 23.2671 1.15049 0.575243 0.817983i \(-0.304908\pi\)
0.575243 + 0.817983i \(0.304908\pi\)
\(410\) −2.02811 3.91272i −0.100161 0.193236i
\(411\) 31.2674i 1.54231i
\(412\) −16.1069 + 22.8320i −0.793531 + 1.12485i
\(413\) 59.2026i 2.91317i
\(414\) −34.9181 + 18.0994i −1.71613 + 0.889535i
\(415\) 3.08423 0.151399
\(416\) −18.5624 + 19.9036i −0.910096 + 0.975853i
\(417\) 30.1712 1.47749
\(418\) −40.8881 + 21.1938i −1.99990 + 1.03662i
\(419\) 21.0274i 1.02726i −0.858013 0.513628i \(-0.828301\pi\)
0.858013 0.513628i \(-0.171699\pi\)
\(420\) −15.0437 + 21.3249i −0.734058 + 1.04055i
\(421\) 15.0832i 0.735112i −0.930001 0.367556i \(-0.880195\pi\)
0.930001 0.367556i \(-0.119805\pi\)
\(422\) 4.55063 + 8.77930i 0.221521 + 0.427369i
\(423\) 28.8042 1.40051
\(424\) 18.5161 + 2.53700i 0.899221 + 0.123208i
\(425\) −1.00000 −0.0485071
\(426\) 2.14258 + 4.13356i 0.103808 + 0.200272i
\(427\) 28.8742i 1.39732i
\(428\) 4.34253 + 3.06346i 0.209904 + 0.148078i
\(429\) 60.2595i 2.90936i
\(430\) 14.2328 7.37739i 0.686367 0.355769i
\(431\) −25.1632 −1.21207 −0.606034 0.795439i \(-0.707240\pi\)
−0.606034 + 0.795439i \(0.707240\pi\)
\(432\) −33.1572 + 11.8051i −1.59527 + 0.567974i
\(433\) 21.0944 1.01373 0.506867 0.862024i \(-0.330803\pi\)
0.506867 + 0.862024i \(0.330803\pi\)
\(434\) −2.70289 + 1.40101i −0.129743 + 0.0672505i
\(435\) 8.41957i 0.403688i
\(436\) −2.73246 1.92763i −0.130861 0.0923166i
\(437\) 36.3879i 1.74067i
\(438\) −3.40818 6.57521i −0.162849 0.314176i
\(439\) 24.7840 1.18287 0.591437 0.806351i \(-0.298561\pi\)
0.591437 + 0.806351i \(0.298561\pi\)
\(440\) −1.60814 + 11.7369i −0.0766652 + 0.559535i
\(441\) −71.5481 −3.40705
\(442\) −3.13114 6.04075i −0.148933 0.287329i
\(443\) 5.21163i 0.247612i −0.992306 0.123806i \(-0.960490\pi\)
0.992306 0.123806i \(-0.0395101\pi\)
\(444\) 11.4441 16.2222i 0.543111 0.769874i
\(445\) 4.89985i 0.232275i
\(446\) −3.76742 + 1.95279i −0.178392 + 0.0924674i
\(447\) −56.2244 −2.65932
\(448\) −33.6216 9.38965i −1.58847 0.443619i
\(449\) −11.0633 −0.522107 −0.261054 0.965324i \(-0.584070\pi\)
−0.261054 + 0.965324i \(0.584070\pi\)
\(450\) −7.46112 + 3.86737i −0.351720 + 0.182310i
\(451\) 13.0523i 0.614608i
\(452\) 16.2692 23.0620i 0.765240 1.08475i
\(453\) 51.2967i 2.41013i
\(454\) −6.35220 12.2550i −0.298123 0.575153i
\(455\) −20.9936 −0.984195
\(456\) 8.92718 65.1543i 0.418053 3.05113i
\(457\) −1.42217 −0.0665261 −0.0332631 0.999447i \(-0.510590\pi\)
−0.0332631 + 0.999447i \(0.510590\pi\)
\(458\) 4.85605 + 9.36851i 0.226908 + 0.437762i
\(459\) 8.79900i 0.410702i
\(460\) −7.64838 5.39559i −0.356608 0.251571i
\(461\) 14.2774i 0.664966i −0.943109 0.332483i \(-0.892114\pi\)
0.943109 0.332483i \(-0.107886\pi\)
\(462\) −68.6201 + 35.5683i −3.19249 + 1.65479i
\(463\) 36.4219 1.69267 0.846334 0.532652i \(-0.178805\pi\)
0.846334 + 0.532652i \(0.178805\pi\)
\(464\) 10.6098 3.77746i 0.492547 0.175364i
\(465\) −1.47530 −0.0684153
\(466\) −11.0456 + 5.72534i −0.511677 + 0.265221i
\(467\) 24.4402i 1.13096i −0.824762 0.565480i \(-0.808691\pi\)
0.824762 0.565480i \(-0.191309\pi\)
\(468\) −46.7237 32.9614i −2.15980 1.52364i
\(469\) 2.72253i 0.125715i
\(470\) 3.15460 + 6.08599i 0.145511 + 0.280726i
\(471\) 51.2831 2.36300
\(472\) 38.0199 + 5.20933i 1.75001 + 0.239779i
\(473\) 47.4786 2.18307
\(474\) 6.38166 + 12.3118i 0.293120 + 0.565500i
\(475\) 7.77516i 0.356749i
\(476\) 5.03069 7.13113i 0.230581 0.326855i
\(477\) 39.2651i 1.79783i
\(478\) −11.1484 + 5.77860i −0.509914 + 0.264307i
\(479\) 32.1022 1.46679 0.733393 0.679805i \(-0.237935\pi\)
0.733393 + 0.679805i \(0.237935\pi\)
\(480\) −12.3711 11.5375i −0.564661 0.526612i
\(481\) 15.9702 0.728180
\(482\) 1.61748 0.838398i 0.0736740 0.0381880i
\(483\) 61.0676i 2.77867i
\(484\) −7.54300 + 10.6924i −0.342864 + 0.486018i
\(485\) 15.8455i 0.719508i
\(486\) 0.665841 + 1.28457i 0.0302032 + 0.0582693i
\(487\) −38.1693 −1.72962 −0.864808 0.502102i \(-0.832560\pi\)
−0.864808 + 0.502102i \(0.832560\pi\)
\(488\) 18.5430 + 2.54069i 0.839403 + 0.115012i
\(489\) 29.8997 1.35211
\(490\) −7.83586 15.1173i −0.353988 0.682931i
\(491\) 5.15051i 0.232439i 0.993224 + 0.116220i \(0.0370777\pi\)
−0.993224 + 0.116220i \(0.962922\pi\)
\(492\) 15.2296 + 10.7438i 0.686604 + 0.484368i
\(493\) 2.81555i 0.126806i
\(494\) 46.9678 24.3451i 2.11318 1.09534i
\(495\) −24.8892 −1.11869
\(496\) −0.661895 1.85907i −0.0297200 0.0834748i
\(497\) −4.80388 −0.215484
\(498\) −11.5802 + 6.00244i −0.518920 + 0.268976i
\(499\) 42.4590i 1.90073i −0.311141 0.950364i \(-0.600711\pi\)
0.311141 0.950364i \(-0.399289\pi\)
\(500\) −1.63426 1.15290i −0.0730866 0.0515592i
\(501\) 9.76772i 0.436390i
\(502\) 1.82986 + 3.53025i 0.0816707 + 0.157563i
\(503\) 7.86424 0.350649 0.175324 0.984511i \(-0.443903\pi\)
0.175324 + 0.984511i \(0.443903\pi\)
\(504\) 9.95582 72.6618i 0.443467 3.23661i
\(505\) −15.4817 −0.688925
\(506\) −12.7570 24.6113i −0.567116 1.09411i
\(507\) 30.3445i 1.34765i
\(508\) 6.65733 9.43693i 0.295371 0.418696i
\(509\) 5.49453i 0.243541i 0.992558 + 0.121770i \(0.0388571\pi\)
−0.992558 + 0.121770i \(0.961143\pi\)
\(510\) 3.75464 1.94617i 0.166258 0.0861777i
\(511\) 7.64149 0.338040
\(512\) 8.98845 20.7655i 0.397237 0.917716i
\(513\) 68.4136 3.02054
\(514\) 8.85612 4.59045i 0.390627 0.202476i
\(515\) 13.9708i 0.615626i
\(516\) −39.0814 + 55.3988i −1.72046 + 2.43880i
\(517\) 20.3020i 0.892881i
\(518\) 9.42647 + 18.1860i 0.414175 + 0.799046i
\(519\) −24.8949 −1.09276
\(520\) 1.84726 13.4821i 0.0810077 0.591228i
\(521\) −23.7341 −1.03981 −0.519904 0.854224i \(-0.674032\pi\)
−0.519904 + 0.854224i \(0.674032\pi\)
\(522\) 10.8888 + 21.0071i 0.476588 + 0.919456i
\(523\) 12.8950i 0.563861i −0.959435 0.281930i \(-0.909025\pi\)
0.959435 0.281930i \(-0.0909747\pi\)
\(524\) −10.7597 7.59050i −0.470041 0.331593i
\(525\) 13.0486i 0.569487i
\(526\) 35.1216 18.2048i 1.53137 0.793768i
\(527\) 0.493346 0.0214905
\(528\) −16.8040 47.1975i −0.731300 2.05401i
\(529\) −1.09746 −0.0477157
\(530\) −8.29627 + 4.30027i −0.360367 + 0.186792i
\(531\) 80.6247i 3.49882i
\(532\) 55.4457 + 39.1144i 2.40388 + 1.69583i
\(533\) 14.9930i 0.649420i
\(534\) −9.53592 18.3971i −0.412660 0.796122i
\(535\) −2.65718 −0.114880
\(536\) −1.74841 0.239560i −0.0755198 0.0103474i
\(537\) −47.7395 −2.06011
\(538\) 2.05812 + 3.97062i 0.0887318 + 0.171185i
\(539\) 50.4292i 2.17214i
\(540\) 10.1444 14.3799i 0.436544 0.618812i
\(541\) 10.4515i 0.449346i 0.974434 + 0.224673i \(0.0721314\pi\)
−0.974434 + 0.224673i \(0.927869\pi\)
\(542\) 14.9265 7.73694i 0.641147 0.332330i
\(543\) 21.2401 0.911502
\(544\) 4.13695 + 3.85819i 0.177370 + 0.165418i
\(545\) 1.67198 0.0716198
\(546\) 78.8233 40.8570i 3.37332 1.74852i
\(547\) 12.3993i 0.530157i −0.964227 0.265079i \(-0.914602\pi\)
0.964227 0.265079i \(-0.0853979\pi\)
\(548\) 12.0547 17.0878i 0.514951 0.729956i
\(549\) 39.3222i 1.67823i
\(550\) −2.72584 5.25881i −0.116230 0.224236i
\(551\) −21.8913 −0.932601
\(552\) 39.2176 + 5.37344i 1.66921 + 0.228709i
\(553\) −14.3084 −0.608453
\(554\) 3.68312 + 7.10565i 0.156481 + 0.301890i
\(555\) 9.92632i 0.421349i
\(556\) −16.4887 11.6320i −0.699277 0.493308i
\(557\) 5.87623i 0.248984i −0.992221 0.124492i \(-0.960270\pi\)
0.992221 0.124492i \(-0.0397301\pi\)
\(558\) 3.68092 1.90796i 0.155826 0.0807702i
\(559\) −54.5382 −2.30672
\(560\) 16.4430 5.85428i 0.694842 0.247388i
\(561\) 12.5249 0.528803
\(562\) −9.39115 + 4.86778i −0.396142 + 0.205335i
\(563\) 31.4028i 1.32347i 0.749738 + 0.661734i \(0.230179\pi\)
−0.749738 + 0.661734i \(0.769821\pi\)
\(564\) −23.6887 16.7113i −0.997475 0.703673i
\(565\) 14.1116i 0.593678i
\(566\) −15.2972 29.5120i −0.642988 1.24048i
\(567\) 37.0250 1.55491
\(568\) 0.422701 3.08505i 0.0177362 0.129446i
\(569\) −17.6943 −0.741785 −0.370892 0.928676i \(-0.620948\pi\)
−0.370892 + 0.928676i \(0.620948\pi\)
\(570\) 15.1318 + 29.1929i 0.633800 + 1.22276i
\(571\) 5.08576i 0.212832i 0.994322 + 0.106416i \(0.0339376\pi\)
−0.994322 + 0.106416i \(0.966062\pi\)
\(572\) 23.2322 32.9322i 0.971385 1.37696i
\(573\) 19.9609i 0.833878i
\(574\) −17.0732 + 8.84967i −0.712622 + 0.369378i
\(575\) 4.68001 0.195170
\(576\) 45.7874 + 12.7873i 1.90781 + 0.532802i
\(577\) −40.4597 −1.68436 −0.842179 0.539198i \(-0.818727\pi\)
−0.842179 + 0.539198i \(0.818727\pi\)
\(578\) −1.25557 + 0.650807i −0.0522247 + 0.0270700i
\(579\) 28.4845i 1.18378i
\(580\) −3.24604 + 4.60135i −0.134785 + 0.191061i
\(581\) 13.4581i 0.558336i
\(582\) −30.8380 59.4941i −1.27828 2.46611i
\(583\) −27.6752 −1.14619
\(584\) −0.672387 + 4.90736i −0.0278236 + 0.203068i
\(585\) 28.5900 1.18205
\(586\) 13.9300 + 26.8745i 0.575444 + 1.11017i
\(587\) 10.2955i 0.424940i 0.977168 + 0.212470i \(0.0681508\pi\)
−0.977168 + 0.212470i \(0.931849\pi\)
\(588\) 58.8416 + 41.5101i 2.42659 + 1.71185i
\(589\) 3.83585i 0.158053i
\(590\) −17.0351 + 8.82992i −0.701324 + 0.363522i
\(591\) −29.0932 −1.19673
\(592\) −12.5085 + 4.45346i −0.514096 + 0.183036i
\(593\) 5.15631 0.211744 0.105872 0.994380i \(-0.466237\pi\)
0.105872 + 0.994380i \(0.466237\pi\)
\(594\) 46.2723 23.9846i 1.89857 0.984101i
\(595\) 4.36351i 0.178886i
\(596\) 30.7269 + 21.6765i 1.25862 + 0.887902i
\(597\) 17.9061i 0.732846i
\(598\) 14.6538 + 28.2708i 0.599238 + 1.15608i
\(599\) 13.2051 0.539546 0.269773 0.962924i \(-0.413051\pi\)
0.269773 + 0.962924i \(0.413051\pi\)
\(600\) 8.37980 + 1.14817i 0.342104 + 0.0468737i
\(601\) 37.1371 1.51486 0.757428 0.652919i \(-0.226456\pi\)
0.757428 + 0.652919i \(0.226456\pi\)
\(602\) −32.1913 62.1050i −1.31202 2.53121i
\(603\) 3.70767i 0.150988i
\(604\) 19.7767 28.0339i 0.804701 1.14068i
\(605\) 6.54263i 0.265996i
\(606\) 58.1280 30.1299i 2.36129 1.22394i
\(607\) 46.4987 1.88732 0.943662 0.330911i \(-0.107356\pi\)
0.943662 + 0.330911i \(0.107356\pi\)
\(608\) −29.9980 + 32.1655i −1.21658 + 1.30448i
\(609\) −36.7389 −1.48874
\(610\) −8.30834 + 4.30652i −0.336395 + 0.174366i
\(611\) 23.3207i 0.943455i
\(612\) −6.85102 + 9.71150i −0.276936 + 0.392564i
\(613\) 5.63462i 0.227580i −0.993505 0.113790i \(-0.963701\pi\)
0.993505 0.113790i \(-0.0362991\pi\)
\(614\) −12.7152 24.5307i −0.513143 0.989979i
\(615\) −9.31894 −0.375776
\(616\) 51.2141 + 7.01715i 2.06347 + 0.282729i
\(617\) −11.2965 −0.454781 −0.227390 0.973804i \(-0.573019\pi\)
−0.227390 + 0.973804i \(0.573019\pi\)
\(618\) 27.1895 + 52.4552i 1.09372 + 2.11006i
\(619\) 9.48152i 0.381094i 0.981678 + 0.190547i \(0.0610262\pi\)
−0.981678 + 0.190547i \(0.938974\pi\)
\(620\) 0.806259 + 0.568779i 0.0323801 + 0.0228427i
\(621\) 41.1794i 1.65247i
\(622\) 21.8993 11.3512i 0.878083 0.455143i
\(623\) 21.3805 0.856593
\(624\) 19.3026 + 54.2154i 0.772722 + 2.17035i
\(625\) 1.00000 0.0400000
\(626\) −25.3148 + 13.1216i −1.01178 + 0.524445i
\(627\) 97.3833i 3.88911i
\(628\) −28.0265 19.7714i −1.11838 0.788966i
\(629\) 3.31941i 0.132354i
\(630\) 16.8753 + 32.5567i 0.672329 + 1.29709i
\(631\) 2.50157 0.0995859 0.0497929 0.998760i \(-0.484144\pi\)
0.0497929 + 0.998760i \(0.484144\pi\)
\(632\) 1.25902 9.18883i 0.0500809 0.365512i
\(633\) 20.9097 0.831085
\(634\) −5.88773 11.3589i −0.233832 0.451119i
\(635\) 5.77442i 0.229151i
\(636\) 22.7804 32.2919i 0.903304 1.28046i
\(637\) 57.9275i 2.29517i
\(638\) −14.8064 + 7.67471i −0.586192 + 0.303845i
\(639\) 6.54215 0.258803
\(640\) 2.31277 + 11.0748i 0.0914204 + 0.437770i
\(641\) 38.7534 1.53067 0.765334 0.643634i \(-0.222574\pi\)
0.765334 + 0.643634i \(0.222574\pi\)
\(642\) 9.97674 5.17131i 0.393750 0.204095i
\(643\) 36.5250i 1.44041i −0.693763 0.720203i \(-0.744049\pi\)
0.693763 0.720203i \(-0.255951\pi\)
\(644\) −23.5437 + 33.3738i −0.927752 + 1.31511i
\(645\) 33.8983i 1.33474i
\(646\) −5.06013 9.76224i −0.199088 0.384090i
\(647\) 28.9267 1.13723 0.568613 0.822605i \(-0.307480\pi\)
0.568613 + 0.822605i \(0.307480\pi\)
\(648\) −3.25789 + 23.7775i −0.127982 + 0.934067i
\(649\) −56.8266 −2.23064
\(650\) 3.13114 + 6.04075i 0.122814 + 0.236938i
\(651\) 6.43748i 0.252305i
\(652\) −16.3404 11.5274i −0.639938 0.451447i
\(653\) 12.3145i 0.481905i 0.970537 + 0.240953i \(0.0774599\pi\)
−0.970537 + 0.240953i \(0.922540\pi\)
\(654\) −6.27768 + 3.25395i −0.245477 + 0.127240i
\(655\) 6.58384 0.257252
\(656\) −4.18096 11.7431i −0.163239 0.458491i
\(657\) −10.4065 −0.405997
\(658\) 26.5563 13.7651i 1.03527 0.536620i
\(659\) 29.6750i 1.15597i −0.816046 0.577987i \(-0.803839\pi\)
0.816046 0.577987i \(-0.196161\pi\)
\(660\) 20.4690 + 14.4400i 0.796756 + 0.562075i
\(661\) 7.97630i 0.310242i −0.987895 0.155121i \(-0.950423\pi\)
0.987895 0.155121i \(-0.0495768\pi\)
\(662\) 9.01487 + 17.3919i 0.350373 + 0.675955i
\(663\) −14.3873 −0.558755
\(664\) 8.64278 + 1.18420i 0.335405 + 0.0459558i
\(665\) −33.9270 −1.31563
\(666\) −12.8374 24.7665i −0.497439 0.959682i
\(667\) 13.1768i 0.510207i
\(668\) 3.76580 5.33812i 0.145703 0.206538i
\(669\) 8.97287i 0.346911i
\(670\) 0.783389 0.406059i 0.0302649 0.0156874i
\(671\) −27.7154 −1.06994
\(672\) −50.3439 + 53.9814i −1.94206 + 2.08238i
\(673\) −30.0834 −1.15963 −0.579815 0.814748i \(-0.696875\pi\)
−0.579815 + 0.814748i \(0.696875\pi\)
\(674\) −16.8678 + 8.74319i −0.649722 + 0.336775i
\(675\) 8.79900i 0.338674i
\(676\) −11.6989 + 16.5835i −0.449957 + 0.637825i
\(677\) 6.43558i 0.247339i −0.992323 0.123670i \(-0.960534\pi\)
0.992323 0.123670i \(-0.0394663\pi\)
\(678\) −27.4635 52.9838i −1.05473 2.03483i
\(679\) 69.1420 2.65343
\(680\) −2.80225 0.383952i −0.107461 0.0147239i
\(681\) −29.1877 −1.11847
\(682\) 1.34478 + 2.59442i 0.0514943 + 0.0993453i
\(683\) 30.2865i 1.15888i −0.815014 0.579441i \(-0.803271\pi\)
0.815014 0.579441i \(-0.196729\pi\)
\(684\) −75.5085 53.2678i −2.88714 2.03675i
\(685\) 10.4560i 0.399502i
\(686\) −27.6138 + 14.3132i −1.05430 + 0.546482i
\(687\) 22.3130 0.851295
\(688\) 42.7164 15.2085i 1.62855 0.579820i
\(689\) 31.7902 1.21111
\(690\) −17.5717 + 9.10809i −0.668945 + 0.346739i
\(691\) 8.46436i 0.321999i 0.986954 + 0.161000i \(0.0514718\pi\)
−0.986954 + 0.161000i \(0.948528\pi\)
\(692\) 13.6052 + 9.59785i 0.517192 + 0.364856i
\(693\) 108.604i 4.12554i
\(694\) −23.2496 44.8542i −0.882542 1.70264i
\(695\) 10.0894 0.382712
\(696\) 3.23271 23.5937i 0.122536 0.894318i
\(697\) 3.11630 0.118038
\(698\) 20.3304 + 39.2223i 0.769517 + 1.48459i
\(699\) 26.3073i 0.995035i
\(700\) −5.03069 + 7.13113i −0.190142 + 0.269531i
\(701\) 31.1857i 1.17787i −0.808181 0.588934i \(-0.799548\pi\)
0.808181 0.588934i \(-0.200452\pi\)
\(702\) −53.1525 + 27.5509i −2.00611 + 1.03984i
\(703\) 25.8089 0.973403
\(704\) −9.01282 + 32.2722i −0.339683 + 1.21631i
\(705\) 14.4950 0.545914
\(706\) −21.5018 + 11.1452i −0.809230 + 0.419454i
\(707\) 67.5544i 2.54064i
\(708\) 46.7761 66.3063i 1.75795 2.49194i
\(709\) 48.2214i 1.81099i 0.424355 + 0.905496i \(0.360501\pi\)
−0.424355 + 0.905496i \(0.639499\pi\)
\(710\) 0.716488 + 1.38228i 0.0268893 + 0.0518761i
\(711\) 19.4858 0.730774
\(712\) −1.88131 + 13.7306i −0.0705050 + 0.514575i
\(713\) −2.30887 −0.0864678
\(714\) −8.49212 16.3834i −0.317810 0.613133i
\(715\) 20.1511i 0.753607i
\(716\) 26.0899 + 18.4052i 0.975026 + 0.687836i
\(717\) 26.5521i 0.991605i
\(718\) −3.99123 + 2.06880i −0.148951 + 0.0772069i
\(719\) 14.5842 0.543899 0.271949 0.962312i \(-0.412332\pi\)
0.271949 + 0.962312i \(0.412332\pi\)
\(720\) −22.3928 + 7.97262i −0.834529 + 0.297122i
\(721\) −60.9616 −2.27033
\(722\) 52.0472 26.9780i 1.93700 1.00402i
\(723\) 3.85235i 0.143270i
\(724\) −11.6079 8.18882i −0.431403 0.304335i
\(725\) 2.81555i 0.104567i
\(726\) 12.7330 + 24.5652i 0.472568 + 0.911700i
\(727\) 32.8618 1.21878 0.609389 0.792872i \(-0.291415\pi\)
0.609389 + 0.792872i \(0.291415\pi\)
\(728\) −58.8292 8.06053i −2.18035 0.298743i
\(729\) 28.5149 1.05611
\(730\) −1.13971 2.19878i −0.0421826 0.0813806i
\(731\) 11.3358i 0.419268i
\(732\) 22.8136 32.3388i 0.843214 1.19528i
\(733\) 27.0533i 0.999236i 0.866246 + 0.499618i \(0.166526\pi\)
−0.866246 + 0.499618i \(0.833474\pi\)
\(734\) −3.51213 + 1.82047i −0.129635 + 0.0671947i
\(735\) −36.0049 −1.32806
\(736\) −19.3610 18.0564i −0.713656 0.665567i
\(737\) 2.61327 0.0962611
\(738\) 23.2511 12.0519i 0.855883 0.443636i
\(739\) 42.9847i 1.58122i 0.612322 + 0.790608i \(0.290235\pi\)
−0.612322 + 0.790608i \(0.709765\pi\)
\(740\) 3.82695 5.42479i 0.140681 0.199419i
\(741\) 111.863i 4.10940i
\(742\) 18.7643 + 36.2009i 0.688858 + 1.32898i
\(743\) −53.6886 −1.96964 −0.984822 0.173568i \(-0.944470\pi\)
−0.984822 + 0.173568i \(0.944470\pi\)
\(744\) −4.13415 0.566444i −0.151565 0.0207668i
\(745\) −18.8017 −0.688840
\(746\) 14.9927 + 28.9247i 0.548923 + 1.05901i
\(747\) 18.3278i 0.670581i
\(748\) −6.84494 4.82880i −0.250276 0.176558i
\(749\) 11.5946i 0.423658i
\(750\) −3.75464 + 1.94617i −0.137100 + 0.0710640i
\(751\) −23.1731 −0.845598 −0.422799 0.906223i \(-0.638952\pi\)
−0.422799 + 0.906223i \(0.638952\pi\)
\(752\) 6.50322 + 18.2657i 0.237148 + 0.666080i
\(753\) 8.40801 0.306405
\(754\) 17.0080 8.81588i 0.619395 0.321055i
\(755\) 17.1539i 0.624293i
\(756\) −62.7468 44.2650i −2.28208 1.60990i
\(757\) 5.88004i 0.213714i −0.994274 0.106857i \(-0.965921\pi\)
0.994274 0.106857i \(-0.0340787\pi\)
\(758\) 5.92204 + 11.4251i 0.215098 + 0.414977i
\(759\) −58.6168 −2.12766
\(760\) 2.98529 21.7879i 0.108288 0.790331i
\(761\) 35.5088 1.28719 0.643597 0.765365i \(-0.277441\pi\)
0.643597 + 0.765365i \(0.277441\pi\)
\(762\) −11.2380 21.6808i −0.407109 0.785414i
\(763\) 7.29571i 0.264122i
\(764\) −7.69563 + 10.9087i −0.278418 + 0.394665i
\(765\) 5.94243i 0.214849i
\(766\) −14.3346 + 7.43016i −0.517931 + 0.268463i
\(767\) 65.2762 2.35699
\(768\) −30.2370 37.0808i −1.09108 1.33804i
\(769\) −12.0101 −0.433096 −0.216548 0.976272i \(-0.569480\pi\)
−0.216548 + 0.976272i \(0.569480\pi\)
\(770\) −22.9469 + 11.8942i −0.826948 + 0.428638i
\(771\) 21.0926i 0.759633i
\(772\) 10.9818 15.5669i 0.395243 0.560267i
\(773\) 18.5951i 0.668819i 0.942428 + 0.334409i \(0.108537\pi\)
−0.942428 + 0.334409i \(0.891463\pi\)
\(774\) 43.8396 + 84.5774i 1.57578 + 3.04007i
\(775\) −0.493346 −0.0177215
\(776\) −6.08392 + 44.4030i −0.218400 + 1.59398i
\(777\) 43.3136 1.55387
\(778\) −7.85674 15.1576i −0.281678 0.543426i
\(779\) 24.2297i 0.868119i
\(780\) −23.5126 16.5871i −0.841886 0.593913i
\(781\) 4.61109i 0.164998i
\(782\) 5.87607 3.04579i 0.210128 0.108917i
\(783\) 24.7740 0.885350
\(784\) −16.1537 45.3710i −0.576918 1.62039i
\(785\) 17.1493 0.612085
\(786\) −24.7199 + 12.8132i −0.881730 + 0.457033i
\(787\) 29.8970i 1.06571i −0.846206 0.532856i \(-0.821119\pi\)
0.846206 0.532856i \(-0.178881\pi\)
\(788\) 15.8996 + 11.2165i 0.566400 + 0.399570i
\(789\) 83.6491i 2.97799i
\(790\) 2.13406 + 4.11712i 0.0759264 + 0.146481i
\(791\) 61.5760 2.18939
\(792\) −69.7457 9.55627i −2.47830 0.339567i
\(793\) 31.8365 1.13055
\(794\) −18.7744 36.2205i −0.666279 1.28542i
\(795\) 19.7593i 0.700789i
\(796\) −6.90341 + 9.78577i −0.244685 + 0.346847i
\(797\) 2.37255i 0.0840399i −0.999117 0.0420200i \(-0.986621\pi\)
0.999117 0.0420200i \(-0.0133793\pi\)
\(798\) 127.383 66.0276i 4.50933 2.33735i
\(799\) −4.84720 −0.171482
\(800\) −4.13695 3.85819i −0.146263 0.136408i
\(801\) −29.1170 −1.02880
\(802\) −24.8910 + 12.9019i −0.878932 + 0.455583i
\(803\) 7.33482i 0.258840i
\(804\) −2.15108 + 3.04921i −0.0758627 + 0.107537i
\(805\) 20.4213i 0.719756i
\(806\) −1.54474 2.98018i −0.0544111 0.104972i
\(807\) 9.45683 0.332896
\(808\) −43.3834 5.94422i −1.52622 0.209117i
\(809\) 37.4156 1.31546 0.657731 0.753253i \(-0.271517\pi\)
0.657731 + 0.753253i \(0.271517\pi\)
\(810\) −5.52220 10.6537i −0.194030 0.374332i
\(811\) 32.9857i 1.15829i −0.815226 0.579143i \(-0.803387\pi\)
0.815226 0.579143i \(-0.196613\pi\)
\(812\) 20.0780 + 14.1641i 0.704600 + 0.497064i
\(813\) 35.5504i 1.24681i
\(814\) 17.4561 9.04816i 0.611837 0.317138i
\(815\) 9.99860 0.350236
\(816\) 11.2686 4.01204i 0.394482 0.140449i
\(817\) −88.1373 −3.08353
\(818\) −29.2134 + 15.1424i −1.02142 + 0.529442i
\(819\) 124.753i 4.35922i
\(820\) 5.09285 + 3.59278i 0.177850 + 0.125465i
\(821\) 8.03032i 0.280260i −0.990133 0.140130i \(-0.955248\pi\)
0.990133 0.140130i \(-0.0447521\pi\)
\(822\) −20.3491 39.2584i −0.709755 1.36929i
\(823\) −42.6045 −1.48510 −0.742550 0.669790i \(-0.766384\pi\)
−0.742550 + 0.669790i \(0.766384\pi\)
\(824\) 5.36411 39.1496i 0.186868 1.36384i
\(825\) −12.5249 −0.436062
\(826\) 38.5295 + 74.3328i 1.34061 + 2.58637i
\(827\) 15.4169i 0.536098i 0.963405 + 0.268049i \(0.0863790\pi\)
−0.963405 + 0.268049i \(0.913621\pi\)
\(828\) 32.0629 45.4500i 1.11426 1.57950i
\(829\) 6.68865i 0.232306i 0.993231 + 0.116153i \(0.0370564\pi\)
−0.993231 + 0.116153i \(0.962944\pi\)
\(830\) −3.87247 + 2.00724i −0.134415 + 0.0696724i
\(831\) 16.9236 0.587072
\(832\) 10.3529 37.0708i 0.358924 1.28520i
\(833\) 12.0402 0.417169
\(834\) −37.8819 + 19.6356i −1.31174 + 0.679926i
\(835\) 3.26637i 0.113037i
\(836\) 37.5447 53.2205i 1.29851 1.84067i
\(837\) 4.34095i 0.150045i
\(838\) 13.6848 + 26.4013i 0.472733 + 0.912018i
\(839\) −11.8447 −0.408924 −0.204462 0.978874i \(-0.565545\pi\)
−0.204462 + 0.978874i \(0.565545\pi\)
\(840\) 5.01004 36.5654i 0.172863 1.26162i
\(841\) 21.0727 0.726645
\(842\) 9.81628 + 18.9380i 0.338291 + 0.652648i
\(843\) 22.3669i 0.770358i
\(844\) −11.4273 8.06141i −0.393342 0.277485i
\(845\) 10.1473i 0.349079i
\(846\) −36.1656 + 18.7460i −1.24340 + 0.644499i
\(847\) −28.5488 −0.980950
\(848\) −24.8993 + 8.86503i −0.855045 + 0.304426i
\(849\) −70.2888 −2.41231
\(850\) 1.25557 0.650807i 0.0430656 0.0223225i
\(851\) 15.5349i 0.532529i
\(852\) −5.38030 3.79556i −0.184326 0.130034i
\(853\) 12.3374i 0.422424i −0.977440 0.211212i \(-0.932259\pi\)
0.977440 0.211212i \(-0.0677410\pi\)
\(854\) 18.7915 + 36.2535i 0.643034 + 1.24057i
\(855\) 46.2033 1.58012
\(856\) −7.44607 1.02023i −0.254501 0.0348707i
\(857\) 15.4580 0.528034 0.264017 0.964518i \(-0.414953\pi\)
0.264017 + 0.964518i \(0.414953\pi\)
\(858\) −39.2173 75.6599i −1.33886 2.58299i
\(859\) 40.0837i 1.36764i −0.729652 0.683819i \(-0.760318\pi\)
0.729652 0.683819i \(-0.239682\pi\)
\(860\) −13.0690 + 18.5256i −0.445649 + 0.631719i
\(861\) 40.6633i 1.38580i
\(862\) 31.5941 16.3764i 1.07610 0.557781i
\(863\) −54.5943 −1.85841 −0.929206 0.369561i \(-0.879508\pi\)
−0.929206 + 0.369561i \(0.879508\pi\)
\(864\) 33.9482 36.4010i 1.15494 1.23839i
\(865\) −8.32496 −0.283057
\(866\) −26.4855 + 13.7284i −0.900014 + 0.466511i
\(867\) 2.99039i 0.101559i
\(868\) 2.48187 3.51812i 0.0842403 0.119413i
\(869\) 13.7341i 0.465899i
\(870\) 5.47952 + 10.5713i 0.185773 + 0.358402i
\(871\) −3.00184 −0.101714
\(872\) 4.68530 + 0.641961i 0.158664 + 0.0217395i
\(873\) −94.1608 −3.18686
\(874\) 23.6815 + 45.6874i 0.801038 + 1.54540i
\(875\) 4.36351i 0.147514i
\(876\) 8.55839 + 6.03756i 0.289161 + 0.203990i
\(877\) 45.4591i 1.53504i 0.641022 + 0.767522i \(0.278511\pi\)
−0.641022 + 0.767522i \(0.721489\pi\)
\(878\) −31.1179 + 16.1296i −1.05018 + 0.544347i
\(879\) 64.0070 2.15890
\(880\) −5.61933 15.7831i −0.189428 0.532047i
\(881\) −27.1739 −0.915510 −0.457755 0.889078i \(-0.651346\pi\)
−0.457755 + 0.889078i \(0.651346\pi\)
\(882\) 89.8335 46.5640i 3.02485 1.56789i
\(883\) 25.0675i 0.843588i 0.906692 + 0.421794i \(0.138599\pi\)
−0.906692 + 0.421794i \(0.861401\pi\)
\(884\) 7.86273 + 5.54680i 0.264452 + 0.186559i
\(885\) 40.5725i 1.36383i
\(886\) 3.39177 + 6.54355i 0.113949 + 0.219835i
\(887\) −13.7944 −0.463170 −0.231585 0.972815i \(-0.574391\pi\)
−0.231585 + 0.972815i \(0.574391\pi\)
\(888\) −3.81123 + 27.8160i −0.127897 + 0.933444i
\(889\) 25.1967 0.845071
\(890\) −3.18886 6.15209i −0.106891 0.206219i
\(891\) 35.5391i 1.19061i
\(892\) 3.45936 4.90373i 0.115828 0.164189i
\(893\) 37.6878i 1.26117i
\(894\) 70.5935 36.5912i 2.36100 1.22379i
\(895\) −15.9643 −0.533628
\(896\) 48.3250 10.0918i 1.61442 0.337144i
\(897\) 67.3326 2.24817
\(898\) 13.8907 7.20004i 0.463537 0.240269i
\(899\) 1.38904i 0.0463271i
\(900\) 6.85102 9.71150i 0.228367 0.323717i
\(901\) 6.60759i 0.220131i
\(902\) 8.49451 + 16.3880i 0.282836 + 0.545661i
\(903\) −147.916 −4.92232
\(904\) −5.41817 + 39.5441i −0.180206 + 1.31522i
\(905\) 7.10280 0.236105
\(906\) −33.3843 64.4065i −1.10912 2.13976i
\(907\) 56.0451i 1.86095i −0.366361 0.930473i \(-0.619396\pi\)
0.366361 0.930473i \(-0.380604\pi\)
\(908\) 15.9512 + 11.2529i 0.529360 + 0.373439i
\(909\) 91.9986i 3.05140i
\(910\) 26.3589 13.6628i 0.873788 0.452917i
\(911\) 31.0576 1.02898 0.514491 0.857496i \(-0.327981\pi\)
0.514491 + 0.857496i \(0.327981\pi\)
\(912\) 31.1942 + 87.6155i 1.03294 + 2.90124i
\(913\) −12.9180 −0.427523
\(914\) 1.78563 0.925556i 0.0590633 0.0306147i
\(915\) 19.7880i 0.654171i
\(916\) −12.1942 8.60245i −0.402907 0.284233i
\(917\) 28.7286i 0.948703i
\(918\) 5.72645 + 11.0477i 0.189001 + 0.364630i
\(919\) −39.0215 −1.28720 −0.643601 0.765361i \(-0.722560\pi\)
−0.643601 + 0.765361i \(0.722560\pi\)
\(920\) 13.1146 + 1.79690i 0.432374 + 0.0592421i
\(921\) −58.4249 −1.92516
\(922\) 9.29185 + 17.9263i 0.306011 + 0.590370i
\(923\) 5.29672i 0.174344i
\(924\) 63.0090 89.3169i 2.07284 2.93831i
\(925\) 3.31941i 0.109141i
\(926\) −45.7301 + 23.7036i −1.50279 + 0.778950i
\(927\) 83.0203 2.72675
\(928\) −10.8629 + 11.6478i −0.356592 + 0.382357i
\(929\) −52.7041 −1.72917 −0.864583 0.502490i \(-0.832417\pi\)
−0.864583 + 0.502490i \(0.832417\pi\)
\(930\) 1.85234 0.960134i 0.0607405 0.0314841i
\(931\) 93.6147i 3.06810i
\(932\) 10.1424 14.3771i 0.332225 0.470938i
\(933\) 52.1577i 1.70757i
\(934\) 15.9059 + 30.6864i 0.520457 + 1.00409i
\(935\) 4.18839 0.136975
\(936\) 80.1162 + 10.9772i 2.61868 + 0.358801i
\(937\) −41.2115 −1.34632 −0.673161 0.739496i \(-0.735064\pi\)
−0.673161 + 0.739496i \(0.735064\pi\)
\(938\) −1.77184 3.41832i −0.0578528 0.111612i
\(939\) 60.2924i 1.96757i
\(940\) −7.92162 5.58834i −0.258375 0.182272i
\(941\) 11.4803i 0.374248i −0.982336 0.187124i \(-0.940083\pi\)
0.982336 0.187124i \(-0.0599166\pi\)
\(942\) −64.3894 + 33.3754i −2.09792 + 1.08743i
\(943\) −14.5843 −0.474931
\(944\) −51.1268 + 18.2029i −1.66404 + 0.592455i
\(945\) 38.3945 1.24897
\(946\) −59.6126 + 30.8994i −1.93817 + 1.00463i
\(947\) 59.7360i 1.94116i 0.240781 + 0.970580i \(0.422597\pi\)
−0.240781 + 0.970580i \(0.577403\pi\)
\(948\) −16.0252 11.3051i −0.520475 0.367172i
\(949\) 8.42544i 0.273501i
\(950\) 5.06013 + 9.76224i 0.164172 + 0.316729i
\(951\) −27.0535 −0.877269
\(952\) −1.67538 + 12.2276i −0.0542994 + 0.396300i
\(953\) −48.5108 −1.57142 −0.785709 0.618596i \(-0.787702\pi\)
−0.785709 + 0.618596i \(0.787702\pi\)
\(954\) −25.5540 49.3000i −0.827342 1.59615i
\(955\) 6.67502i 0.215998i
\(956\) 10.2368 14.5109i 0.331080 0.469315i
\(957\) 35.2645i 1.13994i
\(958\) −40.3065 + 20.8923i −1.30224 + 0.675001i
\(959\) 45.6247 1.47330
\(960\) 23.0414 + 6.43489i 0.743659 + 0.207685i
\(961\) −30.7566 −0.992149
\(962\) −20.0517 + 10.3935i −0.646493 + 0.335101i
\(963\) 15.7901i 0.508828i
\(964\) −1.48522 + 2.10533i −0.0478356 + 0.0678081i
\(965\) 9.52535i 0.306632i
\(966\) 39.7432 + 76.6745i 1.27872 + 2.46696i
\(967\) −51.1732 −1.64562 −0.822809 0.568318i \(-0.807594\pi\)
−0.822809 + 0.568318i \(0.807594\pi\)
\(968\) 2.51206 18.3341i 0.0807406 0.589279i
\(969\) −23.2508 −0.746922
\(970\) −10.3124 19.8951i −0.331110 0.638793i
\(971\) 23.6865i 0.760137i −0.924958 0.380069i \(-0.875900\pi\)
0.924958 0.380069i \(-0.124100\pi\)
\(972\) −1.67202 1.17953i −0.0536299 0.0378335i
\(973\) 44.0251i 1.41138i
\(974\) 47.9241 24.8409i 1.53559 0.795953i
\(975\) 14.3873 0.460761
\(976\) −24.9355 + 8.87792i −0.798166 + 0.284175i
\(977\) −26.1676 −0.837174 −0.418587 0.908177i \(-0.637475\pi\)
−0.418587 + 0.908177i \(0.637475\pi\)
\(978\) −37.5411 + 19.4589i −1.20043 + 0.622228i
\(979\) 20.5225i 0.655902i
\(980\) 19.6769 + 13.8812i 0.628556 + 0.443418i
\(981\) 9.93562i 0.317220i
\(982\) −3.35199 6.46682i −0.106966 0.206364i
\(983\) 4.28167 0.136564 0.0682821 0.997666i \(-0.478248\pi\)
0.0682821 + 0.997666i \(0.478248\pi\)
\(984\) −26.1140 3.57803i −0.832483 0.114063i
\(985\) −9.72890 −0.309989
\(986\) −1.83238 3.53511i −0.0583548 0.112581i
\(987\) 63.2492i 2.01324i
\(988\) −43.1272 + 61.1340i −1.37206 + 1.94493i
\(989\) 53.0515i 1.68694i
\(990\) 31.2501 16.1981i 0.993193 0.514809i
\(991\) −11.6019 −0.368547 −0.184274 0.982875i \(-0.558993\pi\)
−0.184274 + 0.982875i \(0.558993\pi\)
\(992\) 2.04095 + 1.90342i 0.0648003 + 0.0604338i
\(993\) 41.4223 1.31450
\(994\) 6.03160 3.12640i 0.191311 0.0991635i
\(995\) 5.98787i 0.189828i
\(996\) 10.6333 15.0729i 0.336928 0.477604i
\(997\) 24.9376i 0.789783i 0.918728 + 0.394891i \(0.129218\pi\)
−0.918728 + 0.394891i \(0.870782\pi\)
\(998\) 27.6327 + 53.3102i 0.874696 + 1.68750i
\(999\) −29.2075 −0.924084
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 680.2.f.e.341.4 yes 30
4.3 odd 2 2720.2.f.e.1361.2 30
8.3 odd 2 2720.2.f.e.1361.29 30
8.5 even 2 inner 680.2.f.e.341.3 30
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
680.2.f.e.341.3 30 8.5 even 2 inner
680.2.f.e.341.4 yes 30 1.1 even 1 trivial
2720.2.f.e.1361.2 30 4.3 odd 2
2720.2.f.e.1361.29 30 8.3 odd 2