Properties

Label 680.2.f.e
Level $680$
Weight $2$
Character orbit 680.f
Analytic conductor $5.430$
Analytic rank $0$
Dimension $30$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [680,2,Mod(341,680)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(680, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("680.341"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 680 = 2^{3} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 680.f (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [30,0,0,-2,0,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.42982733745\)
Analytic rank: \(0\)
Dimension: \(30\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 30 q - 2 q^{4} - 8 q^{6} + 12 q^{7} + 6 q^{8} - 36 q^{9} + 2 q^{10} + 8 q^{12} - 10 q^{14} - 14 q^{15} - 2 q^{16} + 30 q^{17} + 6 q^{18} + 4 q^{20} - 6 q^{22} + 12 q^{23} - 46 q^{24} - 30 q^{25} + 4 q^{26}+ \cdots - 16 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
341.1 −1.41333 0.0499874i 0.827995i 1.99500 + 0.141297i 1.00000i −0.0413893 + 1.17023i −0.211569 −2.81253 0.299425i 2.31442 −0.0499874 + 1.41333i
341.2 −1.41333 + 0.0499874i 0.827995i 1.99500 0.141297i 1.00000i −0.0413893 1.17023i −0.211569 −2.81253 + 0.299425i 2.31442 −0.0499874 1.41333i
341.3 −1.25557 0.650807i 2.99039i 1.15290 + 1.63426i 1.00000i −1.94617 + 3.75464i 4.36351 −0.383952 2.80225i −5.94243 −0.650807 + 1.25557i
341.4 −1.25557 + 0.650807i 2.99039i 1.15290 1.63426i 1.00000i −1.94617 3.75464i 4.36351 −0.383952 + 2.80225i −5.94243 −0.650807 1.25557i
341.5 −1.12577 0.855946i 1.53622i 0.534711 + 1.92720i 1.00000i 1.31493 1.72943i 2.50805 1.04761 2.62726i 0.640013 0.855946 1.12577i
341.6 −1.12577 + 0.855946i 1.53622i 0.534711 1.92720i 1.00000i 1.31493 + 1.72943i 2.50805 1.04761 + 2.62726i 0.640013 0.855946 + 1.12577i
341.7 −1.08720 0.904426i 1.99420i 0.364028 + 1.96659i 1.00000i −1.80361 + 2.16810i 0.982898 1.38286 2.46732i −0.976839 0.904426 1.08720i
341.8 −1.08720 + 0.904426i 1.99420i 0.364028 1.96659i 1.00000i −1.80361 2.16810i 0.982898 1.38286 + 2.46732i −0.976839 0.904426 + 1.08720i
341.9 −0.901248 1.08984i 2.07328i −0.375504 + 1.96443i 1.00000i −2.25955 + 1.86854i −2.82807 2.47934 1.36120i −1.29849 −1.08984 + 0.901248i
341.10 −0.901248 + 1.08984i 2.07328i −0.375504 1.96443i 1.00000i −2.25955 1.86854i −2.82807 2.47934 + 1.36120i −1.29849 −1.08984 0.901248i
341.11 −0.276941 1.38683i 2.54394i −1.84661 + 0.768141i 1.00000i 3.52802 0.704520i 3.47689 1.57668 + 2.34821i −3.47163 −1.38683 + 0.276941i
341.12 −0.276941 + 1.38683i 2.54394i −1.84661 0.768141i 1.00000i 3.52802 + 0.704520i 3.47689 1.57668 2.34821i −3.47163 −1.38683 0.276941i
341.13 −0.246245 1.39261i 1.67155i −1.87873 + 0.685848i 1.00000i −2.32781 + 0.411610i 2.42659 1.41775 + 2.44745i 0.205935 1.39261 0.246245i
341.14 −0.246245 + 1.39261i 1.67155i −1.87873 0.685848i 1.00000i −2.32781 0.411610i 2.42659 1.41775 2.44745i 0.205935 1.39261 + 0.246245i
341.15 −0.162515 1.40484i 1.05749i −1.94718 + 0.456616i 1.00000i −1.48560 + 0.171857i −4.12826 0.957920 + 2.66128i 1.88172 −1.40484 + 0.162515i
341.16 −0.162515 + 1.40484i 1.05749i −1.94718 0.456616i 1.00000i −1.48560 0.171857i −4.12826 0.957920 2.66128i 1.88172 −1.40484 0.162515i
341.17 −0.0347735 1.41379i 3.25046i −1.99758 + 0.0983247i 1.00000i 4.59545 0.113030i −1.97707 0.208473 + 2.82073i −7.56546 1.41379 0.0347735i
341.18 −0.0347735 + 1.41379i 3.25046i −1.99758 0.0983247i 1.00000i 4.59545 + 0.113030i −1.97707 0.208473 2.82073i −7.56546 1.41379 + 0.0347735i
341.19 0.615350 1.27332i 2.36983i −1.24269 1.56708i 1.00000i −3.01755 1.45828i −4.23147 −2.76008 + 0.618040i −2.61609 1.27332 + 0.615350i
341.20 0.615350 + 1.27332i 2.36983i −1.24269 + 1.56708i 1.00000i −3.01755 + 1.45828i −4.23147 −2.76008 0.618040i −2.61609 1.27332 0.615350i
See all 30 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 341.30
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 680.2.f.e 30
4.b odd 2 1 2720.2.f.e 30
8.b even 2 1 inner 680.2.f.e 30
8.d odd 2 1 2720.2.f.e 30
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
680.2.f.e 30 1.a even 1 1 trivial
680.2.f.e 30 8.b even 2 1 inner
2720.2.f.e 30 4.b odd 2 1
2720.2.f.e 30 8.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(680, [\chi])\):

\( T_{3}^{30} + 63 T_{3}^{28} + 1779 T_{3}^{26} + 29781 T_{3}^{24} + 329324 T_{3}^{22} + 2536540 T_{3}^{20} + \cdots + 173056 \) Copy content Toggle raw display
\( T_{7}^{15} - 6 T_{7}^{14} - 42 T_{7}^{13} + 300 T_{7}^{12} + 508 T_{7}^{11} - 5408 T_{7}^{10} + \cdots + 4096 \) Copy content Toggle raw display