Newspace parameters
Level: | \( N \) | \(=\) | \( 680 = 2^{3} \cdot 5 \cdot 17 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 680.f (of order \(2\), degree \(1\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(5.42982733745\) |
Analytic rank: | \(0\) |
Dimension: | \(30\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
341.1 | −1.41333 | − | 0.0499874i | − | 0.827995i | 1.99500 | + | 0.141297i | − | 1.00000i | −0.0413893 | + | 1.17023i | −0.211569 | −2.81253 | − | 0.299425i | 2.31442 | −0.0499874 | + | 1.41333i | ||||||
341.2 | −1.41333 | + | 0.0499874i | 0.827995i | 1.99500 | − | 0.141297i | 1.00000i | −0.0413893 | − | 1.17023i | −0.211569 | −2.81253 | + | 0.299425i | 2.31442 | −0.0499874 | − | 1.41333i | ||||||||
341.3 | −1.25557 | − | 0.650807i | − | 2.99039i | 1.15290 | + | 1.63426i | − | 1.00000i | −1.94617 | + | 3.75464i | 4.36351 | −0.383952 | − | 2.80225i | −5.94243 | −0.650807 | + | 1.25557i | ||||||
341.4 | −1.25557 | + | 0.650807i | 2.99039i | 1.15290 | − | 1.63426i | 1.00000i | −1.94617 | − | 3.75464i | 4.36351 | −0.383952 | + | 2.80225i | −5.94243 | −0.650807 | − | 1.25557i | ||||||||
341.5 | −1.12577 | − | 0.855946i | 1.53622i | 0.534711 | + | 1.92720i | 1.00000i | 1.31493 | − | 1.72943i | 2.50805 | 1.04761 | − | 2.62726i | 0.640013 | 0.855946 | − | 1.12577i | ||||||||
341.6 | −1.12577 | + | 0.855946i | − | 1.53622i | 0.534711 | − | 1.92720i | − | 1.00000i | 1.31493 | + | 1.72943i | 2.50805 | 1.04761 | + | 2.62726i | 0.640013 | 0.855946 | + | 1.12577i | ||||||
341.7 | −1.08720 | − | 0.904426i | − | 1.99420i | 0.364028 | + | 1.96659i | 1.00000i | −1.80361 | + | 2.16810i | 0.982898 | 1.38286 | − | 2.46732i | −0.976839 | 0.904426 | − | 1.08720i | |||||||
341.8 | −1.08720 | + | 0.904426i | 1.99420i | 0.364028 | − | 1.96659i | − | 1.00000i | −1.80361 | − | 2.16810i | 0.982898 | 1.38286 | + | 2.46732i | −0.976839 | 0.904426 | + | 1.08720i | |||||||
341.9 | −0.901248 | − | 1.08984i | − | 2.07328i | −0.375504 | + | 1.96443i | − | 1.00000i | −2.25955 | + | 1.86854i | −2.82807 | 2.47934 | − | 1.36120i | −1.29849 | −1.08984 | + | 0.901248i | ||||||
341.10 | −0.901248 | + | 1.08984i | 2.07328i | −0.375504 | − | 1.96443i | 1.00000i | −2.25955 | − | 1.86854i | −2.82807 | 2.47934 | + | 1.36120i | −1.29849 | −1.08984 | − | 0.901248i | ||||||||
341.11 | −0.276941 | − | 1.38683i | 2.54394i | −1.84661 | + | 0.768141i | − | 1.00000i | 3.52802 | − | 0.704520i | 3.47689 | 1.57668 | + | 2.34821i | −3.47163 | −1.38683 | + | 0.276941i | |||||||
341.12 | −0.276941 | + | 1.38683i | − | 2.54394i | −1.84661 | − | 0.768141i | 1.00000i | 3.52802 | + | 0.704520i | 3.47689 | 1.57668 | − | 2.34821i | −3.47163 | −1.38683 | − | 0.276941i | |||||||
341.13 | −0.246245 | − | 1.39261i | − | 1.67155i | −1.87873 | + | 0.685848i | 1.00000i | −2.32781 | + | 0.411610i | 2.42659 | 1.41775 | + | 2.44745i | 0.205935 | 1.39261 | − | 0.246245i | |||||||
341.14 | −0.246245 | + | 1.39261i | 1.67155i | −1.87873 | − | 0.685848i | − | 1.00000i | −2.32781 | − | 0.411610i | 2.42659 | 1.41775 | − | 2.44745i | 0.205935 | 1.39261 | + | 0.246245i | |||||||
341.15 | −0.162515 | − | 1.40484i | − | 1.05749i | −1.94718 | + | 0.456616i | − | 1.00000i | −1.48560 | + | 0.171857i | −4.12826 | 0.957920 | + | 2.66128i | 1.88172 | −1.40484 | + | 0.162515i | ||||||
341.16 | −0.162515 | + | 1.40484i | 1.05749i | −1.94718 | − | 0.456616i | 1.00000i | −1.48560 | − | 0.171857i | −4.12826 | 0.957920 | − | 2.66128i | 1.88172 | −1.40484 | − | 0.162515i | ||||||||
341.17 | −0.0347735 | − | 1.41379i | 3.25046i | −1.99758 | + | 0.0983247i | 1.00000i | 4.59545 | − | 0.113030i | −1.97707 | 0.208473 | + | 2.82073i | −7.56546 | 1.41379 | − | 0.0347735i | ||||||||
341.18 | −0.0347735 | + | 1.41379i | − | 3.25046i | −1.99758 | − | 0.0983247i | − | 1.00000i | 4.59545 | + | 0.113030i | −1.97707 | 0.208473 | − | 2.82073i | −7.56546 | 1.41379 | + | 0.0347735i | ||||||
341.19 | 0.615350 | − | 1.27332i | − | 2.36983i | −1.24269 | − | 1.56708i | 1.00000i | −3.01755 | − | 1.45828i | −4.23147 | −2.76008 | + | 0.618040i | −2.61609 | 1.27332 | + | 0.615350i | |||||||
341.20 | 0.615350 | + | 1.27332i | 2.36983i | −1.24269 | + | 1.56708i | − | 1.00000i | −3.01755 | + | 1.45828i | −4.23147 | −2.76008 | − | 0.618040i | −2.61609 | 1.27332 | − | 0.615350i | |||||||
See all 30 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
8.b | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 680.2.f.e | ✓ | 30 |
4.b | odd | 2 | 1 | 2720.2.f.e | 30 | ||
8.b | even | 2 | 1 | inner | 680.2.f.e | ✓ | 30 |
8.d | odd | 2 | 1 | 2720.2.f.e | 30 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
680.2.f.e | ✓ | 30 | 1.a | even | 1 | 1 | trivial |
680.2.f.e | ✓ | 30 | 8.b | even | 2 | 1 | inner |
2720.2.f.e | 30 | 4.b | odd | 2 | 1 | ||
2720.2.f.e | 30 | 8.d | odd | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(680, [\chi])\):
\( T_{3}^{30} + 63 T_{3}^{28} + 1779 T_{3}^{26} + 29781 T_{3}^{24} + 329324 T_{3}^{22} + 2536540 T_{3}^{20} + \cdots + 173056 \)
|
\( T_{7}^{15} - 6 T_{7}^{14} - 42 T_{7}^{13} + 300 T_{7}^{12} + 508 T_{7}^{11} - 5408 T_{7}^{10} + \cdots + 4096 \)
|