Properties

Label 680.2.f.e.341.11
Level $680$
Weight $2$
Character 680.341
Analytic conductor $5.430$
Analytic rank $0$
Dimension $30$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [680,2,Mod(341,680)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(680, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("680.341"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 680 = 2^{3} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 680.f (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [30,0,0,-2,0,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.42982733745\)
Analytic rank: \(0\)
Dimension: \(30\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 341.11
Character \(\chi\) \(=\) 680.341
Dual form 680.2.f.e.341.12

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.276941 - 1.38683i) q^{2} +2.54394i q^{3} +(-1.84661 + 0.768141i) q^{4} -1.00000i q^{5} +(3.52802 - 0.704520i) q^{6} +3.47689 q^{7} +(1.57668 + 2.34821i) q^{8} -3.47163 q^{9} +(-1.38683 + 0.276941i) q^{10} +0.0495512i q^{11} +(-1.95410 - 4.69766i) q^{12} +3.09291i q^{13} +(-0.962892 - 4.82186i) q^{14} +2.54394 q^{15} +(2.81992 - 2.83691i) q^{16} +1.00000 q^{17} +(0.961435 + 4.81457i) q^{18} -3.67080i q^{19} +(0.768141 + 1.84661i) q^{20} +8.84500i q^{21} +(0.0687192 - 0.0137227i) q^{22} +2.12995 q^{23} +(-5.97369 + 4.01099i) q^{24} -1.00000 q^{25} +(4.28935 - 0.856553i) q^{26} -1.19979i q^{27} +(-6.42045 + 2.67074i) q^{28} +7.05489i q^{29} +(-0.704520 - 3.52802i) q^{30} -2.99704 q^{31} +(-4.71527 - 3.12510i) q^{32} -0.126055 q^{33} +(-0.276941 - 1.38683i) q^{34} -3.47689i q^{35} +(6.41073 - 2.66670i) q^{36} +10.8445i q^{37} +(-5.09078 + 1.01659i) q^{38} -7.86818 q^{39} +(2.34821 - 1.57668i) q^{40} +9.08518 q^{41} +(12.2665 - 2.44954i) q^{42} +4.85028i q^{43} +(-0.0380623 - 0.0915016i) q^{44} +3.47163i q^{45} +(-0.589869 - 2.95388i) q^{46} +9.07941 q^{47} +(7.21692 + 7.17371i) q^{48} +5.08876 q^{49} +(0.276941 + 1.38683i) q^{50} +2.54394i q^{51} +(-2.37579 - 5.71139i) q^{52} -9.42277i q^{53} +(-1.66391 + 0.332271i) q^{54} +0.0495512 q^{55} +(5.48195 + 8.16445i) q^{56} +9.33829 q^{57} +(9.78395 - 1.95379i) q^{58} +8.60624i q^{59} +(-4.69766 + 1.95410i) q^{60} +10.1877i q^{61} +(0.830003 + 4.15639i) q^{62} -12.0705 q^{63} +(-3.02814 + 7.40475i) q^{64} +3.09291 q^{65} +(0.0349098 + 0.174817i) q^{66} -6.07949i q^{67} +(-1.84661 + 0.768141i) q^{68} +5.41845i q^{69} +(-4.82186 + 0.962892i) q^{70} -2.40305 q^{71} +(-5.47366 - 8.15210i) q^{72} +1.98250 q^{73} +(15.0395 - 3.00329i) q^{74} -2.54394i q^{75} +(2.81969 + 6.77853i) q^{76} +0.172284i q^{77} +(2.17902 + 10.9118i) q^{78} -7.95155 q^{79} +(-2.83691 - 2.81992i) q^{80} -7.36268 q^{81} +(-2.51606 - 12.5996i) q^{82} -16.7931i q^{83} +(-6.79420 - 16.3332i) q^{84} -1.00000i q^{85} +(6.72652 - 1.34324i) q^{86} -17.9472 q^{87} +(-0.116356 + 0.0781265i) q^{88} -0.333460 q^{89} +(4.81457 - 0.961435i) q^{90} +10.7537i q^{91} +(-3.93317 + 1.63610i) q^{92} -7.62429i q^{93} +(-2.51446 - 12.5916i) q^{94} -3.67080 q^{95} +(7.95007 - 11.9954i) q^{96} -9.92795 q^{97} +(-1.40929 - 7.05726i) q^{98} -0.172023i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 30 q - 2 q^{4} - 8 q^{6} + 12 q^{7} + 6 q^{8} - 36 q^{9} + 2 q^{10} + 8 q^{12} - 10 q^{14} - 14 q^{15} - 2 q^{16} + 30 q^{17} + 6 q^{18} + 4 q^{20} - 6 q^{22} + 12 q^{23} - 46 q^{24} - 30 q^{25} + 4 q^{26}+ \cdots - 16 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/680\mathbb{Z}\right)^\times\).

\(n\) \(137\) \(241\) \(341\) \(511\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.276941 1.38683i −0.195827 0.980639i
\(3\) 2.54394i 1.46874i 0.678747 + 0.734372i \(0.262523\pi\)
−0.678747 + 0.734372i \(0.737477\pi\)
\(4\) −1.84661 + 0.768141i −0.923304 + 0.384070i
\(5\) 1.00000i 0.447214i
\(6\) 3.52802 0.704520i 1.44031 0.287619i
\(7\) 3.47689 1.31414 0.657070 0.753829i \(-0.271795\pi\)
0.657070 + 0.753829i \(0.271795\pi\)
\(8\) 1.57668 + 2.34821i 0.557442 + 0.830216i
\(9\) −3.47163 −1.15721
\(10\) −1.38683 + 0.276941i −0.438555 + 0.0875763i
\(11\) 0.0495512i 0.0149402i 0.999972 + 0.00747012i \(0.00237784\pi\)
−0.999972 + 0.00747012i \(0.997622\pi\)
\(12\) −1.95410 4.69766i −0.564101 1.35610i
\(13\) 3.09291i 0.857819i 0.903347 + 0.428910i \(0.141102\pi\)
−0.903347 + 0.428910i \(0.858898\pi\)
\(14\) −0.962892 4.82186i −0.257344 1.28870i
\(15\) 2.54394 0.656842
\(16\) 2.81992 2.83691i 0.704980 0.709227i
\(17\) 1.00000 0.242536
\(18\) 0.961435 + 4.81457i 0.226612 + 1.13480i
\(19\) 3.67080i 0.842139i −0.907028 0.421070i \(-0.861655\pi\)
0.907028 0.421070i \(-0.138345\pi\)
\(20\) 0.768141 + 1.84661i 0.171761 + 0.412914i
\(21\) 8.84500i 1.93014i
\(22\) 0.0687192 0.0137227i 0.0146510 0.00292570i
\(23\) 2.12995 0.444124 0.222062 0.975033i \(-0.428721\pi\)
0.222062 + 0.975033i \(0.428721\pi\)
\(24\) −5.97369 + 4.01099i −1.21938 + 0.818739i
\(25\) −1.00000 −0.200000
\(26\) 4.28935 0.856553i 0.841211 0.167984i
\(27\) 1.19979i 0.230900i
\(28\) −6.42045 + 2.67074i −1.21335 + 0.504722i
\(29\) 7.05489i 1.31006i 0.755603 + 0.655030i \(0.227344\pi\)
−0.755603 + 0.655030i \(0.772656\pi\)
\(30\) −0.704520 3.52802i −0.128627 0.644125i
\(31\) −2.99704 −0.538285 −0.269142 0.963100i \(-0.586740\pi\)
−0.269142 + 0.963100i \(0.586740\pi\)
\(32\) −4.71527 3.12510i −0.833549 0.552445i
\(33\) −0.126055 −0.0219434
\(34\) −0.276941 1.38683i −0.0474949 0.237840i
\(35\) 3.47689i 0.587702i
\(36\) 6.41073 2.66670i 1.06846 0.444450i
\(37\) 10.8445i 1.78283i 0.453190 + 0.891414i \(0.350286\pi\)
−0.453190 + 0.891414i \(0.649714\pi\)
\(38\) −5.09078 + 1.01659i −0.825834 + 0.164913i
\(39\) −7.86818 −1.25992
\(40\) 2.34821 1.57668i 0.371284 0.249295i
\(41\) 9.08518 1.41887 0.709433 0.704772i \(-0.248951\pi\)
0.709433 + 0.704772i \(0.248951\pi\)
\(42\) 12.2665 2.44954i 1.89277 0.377972i
\(43\) 4.85028i 0.739660i 0.929099 + 0.369830i \(0.120584\pi\)
−0.929099 + 0.369830i \(0.879416\pi\)
\(44\) −0.0380623 0.0915016i −0.00573810 0.0137944i
\(45\) 3.47163i 0.517520i
\(46\) −0.589869 2.95388i −0.0869714 0.435525i
\(47\) 9.07941 1.32437 0.662184 0.749341i \(-0.269630\pi\)
0.662184 + 0.749341i \(0.269630\pi\)
\(48\) 7.21692 + 7.17371i 1.04167 + 1.03544i
\(49\) 5.08876 0.726966
\(50\) 0.276941 + 1.38683i 0.0391653 + 0.196128i
\(51\) 2.54394i 0.356223i
\(52\) −2.37579 5.71139i −0.329463 0.792028i
\(53\) 9.42277i 1.29432i −0.762355 0.647159i \(-0.775957\pi\)
0.762355 0.647159i \(-0.224043\pi\)
\(54\) −1.66391 + 0.332271i −0.226430 + 0.0452164i
\(55\) 0.0495512 0.00668148
\(56\) 5.48195 + 8.16445i 0.732557 + 1.09102i
\(57\) 9.33829 1.23689
\(58\) 9.78395 1.95379i 1.28470 0.256545i
\(59\) 8.60624i 1.12044i 0.828345 + 0.560219i \(0.189283\pi\)
−0.828345 + 0.560219i \(0.810717\pi\)
\(60\) −4.69766 + 1.95410i −0.606465 + 0.252274i
\(61\) 10.1877i 1.30440i 0.758047 + 0.652200i \(0.226154\pi\)
−0.758047 + 0.652200i \(0.773846\pi\)
\(62\) 0.830003 + 4.15639i 0.105410 + 0.527863i
\(63\) −12.0705 −1.52074
\(64\) −3.02814 + 7.40475i −0.378518 + 0.925594i
\(65\) 3.09291 0.383628
\(66\) 0.0349098 + 0.174817i 0.00429710 + 0.0215185i
\(67\) 6.07949i 0.742727i −0.928487 0.371364i \(-0.878890\pi\)
0.928487 0.371364i \(-0.121110\pi\)
\(68\) −1.84661 + 0.768141i −0.223934 + 0.0931507i
\(69\) 5.41845i 0.652305i
\(70\) −4.82186 + 0.962892i −0.576323 + 0.115088i
\(71\) −2.40305 −0.285189 −0.142595 0.989781i \(-0.545545\pi\)
−0.142595 + 0.989781i \(0.545545\pi\)
\(72\) −5.47366 8.15210i −0.645077 0.960734i
\(73\) 1.98250 0.232035 0.116017 0.993247i \(-0.462987\pi\)
0.116017 + 0.993247i \(0.462987\pi\)
\(74\) 15.0395 3.00329i 1.74831 0.349125i
\(75\) 2.54394i 0.293749i
\(76\) 2.81969 + 6.77853i 0.323441 + 0.777550i
\(77\) 0.172284i 0.0196336i
\(78\) 2.17902 + 10.9118i 0.246725 + 1.23552i
\(79\) −7.95155 −0.894619 −0.447310 0.894379i \(-0.647618\pi\)
−0.447310 + 0.894379i \(0.647618\pi\)
\(80\) −2.83691 2.81992i −0.317176 0.315277i
\(81\) −7.36268 −0.818076
\(82\) −2.51606 12.5996i −0.277852 1.39140i
\(83\) 16.7931i 1.84328i −0.388046 0.921640i \(-0.626850\pi\)
0.388046 0.921640i \(-0.373150\pi\)
\(84\) −6.79420 16.3332i −0.741308 1.78210i
\(85\) 1.00000i 0.108465i
\(86\) 6.72652 1.34324i 0.725339 0.144845i
\(87\) −17.9472 −1.92414
\(88\) −0.116356 + 0.0781265i −0.0124036 + 0.00832831i
\(89\) −0.333460 −0.0353467 −0.0176733 0.999844i \(-0.505626\pi\)
−0.0176733 + 0.999844i \(0.505626\pi\)
\(90\) 4.81457 0.961435i 0.507500 0.101344i
\(91\) 10.7537i 1.12730i
\(92\) −3.93317 + 1.63610i −0.410062 + 0.170575i
\(93\) 7.62429i 0.790602i
\(94\) −2.51446 12.5916i −0.259347 1.29873i
\(95\) −3.67080 −0.376616
\(96\) 7.95007 11.9954i 0.811400 1.22427i
\(97\) −9.92795 −1.00803 −0.504015 0.863695i \(-0.668144\pi\)
−0.504015 + 0.863695i \(0.668144\pi\)
\(98\) −1.40929 7.05726i −0.142359 0.712891i
\(99\) 0.172023i 0.0172890i
\(100\) 1.84661 0.768141i 0.184661 0.0768141i
\(101\) 14.7864i 1.47130i −0.677361 0.735651i \(-0.736876\pi\)
0.677361 0.735651i \(-0.263124\pi\)
\(102\) 3.52802 0.704520i 0.349326 0.0697579i
\(103\) −1.03107 −0.101594 −0.0507970 0.998709i \(-0.516176\pi\)
−0.0507970 + 0.998709i \(0.516176\pi\)
\(104\) −7.26279 + 4.87654i −0.712175 + 0.478184i
\(105\) 8.84500 0.863183
\(106\) −13.0678 + 2.60955i −1.26926 + 0.253462i
\(107\) 16.1005i 1.55650i −0.627956 0.778249i \(-0.716108\pi\)
0.627956 0.778249i \(-0.283892\pi\)
\(108\) 0.921610 + 2.21555i 0.0886819 + 0.213191i
\(109\) 0.149174i 0.0142883i 0.999974 + 0.00714413i \(0.00227407\pi\)
−0.999974 + 0.00714413i \(0.997726\pi\)
\(110\) −0.0137227 0.0687192i −0.00130841 0.00655212i
\(111\) −27.5878 −2.61852
\(112\) 9.80455 9.86362i 0.926443 0.932024i
\(113\) 5.25333 0.494192 0.247096 0.968991i \(-0.420524\pi\)
0.247096 + 0.968991i \(0.420524\pi\)
\(114\) −2.58615 12.9506i −0.242215 1.21294i
\(115\) 2.12995i 0.198618i
\(116\) −5.41915 13.0276i −0.503155 1.20958i
\(117\) 10.7374i 0.992676i
\(118\) 11.9354 2.38342i 1.09874 0.219411i
\(119\) 3.47689 0.318726
\(120\) 4.01099 + 5.97369i 0.366151 + 0.545321i
\(121\) 10.9975 0.999777
\(122\) 14.1286 2.82138i 1.27914 0.255436i
\(123\) 23.1121i 2.08395i
\(124\) 5.53436 2.30215i 0.497000 0.206739i
\(125\) 1.00000i 0.0894427i
\(126\) 3.34280 + 16.7397i 0.297801 + 1.49129i
\(127\) −5.46250 −0.484718 −0.242359 0.970187i \(-0.577921\pi\)
−0.242359 + 0.970187i \(0.577921\pi\)
\(128\) 11.1078 + 2.14885i 0.981797 + 0.189933i
\(129\) −12.3388 −1.08637
\(130\) −0.856553 4.28935i −0.0751247 0.376201i
\(131\) 3.58169i 0.312934i −0.987683 0.156467i \(-0.949990\pi\)
0.987683 0.156467i \(-0.0500105\pi\)
\(132\) 0.232775 0.0968281i 0.0202604 0.00842781i
\(133\) 12.7630i 1.10669i
\(134\) −8.43123 + 1.68366i −0.728347 + 0.145446i
\(135\) −1.19979 −0.103262
\(136\) 1.57668 + 2.34821i 0.135199 + 0.201357i
\(137\) −12.4319 −1.06213 −0.531066 0.847330i \(-0.678208\pi\)
−0.531066 + 0.847330i \(0.678208\pi\)
\(138\) 7.51448 1.50059i 0.639675 0.127739i
\(139\) 6.99701i 0.593479i −0.954958 0.296740i \(-0.904101\pi\)
0.954958 0.296740i \(-0.0958993\pi\)
\(140\) 2.67074 + 6.42045i 0.225719 + 0.542627i
\(141\) 23.0975i 1.94516i
\(142\) 0.665502 + 3.33263i 0.0558477 + 0.279668i
\(143\) −0.153257 −0.0128160
\(144\) −9.78971 + 9.84869i −0.815809 + 0.820724i
\(145\) 7.05489 0.585877
\(146\) −0.549036 2.74940i −0.0454386 0.227542i
\(147\) 12.9455i 1.06773i
\(148\) −8.33011 20.0256i −0.684731 1.64609i
\(149\) 4.44164i 0.363873i 0.983310 + 0.181937i \(0.0582366\pi\)
−0.983310 + 0.181937i \(0.941763\pi\)
\(150\) −3.52802 + 0.704520i −0.288061 + 0.0575238i
\(151\) 0.686658 0.0558794 0.0279397 0.999610i \(-0.491105\pi\)
0.0279397 + 0.999610i \(0.491105\pi\)
\(152\) 8.61979 5.78769i 0.699157 0.469443i
\(153\) −3.47163 −0.280664
\(154\) 0.238929 0.0477125i 0.0192535 0.00384478i
\(155\) 2.99704i 0.240728i
\(156\) 14.5294 6.04387i 1.16329 0.483897i
\(157\) 2.08771i 0.166617i 0.996524 + 0.0833086i \(0.0265487\pi\)
−0.996524 + 0.0833086i \(0.973451\pi\)
\(158\) 2.20211 + 11.0275i 0.175190 + 0.877298i
\(159\) 23.9710 1.90102
\(160\) −3.12510 + 4.71527i −0.247061 + 0.372775i
\(161\) 7.40559 0.583642
\(162\) 2.03903 + 10.2108i 0.160201 + 0.802237i
\(163\) 2.98957i 0.234161i −0.993122 0.117081i \(-0.962646\pi\)
0.993122 0.117081i \(-0.0373536\pi\)
\(164\) −16.7768 + 6.97870i −1.31005 + 0.544945i
\(165\) 0.126055i 0.00981339i
\(166\) −23.2892 + 4.65069i −1.80759 + 0.360963i
\(167\) 17.4326 1.34897 0.674486 0.738287i \(-0.264365\pi\)
0.674486 + 0.738287i \(0.264365\pi\)
\(168\) −20.7699 + 13.9458i −1.60243 + 1.07594i
\(169\) 3.43390 0.264146
\(170\) −1.38683 + 0.276941i −0.106365 + 0.0212404i
\(171\) 12.7436i 0.974531i
\(172\) −3.72569 8.95656i −0.284082 0.682931i
\(173\) 24.9345i 1.89574i −0.318663 0.947868i \(-0.603234\pi\)
0.318663 0.947868i \(-0.396766\pi\)
\(174\) 4.97031 + 24.8898i 0.376799 + 1.88689i
\(175\) −3.47689 −0.262828
\(176\) 0.140572 + 0.139730i 0.0105960 + 0.0105326i
\(177\) −21.8938 −1.64564
\(178\) 0.0923486 + 0.462453i 0.00692182 + 0.0346623i
\(179\) 1.09781i 0.0820539i 0.999158 + 0.0410269i \(0.0130629\pi\)
−0.999158 + 0.0410269i \(0.986937\pi\)
\(180\) −2.66670 6.41073i −0.198764 0.477828i
\(181\) 11.0311i 0.819936i 0.912100 + 0.409968i \(0.134460\pi\)
−0.912100 + 0.409968i \(0.865540\pi\)
\(182\) 14.9136 2.97814i 1.10547 0.220754i
\(183\) −25.9168 −1.91583
\(184\) 3.35825 + 5.00155i 0.247573 + 0.368719i
\(185\) 10.8445 0.797305
\(186\) −10.5736 + 2.11148i −0.775295 + 0.154821i
\(187\) 0.0495512i 0.00362354i
\(188\) −16.7661 + 6.97426i −1.22279 + 0.508651i
\(189\) 4.17155i 0.303435i
\(190\) 1.01659 + 5.09078i 0.0737514 + 0.369324i
\(191\) −9.04760 −0.654662 −0.327331 0.944910i \(-0.606149\pi\)
−0.327331 + 0.944910i \(0.606149\pi\)
\(192\) −18.8372 7.70341i −1.35946 0.555946i
\(193\) −0.0620567 −0.00446694 −0.00223347 0.999998i \(-0.500711\pi\)
−0.00223347 + 0.999998i \(0.500711\pi\)
\(194\) 2.74945 + 13.7684i 0.197399 + 0.988514i
\(195\) 7.86818i 0.563452i
\(196\) −9.39695 + 3.90889i −0.671211 + 0.279206i
\(197\) 20.2289i 1.44125i −0.693324 0.720626i \(-0.743854\pi\)
0.693324 0.720626i \(-0.256146\pi\)
\(198\) −0.238567 + 0.0476402i −0.0169543 + 0.00338565i
\(199\) 21.4606 1.52130 0.760650 0.649163i \(-0.224881\pi\)
0.760650 + 0.649163i \(0.224881\pi\)
\(200\) −1.57668 2.34821i −0.111488 0.166043i
\(201\) 15.4658 1.09088
\(202\) −20.5063 + 4.09496i −1.44282 + 0.288120i
\(203\) 24.5291i 1.72160i
\(204\) −1.95410 4.69766i −0.136815 0.328902i
\(205\) 9.08518i 0.634537i
\(206\) 0.285544 + 1.42992i 0.0198948 + 0.0996271i
\(207\) −7.39438 −0.513945
\(208\) 8.77431 + 8.72176i 0.608389 + 0.604745i
\(209\) 0.181892 0.0125818
\(210\) −2.44954 12.2665i −0.169034 0.846471i
\(211\) 21.0339i 1.44804i −0.689781 0.724018i \(-0.742293\pi\)
0.689781 0.724018i \(-0.257707\pi\)
\(212\) 7.23801 + 17.4002i 0.497109 + 1.19505i
\(213\) 6.11321i 0.418870i
\(214\) −22.3287 + 4.45889i −1.52636 + 0.304804i
\(215\) 4.85028 0.330786
\(216\) 2.81736 1.89169i 0.191697 0.128713i
\(217\) −10.4204 −0.707382
\(218\) 0.206879 0.0413123i 0.0140116 0.00279802i
\(219\) 5.04337i 0.340799i
\(220\) −0.0915016 + 0.0380623i −0.00616904 + 0.00256616i
\(221\) 3.09291i 0.208052i
\(222\) 7.64018 + 38.2596i 0.512775 + 2.56782i
\(223\) −24.2053 −1.62091 −0.810455 0.585801i \(-0.800780\pi\)
−0.810455 + 0.585801i \(0.800780\pi\)
\(224\) −16.3945 10.8656i −1.09540 0.725991i
\(225\) 3.47163 0.231442
\(226\) −1.45486 7.28549i −0.0967760 0.484624i
\(227\) 4.24180i 0.281538i −0.990042 0.140769i \(-0.955042\pi\)
0.990042 0.140769i \(-0.0449576\pi\)
\(228\) −17.2442 + 7.17312i −1.14202 + 0.475051i
\(229\) 11.6096i 0.767185i 0.923502 + 0.383593i \(0.125313\pi\)
−0.923502 + 0.383593i \(0.874687\pi\)
\(230\) −2.95388 + 0.589869i −0.194773 + 0.0388948i
\(231\) −0.438280 −0.0288367
\(232\) −16.5663 + 11.1233i −1.08763 + 0.730282i
\(233\) 12.0080 0.786671 0.393336 0.919395i \(-0.371321\pi\)
0.393336 + 0.919395i \(0.371321\pi\)
\(234\) −14.8910 + 2.97363i −0.973457 + 0.194392i
\(235\) 9.07941i 0.592276i
\(236\) −6.61080 15.8923i −0.430327 1.03450i
\(237\) 20.2283i 1.31397i
\(238\) −0.962892 4.82186i −0.0624150 0.312555i
\(239\) 2.79213 0.180608 0.0903040 0.995914i \(-0.471216\pi\)
0.0903040 + 0.995914i \(0.471216\pi\)
\(240\) 7.17371 7.21692i 0.463061 0.465850i
\(241\) −28.3488 −1.82610 −0.913052 0.407844i \(-0.866281\pi\)
−0.913052 + 0.407844i \(0.866281\pi\)
\(242\) −3.04567 15.2518i −0.195783 0.980420i
\(243\) 22.3296i 1.43244i
\(244\) −7.82557 18.8127i −0.500981 1.20436i
\(245\) 5.08876i 0.325109i
\(246\) 32.0527 6.40069i 2.04360 0.408093i
\(247\) 11.3535 0.722403
\(248\) −4.72538 7.03767i −0.300062 0.446893i
\(249\) 42.7206 2.70731
\(250\) 1.38683 0.276941i 0.0877110 0.0175153i
\(251\) 12.7763i 0.806435i −0.915104 0.403217i \(-0.867892\pi\)
0.915104 0.403217i \(-0.132108\pi\)
\(252\) 22.2894 9.27182i 1.40410 0.584069i
\(253\) 0.105541i 0.00663533i
\(254\) 1.51279 + 7.57557i 0.0949208 + 0.475334i
\(255\) 2.54394 0.159308
\(256\) −0.0961003 15.9997i −0.00600627 0.999982i
\(257\) 23.1774 1.44577 0.722883 0.690971i \(-0.242817\pi\)
0.722883 + 0.690971i \(0.242817\pi\)
\(258\) 3.41712 + 17.1119i 0.212740 + 1.06534i
\(259\) 37.7052i 2.34289i
\(260\) −5.71139 + 2.37579i −0.354206 + 0.147340i
\(261\) 24.4920i 1.51601i
\(262\) −4.96721 + 0.991916i −0.306875 + 0.0612808i
\(263\) 18.3942 1.13424 0.567119 0.823636i \(-0.308058\pi\)
0.567119 + 0.823636i \(0.308058\pi\)
\(264\) −0.198749 0.296004i −0.0122322 0.0182178i
\(265\) −9.42277 −0.578836
\(266\) −17.7001 + 3.53458i −1.08526 + 0.216719i
\(267\) 0.848302i 0.0519152i
\(268\) 4.66990 + 11.2264i 0.285259 + 0.685763i
\(269\) 29.1389i 1.77663i 0.459234 + 0.888315i \(0.348124\pi\)
−0.459234 + 0.888315i \(0.651876\pi\)
\(270\) 0.332271 + 1.66391i 0.0202214 + 0.101262i
\(271\) −23.0152 −1.39808 −0.699038 0.715084i \(-0.746388\pi\)
−0.699038 + 0.715084i \(0.746388\pi\)
\(272\) 2.81992 2.83691i 0.170983 0.172013i
\(273\) −27.3568 −1.65571
\(274\) 3.44291 + 17.2410i 0.207994 + 1.04157i
\(275\) 0.0495512i 0.00298805i
\(276\) −4.16213 10.0058i −0.250531 0.602276i
\(277\) 3.36682i 0.202292i 0.994872 + 0.101146i \(0.0322510\pi\)
−0.994872 + 0.101146i \(0.967749\pi\)
\(278\) −9.70369 + 1.93776i −0.581988 + 0.116219i
\(279\) 10.4046 0.622908
\(280\) 8.16445 5.48195i 0.487919 0.327609i
\(281\) 15.3021 0.912848 0.456424 0.889762i \(-0.349130\pi\)
0.456424 + 0.889762i \(0.349130\pi\)
\(282\) 32.0323 6.39663i 1.90750 0.380914i
\(283\) 11.1133i 0.660617i −0.943873 0.330309i \(-0.892847\pi\)
0.943873 0.330309i \(-0.107153\pi\)
\(284\) 4.43749 1.84588i 0.263317 0.109533i
\(285\) 9.33829i 0.553153i
\(286\) 0.0424432 + 0.212542i 0.00250972 + 0.0125679i
\(287\) 31.5882 1.86459
\(288\) 16.3697 + 10.8492i 0.964591 + 0.639295i
\(289\) 1.00000 0.0588235
\(290\) −1.95379 9.78395i −0.114730 0.574533i
\(291\) 25.2561i 1.48054i
\(292\) −3.66091 + 1.52284i −0.214238 + 0.0891176i
\(293\) 18.3388i 1.07136i 0.844420 + 0.535682i \(0.179946\pi\)
−0.844420 + 0.535682i \(0.820054\pi\)
\(294\) 17.9532 3.58514i 1.04705 0.209089i
\(295\) 8.60624 0.501075
\(296\) −25.4652 + 17.0984i −1.48013 + 0.993822i
\(297\) 0.0594512 0.00344971
\(298\) 6.15981 1.23007i 0.356828 0.0712561i
\(299\) 6.58773i 0.380978i
\(300\) 1.95410 + 4.69766i 0.112820 + 0.271219i
\(301\) 16.8639i 0.972018i
\(302\) −0.190163 0.952279i −0.0109427 0.0547975i
\(303\) 37.6157 2.16097
\(304\) −10.4137 10.3514i −0.597268 0.593691i
\(305\) 10.1877 0.583345
\(306\) 0.961435 + 4.81457i 0.0549616 + 0.275230i
\(307\) 5.84542i 0.333616i 0.985989 + 0.166808i \(0.0533460\pi\)
−0.985989 + 0.166808i \(0.946654\pi\)
\(308\) −0.132338 0.318141i −0.00754068 0.0181278i
\(309\) 2.62297i 0.149216i
\(310\) 4.15639 0.830003i 0.236067 0.0471410i
\(311\) −22.2459 −1.26145 −0.630726 0.776006i \(-0.717243\pi\)
−0.630726 + 0.776006i \(0.717243\pi\)
\(312\) −12.4056 18.4761i −0.702330 1.04600i
\(313\) 5.55110 0.313767 0.156883 0.987617i \(-0.449855\pi\)
0.156883 + 0.987617i \(0.449855\pi\)
\(314\) 2.89530 0.578171i 0.163391 0.0326281i
\(315\) 12.0705i 0.680094i
\(316\) 14.6834 6.10791i 0.826005 0.343597i
\(317\) 28.0476i 1.57531i 0.616115 + 0.787656i \(0.288706\pi\)
−0.616115 + 0.787656i \(0.711294\pi\)
\(318\) −6.63853 33.2437i −0.372271 1.86421i
\(319\) −0.349578 −0.0195726
\(320\) 7.40475 + 3.02814i 0.413938 + 0.169278i
\(321\) 40.9588 2.28610
\(322\) −2.05091 10.2703i −0.114293 0.572342i
\(323\) 3.67080i 0.204249i
\(324\) 13.5960 5.65558i 0.755333 0.314199i
\(325\) 3.09291i 0.171564i
\(326\) −4.14603 + 0.827933i −0.229627 + 0.0458550i
\(327\) −0.379489 −0.0209858
\(328\) 14.3244 + 21.3339i 0.790935 + 1.17797i
\(329\) 31.5681 1.74041
\(330\) 0.174817 0.0349098i 0.00962338 0.00192172i
\(331\) 21.6959i 1.19251i −0.802794 0.596257i \(-0.796654\pi\)
0.802794 0.596257i \(-0.203346\pi\)
\(332\) 12.8994 + 31.0102i 0.707949 + 1.70191i
\(333\) 37.6481i 2.06310i
\(334\) −4.82779 24.1761i −0.264165 1.32285i
\(335\) −6.07949 −0.332158
\(336\) 25.0924 + 24.9422i 1.36891 + 1.36071i
\(337\) 21.9155 1.19381 0.596907 0.802310i \(-0.296396\pi\)
0.596907 + 0.802310i \(0.296396\pi\)
\(338\) −0.950987 4.76225i −0.0517269 0.259032i
\(339\) 13.3642i 0.725842i
\(340\) 0.768141 + 1.84661i 0.0416583 + 0.100146i
\(341\) 0.148507i 0.00804210i
\(342\) 17.6733 3.52923i 0.955663 0.190839i
\(343\) −6.64516 −0.358805
\(344\) −11.3894 + 7.64735i −0.614078 + 0.412317i
\(345\) 5.41845 0.291720
\(346\) −34.5800 + 6.90538i −1.85903 + 0.371236i
\(347\) 11.3501i 0.609305i −0.952464 0.304653i \(-0.901460\pi\)
0.952464 0.304653i \(-0.0985404\pi\)
\(348\) 33.1415 13.7860i 1.77657 0.739006i
\(349\) 9.14942i 0.489757i −0.969554 0.244879i \(-0.921252\pi\)
0.969554 0.244879i \(-0.0787481\pi\)
\(350\) 0.962892 + 4.82186i 0.0514688 + 0.257739i
\(351\) 3.71085 0.198071
\(352\) 0.154852 0.233647i 0.00825367 0.0124534i
\(353\) −31.9513 −1.70060 −0.850299 0.526300i \(-0.823579\pi\)
−0.850299 + 0.526300i \(0.823579\pi\)
\(354\) 6.06327 + 30.3630i 0.322259 + 1.61377i
\(355\) 2.40305i 0.127541i
\(356\) 0.615769 0.256144i 0.0326357 0.0135756i
\(357\) 8.84500i 0.468127i
\(358\) 1.52247 0.304027i 0.0804652 0.0160683i
\(359\) −14.1811 −0.748448 −0.374224 0.927338i \(-0.622091\pi\)
−0.374224 + 0.927338i \(0.622091\pi\)
\(360\) −8.15210 + 5.47366i −0.429653 + 0.288487i
\(361\) 5.52523 0.290802
\(362\) 15.2983 3.05496i 0.804061 0.160565i
\(363\) 27.9771i 1.46842i
\(364\) −8.26036 19.8579i −0.432961 1.04084i
\(365\) 1.98250i 0.103769i
\(366\) 7.17743 + 35.9423i 0.375170 + 1.87874i
\(367\) 20.4219 1.06601 0.533007 0.846111i \(-0.321062\pi\)
0.533007 + 0.846111i \(0.321062\pi\)
\(368\) 6.00628 6.04246i 0.313099 0.314985i
\(369\) −31.5404 −1.64193
\(370\) −3.00329 15.0395i −0.156133 0.781868i
\(371\) 32.7619i 1.70092i
\(372\) 5.85653 + 14.0791i 0.303647 + 0.729966i
\(373\) 4.62610i 0.239531i 0.992802 + 0.119765i \(0.0382142\pi\)
−0.992802 + 0.119765i \(0.961786\pi\)
\(374\) 0.0687192 0.0137227i 0.00355338 0.000709586i
\(375\) −2.54394 −0.131368
\(376\) 14.3154 + 21.3203i 0.738258 + 1.09951i
\(377\) −21.8202 −1.12380
\(378\) −5.78524 + 1.15527i −0.297560 + 0.0594207i
\(379\) 29.3258i 1.50637i −0.657811 0.753183i \(-0.728517\pi\)
0.657811 0.753183i \(-0.271483\pi\)
\(380\) 6.77853 2.81969i 0.347731 0.144647i
\(381\) 13.8963i 0.711927i
\(382\) 2.50565 + 12.5475i 0.128200 + 0.641986i
\(383\) −16.0020 −0.817665 −0.408832 0.912610i \(-0.634064\pi\)
−0.408832 + 0.912610i \(0.634064\pi\)
\(384\) −5.46654 + 28.2575i −0.278963 + 1.44201i
\(385\) 0.172284 0.00878041
\(386\) 0.0171860 + 0.0860623i 0.000874746 + 0.00438046i
\(387\) 16.8384i 0.855942i
\(388\) 18.3330 7.62606i 0.930719 0.387155i
\(389\) 4.89231i 0.248050i −0.992279 0.124025i \(-0.960420\pi\)
0.992279 0.124025i \(-0.0395803\pi\)
\(390\) 10.9118 2.17902i 0.552543 0.110339i
\(391\) 2.12995 0.107716
\(392\) 8.02337 + 11.9495i 0.405241 + 0.603539i
\(393\) 9.11161 0.459620
\(394\) −28.0541 + 5.60222i −1.41335 + 0.282236i
\(395\) 7.95155i 0.400086i
\(396\) 0.132138 + 0.317660i 0.00664019 + 0.0159630i
\(397\) 31.4976i 1.58082i −0.612579 0.790409i \(-0.709868\pi\)
0.612579 0.790409i \(-0.290132\pi\)
\(398\) −5.94330 29.7622i −0.297911 1.49184i
\(399\) 32.4682 1.62544
\(400\) −2.81992 + 2.83691i −0.140996 + 0.141845i
\(401\) −37.2953 −1.86244 −0.931219 0.364459i \(-0.881254\pi\)
−0.931219 + 0.364459i \(0.881254\pi\)
\(402\) −4.28312 21.4485i −0.213623 1.06976i
\(403\) 9.26958i 0.461751i
\(404\) 11.3580 + 27.3047i 0.565083 + 1.35846i
\(405\) 7.36268i 0.365855i
\(406\) 34.0177 6.79310i 1.68827 0.337136i
\(407\) −0.537359 −0.0266359
\(408\) −5.97369 + 4.01099i −0.295742 + 0.198573i
\(409\) −8.52412 −0.421490 −0.210745 0.977541i \(-0.567589\pi\)
−0.210745 + 0.977541i \(0.567589\pi\)
\(410\) −12.5996 + 2.51606i −0.622251 + 0.124259i
\(411\) 31.6261i 1.56000i
\(412\) 1.90398 0.792005i 0.0938022 0.0390193i
\(413\) 29.9229i 1.47241i
\(414\) 2.04780 + 10.2548i 0.100644 + 0.503994i
\(415\) −16.7931 −0.824340
\(416\) 9.66566 14.5839i 0.473898 0.715035i
\(417\) 17.8000 0.871669
\(418\) −0.0503734 0.252254i −0.00246384 0.0123382i
\(419\) 6.51140i 0.318103i −0.987270 0.159051i \(-0.949156\pi\)
0.987270 0.159051i \(-0.0508435\pi\)
\(420\) −16.3332 + 6.79420i −0.796981 + 0.331523i
\(421\) 13.1406i 0.640432i −0.947345 0.320216i \(-0.896245\pi\)
0.947345 0.320216i \(-0.103755\pi\)
\(422\) −29.1705 + 5.82515i −1.42000 + 0.283564i
\(423\) −31.5203 −1.53257
\(424\) 22.1266 14.8567i 1.07456 0.721506i
\(425\) −1.00000 −0.0485071
\(426\) −8.47800 + 1.69300i −0.410760 + 0.0820260i
\(427\) 35.4215i 1.71416i
\(428\) 12.3675 + 29.7314i 0.597804 + 1.43712i
\(429\) 0.389878i 0.0188235i
\(430\) −1.34324 6.72652i −0.0647767 0.324382i
\(431\) 18.3569 0.884222 0.442111 0.896960i \(-0.354230\pi\)
0.442111 + 0.896960i \(0.354230\pi\)
\(432\) −3.40370 3.38332i −0.163761 0.162780i
\(433\) −38.4016 −1.84546 −0.922732 0.385442i \(-0.874049\pi\)
−0.922732 + 0.385442i \(0.874049\pi\)
\(434\) 2.88583 + 14.4513i 0.138524 + 0.693686i
\(435\) 17.9472i 0.860503i
\(436\) −0.114587 0.275466i −0.00548770 0.0131924i
\(437\) 7.81860i 0.374014i
\(438\) 6.99431 1.39671i 0.334201 0.0667376i
\(439\) 5.90611 0.281883 0.140942 0.990018i \(-0.454987\pi\)
0.140942 + 0.990018i \(0.454987\pi\)
\(440\) 0.0781265 + 0.116356i 0.00372454 + 0.00554707i
\(441\) −17.6663 −0.841252
\(442\) 4.28935 0.856553i 0.204024 0.0407421i
\(443\) 0.324084i 0.0153977i 0.999970 + 0.00769884i \(0.00245064\pi\)
−0.999970 + 0.00769884i \(0.997549\pi\)
\(444\) 50.9438 21.1913i 2.41769 1.00569i
\(445\) 0.333460i 0.0158075i
\(446\) 6.70344 + 33.5687i 0.317417 + 1.58953i
\(447\) −11.2993 −0.534437
\(448\) −10.5285 + 25.7455i −0.497426 + 1.21636i
\(449\) 25.0272 1.18111 0.590553 0.806999i \(-0.298910\pi\)
0.590553 + 0.806999i \(0.298910\pi\)
\(450\) −0.961435 4.81457i −0.0453225 0.226961i
\(451\) 0.450182i 0.0211982i
\(452\) −9.70085 + 4.03530i −0.456289 + 0.189804i
\(453\) 1.74682i 0.0820726i
\(454\) −5.88267 + 1.17473i −0.276087 + 0.0551327i
\(455\) 10.7537 0.504142
\(456\) 14.7235 + 21.9282i 0.689492 + 1.02688i
\(457\) −5.47744 −0.256224 −0.128112 0.991760i \(-0.540892\pi\)
−0.128112 + 0.991760i \(0.540892\pi\)
\(458\) 16.1006 3.21518i 0.752331 0.150235i
\(459\) 1.19979i 0.0560015i
\(460\) 1.63610 + 3.93317i 0.0762834 + 0.183385i
\(461\) 18.3173i 0.853123i 0.904459 + 0.426562i \(0.140275\pi\)
−0.904459 + 0.426562i \(0.859725\pi\)
\(462\) 0.121378 + 0.607821i 0.00564700 + 0.0282784i
\(463\) 33.5012 1.55693 0.778467 0.627685i \(-0.215997\pi\)
0.778467 + 0.627685i \(0.215997\pi\)
\(464\) 20.0141 + 19.8942i 0.929131 + 0.923567i
\(465\) −7.62429 −0.353568
\(466\) −3.32551 16.6531i −0.154051 0.771440i
\(467\) 38.7933i 1.79514i −0.440873 0.897570i \(-0.645331\pi\)
0.440873 0.897570i \(-0.354669\pi\)
\(468\) 8.24786 + 19.8278i 0.381257 + 0.916542i
\(469\) 21.1377i 0.976048i
\(470\) −12.5916 + 2.51446i −0.580808 + 0.115983i
\(471\) −5.31100 −0.244718
\(472\) −20.2092 + 13.5693i −0.930205 + 0.624578i
\(473\) −0.240337 −0.0110507
\(474\) −28.0532 + 5.60203i −1.28853 + 0.257310i
\(475\) 3.67080i 0.168428i
\(476\) −6.42045 + 2.67074i −0.294281 + 0.122413i
\(477\) 32.7124i 1.49780i
\(478\) −0.773255 3.87222i −0.0353678 0.177111i
\(479\) −14.5481 −0.664719 −0.332360 0.943153i \(-0.607845\pi\)
−0.332360 + 0.943153i \(0.607845\pi\)
\(480\) −11.9954 7.95007i −0.547510 0.362869i
\(481\) −33.5411 −1.52934
\(482\) 7.85092 + 39.3150i 0.357600 + 1.79075i
\(483\) 18.8394i 0.857221i
\(484\) −20.3082 + 8.44766i −0.923098 + 0.383985i
\(485\) 9.92795i 0.450805i
\(486\) −30.9674 + 6.18397i −1.40471 + 0.280511i
\(487\) 23.0726 1.04552 0.522760 0.852480i \(-0.324902\pi\)
0.522760 + 0.852480i \(0.324902\pi\)
\(488\) −23.9228 + 16.0627i −1.08293 + 0.727126i
\(489\) 7.60528 0.343923
\(490\) −7.05726 + 1.40929i −0.318815 + 0.0636650i
\(491\) 5.11448i 0.230813i 0.993318 + 0.115407i \(0.0368171\pi\)
−0.993318 + 0.115407i \(0.963183\pi\)
\(492\) −17.7534 42.6791i −0.800384 1.92412i
\(493\) 7.05489i 0.317736i
\(494\) −3.14423 15.7453i −0.141466 0.708416i
\(495\) −0.172023 −0.00773187
\(496\) −8.45142 + 8.50233i −0.379480 + 0.381766i
\(497\) −8.35514 −0.374779
\(498\) −11.8311 59.2463i −0.530163 2.65489i
\(499\) 36.2614i 1.62328i −0.584155 0.811642i \(-0.698574\pi\)
0.584155 0.811642i \(-0.301426\pi\)
\(500\) −0.768141 1.84661i −0.0343523 0.0825828i
\(501\) 44.3474i 1.98130i
\(502\) −17.7186 + 3.53828i −0.790821 + 0.157921i
\(503\) −20.7090 −0.923367 −0.461684 0.887045i \(-0.652754\pi\)
−0.461684 + 0.887045i \(0.652754\pi\)
\(504\) −19.0313 28.3439i −0.847722 1.26254i
\(505\) −14.7864 −0.657986
\(506\) 0.146368 0.0292287i 0.00650686 0.00129937i
\(507\) 8.73564i 0.387963i
\(508\) 10.0871 4.19597i 0.447542 0.186166i
\(509\) 10.6238i 0.470894i 0.971887 + 0.235447i \(0.0756554\pi\)
−0.971887 + 0.235447i \(0.924345\pi\)
\(510\) −0.704520 3.52802i −0.0311967 0.156223i
\(511\) 6.89295 0.304926
\(512\) −22.1623 + 4.56425i −0.979445 + 0.201713i
\(513\) −4.40420 −0.194450
\(514\) −6.41876 32.1431i −0.283119 1.41777i
\(515\) 1.03107i 0.0454343i
\(516\) 22.7849 9.47794i 1.00305 0.417243i
\(517\) 0.449896i 0.0197864i
\(518\) 52.2908 10.4421i 2.29752 0.458800i
\(519\) 63.4319 2.78435
\(520\) 4.87654 + 7.26279i 0.213850 + 0.318494i
\(521\) −31.0802 −1.36165 −0.680825 0.732446i \(-0.738379\pi\)
−0.680825 + 0.732446i \(0.738379\pi\)
\(522\) −33.9662 + 6.78282i −1.48666 + 0.296876i
\(523\) 4.19120i 0.183269i 0.995793 + 0.0916343i \(0.0292091\pi\)
−0.995793 + 0.0916343i \(0.970791\pi\)
\(524\) 2.75124 + 6.61398i 0.120189 + 0.288933i
\(525\) 8.84500i 0.386027i
\(526\) −5.09411 25.5097i −0.222114 1.11228i
\(527\) −2.99704 −0.130553
\(528\) −0.355466 + 0.357607i −0.0154697 + 0.0155629i
\(529\) −18.4633 −0.802754
\(530\) 2.60955 + 13.0678i 0.113352 + 0.567629i
\(531\) 29.8777i 1.29658i
\(532\) 9.80375 + 23.5682i 0.425046 + 1.02181i
\(533\) 28.0997i 1.21713i
\(534\) −1.17645 + 0.234929i −0.0509101 + 0.0101664i
\(535\) −16.1005 −0.696087
\(536\) 14.2759 9.58542i 0.616624 0.414027i
\(537\) −2.79275 −0.120516
\(538\) 40.4108 8.06975i 1.74223 0.347912i
\(539\) 0.252154i 0.0108611i
\(540\) 2.21555 0.921610i 0.0953419 0.0396598i
\(541\) 27.2765i 1.17271i 0.810055 + 0.586353i \(0.199437\pi\)
−0.810055 + 0.586353i \(0.800563\pi\)
\(542\) 6.37386 + 31.9183i 0.273781 + 1.37101i
\(543\) −28.0625 −1.20428
\(544\) −4.71527 3.12510i −0.202165 0.133988i
\(545\) 0.149174 0.00638991
\(546\) 7.57621 + 37.9393i 0.324232 + 1.62365i
\(547\) 16.4229i 0.702194i 0.936339 + 0.351097i \(0.114191\pi\)
−0.936339 + 0.351097i \(0.885809\pi\)
\(548\) 22.9569 9.54948i 0.980671 0.407933i
\(549\) 35.3678i 1.50946i
\(550\) −0.0687192 + 0.0137227i −0.00293020 + 0.000585140i
\(551\) 25.8971 1.10325
\(552\) −12.7236 + 8.54318i −0.541554 + 0.363622i
\(553\) −27.6467 −1.17566
\(554\) 4.66921 0.932408i 0.198376 0.0396142i
\(555\) 27.5878i 1.17104i
\(556\) 5.37469 + 12.9207i 0.227938 + 0.547961i
\(557\) 9.18864i 0.389335i 0.980869 + 0.194668i \(0.0623628\pi\)
−0.980869 + 0.194668i \(0.937637\pi\)
\(558\) −2.88146 14.4295i −0.121982 0.610848i
\(559\) −15.0015 −0.634495
\(560\) −9.86362 9.80455i −0.416814 0.414318i
\(561\) −0.126055 −0.00532206
\(562\) −4.23778 21.2215i −0.178760 0.895174i
\(563\) 45.4813i 1.91681i 0.285416 + 0.958404i \(0.407868\pi\)
−0.285416 + 0.958404i \(0.592132\pi\)
\(564\) −17.7421 42.6520i −0.747077 1.79597i
\(565\) 5.25333i 0.221009i
\(566\) −15.4123 + 3.07772i −0.647827 + 0.129366i
\(567\) −25.5992 −1.07507
\(568\) −3.78885 5.64285i −0.158976 0.236769i
\(569\) −19.7054 −0.826094 −0.413047 0.910710i \(-0.635535\pi\)
−0.413047 + 0.910710i \(0.635535\pi\)
\(570\) −12.9506 + 2.58615i −0.542443 + 0.108322i
\(571\) 6.15498i 0.257578i 0.991672 + 0.128789i \(0.0411090\pi\)
−0.991672 + 0.128789i \(0.958891\pi\)
\(572\) 0.283006 0.117723i 0.0118331 0.00492226i
\(573\) 23.0166i 0.961531i
\(574\) −8.74805 43.8075i −0.365137 1.82849i
\(575\) −2.12995 −0.0888249
\(576\) 10.5126 25.7065i 0.438024 1.07111i
\(577\) −36.2206 −1.50788 −0.753941 0.656942i \(-0.771850\pi\)
−0.753941 + 0.656942i \(0.771850\pi\)
\(578\) −0.276941 1.38683i −0.0115192 0.0576846i
\(579\) 0.157869i 0.00656079i
\(580\) −13.0276 + 5.41915i −0.540942 + 0.225018i
\(581\) 58.3877i 2.42233i
\(582\) −35.0260 + 6.99444i −1.45187 + 0.289929i
\(583\) 0.466910 0.0193374
\(584\) 3.12578 + 4.65533i 0.129346 + 0.192639i
\(585\) −10.7374 −0.443938
\(586\) 25.4328 5.07876i 1.05062 0.209802i
\(587\) 14.8348i 0.612299i −0.951983 0.306150i \(-0.900959\pi\)
0.951983 0.306150i \(-0.0990408\pi\)
\(588\) −9.94397 23.9053i −0.410082 0.985837i
\(589\) 11.0015i 0.453310i
\(590\) −2.38342 11.9354i −0.0981238 0.491373i
\(591\) 51.4612 2.11683
\(592\) 30.7649 + 30.5807i 1.26443 + 1.25686i
\(593\) 10.2911 0.422604 0.211302 0.977421i \(-0.432230\pi\)
0.211302 + 0.977421i \(0.432230\pi\)
\(594\) −0.0164644 0.0824488i −0.000675544 0.00338292i
\(595\) 3.47689i 0.142539i
\(596\) −3.41180 8.20196i −0.139753 0.335966i
\(597\) 54.5944i 2.23440i
\(598\) 9.13608 1.82441i 0.373602 0.0746057i
\(599\) −31.9007 −1.30343 −0.651714 0.758465i \(-0.725950\pi\)
−0.651714 + 0.758465i \(0.725950\pi\)
\(600\) 5.97369 4.01099i 0.243875 0.163748i
\(601\) −24.9428 −1.01744 −0.508719 0.860933i \(-0.669881\pi\)
−0.508719 + 0.860933i \(0.669881\pi\)
\(602\) 23.3874 4.67029i 0.953198 0.190347i
\(603\) 21.1057i 0.859491i
\(604\) −1.26799 + 0.527450i −0.0515937 + 0.0214616i
\(605\) 10.9975i 0.447114i
\(606\) −10.4173 52.1667i −0.423175 2.11913i
\(607\) 34.7077 1.40874 0.704371 0.709833i \(-0.251229\pi\)
0.704371 + 0.709833i \(0.251229\pi\)
\(608\) −11.4716 + 17.3088i −0.465236 + 0.701964i
\(609\) −62.4005 −2.52860
\(610\) −2.82138 14.1286i −0.114234 0.572051i
\(611\) 28.0818i 1.13607i
\(612\) 6.41073 2.66670i 0.259139 0.107795i
\(613\) 20.6531i 0.834169i 0.908868 + 0.417084i \(0.136948\pi\)
−0.908868 + 0.417084i \(0.863052\pi\)
\(614\) 8.10662 1.61884i 0.327157 0.0653309i
\(615\) 23.1121 0.931972
\(616\) −0.404558 + 0.271637i −0.0163001 + 0.0109446i
\(617\) 43.7406 1.76093 0.880466 0.474110i \(-0.157230\pi\)
0.880466 + 0.474110i \(0.157230\pi\)
\(618\) −3.63762 + 0.726408i −0.146327 + 0.0292204i
\(619\) 11.8613i 0.476746i 0.971174 + 0.238373i \(0.0766140\pi\)
−0.971174 + 0.238373i \(0.923386\pi\)
\(620\) −2.30215 5.53436i −0.0924565 0.222265i
\(621\) 2.55549i 0.102548i
\(622\) 6.16080 + 30.8514i 0.247026 + 1.23703i
\(623\) −1.15940 −0.0464505
\(624\) −22.1876 + 22.3213i −0.888216 + 0.893567i
\(625\) 1.00000 0.0400000
\(626\) −1.53733 7.69845i −0.0614439 0.307692i
\(627\) 0.462723i 0.0184794i
\(628\) −1.60365 3.85518i −0.0639927 0.153838i
\(629\) 10.8445i 0.432399i
\(630\) 16.7397 3.34280i 0.666926 0.133180i
\(631\) 41.3244 1.64510 0.822550 0.568693i \(-0.192551\pi\)
0.822550 + 0.568693i \(0.192551\pi\)
\(632\) −12.5371 18.6719i −0.498698 0.742727i
\(633\) 53.5091 2.12679
\(634\) 38.8974 7.76753i 1.54481 0.308488i
\(635\) 5.46250i 0.216773i
\(636\) −44.2650 + 18.4131i −1.75522 + 0.730126i
\(637\) 15.7391i 0.623605i
\(638\) 0.0968125 + 0.484807i 0.00383284 + 0.0191937i
\(639\) 8.34249 0.330024
\(640\) 2.14885 11.1078i 0.0849407 0.439073i
\(641\) 29.9682 1.18367 0.591836 0.806059i \(-0.298403\pi\)
0.591836 + 0.806059i \(0.298403\pi\)
\(642\) −11.3432 56.8030i −0.447679 2.24183i
\(643\) 46.1363i 1.81944i 0.415225 + 0.909719i \(0.363703\pi\)
−0.415225 + 0.909719i \(0.636297\pi\)
\(644\) −13.6752 + 5.68853i −0.538879 + 0.224160i
\(645\) 12.3388i 0.485840i
\(646\) −5.09078 + 1.01659i −0.200294 + 0.0399973i
\(647\) 3.56455 0.140137 0.0700685 0.997542i \(-0.477678\pi\)
0.0700685 + 0.997542i \(0.477678\pi\)
\(648\) −11.6086 17.2891i −0.456030 0.679180i
\(649\) −0.426449 −0.0167396
\(650\) −4.28935 + 0.856553i −0.168242 + 0.0335968i
\(651\) 26.5088i 1.03896i
\(652\) 2.29641 + 5.52056i 0.0899343 + 0.216202i
\(653\) 34.1304i 1.33563i −0.744328 0.667814i \(-0.767230\pi\)
0.744328 0.667814i \(-0.232770\pi\)
\(654\) 0.105096 + 0.526288i 0.00410958 + 0.0205795i
\(655\) −3.58169 −0.139948
\(656\) 25.6195 25.7738i 1.00027 1.00630i
\(657\) −6.88252 −0.268513
\(658\) −8.74249 43.7797i −0.340818 1.70671i
\(659\) 2.35872i 0.0918829i −0.998944 0.0459414i \(-0.985371\pi\)
0.998944 0.0459414i \(-0.0146288\pi\)
\(660\) −0.0968281 0.232775i −0.00376903 0.00906074i
\(661\) 24.8235i 0.965523i 0.875752 + 0.482762i \(0.160366\pi\)
−0.875752 + 0.482762i \(0.839634\pi\)
\(662\) −30.0886 + 6.00848i −1.16943 + 0.233526i
\(663\) −7.86818 −0.305575
\(664\) 39.4336 26.4774i 1.53032 1.02752i
\(665\) −12.7630 −0.494927
\(666\) −52.2116 + 10.4263i −2.02316 + 0.404011i
\(667\) 15.0265i 0.581830i
\(668\) −32.1911 + 13.3907i −1.24551 + 0.518100i
\(669\) 61.5769i 2.38070i
\(670\) 1.68366 + 8.43123i 0.0650453 + 0.325727i
\(671\) −0.504812 −0.0194880
\(672\) 27.6415 41.7065i 1.06629 1.60886i
\(673\) 16.5114 0.636469 0.318235 0.948012i \(-0.396910\pi\)
0.318235 + 0.948012i \(0.396910\pi\)
\(674\) −6.06930 30.3931i −0.233781 1.17070i
\(675\) 1.19979i 0.0461800i
\(676\) −6.34107 + 2.63772i −0.243887 + 0.101451i
\(677\) 13.3983i 0.514940i 0.966286 + 0.257470i \(0.0828889\pi\)
−0.966286 + 0.257470i \(0.917111\pi\)
\(678\) 18.5339 3.70108i 0.711788 0.142139i
\(679\) −34.5184 −1.32469
\(680\) 2.34821 1.57668i 0.0900496 0.0604630i
\(681\) 10.7909 0.413508
\(682\) −0.205954 + 0.0411276i −0.00788640 + 0.00157486i
\(683\) 11.7014i 0.447741i 0.974619 + 0.223871i \(0.0718693\pi\)
−0.974619 + 0.223871i \(0.928131\pi\)
\(684\) −9.78891 23.5325i −0.374288 0.899788i
\(685\) 12.4319i 0.475000i
\(686\) 1.84032 + 9.21572i 0.0702636 + 0.351858i
\(687\) −29.5342 −1.12680
\(688\) 13.7598 + 13.6774i 0.524587 + 0.521446i
\(689\) 29.1438 1.11029
\(690\) −1.50059 7.51448i −0.0571265 0.286072i
\(691\) 18.1348i 0.689881i −0.938624 0.344941i \(-0.887899\pi\)
0.938624 0.344941i \(-0.112101\pi\)
\(692\) 19.1532 + 46.0443i 0.728096 + 1.75034i
\(693\) 0.598106i 0.0227202i
\(694\) −15.7407 + 3.14330i −0.597508 + 0.119318i
\(695\) −6.99701 −0.265412
\(696\) −28.2971 42.1438i −1.07260 1.59746i
\(697\) 9.08518 0.344126
\(698\) −12.6887 + 2.53385i −0.480275 + 0.0959075i
\(699\) 30.5477i 1.15542i
\(700\) 6.42045 2.67074i 0.242670 0.100944i
\(701\) 49.0724i 1.85344i −0.375752 0.926720i \(-0.622615\pi\)
0.375752 0.926720i \(-0.377385\pi\)
\(702\) −1.02769 5.14633i −0.0387875 0.194236i
\(703\) 39.8080 1.50139
\(704\) −0.366914 0.150048i −0.0138286 0.00565515i
\(705\) 23.0975 0.869901
\(706\) 8.84862 + 44.3111i 0.333022 + 1.66767i
\(707\) 51.4107i 1.93350i
\(708\) 40.4292 16.8175i 1.51942 0.632040i
\(709\) 18.2457i 0.685232i 0.939475 + 0.342616i \(0.111313\pi\)
−0.939475 + 0.342616i \(0.888687\pi\)
\(710\) 3.33263 0.665502i 0.125071 0.0249758i
\(711\) 27.6048 1.03526
\(712\) −0.525760 0.783032i −0.0197037 0.0293454i
\(713\) −6.38354 −0.239065
\(714\) 12.2665 2.44954i 0.459063 0.0916717i
\(715\) 0.153257i 0.00573150i
\(716\) −0.843269 2.02722i −0.0315145 0.0757607i
\(717\) 7.10301i 0.265267i
\(718\) 3.92731 + 19.6668i 0.146566 + 0.733957i
\(719\) −13.0206 −0.485587 −0.242794 0.970078i \(-0.578064\pi\)
−0.242794 + 0.970078i \(0.578064\pi\)
\(720\) 9.84869 + 9.78971i 0.367039 + 0.364841i
\(721\) −3.58491 −0.133509
\(722\) −1.53016 7.66257i −0.0569467 0.285171i
\(723\) 72.1175i 2.68208i
\(724\) −8.47344 20.3701i −0.314913 0.757050i
\(725\) 7.05489i 0.262012i
\(726\) 38.7995 7.74799i 1.43999 0.287555i
\(727\) −29.7634 −1.10387 −0.551933 0.833889i \(-0.686109\pi\)
−0.551933 + 0.833889i \(0.686109\pi\)
\(728\) −25.2519 + 16.9552i −0.935899 + 0.628401i
\(729\) 34.7171 1.28582
\(730\) −2.74940 + 0.549036i −0.101760 + 0.0203207i
\(731\) 4.85028i 0.179394i
\(732\) 47.8583 19.9078i 1.76889 0.735813i
\(733\) 51.5972i 1.90578i −0.303309 0.952892i \(-0.598091\pi\)
0.303309 0.952892i \(-0.401909\pi\)
\(734\) −5.65565 28.3217i −0.208754 1.04537i
\(735\) 12.9455 0.477502
\(736\) −10.0433 6.65630i −0.370200 0.245354i
\(737\) 0.301246 0.0110965
\(738\) 8.73481 + 43.7412i 0.321533 + 1.61014i
\(739\) 11.7777i 0.433248i 0.976255 + 0.216624i \(0.0695046\pi\)
−0.976255 + 0.216624i \(0.930495\pi\)
\(740\) −20.0256 + 8.33011i −0.736154 + 0.306221i
\(741\) 28.8825i 1.06103i
\(742\) −45.4353 + 9.07311i −1.66798 + 0.333085i
\(743\) 2.78439 0.102149 0.0510746 0.998695i \(-0.483735\pi\)
0.0510746 + 0.998695i \(0.483735\pi\)
\(744\) 17.9034 12.0211i 0.656371 0.440715i
\(745\) 4.44164 0.162729
\(746\) 6.41563 1.28116i 0.234893 0.0469065i
\(747\) 58.2993i 2.13306i
\(748\) −0.0380623 0.0915016i −0.00139169 0.00334563i
\(749\) 55.9798i 2.04546i
\(750\) 0.704520 + 3.52802i 0.0257254 + 0.128825i
\(751\) 2.03962 0.0744269 0.0372135 0.999307i \(-0.488152\pi\)
0.0372135 + 0.999307i \(0.488152\pi\)
\(752\) 25.6032 25.7575i 0.933653 0.939278i
\(753\) 32.5022 1.18445
\(754\) 6.04289 + 30.2609i 0.220069 + 1.10204i
\(755\) 0.686658i 0.0249900i
\(756\) 3.20433 + 7.70321i 0.116541 + 0.280163i
\(757\) 16.9050i 0.614423i −0.951641 0.307211i \(-0.900604\pi\)
0.951641 0.307211i \(-0.0993959\pi\)
\(758\) −40.6700 + 8.12151i −1.47720 + 0.294987i
\(759\) −0.268491 −0.00974560
\(760\) −5.78769 8.61979i −0.209941 0.312673i
\(761\) −10.9356 −0.396415 −0.198207 0.980160i \(-0.563512\pi\)
−0.198207 + 0.980160i \(0.563512\pi\)
\(762\) −19.2718 + 3.84844i −0.698143 + 0.139414i
\(763\) 0.518661i 0.0187768i
\(764\) 16.7074 6.94983i 0.604452 0.251436i
\(765\) 3.47163i 0.125517i
\(766\) 4.43161 + 22.1921i 0.160121 + 0.801833i
\(767\) −26.6183 −0.961132
\(768\) 40.7023 0.244473i 1.46872 0.00882168i
\(769\) −25.1767 −0.907896 −0.453948 0.891028i \(-0.649985\pi\)
−0.453948 + 0.891028i \(0.649985\pi\)
\(770\) −0.0477125 0.238929i −0.00171944 0.00861041i
\(771\) 58.9619i 2.12346i
\(772\) 0.114594 0.0476683i 0.00412434 0.00171562i
\(773\) 0.737635i 0.0265309i 0.999912 + 0.0132654i \(0.00422264\pi\)
−0.999912 + 0.0132654i \(0.995777\pi\)
\(774\) −23.3520 + 4.66323i −0.839369 + 0.167616i
\(775\) 2.99704 0.107657
\(776\) −15.6532 23.3129i −0.561918 0.836883i
\(777\) −95.9197 −3.44110
\(778\) −6.78481 + 1.35488i −0.243247 + 0.0485748i
\(779\) 33.3499i 1.19488i
\(780\) −6.04387 14.5294i −0.216405 0.520237i
\(781\) 0.119074i 0.00426080i
\(782\) −0.589869 2.95388i −0.0210937 0.105630i
\(783\) 8.46441 0.302493
\(784\) 14.3499 14.4364i 0.512497 0.515584i
\(785\) 2.08771 0.0745135
\(786\) −2.52338 12.6363i −0.0900058 0.450721i
\(787\) 4.23088i 0.150815i −0.997153 0.0754073i \(-0.975974\pi\)
0.997153 0.0754073i \(-0.0240257\pi\)
\(788\) 15.5387 + 37.3549i 0.553542 + 1.33071i
\(789\) 46.7938i 1.66590i
\(790\) 11.0275 2.20211i 0.392340 0.0783475i
\(791\) 18.2653 0.649438
\(792\) 0.403946 0.271226i 0.0143536 0.00963760i
\(793\) −31.5096 −1.11894
\(794\) −43.6819 + 8.72296i −1.55021 + 0.309566i
\(795\) 23.9710i 0.850162i
\(796\) −39.6292 + 16.4847i −1.40462 + 0.584286i
\(797\) 23.9029i 0.846685i 0.905970 + 0.423343i \(0.139143\pi\)
−0.905970 + 0.423343i \(0.860857\pi\)
\(798\) −8.99177 45.0280i −0.318305 1.59397i
\(799\) 9.07941 0.321206
\(800\) 4.71527 + 3.12510i 0.166710 + 0.110489i
\(801\) 1.15765 0.0409035
\(802\) 10.3286 + 51.7223i 0.364715 + 1.82638i
\(803\) 0.0982355i 0.00346665i
\(804\) −28.5593 + 11.8799i −1.00721 + 0.418973i
\(805\) 7.40559i 0.261013i
\(806\) −12.8554 + 2.56712i −0.452811 + 0.0904231i
\(807\) −74.1276 −2.60942
\(808\) 34.7215 23.3135i 1.22150 0.820165i
\(809\) 37.3225 1.31219 0.656094 0.754679i \(-0.272207\pi\)
0.656094 + 0.754679i \(0.272207\pi\)
\(810\) 10.2108 2.03903i 0.358771 0.0716441i
\(811\) 0.102705i 0.00360647i 0.999998 + 0.00180323i \(0.000573987\pi\)
−0.999998 + 0.00180323i \(0.999426\pi\)
\(812\) −18.8418 45.2956i −0.661217 1.58956i
\(813\) 58.5494i 2.05342i
\(814\) 0.148816 + 0.745226i 0.00521601 + 0.0261202i
\(815\) −2.98957 −0.104720
\(816\) 7.21692 + 7.17371i 0.252643 + 0.251130i
\(817\) 17.8044 0.622897
\(818\) 2.36067 + 11.8215i 0.0825390 + 0.413330i
\(819\) 37.3329i 1.30452i
\(820\) 6.97870 + 16.7768i 0.243707 + 0.585870i
\(821\) 10.3664i 0.361789i 0.983502 + 0.180895i \(0.0578993\pi\)
−0.983502 + 0.180895i \(0.942101\pi\)
\(822\) −43.8601 + 8.75855i −1.52980 + 0.305490i
\(823\) 39.1878 1.36600 0.683001 0.730417i \(-0.260674\pi\)
0.683001 + 0.730417i \(0.260674\pi\)
\(824\) −1.62567 2.42116i −0.0566328 0.0843450i
\(825\) 0.126055 0.00438868
\(826\) 41.4981 8.28688i 1.44390 0.288337i
\(827\) 34.6513i 1.20494i −0.798140 0.602472i \(-0.794182\pi\)
0.798140 0.602472i \(-0.205818\pi\)
\(828\) 13.6545 5.67992i 0.474527 0.197391i
\(829\) 24.2955i 0.843819i 0.906638 + 0.421909i \(0.138640\pi\)
−0.906638 + 0.421909i \(0.861360\pi\)
\(830\) 4.65069 + 23.2892i 0.161428 + 0.808379i
\(831\) −8.56498 −0.297116
\(832\) −22.9022 9.36577i −0.793992 0.324700i
\(833\) 5.08876 0.176315
\(834\) −4.92954 24.6856i −0.170696 0.854792i
\(835\) 17.4326i 0.603279i
\(836\) −0.335884 + 0.139719i −0.0116168 + 0.00483228i
\(837\) 3.59583i 0.124290i
\(838\) −9.03022 + 1.80327i −0.311944 + 0.0622930i
\(839\) 27.7302 0.957351 0.478676 0.877992i \(-0.341117\pi\)
0.478676 + 0.877992i \(0.341117\pi\)
\(840\) 13.9458 + 20.7699i 0.481174 + 0.716629i
\(841\) −20.7715 −0.716259
\(842\) −18.2238 + 3.63916i −0.628032 + 0.125414i
\(843\) 38.9277i 1.34074i
\(844\) 16.1570 + 38.8414i 0.556147 + 1.33698i
\(845\) 3.43390i 0.118130i
\(846\) 8.72926 + 43.7134i 0.300118 + 1.50290i
\(847\) 38.2373 1.31385
\(848\) −26.7315 26.5715i −0.917965 0.912468i
\(849\) 28.2716 0.970278
\(850\) 0.276941 + 1.38683i 0.00949899 + 0.0475680i
\(851\) 23.0982i 0.791797i
\(852\) 4.69581 + 11.2887i 0.160876 + 0.386745i
\(853\) 16.5528i 0.566757i 0.959008 + 0.283378i \(0.0914552\pi\)
−0.959008 + 0.283378i \(0.908545\pi\)
\(854\) 49.1236 9.80964i 1.68098 0.335679i
\(855\) 12.7436 0.435824
\(856\) 37.8074 25.3854i 1.29223 0.867656i
\(857\) −19.8119 −0.676763 −0.338381 0.941009i \(-0.609879\pi\)
−0.338381 + 0.941009i \(0.609879\pi\)
\(858\) −0.540695 + 0.107973i −0.0184590 + 0.00368614i
\(859\) 55.9853i 1.91019i 0.296293 + 0.955097i \(0.404249\pi\)
−0.296293 + 0.955097i \(0.595751\pi\)
\(860\) −8.95656 + 3.72569i −0.305416 + 0.127045i
\(861\) 80.3584i 2.73861i
\(862\) −5.08378 25.4580i −0.173154 0.867102i
\(863\) 6.92444 0.235711 0.117855 0.993031i \(-0.462398\pi\)
0.117855 + 0.993031i \(0.462398\pi\)
\(864\) −3.74947 + 5.65734i −0.127560 + 0.192467i
\(865\) −24.9345 −0.847799
\(866\) 10.6350 + 53.2566i 0.361391 + 1.80973i
\(867\) 2.54394i 0.0863967i
\(868\) 19.2424 8.00432i 0.653128 0.271684i
\(869\) 0.394009i 0.0133658i
\(870\) 24.8898 4.97031i 0.843843 0.168509i
\(871\) 18.8033 0.637126
\(872\) −0.350291 + 0.235200i −0.0118624 + 0.00796488i
\(873\) 34.4661 1.16650
\(874\) −10.8431 + 2.16529i −0.366773 + 0.0732420i
\(875\) 3.47689i 0.117540i
\(876\) −3.87402 9.31313i −0.130891 0.314661i
\(877\) 16.7774i 0.566532i −0.959041 0.283266i \(-0.908582\pi\)
0.959041 0.283266i \(-0.0914180\pi\)
\(878\) −1.63564 8.19079i −0.0552003 0.276426i
\(879\) −46.6528 −1.57356
\(880\) 0.139730 0.140572i 0.00471031 0.00473869i
\(881\) −14.6295 −0.492882 −0.246441 0.969158i \(-0.579261\pi\)
−0.246441 + 0.969158i \(0.579261\pi\)
\(882\) 4.89251 + 24.5002i 0.164740 + 0.824964i
\(883\) 43.2649i 1.45598i 0.685588 + 0.727989i \(0.259545\pi\)
−0.685588 + 0.727989i \(0.740455\pi\)
\(884\) −2.37579 5.71139i −0.0799065 0.192095i
\(885\) 21.8938i 0.735950i
\(886\) 0.449450 0.0897520i 0.0150996 0.00301528i
\(887\) −25.3231 −0.850265 −0.425133 0.905131i \(-0.639773\pi\)
−0.425133 + 0.905131i \(0.639773\pi\)
\(888\) −43.4972 64.7818i −1.45967 2.17394i
\(889\) −18.9925 −0.636988
\(890\) 0.462453 0.0923486i 0.0155015 0.00309553i
\(891\) 0.364830i 0.0122223i
\(892\) 44.6978 18.5931i 1.49659 0.622543i
\(893\) 33.3287i 1.11530i
\(894\) 3.12922 + 15.6702i 0.104657 + 0.524089i
\(895\) 1.09781 0.0366956
\(896\) 38.6205 + 7.47131i 1.29022 + 0.249599i
\(897\) −16.7588 −0.559560
\(898\) −6.93105 34.7085i −0.231292 1.15824i
\(899\) 21.1438i 0.705185i
\(900\) −6.41073 + 2.66670i −0.213691 + 0.0888899i
\(901\) 9.42277i 0.313918i
\(902\) 0.624326 0.124674i 0.0207878 0.00415118i
\(903\) −42.9007 −1.42765
\(904\) 8.28284 + 12.3359i 0.275483 + 0.410286i
\(905\) 11.0311 0.366687
\(906\) 2.42254 0.483764i 0.0804835 0.0160720i
\(907\) 11.0579i 0.367171i −0.983004 0.183585i \(-0.941230\pi\)
0.983004 0.183585i \(-0.0587704\pi\)
\(908\) 3.25830 + 7.83295i 0.108131 + 0.259946i
\(909\) 51.3329i 1.70260i
\(910\) −2.97814 14.9136i −0.0987244 0.494381i
\(911\) 2.88016 0.0954239 0.0477119 0.998861i \(-0.484807\pi\)
0.0477119 + 0.998861i \(0.484807\pi\)
\(912\) 26.3332 26.4919i 0.871981 0.877234i
\(913\) 0.832117 0.0275391
\(914\) 1.51693 + 7.59629i 0.0501755 + 0.251263i
\(915\) 25.9168i 0.856785i
\(916\) −8.91782 21.4384i −0.294653 0.708345i
\(917\) 12.4532i 0.411239i
\(918\) −1.66391 + 0.332271i −0.0549173 + 0.0109666i
\(919\) 20.4953 0.676077 0.338038 0.941132i \(-0.390237\pi\)
0.338038 + 0.941132i \(0.390237\pi\)
\(920\) 5.00155 3.35825i 0.164896 0.110718i
\(921\) −14.8704 −0.489996
\(922\) 25.4031 5.07281i 0.836605 0.167064i
\(923\) 7.43242i 0.244641i
\(924\) 0.809332 0.336661i 0.0266251 0.0110753i
\(925\) 10.8445i 0.356565i
\(926\) −9.27786 46.4606i −0.304889 1.52679i
\(927\) 3.57948 0.117566
\(928\) 22.0473 33.2657i 0.723736 1.09200i
\(929\) −37.8844 −1.24295 −0.621473 0.783436i \(-0.713465\pi\)
−0.621473 + 0.783436i \(0.713465\pi\)
\(930\) 2.11148 + 10.5736i 0.0692381 + 0.346723i
\(931\) 18.6798i 0.612207i
\(932\) −22.1741 + 9.22384i −0.726337 + 0.302137i
\(933\) 56.5923i 1.85275i
\(934\) −53.7998 + 10.7434i −1.76038 + 0.351536i
\(935\) 0.0495512 0.00162050
\(936\) 25.2137 16.9295i 0.824136 0.553359i
\(937\) 52.0078 1.69902 0.849511 0.527571i \(-0.176897\pi\)
0.849511 + 0.527571i \(0.176897\pi\)
\(938\) −29.3144 + 5.85389i −0.957151 + 0.191136i
\(939\) 14.1217i 0.460843i
\(940\) 6.97426 + 16.7661i 0.227475 + 0.546850i
\(941\) 36.8805i 1.20227i 0.799148 + 0.601135i \(0.205284\pi\)
−0.799148 + 0.601135i \(0.794716\pi\)
\(942\) 1.47083 + 7.36547i 0.0479223 + 0.239980i
\(943\) 19.3509 0.630153
\(944\) 24.4151 + 24.2689i 0.794644 + 0.789886i
\(945\) −4.17155 −0.135700
\(946\) 0.0665591 + 0.333307i 0.00216402 + 0.0108367i
\(947\) 24.3236i 0.790411i −0.918593 0.395205i \(-0.870673\pi\)
0.918593 0.395205i \(-0.129327\pi\)
\(948\) 15.5381 + 37.3537i 0.504656 + 1.21319i
\(949\) 6.13171i 0.199044i
\(950\) 5.09078 1.01659i 0.165167 0.0329827i
\(951\) −71.3515 −2.31373
\(952\) 5.48195 + 8.16445i 0.177671 + 0.264611i
\(953\) −48.7836 −1.58026 −0.790128 0.612942i \(-0.789986\pi\)
−0.790128 + 0.612942i \(0.789986\pi\)
\(954\) 45.3666 9.05938i 1.46880 0.293308i
\(955\) 9.04760i 0.292774i
\(956\) −5.15597 + 2.14475i −0.166756 + 0.0693661i
\(957\) 0.889306i 0.0287472i
\(958\) 4.02896 + 20.1758i 0.130170 + 0.651849i
\(959\) −43.2245 −1.39579
\(960\) −7.70341 + 18.8372i −0.248626 + 0.607969i
\(961\) −22.0177 −0.710250
\(962\) 9.28890 + 46.5159i 0.299486 + 1.49973i
\(963\) 55.8951i 1.80119i
\(964\) 52.3490 21.7758i 1.68605 0.701352i
\(965\) 0.0620567i 0.00199768i
\(966\) 26.1270 5.21739i 0.840624 0.167867i
\(967\) −21.4544 −0.689925 −0.344963 0.938616i \(-0.612108\pi\)
−0.344963 + 0.938616i \(0.612108\pi\)
\(968\) 17.3396 + 25.8245i 0.557317 + 0.830031i
\(969\) 9.33829 0.299989
\(970\) 13.7684 2.74945i 0.442077 0.0882796i
\(971\) 44.6617i 1.43326i 0.697453 + 0.716631i \(0.254317\pi\)
−0.697453 + 0.716631i \(0.745683\pi\)
\(972\) 17.1523 + 41.2340i 0.550159 + 1.32258i
\(973\) 24.3278i 0.779915i
\(974\) −6.38975 31.9979i −0.204741 1.02528i
\(975\) 7.86818 0.251983
\(976\) 28.9015 + 28.7285i 0.925115 + 0.919575i
\(977\) 43.8003 1.40129 0.700647 0.713508i \(-0.252895\pi\)
0.700647 + 0.713508i \(0.252895\pi\)
\(978\) −2.10621 10.5472i −0.0673492 0.337264i
\(979\) 0.0165233i 0.000528088i
\(980\) 3.90889 + 9.39695i 0.124865 + 0.300175i
\(981\) 0.517876i 0.0165345i
\(982\) 7.09293 1.41641i 0.226345 0.0451994i
\(983\) −30.8726 −0.984683 −0.492342 0.870402i \(-0.663859\pi\)
−0.492342 + 0.870402i \(0.663859\pi\)
\(984\) −54.2721 + 36.4405i −1.73013 + 1.16168i
\(985\) −20.2289 −0.644548
\(986\) 9.78395 1.95379i 0.311585 0.0622212i
\(987\) 80.3074i 2.55621i
\(988\) −20.9654 + 8.72105i −0.666998 + 0.277454i
\(989\) 10.3308i 0.328501i
\(990\) 0.0476402 + 0.238567i 0.00151411 + 0.00758217i
\(991\) −14.5878 −0.463397 −0.231698 0.972788i \(-0.574428\pi\)
−0.231698 + 0.972788i \(0.574428\pi\)
\(992\) 14.1319 + 9.36606i 0.448687 + 0.297373i
\(993\) 55.1930 1.75150
\(994\) 2.31388 + 11.5872i 0.0733917 + 0.367523i
\(995\) 21.4606i 0.680346i
\(996\) −78.8881 + 32.8154i −2.49967 + 1.03980i
\(997\) 7.64012i 0.241965i −0.992655 0.120983i \(-0.961395\pi\)
0.992655 0.120983i \(-0.0386045\pi\)
\(998\) −50.2885 + 10.0423i −1.59186 + 0.317882i
\(999\) 13.0112 0.411655
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 680.2.f.e.341.11 30
4.3 odd 2 2720.2.f.e.1361.4 30
8.3 odd 2 2720.2.f.e.1361.27 30
8.5 even 2 inner 680.2.f.e.341.12 yes 30
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
680.2.f.e.341.11 30 1.1 even 1 trivial
680.2.f.e.341.12 yes 30 8.5 even 2 inner
2720.2.f.e.1361.4 30 4.3 odd 2
2720.2.f.e.1361.27 30 8.3 odd 2