Properties

Label 680.2.bo.a.161.8
Level $680$
Weight $2$
Character 680.161
Analytic conductor $5.430$
Analytic rank $0$
Dimension $32$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [680,2,Mod(121,680)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(680, base_ring=CyclotomicField(8)) chi = DirichletCharacter(H, H._module([0, 0, 0, 7])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("680.121"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 680 = 2^{3} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 680.bo (of order \(8\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.42982733745\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(8\) over \(\Q(\zeta_{8})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 161.8
Character \(\chi\) \(=\) 680.161
Dual form 680.2.bo.a.321.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.01006 - 2.43851i) q^{3} +(-0.923880 - 0.382683i) q^{5} +(1.54095 - 0.638280i) q^{7} +(-2.80479 - 2.80479i) q^{9} +(0.182074 + 0.439567i) q^{11} -3.35467i q^{13} +(-1.86636 + 1.86636i) q^{15} +(1.41138 - 3.87402i) q^{17} +(-2.12053 + 2.12053i) q^{19} -4.40232i q^{21} +(-1.73771 - 4.19521i) q^{23} +(0.707107 + 0.707107i) q^{25} +(-2.35700 + 0.976300i) q^{27} +(-2.49368 - 1.03292i) q^{29} +(-2.29919 + 5.55072i) q^{31} +1.25580 q^{33} -1.66791 q^{35} +(-1.54978 + 3.74150i) q^{37} +(-8.18040 - 3.38843i) q^{39} +(10.8493 - 4.49395i) q^{41} +(-2.89197 - 2.89197i) q^{43} +(1.51794 + 3.66463i) q^{45} +3.77940i q^{47} +(-2.98264 + 2.98264i) q^{49} +(-8.02126 - 7.35467i) q^{51} +(1.24438 - 1.24438i) q^{53} -0.475783i q^{55} +(3.02906 + 7.31280i) q^{57} +(2.74570 + 2.74570i) q^{59} +(-2.91336 + 1.20675i) q^{61} +(-6.11227 - 2.53179i) q^{63} +(-1.28378 + 3.09931i) q^{65} -2.24565 q^{67} -11.9853 q^{69} +(-1.34638 + 3.25044i) q^{71} +(12.5824 + 5.21180i) q^{73} +(2.43851 - 1.01006i) q^{75} +(0.561134 + 0.561134i) q^{77} +(1.81391 + 4.37916i) q^{79} -5.16602i q^{81} +(11.1510 - 11.1510i) q^{83} +(-2.78647 + 3.03901i) q^{85} +(-5.03757 + 5.03757i) q^{87} -11.4569i q^{89} +(-2.14122 - 5.16936i) q^{91} +(11.2132 + 11.2132i) q^{93} +(2.77060 - 1.14762i) q^{95} +(12.7036 + 5.26200i) q^{97} +(0.722211 - 1.74357i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 16 q^{9} + 8 q^{11} - 8 q^{17} + 8 q^{19} + 8 q^{23} - 24 q^{27} - 32 q^{29} + 32 q^{31} + 16 q^{33} + 16 q^{35} + 16 q^{37} - 24 q^{39} - 16 q^{41} - 8 q^{49} + 16 q^{51} + 16 q^{53} + 48 q^{57}+ \cdots + 48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/680\mathbb{Z}\right)^\times\).

\(n\) \(137\) \(241\) \(341\) \(511\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{8}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.01006 2.43851i 0.583161 1.40788i −0.306771 0.951783i \(-0.599249\pi\)
0.889932 0.456092i \(-0.150751\pi\)
\(4\) 0 0
\(5\) −0.923880 0.382683i −0.413171 0.171141i
\(6\) 0 0
\(7\) 1.54095 0.638280i 0.582423 0.241247i −0.0719644 0.997407i \(-0.522927\pi\)
0.654387 + 0.756160i \(0.272927\pi\)
\(8\) 0 0
\(9\) −2.80479 2.80479i −0.934930 0.934930i
\(10\) 0 0
\(11\) 0.182074 + 0.439567i 0.0548975 + 0.132534i 0.948949 0.315431i \(-0.102149\pi\)
−0.894051 + 0.447965i \(0.852149\pi\)
\(12\) 0 0
\(13\) 3.35467i 0.930418i −0.885201 0.465209i \(-0.845979\pi\)
0.885201 0.465209i \(-0.154021\pi\)
\(14\) 0 0
\(15\) −1.86636 + 1.86636i −0.481891 + 0.481891i
\(16\) 0 0
\(17\) 1.41138 3.87402i 0.342309 0.939587i
\(18\) 0 0
\(19\) −2.12053 + 2.12053i −0.486482 + 0.486482i −0.907194 0.420712i \(-0.861780\pi\)
0.420712 + 0.907194i \(0.361780\pi\)
\(20\) 0 0
\(21\) 4.40232i 0.960665i
\(22\) 0 0
\(23\) −1.73771 4.19521i −0.362338 0.874761i −0.994957 0.100298i \(-0.968020\pi\)
0.632619 0.774463i \(-0.281980\pi\)
\(24\) 0 0
\(25\) 0.707107 + 0.707107i 0.141421 + 0.141421i
\(26\) 0 0
\(27\) −2.35700 + 0.976300i −0.453604 + 0.187889i
\(28\) 0 0
\(29\) −2.49368 1.03292i −0.463066 0.191808i 0.138939 0.990301i \(-0.455631\pi\)
−0.602004 + 0.798493i \(0.705631\pi\)
\(30\) 0 0
\(31\) −2.29919 + 5.55072i −0.412946 + 0.996940i 0.571397 + 0.820674i \(0.306402\pi\)
−0.984343 + 0.176266i \(0.943598\pi\)
\(32\) 0 0
\(33\) 1.25580 0.218606
\(34\) 0 0
\(35\) −1.66791 −0.281928
\(36\) 0 0
\(37\) −1.54978 + 3.74150i −0.254782 + 0.615099i −0.998578 0.0533081i \(-0.983023\pi\)
0.743796 + 0.668407i \(0.233023\pi\)
\(38\) 0 0
\(39\) −8.18040 3.38843i −1.30991 0.542584i
\(40\) 0 0
\(41\) 10.8493 4.49395i 1.69438 0.701837i 0.694539 0.719455i \(-0.255608\pi\)
0.999845 + 0.0176186i \(0.00560848\pi\)
\(42\) 0 0
\(43\) −2.89197 2.89197i −0.441021 0.441021i 0.451334 0.892355i \(-0.350948\pi\)
−0.892355 + 0.451334i \(0.850948\pi\)
\(44\) 0 0
\(45\) 1.51794 + 3.66463i 0.226281 + 0.546291i
\(46\) 0 0
\(47\) 3.77940i 0.551282i 0.961261 + 0.275641i \(0.0888901\pi\)
−0.961261 + 0.275641i \(0.911110\pi\)
\(48\) 0 0
\(49\) −2.98264 + 2.98264i −0.426091 + 0.426091i
\(50\) 0 0
\(51\) −8.02126 7.35467i −1.12320 1.02986i
\(52\) 0 0
\(53\) 1.24438 1.24438i 0.170929 0.170929i −0.616459 0.787387i \(-0.711433\pi\)
0.787387 + 0.616459i \(0.211433\pi\)
\(54\) 0 0
\(55\) 0.475783i 0.0641546i
\(56\) 0 0
\(57\) 3.02906 + 7.31280i 0.401209 + 0.968604i
\(58\) 0 0
\(59\) 2.74570 + 2.74570i 0.357459 + 0.357459i 0.862876 0.505416i \(-0.168661\pi\)
−0.505416 + 0.862876i \(0.668661\pi\)
\(60\) 0 0
\(61\) −2.91336 + 1.20675i −0.373017 + 0.154509i −0.561313 0.827603i \(-0.689704\pi\)
0.188296 + 0.982112i \(0.439704\pi\)
\(62\) 0 0
\(63\) −6.11227 2.53179i −0.770074 0.318975i
\(64\) 0 0
\(65\) −1.28378 + 3.09931i −0.159233 + 0.384422i
\(66\) 0 0
\(67\) −2.24565 −0.274350 −0.137175 0.990547i \(-0.543802\pi\)
−0.137175 + 0.990547i \(0.543802\pi\)
\(68\) 0 0
\(69\) −11.9853 −1.44286
\(70\) 0 0
\(71\) −1.34638 + 3.25044i −0.159786 + 0.385757i −0.983414 0.181373i \(-0.941946\pi\)
0.823629 + 0.567129i \(0.191946\pi\)
\(72\) 0 0
\(73\) 12.5824 + 5.21180i 1.47266 + 0.609995i 0.967464 0.253010i \(-0.0814206\pi\)
0.505195 + 0.863005i \(0.331421\pi\)
\(74\) 0 0
\(75\) 2.43851 1.01006i 0.281575 0.116632i
\(76\) 0 0
\(77\) 0.561134 + 0.561134i 0.0639471 + 0.0639471i
\(78\) 0 0
\(79\) 1.81391 + 4.37916i 0.204080 + 0.492694i 0.992471 0.122481i \(-0.0390852\pi\)
−0.788390 + 0.615175i \(0.789085\pi\)
\(80\) 0 0
\(81\) 5.16602i 0.574003i
\(82\) 0 0
\(83\) 11.1510 11.1510i 1.22398 1.22398i 0.257774 0.966205i \(-0.417011\pi\)
0.966205 0.257774i \(-0.0829889\pi\)
\(84\) 0 0
\(85\) −2.78647 + 3.03901i −0.302235 + 0.329627i
\(86\) 0 0
\(87\) −5.03757 + 5.03757i −0.540084 + 0.540084i
\(88\) 0 0
\(89\) 11.4569i 1.21443i −0.794538 0.607214i \(-0.792287\pi\)
0.794538 0.607214i \(-0.207713\pi\)
\(90\) 0 0
\(91\) −2.14122 5.16936i −0.224461 0.541896i
\(92\) 0 0
\(93\) 11.2132 + 11.2132i 1.16275 + 1.16275i
\(94\) 0 0
\(95\) 2.77060 1.14762i 0.284258 0.117743i
\(96\) 0 0
\(97\) 12.7036 + 5.26200i 1.28985 + 0.534275i 0.918942 0.394393i \(-0.129045\pi\)
0.370912 + 0.928668i \(0.379045\pi\)
\(98\) 0 0
\(99\) 0.722211 1.74357i 0.0725850 0.175236i
\(100\) 0 0
\(101\) −2.61803 −0.260503 −0.130252 0.991481i \(-0.541579\pi\)
−0.130252 + 0.991481i \(0.541579\pi\)
\(102\) 0 0
\(103\) 0.229263 0.0225900 0.0112950 0.999936i \(-0.496405\pi\)
0.0112950 + 0.999936i \(0.496405\pi\)
\(104\) 0 0
\(105\) −1.68469 + 4.06721i −0.164409 + 0.396919i
\(106\) 0 0
\(107\) −4.70864 1.95038i −0.455202 0.188551i 0.143288 0.989681i \(-0.454232\pi\)
−0.598490 + 0.801130i \(0.704232\pi\)
\(108\) 0 0
\(109\) 14.2079 5.88512i 1.36087 0.563692i 0.421575 0.906793i \(-0.361477\pi\)
0.939299 + 0.343101i \(0.111477\pi\)
\(110\) 0 0
\(111\) 7.55831 + 7.55831i 0.717403 + 0.717403i
\(112\) 0 0
\(113\) 1.25141 + 3.02117i 0.117723 + 0.284208i 0.971747 0.236026i \(-0.0758449\pi\)
−0.854024 + 0.520233i \(0.825845\pi\)
\(114\) 0 0
\(115\) 4.54086i 0.423437i
\(116\) 0 0
\(117\) −9.40914 + 9.40914i −0.869875 + 0.869875i
\(118\) 0 0
\(119\) −0.297854 6.87050i −0.0273042 0.629818i
\(120\) 0 0
\(121\) 7.61811 7.61811i 0.692555 0.692555i
\(122\) 0 0
\(123\) 30.9954i 2.79477i
\(124\) 0 0
\(125\) −0.382683 0.923880i −0.0342282 0.0826343i
\(126\) 0 0
\(127\) 14.9971 + 14.9971i 1.33078 + 1.33078i 0.904671 + 0.426110i \(0.140116\pi\)
0.426110 + 0.904671i \(0.359884\pi\)
\(128\) 0 0
\(129\) −9.97318 + 4.13102i −0.878089 + 0.363716i
\(130\) 0 0
\(131\) −7.51053 3.11096i −0.656198 0.271806i 0.0296397 0.999561i \(-0.490564\pi\)
−0.685838 + 0.727755i \(0.740564\pi\)
\(132\) 0 0
\(133\) −1.91412 + 4.62111i −0.165976 + 0.400701i
\(134\) 0 0
\(135\) 2.55120 0.219572
\(136\) 0 0
\(137\) 19.9300 1.70274 0.851368 0.524568i \(-0.175773\pi\)
0.851368 + 0.524568i \(0.175773\pi\)
\(138\) 0 0
\(139\) 0.0703616 0.169868i 0.00596799 0.0144080i −0.920867 0.389876i \(-0.872518\pi\)
0.926835 + 0.375468i \(0.122518\pi\)
\(140\) 0 0
\(141\) 9.21611 + 3.81744i 0.776137 + 0.321486i
\(142\) 0 0
\(143\) 1.47460 0.610800i 0.123312 0.0510776i
\(144\) 0 0
\(145\) 1.90858 + 1.90858i 0.158499 + 0.158499i
\(146\) 0 0
\(147\) 4.26054 + 10.2859i 0.351403 + 0.848363i
\(148\) 0 0
\(149\) 13.7969i 1.13029i −0.824992 0.565144i \(-0.808821\pi\)
0.824992 0.565144i \(-0.191179\pi\)
\(150\) 0 0
\(151\) −2.16549 + 2.16549i −0.176225 + 0.176225i −0.789708 0.613483i \(-0.789768\pi\)
0.613483 + 0.789708i \(0.289768\pi\)
\(152\) 0 0
\(153\) −14.8244 + 6.90719i −1.19848 + 0.558413i
\(154\) 0 0
\(155\) 4.24834 4.24834i 0.341235 0.341235i
\(156\) 0 0
\(157\) 3.46705i 0.276700i −0.990383 0.138350i \(-0.955820\pi\)
0.990383 0.138350i \(-0.0441800\pi\)
\(158\) 0 0
\(159\) −1.77753 4.29134i −0.140968 0.340326i
\(160\) 0 0
\(161\) −5.35544 5.35544i −0.422068 0.422068i
\(162\) 0 0
\(163\) −20.9015 + 8.65767i −1.63713 + 0.678121i −0.996003 0.0893152i \(-0.971532\pi\)
−0.641125 + 0.767436i \(0.721532\pi\)
\(164\) 0 0
\(165\) −1.16020 0.480572i −0.0903217 0.0374125i
\(166\) 0 0
\(167\) −2.95221 + 7.12726i −0.228449 + 0.551524i −0.995989 0.0894771i \(-0.971480\pi\)
0.767540 + 0.641001i \(0.221480\pi\)
\(168\) 0 0
\(169\) 1.74620 0.134323
\(170\) 0 0
\(171\) 11.8953 0.909654
\(172\) 0 0
\(173\) −3.43634 + 8.29606i −0.261260 + 0.630738i −0.999017 0.0443289i \(-0.985885\pi\)
0.737757 + 0.675066i \(0.235885\pi\)
\(174\) 0 0
\(175\) 1.54095 + 0.638280i 0.116485 + 0.0482495i
\(176\) 0 0
\(177\) 9.46874 3.92208i 0.711714 0.294802i
\(178\) 0 0
\(179\) 10.7789 + 10.7789i 0.805654 + 0.805654i 0.983973 0.178319i \(-0.0570660\pi\)
−0.178319 + 0.983973i \(0.557066\pi\)
\(180\) 0 0
\(181\) 2.70511 + 6.53072i 0.201069 + 0.485425i 0.991963 0.126529i \(-0.0403838\pi\)
−0.790893 + 0.611954i \(0.790384\pi\)
\(182\) 0 0
\(183\) 8.32316i 0.615266i
\(184\) 0 0
\(185\) 2.86362 2.86362i 0.210538 0.210538i
\(186\) 0 0
\(187\) 1.95986 0.0849650i 0.143319 0.00621326i
\(188\) 0 0
\(189\) −3.00885 + 3.00885i −0.218862 + 0.218862i
\(190\) 0 0
\(191\) 22.1540i 1.60301i 0.597989 + 0.801505i \(0.295967\pi\)
−0.597989 + 0.801505i \(0.704033\pi\)
\(192\) 0 0
\(193\) −1.12868 2.72488i −0.0812443 0.196141i 0.878038 0.478592i \(-0.158853\pi\)
−0.959282 + 0.282451i \(0.908853\pi\)
\(194\) 0 0
\(195\) 6.26101 + 6.26101i 0.448360 + 0.448360i
\(196\) 0 0
\(197\) −21.8410 + 9.04683i −1.55611 + 0.644560i −0.984407 0.175904i \(-0.943715\pi\)
−0.571698 + 0.820464i \(0.693715\pi\)
\(198\) 0 0
\(199\) −1.83100 0.758424i −0.129796 0.0537633i 0.316840 0.948479i \(-0.397378\pi\)
−0.446636 + 0.894716i \(0.647378\pi\)
\(200\) 0 0
\(201\) −2.26825 + 5.47605i −0.159990 + 0.386251i
\(202\) 0 0
\(203\) −4.50192 −0.315973
\(204\) 0 0
\(205\) −11.7433 −0.820184
\(206\) 0 0
\(207\) −6.89276 + 16.6406i −0.479080 + 1.15660i
\(208\) 0 0
\(209\) −1.31821 0.546019i −0.0911822 0.0377689i
\(210\) 0 0
\(211\) 13.0733 5.41513i 0.900002 0.372793i 0.115781 0.993275i \(-0.463063\pi\)
0.784221 + 0.620482i \(0.213063\pi\)
\(212\) 0 0
\(213\) 6.56632 + 6.56632i 0.449917 + 0.449917i
\(214\) 0 0
\(215\) 1.56512 + 3.77854i 0.106740 + 0.257694i
\(216\) 0 0
\(217\) 10.0209i 0.680262i
\(218\) 0 0
\(219\) 25.4181 25.4181i 1.71759 1.71759i
\(220\) 0 0
\(221\) −12.9960 4.73471i −0.874209 0.318491i
\(222\) 0 0
\(223\) −7.06005 + 7.06005i −0.472776 + 0.472776i −0.902812 0.430036i \(-0.858501\pi\)
0.430036 + 0.902812i \(0.358501\pi\)
\(224\) 0 0
\(225\) 3.96657i 0.264438i
\(226\) 0 0
\(227\) 7.99688 + 19.3062i 0.530772 + 1.28140i 0.931013 + 0.364986i \(0.118926\pi\)
−0.400241 + 0.916410i \(0.631074\pi\)
\(228\) 0 0
\(229\) 3.86070 + 3.86070i 0.255122 + 0.255122i 0.823067 0.567945i \(-0.192261\pi\)
−0.567945 + 0.823067i \(0.692261\pi\)
\(230\) 0 0
\(231\) 1.93511 0.801550i 0.127321 0.0527381i
\(232\) 0 0
\(233\) −3.02131 1.25147i −0.197933 0.0819865i 0.281515 0.959557i \(-0.409163\pi\)
−0.479448 + 0.877570i \(0.659163\pi\)
\(234\) 0 0
\(235\) 1.44631 3.49171i 0.0943471 0.227774i
\(236\) 0 0
\(237\) 12.5108 0.812663
\(238\) 0 0
\(239\) 22.9110 1.48199 0.740994 0.671512i \(-0.234355\pi\)
0.740994 + 0.671512i \(0.234355\pi\)
\(240\) 0 0
\(241\) −8.48341 + 20.4808i −0.546464 + 1.31928i 0.373627 + 0.927579i \(0.378114\pi\)
−0.920092 + 0.391703i \(0.871886\pi\)
\(242\) 0 0
\(243\) −19.6684 8.14692i −1.26173 0.522625i
\(244\) 0 0
\(245\) 3.89700 1.61419i 0.248970 0.103127i
\(246\) 0 0
\(247\) 7.11366 + 7.11366i 0.452632 + 0.452632i
\(248\) 0 0
\(249\) −15.9286 38.4550i −1.00943 2.43699i
\(250\) 0 0
\(251\) 21.1263i 1.33348i 0.745291 + 0.666739i \(0.232310\pi\)
−0.745291 + 0.666739i \(0.767690\pi\)
\(252\) 0 0
\(253\) 1.52768 1.52768i 0.0960444 0.0960444i
\(254\) 0 0
\(255\) 4.59616 + 9.86443i 0.287823 + 0.617735i
\(256\) 0 0
\(257\) 0.957887 0.957887i 0.0597514 0.0597514i −0.676600 0.736351i \(-0.736547\pi\)
0.736351 + 0.676600i \(0.236547\pi\)
\(258\) 0 0
\(259\) 6.75464i 0.419713i
\(260\) 0 0
\(261\) 4.09714 + 9.89138i 0.253607 + 0.612261i
\(262\) 0 0
\(263\) −5.90271 5.90271i −0.363977 0.363977i 0.501298 0.865275i \(-0.332856\pi\)
−0.865275 + 0.501298i \(0.832856\pi\)
\(264\) 0 0
\(265\) −1.62586 + 0.673454i −0.0998759 + 0.0413700i
\(266\) 0 0
\(267\) −27.9378 11.5722i −1.70976 0.708208i
\(268\) 0 0
\(269\) 9.02791 21.7953i 0.550441 1.32888i −0.366707 0.930337i \(-0.619515\pi\)
0.917148 0.398546i \(-0.130485\pi\)
\(270\) 0 0
\(271\) −27.6280 −1.67828 −0.839142 0.543912i \(-0.816943\pi\)
−0.839142 + 0.543912i \(0.816943\pi\)
\(272\) 0 0
\(273\) −14.7683 −0.893819
\(274\) 0 0
\(275\) −0.182074 + 0.439567i −0.0109795 + 0.0265069i
\(276\) 0 0
\(277\) −23.3087 9.65477i −1.40048 0.580099i −0.450605 0.892723i \(-0.648792\pi\)
−0.949877 + 0.312624i \(0.898792\pi\)
\(278\) 0 0
\(279\) 22.0173 9.11988i 1.31814 0.545993i
\(280\) 0 0
\(281\) −13.5384 13.5384i −0.807633 0.807633i 0.176642 0.984275i \(-0.443476\pi\)
−0.984275 + 0.176642i \(0.943476\pi\)
\(282\) 0 0
\(283\) 4.95000 + 11.9504i 0.294247 + 0.710375i 0.999998 + 0.00191510i \(0.000609594\pi\)
−0.705751 + 0.708460i \(0.749390\pi\)
\(284\) 0 0
\(285\) 7.91532i 0.468863i
\(286\) 0 0
\(287\) 13.8499 13.8499i 0.817531 0.817531i
\(288\) 0 0
\(289\) −13.0160 10.9354i −0.765649 0.643259i
\(290\) 0 0
\(291\) 25.6629 25.6629i 1.50439 1.50439i
\(292\) 0 0
\(293\) 30.5043i 1.78208i −0.453926 0.891039i \(-0.649977\pi\)
0.453926 0.891039i \(-0.350023\pi\)
\(294\) 0 0
\(295\) −1.48596 3.58742i −0.0865159 0.208868i
\(296\) 0 0
\(297\) −0.858298 0.858298i −0.0498035 0.0498035i
\(298\) 0 0
\(299\) −14.0735 + 5.82945i −0.813893 + 0.337126i
\(300\) 0 0
\(301\) −6.30225 2.61048i −0.363256 0.150465i
\(302\) 0 0
\(303\) −2.64438 + 6.38409i −0.151915 + 0.366756i
\(304\) 0 0
\(305\) 3.15340 0.180563
\(306\) 0 0
\(307\) 12.3694 0.705959 0.352979 0.935631i \(-0.385169\pi\)
0.352979 + 0.935631i \(0.385169\pi\)
\(308\) 0 0
\(309\) 0.231571 0.559061i 0.0131736 0.0318039i
\(310\) 0 0
\(311\) −22.0008 9.11302i −1.24755 0.516752i −0.341483 0.939888i \(-0.610929\pi\)
−0.906066 + 0.423136i \(0.860929\pi\)
\(312\) 0 0
\(313\) −8.16498 + 3.38205i −0.461512 + 0.191165i −0.601311 0.799015i \(-0.705355\pi\)
0.139798 + 0.990180i \(0.455355\pi\)
\(314\) 0 0
\(315\) 4.67813 + 4.67813i 0.263583 + 0.263583i
\(316\) 0 0
\(317\) −5.67759 13.7069i −0.318885 0.769857i −0.999314 0.0370424i \(-0.988206\pi\)
0.680429 0.732814i \(-0.261794\pi\)
\(318\) 0 0
\(319\) 1.28421i 0.0719019i
\(320\) 0 0
\(321\) −9.51207 + 9.51207i −0.530912 + 0.530912i
\(322\) 0 0
\(323\) 5.22209 + 11.2078i 0.290565 + 0.623620i
\(324\) 0 0
\(325\) 2.37211 2.37211i 0.131581 0.131581i
\(326\) 0 0
\(327\) 40.5906i 2.24466i
\(328\) 0 0
\(329\) 2.41232 + 5.82385i 0.132995 + 0.321079i
\(330\) 0 0
\(331\) −24.8908 24.8908i −1.36812 1.36812i −0.863118 0.505002i \(-0.831492\pi\)
−0.505002 0.863118i \(-0.668508\pi\)
\(332\) 0 0
\(333\) 14.8409 6.14731i 0.813278 0.336871i
\(334\) 0 0
\(335\) 2.07471 + 0.859374i 0.113354 + 0.0469526i
\(336\) 0 0
\(337\) −2.80793 + 6.77895i −0.152958 + 0.369273i −0.981721 0.190327i \(-0.939045\pi\)
0.828763 + 0.559600i \(0.189045\pi\)
\(338\) 0 0
\(339\) 8.63116 0.468780
\(340\) 0 0
\(341\) −2.85854 −0.154798
\(342\) 0 0
\(343\) −7.16028 + 17.2865i −0.386619 + 0.933381i
\(344\) 0 0
\(345\) 11.0729 + 4.58656i 0.596147 + 0.246932i
\(346\) 0 0
\(347\) 19.4483 8.05575i 1.04404 0.432455i 0.206279 0.978493i \(-0.433864\pi\)
0.837761 + 0.546038i \(0.183864\pi\)
\(348\) 0 0
\(349\) 15.7676 + 15.7676i 0.844019 + 0.844019i 0.989379 0.145359i \(-0.0464339\pi\)
−0.145359 + 0.989379i \(0.546434\pi\)
\(350\) 0 0
\(351\) 3.27516 + 7.90695i 0.174815 + 0.422042i
\(352\) 0 0
\(353\) 9.09412i 0.484031i −0.970272 0.242016i \(-0.922191\pi\)
0.970272 0.242016i \(-0.0778085\pi\)
\(354\) 0 0
\(355\) 2.48778 2.48778i 0.132038 0.132038i
\(356\) 0 0
\(357\) −17.0547 6.21333i −0.902628 0.328845i
\(358\) 0 0
\(359\) 12.0595 12.0595i 0.636477 0.636477i −0.313208 0.949685i \(-0.601404\pi\)
0.949685 + 0.313208i \(0.101404\pi\)
\(360\) 0 0
\(361\) 10.0067i 0.526670i
\(362\) 0 0
\(363\) −10.8821 26.2716i −0.571160 1.37890i
\(364\) 0 0
\(365\) −9.63015 9.63015i −0.504065 0.504065i
\(366\) 0 0
\(367\) 12.0621 4.99628i 0.629635 0.260803i −0.0449628 0.998989i \(-0.514317\pi\)
0.674598 + 0.738185i \(0.264317\pi\)
\(368\) 0 0
\(369\) −43.0347 17.8256i −2.24030 0.927962i
\(370\) 0 0
\(371\) 1.12326 2.71179i 0.0583167 0.140789i
\(372\) 0 0
\(373\) 35.9919 1.86359 0.931795 0.362984i \(-0.118242\pi\)
0.931795 + 0.362984i \(0.118242\pi\)
\(374\) 0 0
\(375\) −2.63943 −0.136299
\(376\) 0 0
\(377\) −3.46510 + 8.36549i −0.178462 + 0.430844i
\(378\) 0 0
\(379\) −2.10828 0.873279i −0.108295 0.0448574i 0.327878 0.944720i \(-0.393667\pi\)
−0.436173 + 0.899863i \(0.643667\pi\)
\(380\) 0 0
\(381\) 51.7188 21.4226i 2.64963 1.09751i
\(382\) 0 0
\(383\) 4.18834 + 4.18834i 0.214014 + 0.214014i 0.805970 0.591956i \(-0.201644\pi\)
−0.591956 + 0.805970i \(0.701644\pi\)
\(384\) 0 0
\(385\) −0.303683 0.733156i −0.0154771 0.0373651i
\(386\) 0 0
\(387\) 16.2227i 0.824648i
\(388\) 0 0
\(389\) −7.30073 + 7.30073i −0.370162 + 0.370162i −0.867536 0.497374i \(-0.834298\pi\)
0.497374 + 0.867536i \(0.334298\pi\)
\(390\) 0 0
\(391\) −18.7049 + 0.810903i −0.945946 + 0.0410091i
\(392\) 0 0
\(393\) −15.1722 + 15.1722i −0.765338 + 0.765338i
\(394\) 0 0
\(395\) 4.73997i 0.238494i
\(396\) 0 0
\(397\) 5.66013 + 13.6648i 0.284074 + 0.685814i 0.999923 0.0124407i \(-0.00396010\pi\)
−0.715849 + 0.698255i \(0.753960\pi\)
\(398\) 0 0
\(399\) 9.33523 + 9.33523i 0.467346 + 0.467346i
\(400\) 0 0
\(401\) −4.46990 + 1.85149i −0.223216 + 0.0924592i −0.491489 0.870884i \(-0.663547\pi\)
0.268273 + 0.963343i \(0.413547\pi\)
\(402\) 0 0
\(403\) 18.6208 + 7.71301i 0.927570 + 0.384212i
\(404\) 0 0
\(405\) −1.97695 + 4.77278i −0.0982355 + 0.237161i
\(406\) 0 0
\(407\) −1.92681 −0.0955086
\(408\) 0 0
\(409\) −22.3384 −1.10456 −0.552281 0.833658i \(-0.686243\pi\)
−0.552281 + 0.833658i \(0.686243\pi\)
\(410\) 0 0
\(411\) 20.1306 48.5996i 0.992970 2.39724i
\(412\) 0 0
\(413\) 5.98349 + 2.47844i 0.294428 + 0.121956i
\(414\) 0 0
\(415\) −14.5695 + 6.03487i −0.715186 + 0.296240i
\(416\) 0 0
\(417\) −0.343155 0.343155i −0.0168044 0.0168044i
\(418\) 0 0
\(419\) −8.56138 20.6690i −0.418251 1.00975i −0.982854 0.184384i \(-0.940971\pi\)
0.564604 0.825362i \(-0.309029\pi\)
\(420\) 0 0
\(421\) 7.56788i 0.368836i −0.982848 0.184418i \(-0.940960\pi\)
0.982848 0.184418i \(-0.0590400\pi\)
\(422\) 0 0
\(423\) 10.6004 10.6004i 0.515410 0.515410i
\(424\) 0 0
\(425\) 3.73734 1.74135i 0.181288 0.0844678i
\(426\) 0 0
\(427\) −3.71908 + 3.71908i −0.179979 + 0.179979i
\(428\) 0 0
\(429\) 4.21278i 0.203395i
\(430\) 0 0
\(431\) −1.67473 4.04317i −0.0806691 0.194752i 0.878399 0.477928i \(-0.158612\pi\)
−0.959068 + 0.283176i \(0.908612\pi\)
\(432\) 0 0
\(433\) −0.531408 0.531408i −0.0255378 0.0255378i 0.694223 0.719760i \(-0.255748\pi\)
−0.719760 + 0.694223i \(0.755748\pi\)
\(434\) 0 0
\(435\) 6.58190 2.72631i 0.315578 0.130717i
\(436\) 0 0
\(437\) 12.5809 + 5.21118i 0.601827 + 0.249285i
\(438\) 0 0
\(439\) −8.69220 + 20.9848i −0.414856 + 1.00155i 0.568959 + 0.822366i \(0.307346\pi\)
−0.983815 + 0.179186i \(0.942654\pi\)
\(440\) 0 0
\(441\) 16.7313 0.796731
\(442\) 0 0
\(443\) 3.12017 0.148244 0.0741219 0.997249i \(-0.476385\pi\)
0.0741219 + 0.997249i \(0.476385\pi\)
\(444\) 0 0
\(445\) −4.38436 + 10.5848i −0.207839 + 0.501767i
\(446\) 0 0
\(447\) −33.6440 13.9358i −1.59131 0.659140i
\(448\) 0 0
\(449\) −14.1828 + 5.87470i −0.669327 + 0.277244i −0.691357 0.722513i \(-0.742987\pi\)
0.0220306 + 0.999757i \(0.492987\pi\)
\(450\) 0 0
\(451\) 3.95078 + 3.95078i 0.186035 + 0.186035i
\(452\) 0 0
\(453\) 3.09329 + 7.46785i 0.145335 + 0.350870i
\(454\) 0 0
\(455\) 5.59528i 0.262311i
\(456\) 0 0
\(457\) −22.9717 + 22.9717i −1.07457 + 1.07457i −0.0775856 + 0.996986i \(0.524721\pi\)
−0.996986 + 0.0775856i \(0.975279\pi\)
\(458\) 0 0
\(459\) 0.455591 + 10.5090i 0.0212651 + 0.490517i
\(460\) 0 0
\(461\) −28.3979 + 28.3979i −1.32262 + 1.32262i −0.410974 + 0.911647i \(0.634811\pi\)
−0.911647 + 0.410974i \(0.865189\pi\)
\(462\) 0 0
\(463\) 14.4135i 0.669851i −0.942245 0.334926i \(-0.891289\pi\)
0.942245 0.334926i \(-0.108711\pi\)
\(464\) 0 0
\(465\) −6.06853 14.6507i −0.281421 0.679411i
\(466\) 0 0
\(467\) −20.1364 20.1364i −0.931800 0.931800i 0.0660184 0.997818i \(-0.478970\pi\)
−0.997818 + 0.0660184i \(0.978970\pi\)
\(468\) 0 0
\(469\) −3.46043 + 1.43336i −0.159788 + 0.0661862i
\(470\) 0 0
\(471\) −8.45444 3.50194i −0.389560 0.161361i
\(472\) 0 0
\(473\) 0.744659 1.79777i 0.0342395 0.0826614i
\(474\) 0 0
\(475\) −2.99888 −0.137598
\(476\) 0 0
\(477\) −6.98045 −0.319613
\(478\) 0 0
\(479\) −13.5460 + 32.7030i −0.618934 + 1.49424i 0.234009 + 0.972235i \(0.424816\pi\)
−0.852943 + 0.522005i \(0.825184\pi\)
\(480\) 0 0
\(481\) 12.5515 + 5.19900i 0.572299 + 0.237054i
\(482\) 0 0
\(483\) −18.4686 + 7.64996i −0.840352 + 0.348085i
\(484\) 0 0
\(485\) −9.72290 9.72290i −0.441494 0.441494i
\(486\) 0 0
\(487\) −7.74631 18.7012i −0.351019 0.847434i −0.996495 0.0836537i \(-0.973341\pi\)
0.645476 0.763780i \(-0.276659\pi\)
\(488\) 0 0
\(489\) 59.7133i 2.70033i
\(490\) 0 0
\(491\) −16.8962 + 16.8962i −0.762516 + 0.762516i −0.976777 0.214260i \(-0.931266\pi\)
0.214260 + 0.976777i \(0.431266\pi\)
\(492\) 0 0
\(493\) −7.52107 + 8.20274i −0.338732 + 0.369433i
\(494\) 0 0
\(495\) −1.33447 + 1.33447i −0.0599801 + 0.0599801i
\(496\) 0 0
\(497\) 5.86812i 0.263221i
\(498\) 0 0
\(499\) 4.14442 + 10.0055i 0.185530 + 0.447908i 0.989090 0.147316i \(-0.0470634\pi\)
−0.803560 + 0.595224i \(0.797063\pi\)
\(500\) 0 0
\(501\) 14.3980 + 14.3980i 0.643254 + 0.643254i
\(502\) 0 0
\(503\) −1.21382 + 0.502781i −0.0541216 + 0.0224179i −0.409580 0.912274i \(-0.634325\pi\)
0.355458 + 0.934692i \(0.384325\pi\)
\(504\) 0 0
\(505\) 2.41874 + 1.00188i 0.107633 + 0.0445829i
\(506\) 0 0
\(507\) 1.76377 4.25812i 0.0783318 0.189110i
\(508\) 0 0
\(509\) 3.74569 0.166025 0.0830123 0.996549i \(-0.473546\pi\)
0.0830123 + 0.996549i \(0.473546\pi\)
\(510\) 0 0
\(511\) 22.7154 1.00487
\(512\) 0 0
\(513\) 2.92781 7.06835i 0.129266 0.312075i
\(514\) 0 0
\(515\) −0.211811 0.0877352i −0.00933353 0.00386607i
\(516\) 0 0
\(517\) −1.66130 + 0.688132i −0.0730638 + 0.0302640i
\(518\) 0 0
\(519\) 16.7591 + 16.7591i 0.735643 + 0.735643i
\(520\) 0 0
\(521\) −0.863917 2.08568i −0.0378489 0.0913753i 0.903825 0.427903i \(-0.140747\pi\)
−0.941674 + 0.336528i \(0.890747\pi\)
\(522\) 0 0
\(523\) 6.55839i 0.286779i 0.989666 + 0.143389i \(0.0458001\pi\)
−0.989666 + 0.143389i \(0.954200\pi\)
\(524\) 0 0
\(525\) 3.11291 3.11291i 0.135858 0.135858i
\(526\) 0 0
\(527\) 18.2586 + 16.7413i 0.795356 + 0.729260i
\(528\) 0 0
\(529\) 1.68333 1.68333i 0.0731884 0.0731884i
\(530\) 0 0
\(531\) 15.4022i 0.668398i
\(532\) 0 0
\(533\) −15.0757 36.3960i −0.653001 1.57648i
\(534\) 0 0
\(535\) 3.60384 + 3.60384i 0.155807 + 0.155807i
\(536\) 0 0
\(537\) 37.1719 15.3971i 1.60409 0.664434i
\(538\) 0 0
\(539\) −1.85413 0.768006i −0.0798630 0.0330803i
\(540\) 0 0
\(541\) −4.46676 + 10.7837i −0.192041 + 0.463628i −0.990345 0.138627i \(-0.955731\pi\)
0.798304 + 0.602255i \(0.205731\pi\)
\(542\) 0 0
\(543\) 18.6576 0.800673
\(544\) 0 0
\(545\) −15.3786 −0.658745
\(546\) 0 0
\(547\) 6.34994 15.3301i 0.271504 0.655468i −0.728044 0.685530i \(-0.759571\pi\)
0.999548 + 0.0300621i \(0.00957051\pi\)
\(548\) 0 0
\(549\) 11.5561 + 4.78667i 0.493200 + 0.204290i
\(550\) 0 0
\(551\) 7.47825 3.09759i 0.318584 0.131962i
\(552\) 0 0
\(553\) 5.59026 + 5.59026i 0.237722 + 0.237722i
\(554\) 0 0
\(555\) −4.09053 9.87541i −0.173633 0.419188i
\(556\) 0 0
\(557\) 14.1014i 0.597495i −0.954332 0.298747i \(-0.903431\pi\)
0.954332 0.298747i \(-0.0965688\pi\)
\(558\) 0 0
\(559\) −9.70160 + 9.70160i −0.410334 + 0.410334i
\(560\) 0 0
\(561\) 1.77240 4.86497i 0.0748309 0.205399i
\(562\) 0 0
\(563\) −18.4740 + 18.4740i −0.778588 + 0.778588i −0.979591 0.201003i \(-0.935580\pi\)
0.201003 + 0.979591i \(0.435580\pi\)
\(564\) 0 0
\(565\) 3.27009i 0.137574i
\(566\) 0 0
\(567\) −3.29737 7.96056i −0.138477 0.334312i
\(568\) 0 0
\(569\) 9.55488 + 9.55488i 0.400562 + 0.400562i 0.878431 0.477869i \(-0.158591\pi\)
−0.477869 + 0.878431i \(0.658591\pi\)
\(570\) 0 0
\(571\) −6.39557 + 2.64913i −0.267646 + 0.110863i −0.512471 0.858705i \(-0.671270\pi\)
0.244825 + 0.969567i \(0.421270\pi\)
\(572\) 0 0
\(573\) 54.0229 + 22.3770i 2.25684 + 0.934813i
\(574\) 0 0
\(575\) 1.73771 4.19521i 0.0724676 0.174952i
\(576\) 0 0
\(577\) 46.8463 1.95024 0.975119 0.221682i \(-0.0711548\pi\)
0.975119 + 0.221682i \(0.0711548\pi\)
\(578\) 0 0
\(579\) −7.78469 −0.323521
\(580\) 0 0
\(581\) 10.0656 24.3005i 0.417591 1.00815i
\(582\) 0 0
\(583\) 0.773558 + 0.320418i 0.0320375 + 0.0132704i
\(584\) 0 0
\(585\) 12.2936 5.09219i 0.508279 0.210536i
\(586\) 0 0
\(587\) 4.07081 + 4.07081i 0.168020 + 0.168020i 0.786109 0.618088i \(-0.212093\pi\)
−0.618088 + 0.786109i \(0.712093\pi\)
\(588\) 0 0
\(589\) −6.89498 16.6459i −0.284103 0.685884i
\(590\) 0 0
\(591\) 62.3974i 2.56668i
\(592\) 0 0
\(593\) 17.3535 17.3535i 0.712622 0.712622i −0.254461 0.967083i \(-0.581898\pi\)
0.967083 + 0.254461i \(0.0818980\pi\)
\(594\) 0 0
\(595\) −2.35405 + 6.46150i −0.0965065 + 0.264896i
\(596\) 0 0
\(597\) −3.69885 + 3.69885i −0.151384 + 0.151384i
\(598\) 0 0
\(599\) 35.8315i 1.46404i 0.681285 + 0.732018i \(0.261421\pi\)
−0.681285 + 0.732018i \(0.738579\pi\)
\(600\) 0 0
\(601\) 12.9042 + 31.1535i 0.526373 + 1.27078i 0.933884 + 0.357577i \(0.116397\pi\)
−0.407510 + 0.913201i \(0.633603\pi\)
\(602\) 0 0
\(603\) 6.29858 + 6.29858i 0.256498 + 0.256498i
\(604\) 0 0
\(605\) −9.95354 + 4.12289i −0.404669 + 0.167619i
\(606\) 0 0
\(607\) −30.6884 12.7115i −1.24560 0.515945i −0.340141 0.940374i \(-0.610475\pi\)
−0.905461 + 0.424429i \(0.860475\pi\)
\(608\) 0 0
\(609\) −4.54723 + 10.9780i −0.184263 + 0.444851i
\(610\) 0 0
\(611\) 12.6786 0.512923
\(612\) 0 0
\(613\) −36.6432 −1.48001 −0.740003 0.672604i \(-0.765176\pi\)
−0.740003 + 0.672604i \(0.765176\pi\)
\(614\) 0 0
\(615\) −11.8614 + 28.6361i −0.478300 + 1.15472i
\(616\) 0 0
\(617\) 6.22729 + 2.57943i 0.250701 + 0.103844i 0.504495 0.863414i \(-0.331679\pi\)
−0.253794 + 0.967258i \(0.581679\pi\)
\(618\) 0 0
\(619\) −12.1214 + 5.02083i −0.487198 + 0.201804i −0.612741 0.790284i \(-0.709933\pi\)
0.125542 + 0.992088i \(0.459933\pi\)
\(620\) 0 0
\(621\) 8.19156 + 8.19156i 0.328716 + 0.328716i
\(622\) 0 0
\(623\) −7.31271 17.6545i −0.292978 0.707311i
\(624\) 0 0
\(625\) 1.00000i 0.0400000i
\(626\) 0 0
\(627\) −2.66295 + 2.66295i −0.106348 + 0.106348i
\(628\) 0 0
\(629\) 12.3073 + 11.2845i 0.490725 + 0.449944i
\(630\) 0 0
\(631\) 24.4176 24.4176i 0.972050 0.972050i −0.0275699 0.999620i \(-0.508777\pi\)
0.999620 + 0.0275699i \(0.00877687\pi\)
\(632\) 0 0
\(633\) 37.3490i 1.48449i
\(634\) 0 0
\(635\) −8.11640 19.5947i −0.322089 0.777592i
\(636\) 0 0
\(637\) 10.0058 + 10.0058i 0.396443 + 0.396443i
\(638\) 0 0
\(639\) 12.8931 5.34050i 0.510044 0.211267i
\(640\) 0 0
\(641\) −38.7486 16.0502i −1.53048 0.633945i −0.550821 0.834624i \(-0.685685\pi\)
−0.979657 + 0.200679i \(0.935685\pi\)
\(642\) 0 0
\(643\) −18.2596 + 44.0826i −0.720090 + 1.73845i −0.0469930 + 0.998895i \(0.514964\pi\)
−0.673097 + 0.739555i \(0.735036\pi\)
\(644\) 0 0
\(645\) 10.7949 0.425048
\(646\) 0 0
\(647\) 25.2762 0.993708 0.496854 0.867834i \(-0.334488\pi\)
0.496854 + 0.867834i \(0.334488\pi\)
\(648\) 0 0
\(649\) −0.706995 + 1.70684i −0.0277520 + 0.0669992i
\(650\) 0 0
\(651\) 24.4361 + 10.1217i 0.957725 + 0.396702i
\(652\) 0 0
\(653\) 43.8134 18.1481i 1.71455 0.710190i 0.714607 0.699526i \(-0.246605\pi\)
0.999943 0.0106641i \(-0.00339455\pi\)
\(654\) 0 0
\(655\) 5.74831 + 5.74831i 0.224605 + 0.224605i
\(656\) 0 0
\(657\) −20.6730 49.9090i −0.806530 1.94714i
\(658\) 0 0
\(659\) 16.5949i 0.646447i 0.946323 + 0.323224i \(0.104767\pi\)
−0.946323 + 0.323224i \(0.895233\pi\)
\(660\) 0 0
\(661\) −10.6497 + 10.6497i −0.414224 + 0.414224i −0.883207 0.468983i \(-0.844620\pi\)
0.468983 + 0.883207i \(0.344620\pi\)
\(662\) 0 0
\(663\) −24.6725 + 26.9087i −0.958200 + 1.04505i
\(664\) 0 0
\(665\) 3.53684 3.53684i 0.137153 0.137153i
\(666\) 0 0
\(667\) 12.2564i 0.474571i
\(668\) 0 0
\(669\) 10.0849 + 24.3471i 0.389905 + 0.941314i
\(670\) 0 0
\(671\) −1.06090 1.06090i −0.0409555 0.0409555i
\(672\) 0 0
\(673\) 4.63205 1.91866i 0.178552 0.0739588i −0.291616 0.956535i \(-0.594193\pi\)
0.470169 + 0.882577i \(0.344193\pi\)
\(674\) 0 0
\(675\) −2.35700 0.976300i −0.0907209 0.0375778i
\(676\) 0 0
\(677\) −9.85148 + 23.7836i −0.378623 + 0.914077i 0.613601 + 0.789616i \(0.289720\pi\)
−0.992224 + 0.124461i \(0.960280\pi\)
\(678\) 0 0
\(679\) 22.9342 0.880132
\(680\) 0 0
\(681\) 55.1557 2.11357
\(682\) 0 0
\(683\) 13.6849 33.0383i 0.523638 1.26417i −0.411991 0.911188i \(-0.635166\pi\)
0.935629 0.352986i \(-0.114834\pi\)
\(684\) 0 0
\(685\) −18.4129 7.62689i −0.703522 0.291408i
\(686\) 0 0
\(687\) 13.3139 5.51480i 0.507957 0.210403i
\(688\) 0 0
\(689\) −4.17449 4.17449i −0.159035 0.159035i
\(690\) 0 0
\(691\) −18.2161 43.9777i −0.692975 1.67299i −0.738699 0.674035i \(-0.764560\pi\)
0.0457245 0.998954i \(-0.485440\pi\)
\(692\) 0 0
\(693\) 3.14772i 0.119572i
\(694\) 0 0
\(695\) −0.130011 + 0.130011i −0.00493161 + 0.00493161i
\(696\) 0 0
\(697\) −2.09710 48.3732i −0.0794333 1.83227i
\(698\) 0 0
\(699\) −6.10345 + 6.10345i −0.230854 + 0.230854i
\(700\) 0 0
\(701\) 28.6540i 1.08225i 0.840943 + 0.541124i \(0.182001\pi\)
−0.840943 + 0.541124i \(0.817999\pi\)
\(702\) 0 0
\(703\) −4.64760 11.2203i −0.175288 0.423182i
\(704\) 0 0
\(705\) −7.05371 7.05371i −0.265658 0.265658i
\(706\) 0 0
\(707\) −4.03423 + 1.67103i −0.151723 + 0.0628457i
\(708\) 0 0
\(709\) 28.8593 + 11.9539i 1.08383 + 0.448939i 0.851853 0.523782i \(-0.175479\pi\)
0.231981 + 0.972720i \(0.425479\pi\)
\(710\) 0 0
\(711\) 7.19499 17.3702i 0.269833 0.651435i
\(712\) 0 0
\(713\) 27.2818 1.02171
\(714\) 0 0
\(715\) −1.59610 −0.0596906
\(716\) 0 0
\(717\) 23.1416 55.8687i 0.864238 2.08645i
\(718\) 0 0
\(719\) −18.7019 7.74656i −0.697461 0.288898i 0.00564349 0.999984i \(-0.498204\pi\)
−0.703105 + 0.711086i \(0.748204\pi\)
\(720\) 0 0
\(721\) 0.353282 0.146334i 0.0131569 0.00544977i
\(722\) 0 0
\(723\) 41.3738 + 41.3738i 1.53871 + 1.53871i
\(724\) 0 0
\(725\) −1.03292 2.49368i −0.0383616 0.0926131i
\(726\) 0 0
\(727\) 28.2598i 1.04810i −0.851688 0.524049i \(-0.824421\pi\)
0.851688 0.524049i \(-0.175579\pi\)
\(728\) 0 0
\(729\) −28.7739 + 28.7739i −1.06570 + 1.06570i
\(730\) 0 0
\(731\) −15.2852 + 7.12188i −0.565343 + 0.263412i
\(732\) 0 0
\(733\) −6.91684 + 6.91684i −0.255479 + 0.255479i −0.823213 0.567733i \(-0.807821\pi\)
0.567733 + 0.823213i \(0.307821\pi\)
\(734\) 0 0
\(735\) 11.1333i 0.410659i
\(736\) 0 0
\(737\) −0.408876 0.987114i −0.0150611 0.0363608i
\(738\) 0 0
\(739\) −17.4220 17.4220i −0.640880 0.640880i 0.309892 0.950772i \(-0.399707\pi\)
−0.950772 + 0.309892i \(0.899707\pi\)
\(740\) 0 0
\(741\) 24.5320 10.1615i 0.901206 0.373292i
\(742\) 0 0
\(743\) 42.9988 + 17.8107i 1.57747 + 0.653411i 0.988011 0.154384i \(-0.0493393\pi\)
0.589463 + 0.807795i \(0.299339\pi\)
\(744\) 0 0
\(745\) −5.27986 + 12.7467i −0.193439 + 0.467003i
\(746\) 0 0
\(747\) −62.5523 −2.28867
\(748\) 0 0
\(749\) −8.50065 −0.310607
\(750\) 0 0
\(751\) 5.07719 12.2574i 0.185269 0.447279i −0.803769 0.594942i \(-0.797175\pi\)
0.989038 + 0.147663i \(0.0471750\pi\)
\(752\) 0 0
\(753\) 51.5166 + 21.3389i 1.87737 + 0.777632i
\(754\) 0 0
\(755\) 2.82935 1.17195i 0.102970 0.0426518i
\(756\) 0 0
\(757\) −17.5750 17.5750i −0.638773 0.638773i 0.311480 0.950253i \(-0.399175\pi\)
−0.950253 + 0.311480i \(0.899175\pi\)
\(758\) 0 0
\(759\) −2.18221 5.26832i −0.0792092 0.191228i
\(760\) 0 0
\(761\) 4.37844i 0.158718i −0.996846 0.0793592i \(-0.974713\pi\)
0.996846 0.0793592i \(-0.0252874\pi\)
\(762\) 0 0
\(763\) 18.1373 18.1373i 0.656614 0.656614i
\(764\) 0 0
\(765\) 16.3392 0.708347i 0.590747 0.0256104i
\(766\) 0 0
\(767\) 9.21090 9.21090i 0.332586 0.332586i
\(768\) 0 0
\(769\) 6.31606i 0.227763i −0.993494 0.113882i \(-0.963672\pi\)
0.993494 0.113882i \(-0.0363284\pi\)
\(770\) 0 0
\(771\) −1.36829 3.30335i −0.0492778 0.118967i
\(772\) 0 0
\(773\) −10.8659 10.8659i −0.390820 0.390820i 0.484160 0.874980i \(-0.339125\pi\)
−0.874980 + 0.484160i \(0.839125\pi\)
\(774\) 0 0
\(775\) −5.55072 + 2.29919i −0.199388 + 0.0825892i
\(776\) 0 0
\(777\) 16.4713 + 6.82262i 0.590904 + 0.244760i
\(778\) 0 0
\(779\) −13.4768 + 32.5359i −0.482856 + 1.16572i
\(780\) 0 0
\(781\) −1.67393 −0.0598978
\(782\) 0 0
\(783\) 6.88605 0.246087
\(784\) 0 0
\(785\) −1.32678 + 3.20313i −0.0473549 + 0.114325i
\(786\) 0 0
\(787\) 26.7805 + 11.0928i 0.954620 + 0.395417i 0.804966 0.593322i \(-0.202184\pi\)
0.149655 + 0.988738i \(0.452184\pi\)
\(788\) 0 0
\(789\) −20.3560 + 8.43171i −0.724691 + 0.300177i
\(790\) 0 0
\(791\) 3.85671 + 3.85671i 0.137129 + 0.137129i
\(792\) 0 0
\(793\) 4.04826 + 9.77336i 0.143758 + 0.347062i
\(794\) 0 0
\(795\) 4.64492i 0.164738i
\(796\) 0 0
\(797\) −22.7218 + 22.7218i −0.804846 + 0.804846i −0.983849 0.179003i \(-0.942713\pi\)
0.179003 + 0.983849i \(0.442713\pi\)
\(798\) 0 0
\(799\) 14.6415 + 5.33416i 0.517978 + 0.188709i
\(800\) 0 0
\(801\) −32.1342 + 32.1342i −1.13541 + 1.13541i
\(802\) 0 0
\(803\) 6.47974i 0.228665i
\(804\) 0 0
\(805\) 2.89834 + 6.99722i 0.102153 + 0.246619i
\(806\) 0 0
\(807\) −44.0293 44.0293i −1.54991 1.54991i
\(808\) 0 0
\(809\) 34.3505 14.2285i 1.20770 0.500246i 0.314221 0.949350i \(-0.398257\pi\)
0.893480 + 0.449104i \(0.148257\pi\)
\(810\) 0 0
\(811\) 24.5592 + 10.1728i 0.862390 + 0.357214i 0.769642 0.638476i \(-0.220435\pi\)
0.0927484 + 0.995690i \(0.470435\pi\)
\(812\) 0 0
\(813\) −27.9061 + 67.3713i −0.978710 + 2.36282i
\(814\) 0 0
\(815\) 22.6236 0.792469
\(816\) 0 0
\(817\) 12.2650 0.429098
\(818\) 0 0
\(819\) −8.49330 + 20.5046i −0.296780 + 0.716490i
\(820\) 0 0
\(821\) −17.7400 7.34816i −0.619131 0.256453i 0.0509960 0.998699i \(-0.483760\pi\)
−0.670127 + 0.742246i \(0.733760\pi\)
\(822\) 0 0
\(823\) −33.3906 + 13.8308i −1.16392 + 0.482112i −0.879179 0.476492i \(-0.841908\pi\)
−0.284743 + 0.958604i \(0.591908\pi\)
\(824\) 0 0
\(825\) 0.887982 + 0.887982i 0.0309155 + 0.0309155i
\(826\) 0 0
\(827\) 14.7966 + 35.7222i 0.514530 + 1.24218i 0.941222 + 0.337788i \(0.109679\pi\)
−0.426693 + 0.904397i \(0.640321\pi\)
\(828\) 0 0
\(829\) 12.7121i 0.441509i 0.975329 + 0.220754i \(0.0708520\pi\)
−0.975329 + 0.220754i \(0.929148\pi\)
\(830\) 0 0
\(831\) −47.0865 + 47.0865i −1.63341 + 1.63341i
\(832\) 0 0
\(833\) 7.34516 + 15.7644i 0.254495 + 0.546205i
\(834\) 0 0
\(835\) 5.45496 5.45496i 0.188777 0.188777i
\(836\) 0 0
\(837\) 15.3277i 0.529804i
\(838\) 0 0
\(839\) −2.38363 5.75459i −0.0822920 0.198670i 0.877378 0.479800i \(-0.159291\pi\)
−0.959670 + 0.281130i \(0.909291\pi\)
\(840\) 0 0
\(841\) −15.3546 15.3546i −0.529467 0.529467i
\(842\) 0 0
\(843\) −46.6882 + 19.3389i −1.60803 + 0.666066i
\(844\) 0 0
\(845\) −1.61328 0.668240i −0.0554984 0.0229882i
\(846\) 0 0
\(847\) 6.87660 16.6016i 0.236283 0.570437i
\(848\) 0 0
\(849\) 34.1409 1.17171
\(850\) 0 0
\(851\) 18.3894 0.630382
\(852\) 0 0
\(853\) −0.0874574 + 0.211141i −0.00299448 + 0.00722933i −0.925370 0.379066i \(-0.876245\pi\)
0.922375 + 0.386295i \(0.126245\pi\)
\(854\) 0 0
\(855\) −10.9898 4.55212i −0.375843 0.155679i
\(856\) 0 0
\(857\) −26.6526 + 11.0399i −0.910436 + 0.377115i −0.788223 0.615389i \(-0.788999\pi\)
−0.122212 + 0.992504i \(0.538999\pi\)
\(858\) 0 0
\(859\) 8.20750 + 8.20750i 0.280036 + 0.280036i 0.833123 0.553087i \(-0.186550\pi\)
−0.553087 + 0.833123i \(0.686550\pi\)
\(860\) 0 0
\(861\) −19.7838 47.7623i −0.674230 1.62773i
\(862\) 0 0
\(863\) 52.8959i 1.80060i −0.435272 0.900299i \(-0.643348\pi\)
0.435272 0.900299i \(-0.356652\pi\)
\(864\) 0 0
\(865\) 6.34953 6.34953i 0.215890 0.215890i
\(866\) 0 0
\(867\) −39.8131 + 20.6943i −1.35213 + 0.702814i
\(868\) 0 0
\(869\) −1.59467 + 1.59467i −0.0540953 + 0.0540953i
\(870\) 0 0
\(871\) 7.53342i 0.255260i
\(872\) 0 0
\(873\) −20.8721 50.3897i −0.706413 1.70543i
\(874\) 0 0
\(875\) −1.17939 1.17939i −0.0398706 0.0398706i
\(876\) 0 0
\(877\) −13.7095 + 5.67865i −0.462936 + 0.191754i −0.601946 0.798537i \(-0.705608\pi\)
0.139010 + 0.990291i \(0.455608\pi\)
\(878\) 0 0
\(879\) −74.3850 30.8113i −2.50894 1.03924i
\(880\) 0 0
\(881\) −17.9469 + 43.3276i −0.604646 + 1.45974i 0.264104 + 0.964494i \(0.414924\pi\)
−0.868750 + 0.495250i \(0.835076\pi\)
\(882\) 0 0
\(883\) 26.6804 0.897867 0.448934 0.893565i \(-0.351804\pi\)
0.448934 + 0.893565i \(0.351804\pi\)
\(884\) 0 0
\(885\) −10.2489 −0.344513
\(886\) 0 0
\(887\) 19.3108 46.6204i 0.648394 1.56536i −0.166685 0.986010i \(-0.553306\pi\)
0.815079 0.579350i \(-0.196694\pi\)
\(888\) 0 0
\(889\) 32.6822 + 13.5374i 1.09612 + 0.454030i
\(890\) 0 0
\(891\) 2.27081 0.940601i 0.0760750 0.0315113i
\(892\) 0 0
\(893\) −8.01432 8.01432i −0.268189 0.268189i
\(894\) 0 0
\(895\) −5.83350 14.0833i −0.194993 0.470754i
\(896\) 0 0
\(897\) 40.2066i 1.34246i
\(898\) 0 0
\(899\) 11.4669 11.4669i 0.382442 0.382442i
\(900\) 0 0
\(901\) −3.06446 6.57705i −0.102092 0.219113i
\(902\) 0 0
\(903\) −12.7314 + 12.7314i −0.423673 + 0.423673i
\(904\) 0 0
\(905\) 7.06880i 0.234975i
\(906\) 0 0
\(907\) 7.21610 + 17.4212i 0.239607 + 0.578462i 0.997242 0.0742162i \(-0.0236455\pi\)
−0.757636 + 0.652678i \(0.773645\pi\)
\(908\) 0 0
\(909\) 7.34301 + 7.34301i 0.243552 + 0.243552i
\(910\) 0 0
\(911\) −0.492513 + 0.204006i −0.0163177 + 0.00675901i −0.390827 0.920464i \(-0.627811\pi\)
0.374510 + 0.927223i \(0.377811\pi\)
\(912\) 0 0
\(913\) 6.93191 + 2.87129i 0.229413 + 0.0950258i
\(914\) 0 0
\(915\) 3.18514 7.68960i 0.105297 0.254210i
\(916\) 0 0
\(917\) −13.5590 −0.447757
\(918\) 0 0
\(919\) 5.46242 0.180188 0.0900942 0.995933i \(-0.471283\pi\)
0.0900942 + 0.995933i \(0.471283\pi\)
\(920\) 0 0
\(921\) 12.4939 30.1629i 0.411688 0.993902i
\(922\) 0 0
\(923\) 10.9042 + 4.51665i 0.358915 + 0.148667i
\(924\) 0 0
\(925\) −3.74150 + 1.54978i −0.123020 + 0.0509564i
\(926\) 0 0
\(927\) −0.643035 0.643035i −0.0211200 0.0211200i
\(928\) 0 0
\(929\) −1.11742 2.69768i −0.0366613 0.0885081i 0.904488 0.426498i \(-0.140253\pi\)
−0.941150 + 0.337990i \(0.890253\pi\)
\(930\) 0 0
\(931\) 12.6495i 0.414571i
\(932\) 0 0
\(933\) −44.4444 + 44.4444i −1.45504 + 1.45504i
\(934\) 0 0
\(935\) −1.84319 0.671510i −0.0602789 0.0219607i
\(936\) 0 0
\(937\) 24.5821 24.5821i 0.803063 0.803063i −0.180510 0.983573i \(-0.557775\pi\)
0.983573 + 0.180510i \(0.0577748\pi\)
\(938\) 0 0
\(939\) 23.3265i 0.761231i
\(940\) 0 0
\(941\) 19.3947 + 46.8228i 0.632248 + 1.52638i 0.836790 + 0.547523i \(0.184429\pi\)
−0.204543 + 0.978858i \(0.565571\pi\)
\(942\) 0 0
\(943\) −37.7061 37.7061i −1.22788 1.22788i
\(944\) 0 0
\(945\) 3.93125 1.62838i 0.127884 0.0529712i
\(946\) 0 0
\(947\) −46.6469 19.3218i −1.51582 0.627873i −0.539071 0.842260i \(-0.681225\pi\)
−0.976749 + 0.214387i \(0.931225\pi\)
\(948\) 0 0
\(949\) 17.4839 42.2098i 0.567550 1.37019i
\(950\) 0 0
\(951\) −39.1592 −1.26982
\(952\) 0 0
\(953\) 30.6222 0.991949 0.495975 0.868337i \(-0.334811\pi\)
0.495975 + 0.868337i \(0.334811\pi\)
\(954\) 0 0
\(955\) 8.47798 20.4677i 0.274341 0.662318i
\(956\) 0 0
\(957\) −3.13156 1.29713i −0.101229 0.0419304i
\(958\) 0 0
\(959\) 30.7111 12.7209i 0.991712 0.410781i
\(960\) 0 0
\(961\) −3.60398 3.60398i −0.116257 0.116257i
\(962\) 0 0
\(963\) 7.73633 + 18.6772i 0.249300 + 0.601863i
\(964\) 0 0
\(965\) 2.94939i 0.0949442i
\(966\) 0 0
\(967\) −6.27362 + 6.27362i −0.201746 + 0.201746i −0.800748 0.599002i \(-0.795564\pi\)
0.599002 + 0.800748i \(0.295564\pi\)
\(968\) 0 0
\(969\) 32.6051 1.41351i 1.04743 0.0454085i
\(970\) 0 0
\(971\) −31.5872 + 31.5872i −1.01368 + 1.01368i −0.0137753 + 0.999905i \(0.504385\pi\)
−0.999905 + 0.0137753i \(0.995615\pi\)
\(972\) 0 0
\(973\) 0.306667i 0.00983131i
\(974\) 0 0
\(975\) −3.38843 8.18040i −0.108517 0.261982i
\(976\) 0 0
\(977\) −8.23759 8.23759i −0.263544 0.263544i 0.562948 0.826492i \(-0.309667\pi\)
−0.826492 + 0.562948i \(0.809667\pi\)
\(978\) 0 0
\(979\) 5.03607 2.08601i 0.160953 0.0666691i
\(980\) 0 0
\(981\) −56.3568 23.3438i −1.79933 0.745309i
\(982\) 0 0
\(983\) −4.98044 + 12.0238i −0.158851 + 0.383501i −0.983187 0.182600i \(-0.941549\pi\)
0.824336 + 0.566101i \(0.191549\pi\)
\(984\) 0 0
\(985\) 23.6405 0.753249
\(986\) 0 0
\(987\) 16.6381 0.529597
\(988\) 0 0
\(989\) −7.10700 + 17.1578i −0.225989 + 0.545587i
\(990\) 0 0
\(991\) −34.4622 14.2747i −1.09473 0.453452i −0.239075 0.971001i \(-0.576844\pi\)
−0.855653 + 0.517549i \(0.826844\pi\)
\(992\) 0 0
\(993\) −85.8377 + 35.5551i −2.72398 + 1.12831i
\(994\) 0 0
\(995\) 1.40139 + 1.40139i 0.0444269 + 0.0444269i
\(996\) 0 0
\(997\) −15.1087 36.4756i −0.478497 1.15519i −0.960314 0.278921i \(-0.910023\pi\)
0.481817 0.876272i \(-0.339977\pi\)
\(998\) 0 0
\(999\) 10.3318i 0.326882i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 680.2.bo.a.161.8 32
17.15 even 8 inner 680.2.bo.a.321.8 yes 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
680.2.bo.a.161.8 32 1.1 even 1 trivial
680.2.bo.a.321.8 yes 32 17.15 even 8 inner