Properties

Label 680.2.bo.a.161.6
Level $680$
Weight $2$
Character 680.161
Analytic conductor $5.430$
Analytic rank $0$
Dimension $32$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [680,2,Mod(121,680)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(680, base_ring=CyclotomicField(8)) chi = DirichletCharacter(H, H._module([0, 0, 0, 7])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("680.121"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 680 = 2^{3} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 680.bo (of order \(8\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.42982733745\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(8\) over \(\Q(\zeta_{8})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 161.6
Character \(\chi\) \(=\) 680.161
Dual form 680.2.bo.a.321.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.424268 - 1.02427i) q^{3} +(0.923880 + 0.382683i) q^{5} +(-0.208657 + 0.0864287i) q^{7} +(1.25219 + 1.25219i) q^{9} +(-1.54244 - 3.72378i) q^{11} -4.93623i q^{13} +(0.783944 - 0.783944i) q^{15} +(3.34135 + 2.41566i) q^{17} +(2.08841 - 2.08841i) q^{19} +0.250391i q^{21} +(0.174878 + 0.422193i) q^{23} +(0.707107 + 0.707107i) q^{25} +(4.88666 - 2.02412i) q^{27} +(3.53091 + 1.46255i) q^{29} +(-1.42284 + 3.43504i) q^{31} -4.46858 q^{33} -0.225849 q^{35} +(2.35906 - 5.69528i) q^{37} +(-5.05605 - 2.09428i) q^{39} +(3.17056 - 1.31329i) q^{41} +(-1.84772 - 1.84772i) q^{43} +(0.677680 + 1.63606i) q^{45} -10.2919i q^{47} +(-4.91368 + 4.91368i) q^{49} +(3.89192 - 2.39757i) q^{51} +(-1.52776 + 1.52776i) q^{53} -4.03059i q^{55} +(-1.25305 - 3.02514i) q^{57} +(-2.35916 - 2.35916i) q^{59} +(-9.09057 + 3.76544i) q^{61} +(-0.369503 - 0.153053i) q^{63} +(1.88901 - 4.56048i) q^{65} +3.06879 q^{67} +0.506636 q^{69} +(2.04723 - 4.94244i) q^{71} +(10.2363 + 4.24000i) q^{73} +(1.02427 - 0.424268i) q^{75} +(0.643683 + 0.643683i) q^{77} +(1.84185 + 4.44661i) q^{79} -0.551456i q^{81} +(-10.5038 + 10.5038i) q^{83} +(2.16257 + 3.51045i) q^{85} +(2.99610 - 2.99610i) q^{87} +17.0559i q^{89} +(0.426632 + 1.02998i) q^{91} +(2.91475 + 2.91475i) q^{93} +(2.72863 - 1.13024i) q^{95} +(0.668375 + 0.276850i) q^{97} +(2.73145 - 6.59431i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 16 q^{9} + 8 q^{11} - 8 q^{17} + 8 q^{19} + 8 q^{23} - 24 q^{27} - 32 q^{29} + 32 q^{31} + 16 q^{33} + 16 q^{35} + 16 q^{37} - 24 q^{39} - 16 q^{41} - 8 q^{49} + 16 q^{51} + 16 q^{53} + 48 q^{57}+ \cdots + 48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/680\mathbb{Z}\right)^\times\).

\(n\) \(137\) \(241\) \(341\) \(511\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{8}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.424268 1.02427i 0.244951 0.591364i −0.752810 0.658237i \(-0.771302\pi\)
0.997761 + 0.0668733i \(0.0213023\pi\)
\(4\) 0 0
\(5\) 0.923880 + 0.382683i 0.413171 + 0.171141i
\(6\) 0 0
\(7\) −0.208657 + 0.0864287i −0.0788650 + 0.0326670i −0.421767 0.906704i \(-0.638590\pi\)
0.342902 + 0.939371i \(0.388590\pi\)
\(8\) 0 0
\(9\) 1.25219 + 1.25219i 0.417396 + 0.417396i
\(10\) 0 0
\(11\) −1.54244 3.72378i −0.465064 1.12276i −0.966292 0.257448i \(-0.917118\pi\)
0.501229 0.865315i \(-0.332882\pi\)
\(12\) 0 0
\(13\) 4.93623i 1.36906i −0.728983 0.684532i \(-0.760007\pi\)
0.728983 0.684532i \(-0.239993\pi\)
\(14\) 0 0
\(15\) 0.783944 0.783944i 0.202414 0.202414i
\(16\) 0 0
\(17\) 3.34135 + 2.41566i 0.810396 + 0.585883i
\(18\) 0 0
\(19\) 2.08841 2.08841i 0.479113 0.479113i −0.425735 0.904848i \(-0.639984\pi\)
0.904848 + 0.425735i \(0.139984\pi\)
\(20\) 0 0
\(21\) 0.250391i 0.0546397i
\(22\) 0 0
\(23\) 0.174878 + 0.422193i 0.0364646 + 0.0880333i 0.941063 0.338232i \(-0.109829\pi\)
−0.904598 + 0.426266i \(0.859829\pi\)
\(24\) 0 0
\(25\) 0.707107 + 0.707107i 0.141421 + 0.141421i
\(26\) 0 0
\(27\) 4.88666 2.02412i 0.940439 0.389543i
\(28\) 0 0
\(29\) 3.53091 + 1.46255i 0.655673 + 0.271589i 0.685617 0.727963i \(-0.259533\pi\)
−0.0299434 + 0.999552i \(0.509533\pi\)
\(30\) 0 0
\(31\) −1.42284 + 3.43504i −0.255550 + 0.616952i −0.998634 0.0522459i \(-0.983362\pi\)
0.743084 + 0.669198i \(0.233362\pi\)
\(32\) 0 0
\(33\) −4.46858 −0.777879
\(34\) 0 0
\(35\) −0.225849 −0.0381754
\(36\) 0 0
\(37\) 2.35906 5.69528i 0.387827 0.936298i −0.602572 0.798064i \(-0.705857\pi\)
0.990400 0.138234i \(-0.0441426\pi\)
\(38\) 0 0
\(39\) −5.05605 2.09428i −0.809615 0.335354i
\(40\) 0 0
\(41\) 3.17056 1.31329i 0.495159 0.205101i −0.121107 0.992639i \(-0.538645\pi\)
0.616266 + 0.787538i \(0.288645\pi\)
\(42\) 0 0
\(43\) −1.84772 1.84772i −0.281774 0.281774i 0.552042 0.833816i \(-0.313849\pi\)
−0.833816 + 0.552042i \(0.813849\pi\)
\(44\) 0 0
\(45\) 0.677680 + 1.63606i 0.101023 + 0.243890i
\(46\) 0 0
\(47\) 10.2919i 1.50123i −0.660740 0.750615i \(-0.729757\pi\)
0.660740 0.750615i \(-0.270243\pi\)
\(48\) 0 0
\(49\) −4.91368 + 4.91368i −0.701954 + 0.701954i
\(50\) 0 0
\(51\) 3.89192 2.39757i 0.544977 0.335726i
\(52\) 0 0
\(53\) −1.52776 + 1.52776i −0.209854 + 0.209854i −0.804205 0.594352i \(-0.797409\pi\)
0.594352 + 0.804205i \(0.297409\pi\)
\(54\) 0 0
\(55\) 4.03059i 0.543485i
\(56\) 0 0
\(57\) −1.25305 3.02514i −0.165971 0.400689i
\(58\) 0 0
\(59\) −2.35916 2.35916i −0.307136 0.307136i 0.536662 0.843798i \(-0.319685\pi\)
−0.843798 + 0.536662i \(0.819685\pi\)
\(60\) 0 0
\(61\) −9.09057 + 3.76544i −1.16393 + 0.482115i −0.879181 0.476488i \(-0.841910\pi\)
−0.284747 + 0.958603i \(0.591910\pi\)
\(62\) 0 0
\(63\) −0.369503 0.153053i −0.0465530 0.0192829i
\(64\) 0 0
\(65\) 1.88901 4.56048i 0.234303 0.565658i
\(66\) 0 0
\(67\) 3.06879 0.374912 0.187456 0.982273i \(-0.439976\pi\)
0.187456 + 0.982273i \(0.439976\pi\)
\(68\) 0 0
\(69\) 0.506636 0.0609918
\(70\) 0 0
\(71\) 2.04723 4.94244i 0.242961 0.586560i −0.754613 0.656170i \(-0.772175\pi\)
0.997574 + 0.0696100i \(0.0221755\pi\)
\(72\) 0 0
\(73\) 10.2363 + 4.24000i 1.19806 + 0.496254i 0.890373 0.455232i \(-0.150444\pi\)
0.307691 + 0.951486i \(0.400444\pi\)
\(74\) 0 0
\(75\) 1.02427 0.424268i 0.118273 0.0489902i
\(76\) 0 0
\(77\) 0.643683 + 0.643683i 0.0733545 + 0.0733545i
\(78\) 0 0
\(79\) 1.84185 + 4.44661i 0.207224 + 0.500283i 0.992984 0.118249i \(-0.0377280\pi\)
−0.785760 + 0.618531i \(0.787728\pi\)
\(80\) 0 0
\(81\) 0.551456i 0.0612728i
\(82\) 0 0
\(83\) −10.5038 + 10.5038i −1.15294 + 1.15294i −0.166982 + 0.985960i \(0.553402\pi\)
−0.985960 + 0.166982i \(0.946598\pi\)
\(84\) 0 0
\(85\) 2.16257 + 3.51045i 0.234564 + 0.380762i
\(86\) 0 0
\(87\) 2.99610 2.99610i 0.321216 0.321216i
\(88\) 0 0
\(89\) 17.0559i 1.80792i 0.427614 + 0.903962i \(0.359354\pi\)
−0.427614 + 0.903962i \(0.640646\pi\)
\(90\) 0 0
\(91\) 0.426632 + 1.02998i 0.0447232 + 0.107971i
\(92\) 0 0
\(93\) 2.91475 + 2.91475i 0.302246 + 0.302246i
\(94\) 0 0
\(95\) 2.72863 1.13024i 0.279952 0.115960i
\(96\) 0 0
\(97\) 0.668375 + 0.276850i 0.0678632 + 0.0281099i 0.416357 0.909201i \(-0.363307\pi\)
−0.348494 + 0.937311i \(0.613307\pi\)
\(98\) 0 0
\(99\) 2.73145 6.59431i 0.274521 0.662753i
\(100\) 0 0
\(101\) −0.308114 −0.0306585 −0.0153293 0.999883i \(-0.504880\pi\)
−0.0153293 + 0.999883i \(0.504880\pi\)
\(102\) 0 0
\(103\) −12.7616 −1.25744 −0.628721 0.777631i \(-0.716421\pi\)
−0.628721 + 0.777631i \(0.716421\pi\)
\(104\) 0 0
\(105\) −0.0958204 + 0.231331i −0.00935111 + 0.0225756i
\(106\) 0 0
\(107\) 11.5536 + 4.78566i 1.11693 + 0.462647i 0.863319 0.504659i \(-0.168382\pi\)
0.253611 + 0.967306i \(0.418382\pi\)
\(108\) 0 0
\(109\) −18.7409 + 7.76273i −1.79505 + 0.743535i −0.806776 + 0.590857i \(0.798790\pi\)
−0.988276 + 0.152678i \(0.951210\pi\)
\(110\) 0 0
\(111\) −4.83265 4.83265i −0.458694 0.458694i
\(112\) 0 0
\(113\) −1.44728 3.49404i −0.136148 0.328691i 0.841070 0.540926i \(-0.181926\pi\)
−0.977219 + 0.212234i \(0.931926\pi\)
\(114\) 0 0
\(115\) 0.456978i 0.0426135i
\(116\) 0 0
\(117\) 6.18110 6.18110i 0.571443 0.571443i
\(118\) 0 0
\(119\) −0.905978 0.215256i −0.0830509 0.0197325i
\(120\) 0 0
\(121\) −3.70926 + 3.70926i −0.337205 + 0.337205i
\(122\) 0 0
\(123\) 3.80471i 0.343059i
\(124\) 0 0
\(125\) 0.382683 + 0.923880i 0.0342282 + 0.0826343i
\(126\) 0 0
\(127\) −2.07454 2.07454i −0.184086 0.184086i 0.609048 0.793134i \(-0.291552\pi\)
−0.793134 + 0.609048i \(0.791552\pi\)
\(128\) 0 0
\(129\) −2.67649 + 1.10864i −0.235652 + 0.0976103i
\(130\) 0 0
\(131\) 12.6409 + 5.23602i 1.10444 + 0.457473i 0.859019 0.511944i \(-0.171075\pi\)
0.245419 + 0.969417i \(0.421075\pi\)
\(132\) 0 0
\(133\) −0.255263 + 0.616259i −0.0221341 + 0.0534364i
\(134\) 0 0
\(135\) 5.28929 0.455229
\(136\) 0 0
\(137\) 2.86159 0.244482 0.122241 0.992500i \(-0.460992\pi\)
0.122241 + 0.992500i \(0.460992\pi\)
\(138\) 0 0
\(139\) −2.43181 + 5.87091i −0.206263 + 0.497964i −0.992829 0.119543i \(-0.961857\pi\)
0.786566 + 0.617507i \(0.211857\pi\)
\(140\) 0 0
\(141\) −10.5417 4.36653i −0.887773 0.367728i
\(142\) 0 0
\(143\) −18.3815 + 7.61385i −1.53713 + 0.636702i
\(144\) 0 0
\(145\) 2.70244 + 2.70244i 0.224425 + 0.224425i
\(146\) 0 0
\(147\) 2.94823 + 7.11766i 0.243166 + 0.587055i
\(148\) 0 0
\(149\) 10.4836i 0.858850i 0.903103 + 0.429425i \(0.141284\pi\)
−0.903103 + 0.429425i \(0.858716\pi\)
\(150\) 0 0
\(151\) −7.81548 + 7.81548i −0.636015 + 0.636015i −0.949570 0.313555i \(-0.898480\pi\)
0.313555 + 0.949570i \(0.398480\pi\)
\(152\) 0 0
\(153\) 1.15914 + 7.20886i 0.0937109 + 0.582802i
\(154\) 0 0
\(155\) −2.62907 + 2.62907i −0.211172 + 0.211172i
\(156\) 0 0
\(157\) 13.9432i 1.11278i 0.830920 + 0.556392i \(0.187815\pi\)
−0.830920 + 0.556392i \(0.812185\pi\)
\(158\) 0 0
\(159\) 0.916663 + 2.21302i 0.0726961 + 0.175504i
\(160\) 0 0
\(161\) −0.0729791 0.0729791i −0.00575156 0.00575156i
\(162\) 0 0
\(163\) 12.8451 5.32062i 1.00611 0.416743i 0.182074 0.983285i \(-0.441719\pi\)
0.824033 + 0.566542i \(0.191719\pi\)
\(164\) 0 0
\(165\) −4.12843 1.71005i −0.321398 0.133127i
\(166\) 0 0
\(167\) −2.00018 + 4.82885i −0.154778 + 0.373668i −0.982180 0.187943i \(-0.939818\pi\)
0.827402 + 0.561610i \(0.189818\pi\)
\(168\) 0 0
\(169\) −11.3664 −0.874337
\(170\) 0 0
\(171\) 5.23016 0.399960
\(172\) 0 0
\(173\) 3.65057 8.81326i 0.277548 0.670059i −0.722219 0.691665i \(-0.756878\pi\)
0.999767 + 0.0216052i \(0.00687768\pi\)
\(174\) 0 0
\(175\) −0.208657 0.0864287i −0.0157730 0.00653339i
\(176\) 0 0
\(177\) −3.41733 + 1.41551i −0.256862 + 0.106396i
\(178\) 0 0
\(179\) −0.828820 0.828820i −0.0619490 0.0619490i 0.675454 0.737403i \(-0.263948\pi\)
−0.737403 + 0.675454i \(0.763948\pi\)
\(180\) 0 0
\(181\) 3.05295 + 7.37048i 0.226924 + 0.547843i 0.995800 0.0915546i \(-0.0291836\pi\)
−0.768876 + 0.639398i \(0.779184\pi\)
\(182\) 0 0
\(183\) 10.9088i 0.806399i
\(184\) 0 0
\(185\) 4.35898 4.35898i 0.320479 0.320479i
\(186\) 0 0
\(187\) 3.84155 16.1685i 0.280922 1.18235i
\(188\) 0 0
\(189\) −0.844695 + 0.844695i −0.0614426 + 0.0614426i
\(190\) 0 0
\(191\) 25.3423i 1.83370i 0.399226 + 0.916852i \(0.369279\pi\)
−0.399226 + 0.916852i \(0.630721\pi\)
\(192\) 0 0
\(193\) −5.41349 13.0693i −0.389671 0.940750i −0.990009 0.141003i \(-0.954967\pi\)
0.600338 0.799747i \(-0.295033\pi\)
\(194\) 0 0
\(195\) −3.86973 3.86973i −0.277117 0.277117i
\(196\) 0 0
\(197\) 15.7854 6.53852i 1.12466 0.465850i 0.258698 0.965958i \(-0.416706\pi\)
0.865963 + 0.500108i \(0.166706\pi\)
\(198\) 0 0
\(199\) −22.9319 9.49871i −1.62560 0.673346i −0.630871 0.775887i \(-0.717302\pi\)
−0.994729 + 0.102542i \(0.967302\pi\)
\(200\) 0 0
\(201\) 1.30199 3.14327i 0.0918351 0.221709i
\(202\) 0 0
\(203\) −0.863156 −0.0605817
\(204\) 0 0
\(205\) 3.43179 0.239687
\(206\) 0 0
\(207\) −0.309685 + 0.747646i −0.0215246 + 0.0519650i
\(208\) 0 0
\(209\) −10.9980 4.55553i −0.760748 0.315112i
\(210\) 0 0
\(211\) −23.8616 + 9.88379i −1.64270 + 0.680428i −0.996566 0.0827963i \(-0.973615\pi\)
−0.646133 + 0.763225i \(0.723615\pi\)
\(212\) 0 0
\(213\) −4.19383 4.19383i −0.287357 0.287357i
\(214\) 0 0
\(215\) −0.999978 2.41416i −0.0681979 0.164644i
\(216\) 0 0
\(217\) 0.839721i 0.0570039i
\(218\) 0 0
\(219\) 8.68582 8.68582i 0.586933 0.586933i
\(220\) 0 0
\(221\) 11.9242 16.4937i 0.802111 1.10948i
\(222\) 0 0
\(223\) −16.9226 + 16.9226i −1.13322 + 1.13322i −0.143583 + 0.989638i \(0.545863\pi\)
−0.989638 + 0.143583i \(0.954137\pi\)
\(224\) 0 0
\(225\) 1.77086i 0.118058i
\(226\) 0 0
\(227\) 0.715974 + 1.72851i 0.0475209 + 0.114726i 0.945857 0.324582i \(-0.105224\pi\)
−0.898337 + 0.439308i \(0.855224\pi\)
\(228\) 0 0
\(229\) −14.1637 14.1637i −0.935966 0.935966i 0.0621035 0.998070i \(-0.480219\pi\)
−0.998070 + 0.0621035i \(0.980219\pi\)
\(230\) 0 0
\(231\) 0.932401 0.386213i 0.0613475 0.0254109i
\(232\) 0 0
\(233\) 3.15977 + 1.30882i 0.207004 + 0.0857437i 0.483776 0.875192i \(-0.339265\pi\)
−0.276773 + 0.960935i \(0.589265\pi\)
\(234\) 0 0
\(235\) 3.93855 9.50849i 0.256922 0.620265i
\(236\) 0 0
\(237\) 5.33597 0.346609
\(238\) 0 0
\(239\) −11.2962 −0.730690 −0.365345 0.930872i \(-0.619049\pi\)
−0.365345 + 0.930872i \(0.619049\pi\)
\(240\) 0 0
\(241\) 2.40490 5.80593i 0.154913 0.373993i −0.827301 0.561759i \(-0.810125\pi\)
0.982214 + 0.187766i \(0.0601247\pi\)
\(242\) 0 0
\(243\) 14.0951 + 5.83840i 0.904204 + 0.374534i
\(244\) 0 0
\(245\) −6.42003 + 2.65926i −0.410161 + 0.169894i
\(246\) 0 0
\(247\) −10.3089 10.3089i −0.655937 0.655937i
\(248\) 0 0
\(249\) 6.30233 + 15.2152i 0.399394 + 0.964222i
\(250\) 0 0
\(251\) 1.97552i 0.124694i −0.998055 0.0623468i \(-0.980142\pi\)
0.998055 0.0623468i \(-0.0198585\pi\)
\(252\) 0 0
\(253\) 1.30242 1.30242i 0.0818822 0.0818822i
\(254\) 0 0
\(255\) 4.51317 0.725690i 0.282626 0.0454445i
\(256\) 0 0
\(257\) 15.2037 15.2037i 0.948378 0.948378i −0.0503538 0.998731i \(-0.516035\pi\)
0.998731 + 0.0503538i \(0.0160349\pi\)
\(258\) 0 0
\(259\) 1.39225i 0.0865103i
\(260\) 0 0
\(261\) 2.58998 + 6.25275i 0.160315 + 0.387036i
\(262\) 0 0
\(263\) 18.6774 + 18.6774i 1.15170 + 1.15170i 0.986212 + 0.165485i \(0.0529191\pi\)
0.165485 + 0.986212i \(0.447081\pi\)
\(264\) 0 0
\(265\) −1.99611 + 0.826817i −0.122620 + 0.0507910i
\(266\) 0 0
\(267\) 17.4699 + 7.23627i 1.06914 + 0.442853i
\(268\) 0 0
\(269\) 5.77414 13.9400i 0.352055 0.849937i −0.644311 0.764764i \(-0.722856\pi\)
0.996366 0.0851731i \(-0.0271443\pi\)
\(270\) 0 0
\(271\) 5.71822 0.347357 0.173679 0.984802i \(-0.444435\pi\)
0.173679 + 0.984802i \(0.444435\pi\)
\(272\) 0 0
\(273\) 1.23599 0.0748053
\(274\) 0 0
\(275\) 1.54244 3.72378i 0.0930127 0.224553i
\(276\) 0 0
\(277\) −7.24345 3.00033i −0.435216 0.180273i 0.154309 0.988023i \(-0.450685\pi\)
−0.589525 + 0.807750i \(0.700685\pi\)
\(278\) 0 0
\(279\) −6.08299 + 2.51966i −0.364179 + 0.150848i
\(280\) 0 0
\(281\) −12.8053 12.8053i −0.763900 0.763900i 0.213125 0.977025i \(-0.431636\pi\)
−0.977025 + 0.213125i \(0.931636\pi\)
\(282\) 0 0
\(283\) 10.7585 + 25.9734i 0.639529 + 1.54396i 0.827308 + 0.561748i \(0.189871\pi\)
−0.187779 + 0.982211i \(0.560129\pi\)
\(284\) 0 0
\(285\) 3.27439i 0.193958i
\(286\) 0 0
\(287\) −0.548055 + 0.548055i −0.0323507 + 0.0323507i
\(288\) 0 0
\(289\) 5.32921 + 16.1431i 0.313483 + 0.949594i
\(290\) 0 0
\(291\) 0.567140 0.567140i 0.0332463 0.0332463i
\(292\) 0 0
\(293\) 23.6324i 1.38062i −0.723514 0.690310i \(-0.757474\pi\)
0.723514 0.690310i \(-0.242526\pi\)
\(294\) 0 0
\(295\) −1.27677 3.08239i −0.0743362 0.179463i
\(296\) 0 0
\(297\) −15.0748 15.0748i −0.874728 0.874728i
\(298\) 0 0
\(299\) 2.08404 0.863239i 0.120523 0.0499224i
\(300\) 0 0
\(301\) 0.545236 + 0.225844i 0.0314269 + 0.0130174i
\(302\) 0 0
\(303\) −0.130723 + 0.315593i −0.00750983 + 0.0181303i
\(304\) 0 0
\(305\) −9.83956 −0.563411
\(306\) 0 0
\(307\) 6.28937 0.358953 0.179477 0.983762i \(-0.442560\pi\)
0.179477 + 0.983762i \(0.442560\pi\)
\(308\) 0 0
\(309\) −5.41435 + 13.0714i −0.308012 + 0.743606i
\(310\) 0 0
\(311\) 23.4038 + 9.69415i 1.32711 + 0.549705i 0.929828 0.367994i \(-0.119955\pi\)
0.397277 + 0.917699i \(0.369955\pi\)
\(312\) 0 0
\(313\) −7.34211 + 3.04120i −0.415001 + 0.171899i −0.580407 0.814327i \(-0.697106\pi\)
0.165406 + 0.986226i \(0.447106\pi\)
\(314\) 0 0
\(315\) −0.282806 0.282806i −0.0159343 0.0159343i
\(316\) 0 0
\(317\) 0.141255 + 0.341019i 0.00793365 + 0.0191535i 0.927797 0.373086i \(-0.121700\pi\)
−0.919863 + 0.392240i \(0.871700\pi\)
\(318\) 0 0
\(319\) 15.4042i 0.862471i
\(320\) 0 0
\(321\) 9.80364 9.80364i 0.547186 0.547186i
\(322\) 0 0
\(323\) 12.0230 1.93322i 0.668975 0.107567i
\(324\) 0 0
\(325\) 3.49044 3.49044i 0.193615 0.193615i
\(326\) 0 0
\(327\) 22.4893i 1.24366i
\(328\) 0 0
\(329\) 0.889516 + 2.14748i 0.0490406 + 0.118395i
\(330\) 0 0
\(331\) −6.71441 6.71441i −0.369057 0.369057i 0.498076 0.867133i \(-0.334040\pi\)
−0.867133 + 0.498076i \(0.834040\pi\)
\(332\) 0 0
\(333\) 10.0856 4.17758i 0.552685 0.228930i
\(334\) 0 0
\(335\) 2.83519 + 1.17437i 0.154903 + 0.0641629i
\(336\) 0 0
\(337\) 9.99254 24.1241i 0.544328 1.31412i −0.377314 0.926085i \(-0.623152\pi\)
0.921643 0.388040i \(-0.126848\pi\)
\(338\) 0 0
\(339\) −4.19288 −0.227726
\(340\) 0 0
\(341\) 14.9860 0.811537
\(342\) 0 0
\(343\) 1.20559 2.91056i 0.0650959 0.157155i
\(344\) 0 0
\(345\) 0.468070 + 0.193881i 0.0252001 + 0.0104382i
\(346\) 0 0
\(347\) 21.1343 8.75410i 1.13455 0.469945i 0.265223 0.964187i \(-0.414554\pi\)
0.869324 + 0.494242i \(0.164554\pi\)
\(348\) 0 0
\(349\) 6.07305 + 6.07305i 0.325083 + 0.325083i 0.850713 0.525630i \(-0.176170\pi\)
−0.525630 + 0.850713i \(0.676170\pi\)
\(350\) 0 0
\(351\) −9.99154 24.1217i −0.533309 1.28752i
\(352\) 0 0
\(353\) 15.7802i 0.839896i −0.907548 0.419948i \(-0.862048\pi\)
0.907548 0.419948i \(-0.137952\pi\)
\(354\) 0 0
\(355\) 3.78278 3.78278i 0.200769 0.200769i
\(356\) 0 0
\(357\) −0.604858 + 0.836642i −0.0320125 + 0.0442798i
\(358\) 0 0
\(359\) 11.8989 11.8989i 0.628001 0.628001i −0.319564 0.947565i \(-0.603536\pi\)
0.947565 + 0.319564i \(0.103536\pi\)
\(360\) 0 0
\(361\) 10.2771i 0.540901i
\(362\) 0 0
\(363\) 2.22557 + 5.37301i 0.116812 + 0.282010i
\(364\) 0 0
\(365\) 7.83449 + 7.83449i 0.410076 + 0.410076i
\(366\) 0 0
\(367\) −20.3854 + 8.44389i −1.06411 + 0.440768i −0.844908 0.534912i \(-0.820345\pi\)
−0.219200 + 0.975680i \(0.570345\pi\)
\(368\) 0 0
\(369\) 5.61463 + 2.32566i 0.292286 + 0.121069i
\(370\) 0 0
\(371\) 0.186736 0.450820i 0.00969484 0.0234054i
\(372\) 0 0
\(373\) −23.0319 −1.19254 −0.596272 0.802782i \(-0.703352\pi\)
−0.596272 + 0.802782i \(0.703352\pi\)
\(374\) 0 0
\(375\) 1.10866 0.0572512
\(376\) 0 0
\(377\) 7.21949 17.4294i 0.371822 0.897659i
\(378\) 0 0
\(379\) 21.6539 + 8.96933i 1.11229 + 0.460724i 0.861724 0.507377i \(-0.169385\pi\)
0.250561 + 0.968101i \(0.419385\pi\)
\(380\) 0 0
\(381\) −3.00505 + 1.24473i −0.153954 + 0.0637697i
\(382\) 0 0
\(383\) −23.4939 23.4939i −1.20048 1.20048i −0.974020 0.226461i \(-0.927284\pi\)
−0.226461 0.974020i \(-0.572716\pi\)
\(384\) 0 0
\(385\) 0.348359 + 0.841012i 0.0177540 + 0.0428620i
\(386\) 0 0
\(387\) 4.62739i 0.235223i
\(388\) 0 0
\(389\) 15.7265 15.7265i 0.797367 0.797367i −0.185313 0.982680i \(-0.559330\pi\)
0.982680 + 0.185313i \(0.0593299\pi\)
\(390\) 0 0
\(391\) −0.435545 + 1.83314i −0.0220265 + 0.0927058i
\(392\) 0 0
\(393\) 10.7262 10.7262i 0.541066 0.541066i
\(394\) 0 0
\(395\) 4.81297i 0.242167i
\(396\) 0 0
\(397\) 3.58279 + 8.64961i 0.179815 + 0.434111i 0.987928 0.154916i \(-0.0495108\pi\)
−0.808113 + 0.589028i \(0.799511\pi\)
\(398\) 0 0
\(399\) 0.522917 + 0.522917i 0.0261786 + 0.0261786i
\(400\) 0 0
\(401\) 24.6525 10.2114i 1.23109 0.509933i 0.330169 0.943922i \(-0.392894\pi\)
0.900918 + 0.433989i \(0.142894\pi\)
\(402\) 0 0
\(403\) 16.9562 + 7.02347i 0.844647 + 0.349864i
\(404\) 0 0
\(405\) 0.211033 0.509479i 0.0104863 0.0253162i
\(406\) 0 0
\(407\) −24.8467 −1.23161
\(408\) 0 0
\(409\) −1.38542 −0.0685044 −0.0342522 0.999413i \(-0.510905\pi\)
−0.0342522 + 0.999413i \(0.510905\pi\)
\(410\) 0 0
\(411\) 1.21408 2.93105i 0.0598861 0.144578i
\(412\) 0 0
\(413\) 0.696154 + 0.288356i 0.0342555 + 0.0141891i
\(414\) 0 0
\(415\) −13.7239 + 5.68461i −0.673678 + 0.279047i
\(416\) 0 0
\(417\) 4.98167 + 4.98167i 0.243953 + 0.243953i
\(418\) 0 0
\(419\) −11.3756 27.4632i −0.555736 1.34167i −0.913113 0.407706i \(-0.866329\pi\)
0.357377 0.933960i \(-0.383671\pi\)
\(420\) 0 0
\(421\) 25.6165i 1.24847i −0.781236 0.624236i \(-0.785410\pi\)
0.781236 0.624236i \(-0.214590\pi\)
\(422\) 0 0
\(423\) 12.8874 12.8874i 0.626608 0.626608i
\(424\) 0 0
\(425\) 0.654562 + 4.07082i 0.0317509 + 0.197464i
\(426\) 0 0
\(427\) 1.57137 1.57137i 0.0760440 0.0760440i
\(428\) 0 0
\(429\) 22.0579i 1.06497i
\(430\) 0 0
\(431\) 6.47429 + 15.6303i 0.311855 + 0.752886i 0.999636 + 0.0269673i \(0.00858501\pi\)
−0.687781 + 0.725918i \(0.741415\pi\)
\(432\) 0 0
\(433\) −14.0872 14.0872i −0.676987 0.676987i 0.282331 0.959317i \(-0.408893\pi\)
−0.959317 + 0.282331i \(0.908893\pi\)
\(434\) 0 0
\(435\) 3.91459 1.62148i 0.187690 0.0777439i
\(436\) 0 0
\(437\) 1.24693 + 0.516494i 0.0596486 + 0.0247073i
\(438\) 0 0
\(439\) 11.1287 26.8671i 0.531146 1.28230i −0.399620 0.916681i \(-0.630858\pi\)
0.930765 0.365618i \(-0.119142\pi\)
\(440\) 0 0
\(441\) −12.3057 −0.585986
\(442\) 0 0
\(443\) −22.9336 −1.08961 −0.544803 0.838564i \(-0.683396\pi\)
−0.544803 + 0.838564i \(0.683396\pi\)
\(444\) 0 0
\(445\) −6.52702 + 15.7576i −0.309410 + 0.746982i
\(446\) 0 0
\(447\) 10.7381 + 4.44785i 0.507893 + 0.210376i
\(448\) 0 0
\(449\) −10.6291 + 4.40270i −0.501616 + 0.207776i −0.619120 0.785296i \(-0.712511\pi\)
0.117504 + 0.993072i \(0.462511\pi\)
\(450\) 0 0
\(451\) −9.78081 9.78081i −0.460561 0.460561i
\(452\) 0 0
\(453\) 4.68933 + 11.3210i 0.220324 + 0.531908i
\(454\) 0 0
\(455\) 1.11484i 0.0522646i
\(456\) 0 0
\(457\) −16.0940 + 16.0940i −0.752845 + 0.752845i −0.975009 0.222164i \(-0.928688\pi\)
0.222164 + 0.975009i \(0.428688\pi\)
\(458\) 0 0
\(459\) 21.2176 + 5.04120i 0.990354 + 0.235303i
\(460\) 0 0
\(461\) −6.76090 + 6.76090i −0.314886 + 0.314886i −0.846799 0.531913i \(-0.821473\pi\)
0.531913 + 0.846799i \(0.321473\pi\)
\(462\) 0 0
\(463\) 8.83827i 0.410749i 0.978683 + 0.205375i \(0.0658413\pi\)
−0.978683 + 0.205375i \(0.934159\pi\)
\(464\) 0 0
\(465\) 1.57745 + 3.80831i 0.0731527 + 0.176606i
\(466\) 0 0
\(467\) 10.3573 + 10.3573i 0.479278 + 0.479278i 0.904901 0.425623i \(-0.139945\pi\)
−0.425623 + 0.904901i \(0.639945\pi\)
\(468\) 0 0
\(469\) −0.640325 + 0.265231i −0.0295674 + 0.0122472i
\(470\) 0 0
\(471\) 14.2816 + 5.91563i 0.658061 + 0.272578i
\(472\) 0 0
\(473\) −4.03050 + 9.73050i −0.185323 + 0.447409i
\(474\) 0 0
\(475\) 2.95345 0.135514
\(476\) 0 0
\(477\) −3.82609 −0.175184
\(478\) 0 0
\(479\) −1.09937 + 2.65412i −0.0502316 + 0.121270i −0.947003 0.321224i \(-0.895906\pi\)
0.896772 + 0.442493i \(0.145906\pi\)
\(480\) 0 0
\(481\) −28.1132 11.6449i −1.28185 0.530961i
\(482\) 0 0
\(483\) −0.105713 + 0.0437878i −0.00481012 + 0.00199242i
\(484\) 0 0
\(485\) 0.511552 + 0.511552i 0.0232284 + 0.0232284i
\(486\) 0 0
\(487\) −2.08318 5.02924i −0.0943979 0.227897i 0.869627 0.493710i \(-0.164360\pi\)
−0.964025 + 0.265813i \(0.914360\pi\)
\(488\) 0 0
\(489\) 15.4143i 0.697057i
\(490\) 0 0
\(491\) −25.8969 + 25.8969i −1.16871 + 1.16871i −0.186197 + 0.982512i \(0.559616\pi\)
−0.982512 + 0.186197i \(0.940384\pi\)
\(492\) 0 0
\(493\) 8.26497 + 13.4163i 0.372236 + 0.604242i
\(494\) 0 0
\(495\) 5.04707 5.04707i 0.226849 0.226849i
\(496\) 0 0
\(497\) 1.20822i 0.0541959i
\(498\) 0 0
\(499\) 1.73614 + 4.19140i 0.0777202 + 0.187633i 0.957964 0.286889i \(-0.0926210\pi\)
−0.880244 + 0.474522i \(0.842621\pi\)
\(500\) 0 0
\(501\) 4.09745 + 4.09745i 0.183061 + 0.183061i
\(502\) 0 0
\(503\) 3.00072 1.24294i 0.133795 0.0554199i −0.314781 0.949164i \(-0.601931\pi\)
0.448577 + 0.893744i \(0.351931\pi\)
\(504\) 0 0
\(505\) −0.284660 0.117910i −0.0126672 0.00524694i
\(506\) 0 0
\(507\) −4.82239 + 11.6423i −0.214170 + 0.517052i
\(508\) 0 0
\(509\) −5.79066 −0.256667 −0.128333 0.991731i \(-0.540963\pi\)
−0.128333 + 0.991731i \(0.540963\pi\)
\(510\) 0 0
\(511\) −2.50233 −0.110696
\(512\) 0 0
\(513\) 5.97815 14.4325i 0.263942 0.637212i
\(514\) 0 0
\(515\) −11.7902 4.88367i −0.519539 0.215200i
\(516\) 0 0
\(517\) −38.3249 + 15.8747i −1.68553 + 0.698167i
\(518\) 0 0
\(519\) −7.47836 7.47836i −0.328263 0.328263i
\(520\) 0 0
\(521\) 15.4857 + 37.3857i 0.678439 + 1.63790i 0.766861 + 0.641813i \(0.221817\pi\)
−0.0884224 + 0.996083i \(0.528183\pi\)
\(522\) 0 0
\(523\) 36.4603i 1.59430i −0.603783 0.797149i \(-0.706341\pi\)
0.603783 0.797149i \(-0.293659\pi\)
\(524\) 0 0
\(525\) −0.177053 + 0.177053i −0.00772723 + 0.00772723i
\(526\) 0 0
\(527\) −13.0521 + 8.04057i −0.568558 + 0.350253i
\(528\) 0 0
\(529\) 16.1158 16.1158i 0.700687 0.700687i
\(530\) 0 0
\(531\) 5.90822i 0.256395i
\(532\) 0 0
\(533\) −6.48270 15.6506i −0.280797 0.677904i
\(534\) 0 0
\(535\) 8.84275 + 8.84275i 0.382305 + 0.382305i
\(536\) 0 0
\(537\) −1.20058 + 0.497296i −0.0518088 + 0.0214599i
\(538\) 0 0
\(539\) 25.8765 + 10.7184i 1.11458 + 0.461675i
\(540\) 0 0
\(541\) 4.49938 10.8625i 0.193443 0.467014i −0.797162 0.603765i \(-0.793666\pi\)
0.990605 + 0.136752i \(0.0436663\pi\)
\(542\) 0 0
\(543\) 8.84465 0.379560
\(544\) 0 0
\(545\) −20.2850 −0.868914
\(546\) 0 0
\(547\) −0.731777 + 1.76667i −0.0312885 + 0.0755372i −0.938751 0.344595i \(-0.888016\pi\)
0.907463 + 0.420132i \(0.138016\pi\)
\(548\) 0 0
\(549\) −16.0981 6.66807i −0.687052 0.284586i
\(550\) 0 0
\(551\) 10.4284 4.31957i 0.444263 0.184020i
\(552\) 0 0
\(553\) −0.768629 0.768629i −0.0326854 0.0326854i
\(554\) 0 0
\(555\) −2.61541 6.31416i −0.111018 0.268021i
\(556\) 0 0
\(557\) 30.3320i 1.28521i 0.766198 + 0.642604i \(0.222146\pi\)
−0.766198 + 0.642604i \(0.777854\pi\)
\(558\) 0 0
\(559\) −9.12077 + 9.12077i −0.385767 + 0.385767i
\(560\) 0 0
\(561\) −14.9311 10.7945i −0.630390 0.455746i
\(562\) 0 0
\(563\) −25.9353 + 25.9353i −1.09304 + 1.09304i −0.0978396 + 0.995202i \(0.531193\pi\)
−0.995202 + 0.0978396i \(0.968807\pi\)
\(564\) 0 0
\(565\) 3.78192i 0.159107i
\(566\) 0 0
\(567\) 0.0476616 + 0.115065i 0.00200160 + 0.00483228i
\(568\) 0 0
\(569\) 15.1437 + 15.1437i 0.634858 + 0.634858i 0.949282 0.314425i \(-0.101812\pi\)
−0.314425 + 0.949282i \(0.601812\pi\)
\(570\) 0 0
\(571\) −1.36361 + 0.564827i −0.0570654 + 0.0236373i −0.411034 0.911620i \(-0.634832\pi\)
0.353968 + 0.935257i \(0.384832\pi\)
\(572\) 0 0
\(573\) 25.9574 + 10.7519i 1.08439 + 0.449168i
\(574\) 0 0
\(575\) −0.174878 + 0.422193i −0.00729292 + 0.0176067i
\(576\) 0 0
\(577\) −34.5024 −1.43635 −0.718177 0.695860i \(-0.755023\pi\)
−0.718177 + 0.695860i \(0.755023\pi\)
\(578\) 0 0
\(579\) −15.6833 −0.651776
\(580\) 0 0
\(581\) 1.28386 3.09952i 0.0532637 0.128590i
\(582\) 0 0
\(583\) 8.04552 + 3.33256i 0.333211 + 0.138021i
\(584\) 0 0
\(585\) 8.07599 3.34519i 0.333901 0.138306i
\(586\) 0 0
\(587\) −19.8839 19.8839i −0.820697 0.820697i 0.165511 0.986208i \(-0.447073\pi\)
−0.986208 + 0.165511i \(0.947073\pi\)
\(588\) 0 0
\(589\) 4.20229 + 10.1452i 0.173152 + 0.418027i
\(590\) 0 0
\(591\) 18.9426i 0.779195i
\(592\) 0 0
\(593\) 15.3211 15.3211i 0.629162 0.629162i −0.318696 0.947857i \(-0.603245\pi\)
0.947857 + 0.318696i \(0.103245\pi\)
\(594\) 0 0
\(595\) −0.754640 0.545573i −0.0309372 0.0223663i
\(596\) 0 0
\(597\) −19.4585 + 19.4585i −0.796385 + 0.796385i
\(598\) 0 0
\(599\) 17.9568i 0.733696i 0.930281 + 0.366848i \(0.119563\pi\)
−0.930281 + 0.366848i \(0.880437\pi\)
\(600\) 0 0
\(601\) 14.6366 + 35.3359i 0.597040 + 1.44138i 0.876584 + 0.481249i \(0.159817\pi\)
−0.279544 + 0.960133i \(0.590183\pi\)
\(602\) 0 0
\(603\) 3.84270 + 3.84270i 0.156487 + 0.156487i
\(604\) 0 0
\(605\) −4.84638 + 2.00744i −0.197033 + 0.0816139i
\(606\) 0 0
\(607\) −9.92891 4.11269i −0.403002 0.166929i 0.171970 0.985102i \(-0.444987\pi\)
−0.574972 + 0.818173i \(0.694987\pi\)
\(608\) 0 0
\(609\) −0.366209 + 0.884107i −0.0148395 + 0.0358258i
\(610\) 0 0
\(611\) −50.8033 −2.05528
\(612\) 0 0
\(613\) 10.5303 0.425315 0.212657 0.977127i \(-0.431788\pi\)
0.212657 + 0.977127i \(0.431788\pi\)
\(614\) 0 0
\(615\) 1.45600 3.51509i 0.0587115 0.141742i
\(616\) 0 0
\(617\) 8.13761 + 3.37071i 0.327608 + 0.135700i 0.540424 0.841393i \(-0.318264\pi\)
−0.212817 + 0.977092i \(0.568264\pi\)
\(618\) 0 0
\(619\) 31.6366 13.1043i 1.27158 0.526707i 0.358138 0.933669i \(-0.383412\pi\)
0.913445 + 0.406962i \(0.133412\pi\)
\(620\) 0 0
\(621\) 1.70914 + 1.70914i 0.0685855 + 0.0685855i
\(622\) 0 0
\(623\) −1.47412 3.55884i −0.0590594 0.142582i
\(624\) 0 0
\(625\) 1.00000i 0.0400000i
\(626\) 0 0
\(627\) −9.33220 + 9.33220i −0.372692 + 0.372692i
\(628\) 0 0
\(629\) 21.6403 13.3312i 0.862855 0.531551i
\(630\) 0 0
\(631\) 1.78345 1.78345i 0.0709978 0.0709978i −0.670716 0.741714i \(-0.734013\pi\)
0.741714 + 0.670716i \(0.234013\pi\)
\(632\) 0 0
\(633\) 28.6341i 1.13811i
\(634\) 0 0
\(635\) −1.12273 2.71052i −0.0445543 0.107564i
\(636\) 0 0
\(637\) 24.2551 + 24.2551i 0.961020 + 0.961020i
\(638\) 0 0
\(639\) 8.75239 3.62536i 0.346239 0.143417i
\(640\) 0 0
\(641\) 2.42773 + 1.00560i 0.0958897 + 0.0397188i 0.430113 0.902775i \(-0.358474\pi\)
−0.334223 + 0.942494i \(0.608474\pi\)
\(642\) 0 0
\(643\) −6.99319 + 16.8831i −0.275785 + 0.665803i −0.999710 0.0240753i \(-0.992336\pi\)
0.723926 + 0.689878i \(0.242336\pi\)
\(644\) 0 0
\(645\) −2.89702 −0.114070
\(646\) 0 0
\(647\) −28.9714 −1.13898 −0.569492 0.821997i \(-0.692860\pi\)
−0.569492 + 0.821997i \(0.692860\pi\)
\(648\) 0 0
\(649\) −5.14612 + 12.4238i −0.202003 + 0.487679i
\(650\) 0 0
\(651\) −0.860103 0.356266i −0.0337101 0.0139632i
\(652\) 0 0
\(653\) −31.0590 + 12.8651i −1.21543 + 0.503449i −0.895955 0.444145i \(-0.853507\pi\)
−0.319478 + 0.947594i \(0.603507\pi\)
\(654\) 0 0
\(655\) 9.67490 + 9.67490i 0.378029 + 0.378029i
\(656\) 0 0
\(657\) 7.50845 + 18.1270i 0.292933 + 0.707202i
\(658\) 0 0
\(659\) 0.540840i 0.0210681i −0.999945 0.0105341i \(-0.996647\pi\)
0.999945 0.0105341i \(-0.00335316\pi\)
\(660\) 0 0
\(661\) 26.5225 26.5225i 1.03161 1.03161i 0.0321222 0.999484i \(-0.489773\pi\)
0.999484 0.0321222i \(-0.0102266\pi\)
\(662\) 0 0
\(663\) −11.8349 19.2114i −0.459631 0.746109i
\(664\) 0 0
\(665\) −0.471664 + 0.471664i −0.0182904 + 0.0182904i
\(666\) 0 0
\(667\) 1.74649i 0.0676245i
\(668\) 0 0
\(669\) 10.1536 + 24.5131i 0.392563 + 0.947730i
\(670\) 0 0
\(671\) 28.0433 + 28.0433i 1.08260 + 1.08260i
\(672\) 0 0
\(673\) −23.2154 + 9.61615i −0.894890 + 0.370676i −0.782253 0.622961i \(-0.785930\pi\)
−0.112637 + 0.993636i \(0.535930\pi\)
\(674\) 0 0
\(675\) 4.88666 + 2.02412i 0.188088 + 0.0779085i
\(676\) 0 0
\(677\) 9.75469 23.5499i 0.374903 0.905097i −0.618001 0.786178i \(-0.712057\pi\)
0.992904 0.118919i \(-0.0379429\pi\)
\(678\) 0 0
\(679\) −0.163389 −0.00627030
\(680\) 0 0
\(681\) 2.07423 0.0794848
\(682\) 0 0
\(683\) 1.51105 3.64801i 0.0578189 0.139587i −0.892330 0.451384i \(-0.850931\pi\)
0.950149 + 0.311796i \(0.100931\pi\)
\(684\) 0 0
\(685\) 2.64376 + 1.09508i 0.101013 + 0.0418410i
\(686\) 0 0
\(687\) −20.5167 + 8.49831i −0.782763 + 0.324231i
\(688\) 0 0
\(689\) 7.54137 + 7.54137i 0.287303 + 0.287303i
\(690\) 0 0
\(691\) 5.03867 + 12.1644i 0.191680 + 0.462757i 0.990277 0.139109i \(-0.0444240\pi\)
−0.798597 + 0.601866i \(0.794424\pi\)
\(692\) 0 0
\(693\) 1.61203i 0.0612358i
\(694\) 0 0
\(695\) −4.49340 + 4.49340i −0.170444 + 0.170444i
\(696\) 0 0
\(697\) 13.7664 + 3.27083i 0.521440 + 0.123892i
\(698\) 0 0
\(699\) 2.68118 2.68118i 0.101411 0.101411i
\(700\) 0 0
\(701\) 6.10925i 0.230743i 0.993322 + 0.115372i \(0.0368059\pi\)
−0.993322 + 0.115372i \(0.963194\pi\)
\(702\) 0 0
\(703\) −6.96738 16.8207i −0.262780 0.634406i
\(704\) 0 0
\(705\) −8.06829 8.06829i −0.303869 0.303869i
\(706\) 0 0
\(707\) 0.0642903 0.0266299i 0.00241788 0.00100152i
\(708\) 0 0
\(709\) −17.5038 7.25033i −0.657371 0.272292i 0.0289611 0.999581i \(-0.490780\pi\)
−0.686332 + 0.727289i \(0.740780\pi\)
\(710\) 0 0
\(711\) −3.26166 + 7.87434i −0.122322 + 0.295311i
\(712\) 0 0
\(713\) −1.69907 −0.0636308
\(714\) 0 0
\(715\) −19.8959 −0.744066
\(716\) 0 0
\(717\) −4.79261 + 11.5704i −0.178983 + 0.432104i
\(718\) 0 0
\(719\) 12.4051 + 5.13834i 0.462631 + 0.191628i 0.601810 0.798639i \(-0.294446\pi\)
−0.139179 + 0.990267i \(0.544446\pi\)
\(720\) 0 0
\(721\) 2.66281 1.10297i 0.0991682 0.0410768i
\(722\) 0 0
\(723\) −4.92654 4.92654i −0.183220 0.183220i
\(724\) 0 0
\(725\) 1.46255 + 3.53091i 0.0543177 + 0.131135i
\(726\) 0 0
\(727\) 24.7160i 0.916666i −0.888780 0.458333i \(-0.848447\pi\)
0.888780 0.458333i \(-0.151553\pi\)
\(728\) 0 0
\(729\) 13.1300 13.1300i 0.486298 0.486298i
\(730\) 0 0
\(731\) −1.71042 10.6373i −0.0632620 0.393436i
\(732\) 0 0
\(733\) 18.7372 18.7372i 0.692075 0.692075i −0.270613 0.962688i \(-0.587226\pi\)
0.962688 + 0.270613i \(0.0872264\pi\)
\(734\) 0 0
\(735\) 7.70410i 0.284170i
\(736\) 0 0
\(737\) −4.73342 11.4275i −0.174358 0.420937i
\(738\) 0 0
\(739\) 18.7101 + 18.7101i 0.688262 + 0.688262i 0.961848 0.273585i \(-0.0882096\pi\)
−0.273585 + 0.961848i \(0.588210\pi\)
\(740\) 0 0
\(741\) −14.9328 + 6.18536i −0.548570 + 0.227225i
\(742\) 0 0
\(743\) 31.4774 + 13.0384i 1.15479 + 0.478331i 0.876138 0.482060i \(-0.160111\pi\)
0.278655 + 0.960391i \(0.410111\pi\)
\(744\) 0 0
\(745\) −4.01190 + 9.68558i −0.146985 + 0.354852i
\(746\) 0 0
\(747\) −26.3055 −0.962467
\(748\) 0 0
\(749\) −2.82436 −0.103200
\(750\) 0 0
\(751\) 9.44162 22.7941i 0.344530 0.831768i −0.652716 0.757602i \(-0.726371\pi\)
0.997246 0.0741657i \(-0.0236294\pi\)
\(752\) 0 0
\(753\) −2.02347 0.838148i −0.0737393 0.0305438i
\(754\) 0 0
\(755\) −10.2114 + 4.22971i −0.371631 + 0.153935i
\(756\) 0 0
\(757\) −17.8992 17.8992i −0.650558 0.650558i 0.302569 0.953127i \(-0.402156\pi\)
−0.953127 + 0.302569i \(0.902156\pi\)
\(758\) 0 0
\(759\) −0.781456 1.88660i −0.0283651 0.0684793i
\(760\) 0 0
\(761\) 17.9589i 0.651011i 0.945540 + 0.325505i \(0.105534\pi\)
−0.945540 + 0.325505i \(0.894466\pi\)
\(762\) 0 0
\(763\) 3.23950 3.23950i 0.117278 0.117278i
\(764\) 0 0
\(765\) −1.68780 + 7.10370i −0.0610227 + 0.256835i
\(766\) 0 0
\(767\) −11.6453 + 11.6453i −0.420489 + 0.420489i
\(768\) 0 0
\(769\) 33.8801i 1.22175i 0.791728 + 0.610874i \(0.209182\pi\)
−0.791728 + 0.610874i \(0.790818\pi\)
\(770\) 0 0
\(771\) −9.12227 22.0231i −0.328530 0.793142i
\(772\) 0 0
\(773\) −24.3851 24.3851i −0.877070 0.877070i 0.116160 0.993230i \(-0.462941\pi\)
−0.993230 + 0.116160i \(0.962941\pi\)
\(774\) 0 0
\(775\) −3.43504 + 1.42284i −0.123390 + 0.0511100i
\(776\) 0 0
\(777\) 1.42605 + 0.590687i 0.0511591 + 0.0211908i
\(778\) 0 0
\(779\) 3.87874 9.36410i 0.138970 0.335504i
\(780\) 0 0
\(781\) −21.5623 −0.771560
\(782\) 0 0
\(783\) 20.2147 0.722416
\(784\) 0 0
\(785\) −5.33581 + 12.8818i −0.190443 + 0.459771i
\(786\) 0 0
\(787\) −4.14193 1.71564i −0.147644 0.0611561i 0.307638 0.951503i \(-0.400461\pi\)
−0.455282 + 0.890347i \(0.650461\pi\)
\(788\) 0 0
\(789\) 27.0550 11.2065i 0.963182 0.398963i
\(790\) 0 0
\(791\) 0.603970 + 0.603970i 0.0214747 + 0.0214747i
\(792\) 0 0
\(793\) 18.5871 + 44.8731i 0.660046 + 1.59349i
\(794\) 0 0
\(795\) 2.39536i 0.0849545i
\(796\) 0 0
\(797\) −2.68218 + 2.68218i −0.0950077 + 0.0950077i −0.753013 0.658005i \(-0.771400\pi\)
0.658005 + 0.753013i \(0.271400\pi\)
\(798\) 0 0
\(799\) 24.8617 34.3889i 0.879545 1.21659i
\(800\) 0 0
\(801\) −21.3572 + 21.3572i −0.754621 + 0.754621i
\(802\) 0 0
\(803\) 44.6575i 1.57593i
\(804\) 0 0
\(805\) −0.0394960 0.0953519i −0.00139205 0.00336071i
\(806\) 0 0
\(807\) −11.8286 11.8286i −0.416386 0.416386i
\(808\) 0 0
\(809\) 16.3258 6.76237i 0.573985 0.237752i −0.0767589 0.997050i \(-0.524457\pi\)
0.650744 + 0.759297i \(0.274457\pi\)
\(810\) 0 0
\(811\) −33.5393 13.8924i −1.17772 0.487829i −0.293985 0.955810i \(-0.594982\pi\)
−0.883739 + 0.467981i \(0.844982\pi\)
\(812\) 0 0
\(813\) 2.42606 5.85702i 0.0850855 0.205415i
\(814\) 0 0
\(815\) 13.9034 0.487016
\(816\) 0 0
\(817\) −7.71757 −0.270004
\(818\) 0 0
\(819\) −0.755507 + 1.82395i −0.0263995 + 0.0637341i
\(820\) 0 0
\(821\) 25.2211 + 10.4469i 0.880224 + 0.364601i 0.776583 0.630014i \(-0.216951\pi\)
0.103640 + 0.994615i \(0.466951\pi\)
\(822\) 0 0
\(823\) 15.7478 6.52295i 0.548934 0.227376i −0.0909394 0.995856i \(-0.528987\pi\)
0.639873 + 0.768481i \(0.278987\pi\)
\(824\) 0 0
\(825\) −3.15976 3.15976i −0.110009 0.110009i
\(826\) 0 0
\(827\) 11.6351 + 28.0895i 0.404590 + 0.976768i 0.986537 + 0.163540i \(0.0522914\pi\)
−0.581946 + 0.813227i \(0.697709\pi\)
\(828\) 0 0
\(829\) 22.4655i 0.780260i 0.920760 + 0.390130i \(0.127570\pi\)
−0.920760 + 0.390130i \(0.872430\pi\)
\(830\) 0 0
\(831\) −6.14632 + 6.14632i −0.213213 + 0.213213i
\(832\) 0 0
\(833\) −28.2881 + 4.54855i −0.980124 + 0.157598i
\(834\) 0 0
\(835\) −3.69584 + 3.69584i −0.127900 + 0.127900i
\(836\) 0 0
\(837\) 19.6659i 0.679753i
\(838\) 0 0
\(839\) −0.475240 1.14733i −0.0164071 0.0396102i 0.915464 0.402401i \(-0.131824\pi\)
−0.931871 + 0.362790i \(0.881824\pi\)
\(840\) 0 0
\(841\) −10.1778 10.1778i −0.350960 0.350960i
\(842\) 0 0
\(843\) −18.5490 + 7.68324i −0.638861 + 0.264625i
\(844\) 0 0
\(845\) −10.5012 4.34973i −0.361251 0.149635i
\(846\) 0 0
\(847\) 0.453377 1.09455i 0.0155782 0.0376092i
\(848\) 0 0
\(849\) 31.1684 1.06970
\(850\) 0 0
\(851\) 2.81706 0.0965674
\(852\) 0 0
\(853\) −5.38635 + 13.0038i −0.184425 + 0.445241i −0.988869 0.148787i \(-0.952463\pi\)
0.804444 + 0.594028i \(0.202463\pi\)
\(854\) 0 0
\(855\) 4.83204 + 2.00149i 0.165252 + 0.0684497i
\(856\) 0 0
\(857\) −11.4567 + 4.74554i −0.391355 + 0.162104i −0.569679 0.821867i \(-0.692932\pi\)
0.178324 + 0.983972i \(0.442932\pi\)
\(858\) 0 0
\(859\) −37.4935 37.4935i −1.27926 1.27926i −0.941082 0.338178i \(-0.890189\pi\)
−0.338178 0.941082i \(-0.609811\pi\)
\(860\) 0 0
\(861\) 0.328836 + 0.793879i 0.0112067 + 0.0270553i
\(862\) 0 0
\(863\) 0.897841i 0.0305629i 0.999883 + 0.0152814i \(0.00486442\pi\)
−0.999883 + 0.0152814i \(0.995136\pi\)
\(864\) 0 0
\(865\) 6.74537 6.74537i 0.229350 0.229350i
\(866\) 0 0
\(867\) 18.7959 + 1.39043i 0.638344 + 0.0472215i
\(868\) 0 0
\(869\) 13.7173 13.7173i 0.465326 0.465326i
\(870\) 0 0
\(871\) 15.1482i 0.513279i
\(872\) 0 0
\(873\) 0.490264 + 1.18360i 0.0165929 + 0.0400588i
\(874\) 0 0
\(875\) −0.159699 0.159699i −0.00539882 0.00539882i
\(876\) 0 0
\(877\) 3.29576 1.36515i 0.111290 0.0460978i −0.326344 0.945251i \(-0.605817\pi\)
0.437634 + 0.899153i \(0.355817\pi\)
\(878\) 0 0
\(879\) −24.2060 10.0265i −0.816449 0.338184i
\(880\) 0 0
\(881\) 17.5977 42.4846i 0.592881 1.43134i −0.287827 0.957682i \(-0.592933\pi\)
0.880708 0.473659i \(-0.157067\pi\)
\(882\) 0 0
\(883\) 43.2133 1.45424 0.727121 0.686509i \(-0.240858\pi\)
0.727121 + 0.686509i \(0.240858\pi\)
\(884\) 0 0
\(885\) −3.69889 −0.124337
\(886\) 0 0
\(887\) −6.41507 + 15.4873i −0.215397 + 0.520014i −0.994236 0.107209i \(-0.965809\pi\)
0.778840 + 0.627223i \(0.215809\pi\)
\(888\) 0 0
\(889\) 0.612168 + 0.253568i 0.0205314 + 0.00850440i
\(890\) 0 0
\(891\) −2.05350 + 0.850588i −0.0687949 + 0.0284958i
\(892\) 0 0
\(893\) −21.4937 21.4937i −0.719259 0.719259i
\(894\) 0 0
\(895\) −0.448554 1.08291i −0.0149935 0.0361976i
\(896\) 0 0
\(897\) 2.50087i 0.0835017i
\(898\) 0 0
\(899\) −10.0478 + 10.0478i −0.335114 + 0.335114i
\(900\) 0 0
\(901\) −8.79531 + 1.41423i −0.293014 + 0.0471149i
\(902\) 0 0
\(903\) 0.462652 0.462652i 0.0153961 0.0153961i
\(904\) 0 0
\(905\) 7.97775i 0.265189i
\(906\) 0 0
\(907\) 13.9155 + 33.5949i 0.462055 + 1.11550i 0.967552 + 0.252672i \(0.0813093\pi\)
−0.505497 + 0.862829i \(0.668691\pi\)
\(908\) 0 0
\(909\) −0.385817 0.385817i −0.0127968 0.0127968i
\(910\) 0 0
\(911\) 43.7357 18.1159i 1.44903 0.600207i 0.487059 0.873369i \(-0.338070\pi\)
0.961968 + 0.273162i \(0.0880696\pi\)
\(912\) 0 0
\(913\) 55.3153 + 22.9124i 1.83067 + 0.758289i
\(914\) 0 0
\(915\) −4.17460 + 10.0784i −0.138008 + 0.333181i
\(916\) 0 0
\(917\) −3.09015 −0.102046
\(918\) 0 0
\(919\) −51.0036 −1.68245 −0.841227 0.540681i \(-0.818166\pi\)
−0.841227 + 0.540681i \(0.818166\pi\)
\(920\) 0 0
\(921\) 2.66837 6.44202i 0.0879259 0.212272i
\(922\) 0 0
\(923\) −24.3970 10.1056i −0.803038 0.332629i
\(924\) 0 0
\(925\) 5.69528 2.35906i 0.187260 0.0775655i
\(926\) 0 0
\(927\) −15.9800 15.9800i −0.524852 0.524852i
\(928\) 0 0
\(929\) −16.0605 38.7734i −0.526927 1.27211i −0.933527 0.358507i \(-0.883286\pi\)
0.406600 0.913606i \(-0.366714\pi\)
\(930\) 0 0
\(931\) 20.5235i 0.672631i
\(932\) 0 0
\(933\) 19.8589 19.8589i 0.650151 0.650151i
\(934\) 0 0
\(935\) 9.73653 13.4676i 0.318419 0.440438i
\(936\) 0 0
\(937\) −33.9243 + 33.9243i −1.10826 + 1.10826i −0.114880 + 0.993379i \(0.536648\pi\)
−0.993379 + 0.114880i \(0.963352\pi\)
\(938\) 0 0
\(939\) 8.81061i 0.287523i
\(940\) 0 0
\(941\) 5.88085 + 14.1976i 0.191710 + 0.462829i 0.990283 0.139069i \(-0.0444111\pi\)
−0.798572 + 0.601899i \(0.794411\pi\)
\(942\) 0 0
\(943\) 1.10892 + 1.10892i 0.0361115 + 0.0361115i
\(944\) 0 0
\(945\) −1.10365 + 0.457146i −0.0359017 + 0.0148710i
\(946\) 0 0
\(947\) −4.73866 1.96282i −0.153986 0.0637830i 0.304359 0.952557i \(-0.401558\pi\)
−0.458345 + 0.888774i \(0.651558\pi\)
\(948\) 0 0
\(949\) 20.9296 50.5285i 0.679404 1.64023i
\(950\) 0 0
\(951\) 0.409226 0.0132701
\(952\) 0 0
\(953\) 30.9129 1.00137 0.500684 0.865630i \(-0.333082\pi\)
0.500684 + 0.865630i \(0.333082\pi\)
\(954\) 0 0
\(955\) −9.69808 + 23.4132i −0.313823 + 0.757635i
\(956\) 0 0
\(957\) −15.7781 6.53552i −0.510035 0.211263i
\(958\) 0 0
\(959\) −0.597091 + 0.247323i −0.0192811 + 0.00798649i
\(960\) 0 0
\(961\) 12.1453 + 12.1453i 0.391783 + 0.391783i
\(962\) 0 0
\(963\) 8.47475 + 20.4599i 0.273095 + 0.659310i
\(964\) 0 0
\(965\) 14.1461i 0.455380i
\(966\) 0 0
\(967\) 17.8169 17.8169i 0.572954 0.572954i −0.359999 0.932953i \(-0.617223\pi\)
0.932953 + 0.359999i \(0.117223\pi\)
\(968\) 0 0
\(969\) 3.12081 13.1350i 0.100255 0.421957i
\(970\) 0 0
\(971\) 40.3798 40.3798i 1.29585 1.29585i 0.364740 0.931109i \(-0.381158\pi\)
0.931109 0.364740i \(-0.118842\pi\)
\(972\) 0 0
\(973\) 1.43519i 0.0460099i
\(974\) 0 0
\(975\) −2.09428 5.05605i −0.0670707 0.161923i
\(976\) 0 0
\(977\) −0.0400007 0.0400007i −0.00127974 0.00127974i 0.706467 0.707746i \(-0.250288\pi\)
−0.707746 + 0.706467i \(0.750288\pi\)
\(978\) 0 0
\(979\) 63.5125 26.3077i 2.02987 0.840799i
\(980\) 0 0
\(981\) −33.1876 13.7467i −1.05960 0.438900i
\(982\) 0 0
\(983\) −2.04124 + 4.92800i −0.0651055 + 0.157179i −0.953084 0.302707i \(-0.902110\pi\)
0.887978 + 0.459886i \(0.152110\pi\)
\(984\) 0 0
\(985\) 17.0860 0.544404
\(986\) 0 0
\(987\) 2.57700 0.0820268
\(988\) 0 0
\(989\) 0.456968 1.10322i 0.0145307 0.0350803i
\(990\) 0 0
\(991\) 44.6297 + 18.4862i 1.41771 + 0.587235i 0.954284 0.298901i \(-0.0966201\pi\)
0.463426 + 0.886136i \(0.346620\pi\)
\(992\) 0 0
\(993\) −9.72609 + 4.02868i −0.308648 + 0.127846i
\(994\) 0 0
\(995\) −17.5513 17.5513i −0.556414 0.556414i
\(996\) 0 0
\(997\) 5.04439 + 12.1782i 0.159757 + 0.385689i 0.983408 0.181410i \(-0.0580660\pi\)
−0.823650 + 0.567098i \(0.808066\pi\)
\(998\) 0 0
\(999\) 32.6060i 1.03161i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 680.2.bo.a.161.6 32
17.15 even 8 inner 680.2.bo.a.321.6 yes 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
680.2.bo.a.161.6 32 1.1 even 1 trivial
680.2.bo.a.321.6 yes 32 17.15 even 8 inner