Properties

Label 680.2.bo.a.161.1
Level $680$
Weight $2$
Character 680.161
Analytic conductor $5.430$
Analytic rank $0$
Dimension $32$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [680,2,Mod(121,680)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(680, base_ring=CyclotomicField(8)) chi = DirichletCharacter(H, H._module([0, 0, 0, 7])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("680.121"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 680 = 2^{3} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 680.bo (of order \(8\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.42982733745\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(8\) over \(\Q(\zeta_{8})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 161.1
Character \(\chi\) \(=\) 680.161
Dual form 680.2.bo.a.321.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.805905 + 1.94563i) q^{3} +(0.923880 + 0.382683i) q^{5} +(4.50228 - 1.86491i) q^{7} +(-1.01466 - 1.01466i) q^{9} +(0.738530 + 1.78297i) q^{11} -4.49602i q^{13} +(-1.48912 + 1.48912i) q^{15} +(2.20201 - 3.48585i) q^{17} +(5.38608 - 5.38608i) q^{19} +10.2627i q^{21} +(1.69771 + 4.09864i) q^{23} +(0.707107 + 0.707107i) q^{25} +(-3.04502 + 1.26129i) q^{27} +(-8.52562 - 3.53143i) q^{29} +(1.27746 - 3.08407i) q^{31} -4.06418 q^{33} +4.87323 q^{35} +(-3.96828 + 9.58028i) q^{37} +(8.74757 + 3.62336i) q^{39} +(-1.90308 + 0.788283i) q^{41} +(5.75531 + 5.75531i) q^{43} +(-0.549128 - 1.32571i) q^{45} +6.13313i q^{47} +(11.8429 - 11.8429i) q^{49} +(5.00755 + 7.09355i) q^{51} +(-4.96199 + 4.96199i) q^{53} +1.92987i q^{55} +(6.13863 + 14.8200i) q^{57} +(5.21179 + 5.21179i) q^{59} +(-6.49304 + 2.68951i) q^{61} +(-6.46051 - 2.67603i) q^{63} +(1.72055 - 4.15378i) q^{65} -5.65422 q^{67} -9.34261 q^{69} +(-1.11027 + 2.68043i) q^{71} +(-5.42509 - 2.24715i) q^{73} +(-1.94563 + 0.805905i) q^{75} +(6.65014 + 6.65014i) q^{77} +(-3.64109 - 8.79037i) q^{79} -11.2458i q^{81} +(0.0745559 - 0.0745559i) q^{83} +(3.36837 - 2.37783i) q^{85} +(13.7417 - 13.7417i) q^{87} -10.3056i q^{89} +(-8.38465 - 20.2423i) q^{91} +(4.97093 + 4.97093i) q^{93} +(7.03725 - 2.91493i) q^{95} +(8.24633 + 3.41574i) q^{97} +(1.05975 - 2.55846i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 16 q^{9} + 8 q^{11} - 8 q^{17} + 8 q^{19} + 8 q^{23} - 24 q^{27} - 32 q^{29} + 32 q^{31} + 16 q^{33} + 16 q^{35} + 16 q^{37} - 24 q^{39} - 16 q^{41} - 8 q^{49} + 16 q^{51} + 16 q^{53} + 48 q^{57}+ \cdots + 48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/680\mathbb{Z}\right)^\times\).

\(n\) \(137\) \(241\) \(341\) \(511\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{8}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.805905 + 1.94563i −0.465289 + 1.12331i 0.500907 + 0.865501i \(0.333000\pi\)
−0.966197 + 0.257807i \(0.917000\pi\)
\(4\) 0 0
\(5\) 0.923880 + 0.382683i 0.413171 + 0.171141i
\(6\) 0 0
\(7\) 4.50228 1.86491i 1.70170 0.704868i 0.701730 0.712443i \(-0.252411\pi\)
0.999971 + 0.00757473i \(0.00241114\pi\)
\(8\) 0 0
\(9\) −1.01466 1.01466i −0.338219 0.338219i
\(10\) 0 0
\(11\) 0.738530 + 1.78297i 0.222675 + 0.537586i 0.995252 0.0973364i \(-0.0310323\pi\)
−0.772576 + 0.634922i \(0.781032\pi\)
\(12\) 0 0
\(13\) 4.49602i 1.24697i −0.781835 0.623485i \(-0.785716\pi\)
0.781835 0.623485i \(-0.214284\pi\)
\(14\) 0 0
\(15\) −1.48912 + 1.48912i −0.384488 + 0.384488i
\(16\) 0 0
\(17\) 2.20201 3.48585i 0.534066 0.845443i
\(18\) 0 0
\(19\) 5.38608 5.38608i 1.23565 1.23565i 0.273891 0.961761i \(-0.411689\pi\)
0.961761 0.273891i \(-0.0883107\pi\)
\(20\) 0 0
\(21\) 10.2627i 2.23950i
\(22\) 0 0
\(23\) 1.69771 + 4.09864i 0.353997 + 0.854625i 0.996119 + 0.0880219i \(0.0280546\pi\)
−0.642121 + 0.766603i \(0.721945\pi\)
\(24\) 0 0
\(25\) 0.707107 + 0.707107i 0.141421 + 0.141421i
\(26\) 0 0
\(27\) −3.04502 + 1.26129i −0.586014 + 0.242735i
\(28\) 0 0
\(29\) −8.52562 3.53143i −1.58317 0.655769i −0.594256 0.804276i \(-0.702553\pi\)
−0.988911 + 0.148507i \(0.952553\pi\)
\(30\) 0 0
\(31\) 1.27746 3.08407i 0.229439 0.553915i −0.766670 0.642041i \(-0.778088\pi\)
0.996109 + 0.0881263i \(0.0280879\pi\)
\(32\) 0 0
\(33\) −4.06418 −0.707482
\(34\) 0 0
\(35\) 4.87323 0.823727
\(36\) 0 0
\(37\) −3.96828 + 9.58028i −0.652382 + 1.57499i 0.156930 + 0.987610i \(0.449840\pi\)
−0.809312 + 0.587379i \(0.800160\pi\)
\(38\) 0 0
\(39\) 8.74757 + 3.62336i 1.40073 + 0.580202i
\(40\) 0 0
\(41\) −1.90308 + 0.788283i −0.297212 + 0.123109i −0.526306 0.850295i \(-0.676423\pi\)
0.229095 + 0.973404i \(0.426423\pi\)
\(42\) 0 0
\(43\) 5.75531 + 5.75531i 0.877676 + 0.877676i 0.993294 0.115617i \(-0.0368846\pi\)
−0.115617 + 0.993294i \(0.536885\pi\)
\(44\) 0 0
\(45\) −0.549128 1.32571i −0.0818592 0.197626i
\(46\) 0 0
\(47\) 6.13313i 0.894608i 0.894382 + 0.447304i \(0.147616\pi\)
−0.894382 + 0.447304i \(0.852384\pi\)
\(48\) 0 0
\(49\) 11.8429 11.8429i 1.69184 1.69184i
\(50\) 0 0
\(51\) 5.00755 + 7.09355i 0.701198 + 0.993295i
\(52\) 0 0
\(53\) −4.96199 + 4.96199i −0.681581 + 0.681581i −0.960356 0.278775i \(-0.910072\pi\)
0.278775 + 0.960356i \(0.410072\pi\)
\(54\) 0 0
\(55\) 1.92987i 0.260224i
\(56\) 0 0
\(57\) 6.13863 + 14.8200i 0.813081 + 1.96295i
\(58\) 0 0
\(59\) 5.21179 + 5.21179i 0.678518 + 0.678518i 0.959665 0.281147i \(-0.0907148\pi\)
−0.281147 + 0.959665i \(0.590715\pi\)
\(60\) 0 0
\(61\) −6.49304 + 2.68951i −0.831349 + 0.344356i −0.757437 0.652909i \(-0.773548\pi\)
−0.0739123 + 0.997265i \(0.523548\pi\)
\(62\) 0 0
\(63\) −6.46051 2.67603i −0.813947 0.337148i
\(64\) 0 0
\(65\) 1.72055 4.15378i 0.213408 0.515213i
\(66\) 0 0
\(67\) −5.65422 −0.690773 −0.345387 0.938460i \(-0.612252\pi\)
−0.345387 + 0.938460i \(0.612252\pi\)
\(68\) 0 0
\(69\) −9.34261 −1.12472
\(70\) 0 0
\(71\) −1.11027 + 2.68043i −0.131765 + 0.318109i −0.975968 0.217915i \(-0.930074\pi\)
0.844203 + 0.536024i \(0.180074\pi\)
\(72\) 0 0
\(73\) −5.42509 2.24715i −0.634959 0.263009i 0.0418995 0.999122i \(-0.486659\pi\)
−0.676858 + 0.736113i \(0.736659\pi\)
\(74\) 0 0
\(75\) −1.94563 + 0.805905i −0.224661 + 0.0930578i
\(76\) 0 0
\(77\) 6.65014 + 6.65014i 0.757854 + 0.757854i
\(78\) 0 0
\(79\) −3.64109 8.79037i −0.409655 0.988994i −0.985229 0.171244i \(-0.945221\pi\)
0.575574 0.817750i \(-0.304779\pi\)
\(80\) 0 0
\(81\) 11.2458i 1.24953i
\(82\) 0 0
\(83\) 0.0745559 0.0745559i 0.00818357 0.00818357i −0.703003 0.711187i \(-0.748158\pi\)
0.711187 + 0.703003i \(0.248158\pi\)
\(84\) 0 0
\(85\) 3.36837 2.37783i 0.365351 0.257912i
\(86\) 0 0
\(87\) 13.7417 13.7417i 1.47326 1.47326i
\(88\) 0 0
\(89\) 10.3056i 1.09240i −0.837656 0.546198i \(-0.816074\pi\)
0.837656 0.546198i \(-0.183926\pi\)
\(90\) 0 0
\(91\) −8.38465 20.2423i −0.878950 2.12197i
\(92\) 0 0
\(93\) 4.97093 + 4.97093i 0.515461 + 0.515461i
\(94\) 0 0
\(95\) 7.03725 2.91493i 0.722007 0.299065i
\(96\) 0 0
\(97\) 8.24633 + 3.41574i 0.837288 + 0.346816i 0.759784 0.650176i \(-0.225305\pi\)
0.0775046 + 0.996992i \(0.475305\pi\)
\(98\) 0 0
\(99\) 1.05975 2.55846i 0.106509 0.257135i
\(100\) 0 0
\(101\) 3.69319 0.367486 0.183743 0.982974i \(-0.441179\pi\)
0.183743 + 0.982974i \(0.441179\pi\)
\(102\) 0 0
\(103\) −15.2035 −1.49804 −0.749022 0.662545i \(-0.769477\pi\)
−0.749022 + 0.662545i \(0.769477\pi\)
\(104\) 0 0
\(105\) −3.92736 + 9.48149i −0.383271 + 0.925298i
\(106\) 0 0
\(107\) −13.2473 5.48720i −1.28066 0.530468i −0.364474 0.931214i \(-0.618751\pi\)
−0.916189 + 0.400746i \(0.868751\pi\)
\(108\) 0 0
\(109\) −11.2681 + 4.66739i −1.07929 + 0.447055i −0.850259 0.526365i \(-0.823555\pi\)
−0.229028 + 0.973420i \(0.573555\pi\)
\(110\) 0 0
\(111\) −15.4416 15.4416i −1.46565 1.46565i
\(112\) 0 0
\(113\) 3.21308 + 7.75706i 0.302261 + 0.729723i 0.999912 + 0.0132846i \(0.00422874\pi\)
−0.697651 + 0.716438i \(0.745771\pi\)
\(114\) 0 0
\(115\) 4.43633i 0.413690i
\(116\) 0 0
\(117\) −4.56191 + 4.56191i −0.421749 + 0.421749i
\(118\) 0 0
\(119\) 3.41328 19.8008i 0.312895 1.81514i
\(120\) 0 0
\(121\) 5.14462 5.14462i 0.467693 0.467693i
\(122\) 0 0
\(123\) 4.33797i 0.391141i
\(124\) 0 0
\(125\) 0.382683 + 0.923880i 0.0342282 + 0.0826343i
\(126\) 0 0
\(127\) 7.22978 + 7.22978i 0.641539 + 0.641539i 0.950934 0.309395i \(-0.100126\pi\)
−0.309395 + 0.950934i \(0.600126\pi\)
\(128\) 0 0
\(129\) −15.8359 + 6.55945i −1.39427 + 0.577527i
\(130\) 0 0
\(131\) 4.82026 + 1.99662i 0.421148 + 0.174445i 0.583185 0.812339i \(-0.301806\pi\)
−0.162037 + 0.986785i \(0.551806\pi\)
\(132\) 0 0
\(133\) 14.2051 34.2942i 1.23174 2.97368i
\(134\) 0 0
\(135\) −3.29590 −0.283666
\(136\) 0 0
\(137\) −11.9884 −1.02423 −0.512117 0.858915i \(-0.671139\pi\)
−0.512117 + 0.858915i \(0.671139\pi\)
\(138\) 0 0
\(139\) −6.23967 + 15.0639i −0.529242 + 1.27770i 0.402779 + 0.915297i \(0.368044\pi\)
−0.932021 + 0.362405i \(0.881956\pi\)
\(140\) 0 0
\(141\) −11.9328 4.94271i −1.00492 0.416252i
\(142\) 0 0
\(143\) 8.01626 3.32044i 0.670353 0.277669i
\(144\) 0 0
\(145\) −6.52522 6.52522i −0.541890 0.541890i
\(146\) 0 0
\(147\) 13.4976 + 32.5861i 1.11326 + 2.68766i
\(148\) 0 0
\(149\) 6.90596i 0.565759i −0.959156 0.282879i \(-0.908710\pi\)
0.959156 0.282879i \(-0.0912896\pi\)
\(150\) 0 0
\(151\) 8.59590 8.59590i 0.699525 0.699525i −0.264783 0.964308i \(-0.585300\pi\)
0.964308 + 0.264783i \(0.0853004\pi\)
\(152\) 0 0
\(153\) −5.77123 + 1.30266i −0.466576 + 0.105314i
\(154\) 0 0
\(155\) 2.36044 2.36044i 0.189595 0.189595i
\(156\) 0 0
\(157\) 7.37348i 0.588467i −0.955733 0.294234i \(-0.904936\pi\)
0.955733 0.294234i \(-0.0950644\pi\)
\(158\) 0 0
\(159\) −5.65528 13.6531i −0.448493 1.08276i
\(160\) 0 0
\(161\) 15.2871 + 15.2871i 1.20480 + 1.20480i
\(162\) 0 0
\(163\) −0.296443 + 0.122791i −0.0232192 + 0.00961771i −0.394263 0.918998i \(-0.629000\pi\)
0.371044 + 0.928615i \(0.379000\pi\)
\(164\) 0 0
\(165\) −3.75481 1.55529i −0.292311 0.121079i
\(166\) 0 0
\(167\) −6.02818 + 14.5533i −0.466474 + 1.12617i 0.499217 + 0.866477i \(0.333621\pi\)
−0.965692 + 0.259692i \(0.916379\pi\)
\(168\) 0 0
\(169\) −7.21417 −0.554936
\(170\) 0 0
\(171\) −10.9300 −0.835842
\(172\) 0 0
\(173\) 6.99455 16.8863i 0.531786 1.28384i −0.398554 0.917145i \(-0.630488\pi\)
0.930339 0.366700i \(-0.119512\pi\)
\(174\) 0 0
\(175\) 4.50228 + 1.86491i 0.340340 + 0.140974i
\(176\) 0 0
\(177\) −14.3404 + 5.93999i −1.07789 + 0.446477i
\(178\) 0 0
\(179\) −2.53267 2.53267i −0.189301 0.189301i 0.606093 0.795394i \(-0.292736\pi\)
−0.795394 + 0.606093i \(0.792736\pi\)
\(180\) 0 0
\(181\) 5.54803 + 13.3941i 0.412382 + 0.995578i 0.984496 + 0.175404i \(0.0561233\pi\)
−0.572114 + 0.820174i \(0.693877\pi\)
\(182\) 0 0
\(183\) 14.8005i 1.09409i
\(184\) 0 0
\(185\) −7.33243 + 7.33243i −0.539091 + 0.539091i
\(186\) 0 0
\(187\) 7.84142 + 1.35171i 0.573421 + 0.0988467i
\(188\) 0 0
\(189\) −11.3573 + 11.3573i −0.826125 + 0.826125i
\(190\) 0 0
\(191\) 12.6684i 0.916651i 0.888785 + 0.458325i \(0.151551\pi\)
−0.888785 + 0.458325i \(0.848449\pi\)
\(192\) 0 0
\(193\) 1.18935 + 2.87136i 0.0856116 + 0.206685i 0.960887 0.276939i \(-0.0893201\pi\)
−0.875276 + 0.483624i \(0.839320\pi\)
\(194\) 0 0
\(195\) 6.69510 + 6.69510i 0.479446 + 0.479446i
\(196\) 0 0
\(197\) 17.7596 7.35626i 1.26532 0.524112i 0.353781 0.935328i \(-0.384896\pi\)
0.911538 + 0.411216i \(0.134896\pi\)
\(198\) 0 0
\(199\) −8.53405 3.53492i −0.604963 0.250584i 0.0591104 0.998251i \(-0.481174\pi\)
−0.664073 + 0.747668i \(0.731174\pi\)
\(200\) 0 0
\(201\) 4.55676 11.0010i 0.321409 0.775951i
\(202\) 0 0
\(203\) −44.9705 −3.15631
\(204\) 0 0
\(205\) −2.05988 −0.143868
\(206\) 0 0
\(207\) 2.43612 5.88130i 0.169322 0.408779i
\(208\) 0 0
\(209\) 13.5810 + 5.62543i 0.939417 + 0.389119i
\(210\) 0 0
\(211\) 18.3924 7.61840i 1.26619 0.524472i 0.354385 0.935100i \(-0.384690\pi\)
0.911803 + 0.410627i \(0.134690\pi\)
\(212\) 0 0
\(213\) −4.32035 4.32035i −0.296025 0.296025i
\(214\) 0 0
\(215\) 3.11475 + 7.51967i 0.212424 + 0.512838i
\(216\) 0 0
\(217\) 16.2677i 1.10432i
\(218\) 0 0
\(219\) 8.74421 8.74421i 0.590879 0.590879i
\(220\) 0 0
\(221\) −15.6724 9.90027i −1.05424 0.665964i
\(222\) 0 0
\(223\) −4.85127 + 4.85127i −0.324865 + 0.324865i −0.850630 0.525765i \(-0.823779\pi\)
0.525765 + 0.850630i \(0.323779\pi\)
\(224\) 0 0
\(225\) 1.43494i 0.0956628i
\(226\) 0 0
\(227\) 4.79974 + 11.5876i 0.318570 + 0.769096i 0.999330 + 0.0365898i \(0.0116495\pi\)
−0.680760 + 0.732506i \(0.738351\pi\)
\(228\) 0 0
\(229\) −12.2712 12.2712i −0.810906 0.810906i 0.173864 0.984770i \(-0.444375\pi\)
−0.984770 + 0.173864i \(0.944375\pi\)
\(230\) 0 0
\(231\) −18.2981 + 7.57930i −1.20392 + 0.498682i
\(232\) 0 0
\(233\) 5.25730 + 2.17765i 0.344417 + 0.142662i 0.548185 0.836357i \(-0.315319\pi\)
−0.203768 + 0.979019i \(0.565319\pi\)
\(234\) 0 0
\(235\) −2.34705 + 5.66627i −0.153104 + 0.369627i
\(236\) 0 0
\(237\) 20.0371 1.30155
\(238\) 0 0
\(239\) −11.8013 −0.763364 −0.381682 0.924294i \(-0.624655\pi\)
−0.381682 + 0.924294i \(0.624655\pi\)
\(240\) 0 0
\(241\) −5.89823 + 14.2396i −0.379938 + 0.917252i 0.612038 + 0.790828i \(0.290350\pi\)
−0.991976 + 0.126424i \(0.959650\pi\)
\(242\) 0 0
\(243\) 12.7450 + 5.27915i 0.817592 + 0.338658i
\(244\) 0 0
\(245\) 15.4735 6.40933i 0.988565 0.409477i
\(246\) 0 0
\(247\) −24.2159 24.2159i −1.54082 1.54082i
\(248\) 0 0
\(249\) 0.0849729 + 0.205143i 0.00538494 + 0.0130004i
\(250\) 0 0
\(251\) 4.28826i 0.270673i −0.990800 0.135336i \(-0.956788\pi\)
0.990800 0.135336i \(-0.0432115\pi\)
\(252\) 0 0
\(253\) −6.05393 + 6.05393i −0.380608 + 0.380608i
\(254\) 0 0
\(255\) 1.91179 + 8.46989i 0.119721 + 0.530405i
\(256\) 0 0
\(257\) 2.91648 2.91648i 0.181925 0.181925i −0.610269 0.792194i \(-0.708939\pi\)
0.792194 + 0.610269i \(0.208939\pi\)
\(258\) 0 0
\(259\) 50.5336i 3.14000i
\(260\) 0 0
\(261\) 5.06739 + 12.2338i 0.313663 + 0.757251i
\(262\) 0 0
\(263\) −5.09744 5.09744i −0.314322 0.314322i 0.532260 0.846581i \(-0.321343\pi\)
−0.846581 + 0.532260i \(0.821343\pi\)
\(264\) 0 0
\(265\) −6.48315 + 2.68541i −0.398257 + 0.164963i
\(266\) 0 0
\(267\) 20.0509 + 8.30537i 1.22710 + 0.508280i
\(268\) 0 0
\(269\) 0.588473 1.42070i 0.0358799 0.0866216i −0.904924 0.425574i \(-0.860072\pi\)
0.940804 + 0.338952i \(0.110072\pi\)
\(270\) 0 0
\(271\) −2.06053 −0.125168 −0.0625841 0.998040i \(-0.519934\pi\)
−0.0625841 + 0.998040i \(0.519934\pi\)
\(272\) 0 0
\(273\) 46.1412 2.79259
\(274\) 0 0
\(275\) −0.738530 + 1.78297i −0.0445350 + 0.107517i
\(276\) 0 0
\(277\) −16.3007 6.75199i −0.979417 0.405688i −0.165207 0.986259i \(-0.552829\pi\)
−0.814209 + 0.580571i \(0.802829\pi\)
\(278\) 0 0
\(279\) −4.42545 + 1.83308i −0.264945 + 0.109744i
\(280\) 0 0
\(281\) 5.90111 + 5.90111i 0.352031 + 0.352031i 0.860865 0.508834i \(-0.169923\pi\)
−0.508834 + 0.860865i \(0.669923\pi\)
\(282\) 0 0
\(283\) 3.05540 + 7.37638i 0.181625 + 0.438481i 0.988302 0.152512i \(-0.0487363\pi\)
−0.806677 + 0.590993i \(0.798736\pi\)
\(284\) 0 0
\(285\) 16.0410i 0.950188i
\(286\) 0 0
\(287\) −7.09814 + 7.09814i −0.418990 + 0.418990i
\(288\) 0 0
\(289\) −7.30231 15.3517i −0.429548 0.903044i
\(290\) 0 0
\(291\) −13.2915 + 13.2915i −0.779163 + 0.779163i
\(292\) 0 0
\(293\) 24.9469i 1.45741i 0.684826 + 0.728706i \(0.259878\pi\)
−0.684826 + 0.728706i \(0.740122\pi\)
\(294\) 0 0
\(295\) 2.82060 + 6.80954i 0.164222 + 0.396467i
\(296\) 0 0
\(297\) −4.49768 4.49768i −0.260982 0.260982i
\(298\) 0 0
\(299\) 18.4275 7.63294i 1.06569 0.441424i
\(300\) 0 0
\(301\) 36.6451 + 15.1789i 2.11219 + 0.874898i
\(302\) 0 0
\(303\) −2.97636 + 7.18556i −0.170987 + 0.412800i
\(304\) 0 0
\(305\) −7.02802 −0.402423
\(306\) 0 0
\(307\) 15.5974 0.890188 0.445094 0.895484i \(-0.353170\pi\)
0.445094 + 0.895484i \(0.353170\pi\)
\(308\) 0 0
\(309\) 12.2526 29.5803i 0.697024 1.68277i
\(310\) 0 0
\(311\) 13.9339 + 5.77163i 0.790121 + 0.327279i 0.740992 0.671514i \(-0.234355\pi\)
0.0491289 + 0.998792i \(0.484355\pi\)
\(312\) 0 0
\(313\) 11.6841 4.83973i 0.660426 0.273558i −0.0271916 0.999630i \(-0.508656\pi\)
0.687618 + 0.726073i \(0.258656\pi\)
\(314\) 0 0
\(315\) −4.94466 4.94466i −0.278600 0.278600i
\(316\) 0 0
\(317\) 5.47967 + 13.2291i 0.307769 + 0.743020i 0.999777 + 0.0211298i \(0.00672631\pi\)
−0.692008 + 0.721890i \(0.743274\pi\)
\(318\) 0 0
\(319\) 17.8090i 0.997111i
\(320\) 0 0
\(321\) 21.3521 21.3521i 1.19176 1.19176i
\(322\) 0 0
\(323\) −6.91488 30.6353i −0.384754 1.70459i
\(324\) 0 0
\(325\) 3.17916 3.17916i 0.176348 0.176348i
\(326\) 0 0
\(327\) 25.6849i 1.42038i
\(328\) 0 0
\(329\) 11.4377 + 27.6130i 0.630581 + 1.52236i
\(330\) 0 0
\(331\) −17.7379 17.7379i −0.974963 0.974963i 0.0247316 0.999694i \(-0.492127\pi\)
−0.999694 + 0.0247316i \(0.992127\pi\)
\(332\) 0 0
\(333\) 13.7471 5.69425i 0.753339 0.312043i
\(334\) 0 0
\(335\) −5.22382 2.16378i −0.285408 0.118220i
\(336\) 0 0
\(337\) 0.938317 2.26530i 0.0511134 0.123399i −0.896260 0.443528i \(-0.853727\pi\)
0.947374 + 0.320130i \(0.103727\pi\)
\(338\) 0 0
\(339\) −17.6818 −0.960342
\(340\) 0 0
\(341\) 6.44224 0.348867
\(342\) 0 0
\(343\) 18.1798 43.8900i 0.981618 2.36984i
\(344\) 0 0
\(345\) −8.63144 3.57526i −0.464701 0.192486i
\(346\) 0 0
\(347\) −24.2176 + 10.0313i −1.30007 + 0.538506i −0.921971 0.387259i \(-0.873422\pi\)
−0.378098 + 0.925766i \(0.623422\pi\)
\(348\) 0 0
\(349\) −4.96740 4.96740i −0.265899 0.265899i 0.561546 0.827445i \(-0.310207\pi\)
−0.827445 + 0.561546i \(0.810207\pi\)
\(350\) 0 0
\(351\) 5.67077 + 13.6905i 0.302683 + 0.730742i
\(352\) 0 0
\(353\) 2.92576i 0.155723i −0.996964 0.0778613i \(-0.975191\pi\)
0.996964 0.0778613i \(-0.0248091\pi\)
\(354\) 0 0
\(355\) −2.05152 + 2.05152i −0.108883 + 0.108883i
\(356\) 0 0
\(357\) 35.7742 + 22.5985i 1.89337 + 1.19604i
\(358\) 0 0
\(359\) −3.23173 + 3.23173i −0.170564 + 0.170564i −0.787227 0.616663i \(-0.788484\pi\)
0.616663 + 0.787227i \(0.288484\pi\)
\(360\) 0 0
\(361\) 39.0197i 2.05367i
\(362\) 0 0
\(363\) 5.86343 + 14.1556i 0.307750 + 0.742975i
\(364\) 0 0
\(365\) −4.15218 4.15218i −0.217335 0.217335i
\(366\) 0 0
\(367\) 12.5626 5.20360i 0.655763 0.271626i −0.0298914 0.999553i \(-0.509516\pi\)
0.685654 + 0.727927i \(0.259516\pi\)
\(368\) 0 0
\(369\) 2.73081 + 1.13114i 0.142160 + 0.0588848i
\(370\) 0 0
\(371\) −13.0866 + 31.5939i −0.679423 + 1.64027i
\(372\) 0 0
\(373\) −8.36556 −0.433152 −0.216576 0.976266i \(-0.569489\pi\)
−0.216576 + 0.976266i \(0.569489\pi\)
\(374\) 0 0
\(375\) −2.10593 −0.108750
\(376\) 0 0
\(377\) −15.8773 + 38.3313i −0.817725 + 1.97416i
\(378\) 0 0
\(379\) 5.15268 + 2.13431i 0.264675 + 0.109632i 0.511075 0.859536i \(-0.329247\pi\)
−0.246399 + 0.969168i \(0.579247\pi\)
\(380\) 0 0
\(381\) −19.8930 + 8.23993i −1.01915 + 0.422144i
\(382\) 0 0
\(383\) −5.21690 5.21690i −0.266571 0.266571i 0.561146 0.827717i \(-0.310361\pi\)
−0.827717 + 0.561146i \(0.810361\pi\)
\(384\) 0 0
\(385\) 3.59903 + 8.68882i 0.183423 + 0.442823i
\(386\) 0 0
\(387\) 11.6793i 0.593694i
\(388\) 0 0
\(389\) −6.65024 + 6.65024i −0.337181 + 0.337181i −0.855305 0.518125i \(-0.826630\pi\)
0.518125 + 0.855305i \(0.326630\pi\)
\(390\) 0 0
\(391\) 18.0256 + 3.10727i 0.911595 + 0.157141i
\(392\) 0 0
\(393\) −7.76934 + 7.76934i −0.391912 + 0.391912i
\(394\) 0 0
\(395\) 9.51463i 0.478733i
\(396\) 0 0
\(397\) −1.18424 2.85900i −0.0594351 0.143489i 0.891372 0.453272i \(-0.149743\pi\)
−0.950807 + 0.309783i \(0.899743\pi\)
\(398\) 0 0
\(399\) 55.2757 + 55.2757i 2.76724 + 2.76724i
\(400\) 0 0
\(401\) −15.7055 + 6.50542i −0.784294 + 0.324865i −0.738647 0.674092i \(-0.764535\pi\)
−0.0456472 + 0.998958i \(0.514535\pi\)
\(402\) 0 0
\(403\) −13.8660 5.74349i −0.690715 0.286104i
\(404\) 0 0
\(405\) 4.30357 10.3897i 0.213846 0.516270i
\(406\) 0 0
\(407\) −20.0120 −0.991960
\(408\) 0 0
\(409\) −15.2403 −0.753582 −0.376791 0.926298i \(-0.622973\pi\)
−0.376791 + 0.926298i \(0.622973\pi\)
\(410\) 0 0
\(411\) 9.66147 23.3249i 0.476565 1.15053i
\(412\) 0 0
\(413\) 33.1845 + 13.7455i 1.63290 + 0.676370i
\(414\) 0 0
\(415\) 0.0974120 0.0403494i 0.00478177 0.00198067i
\(416\) 0 0
\(417\) −24.2801 24.2801i −1.18900 1.18900i
\(418\) 0 0
\(419\) −2.51035 6.06051i −0.122638 0.296075i 0.850623 0.525776i \(-0.176225\pi\)
−0.973261 + 0.229701i \(0.926225\pi\)
\(420\) 0 0
\(421\) 26.3710i 1.28524i −0.766184 0.642622i \(-0.777847\pi\)
0.766184 0.642622i \(-0.222153\pi\)
\(422\) 0 0
\(423\) 6.22302 6.22302i 0.302573 0.302573i
\(424\) 0 0
\(425\) 4.02192 0.907813i 0.195092 0.0440354i
\(426\) 0 0
\(427\) −24.2178 + 24.2178i −1.17198 + 1.17198i
\(428\) 0 0
\(429\) 18.2726i 0.882210i
\(430\) 0 0
\(431\) −5.24667 12.6666i −0.252723 0.610128i 0.745699 0.666283i \(-0.232116\pi\)
−0.998422 + 0.0561551i \(0.982116\pi\)
\(432\) 0 0
\(433\) 5.55460 + 5.55460i 0.266937 + 0.266937i 0.827865 0.560928i \(-0.189555\pi\)
−0.560928 + 0.827865i \(0.689555\pi\)
\(434\) 0 0
\(435\) 17.9543 7.43693i 0.860845 0.356574i
\(436\) 0 0
\(437\) 31.2196 + 12.9316i 1.49344 + 0.618601i
\(438\) 0 0
\(439\) 3.29798 7.96202i 0.157404 0.380006i −0.825429 0.564506i \(-0.809067\pi\)
0.982833 + 0.184500i \(0.0590666\pi\)
\(440\) 0 0
\(441\) −24.0330 −1.14443
\(442\) 0 0
\(443\) 25.8387 1.22763 0.613817 0.789448i \(-0.289633\pi\)
0.613817 + 0.789448i \(0.289633\pi\)
\(444\) 0 0
\(445\) 3.94380 9.52118i 0.186954 0.451347i
\(446\) 0 0
\(447\) 13.4364 + 5.56555i 0.635521 + 0.263241i
\(448\) 0 0
\(449\) −11.1602 + 4.62270i −0.526681 + 0.218159i −0.630149 0.776474i \(-0.717006\pi\)
0.103468 + 0.994633i \(0.467006\pi\)
\(450\) 0 0
\(451\) −2.81097 2.81097i −0.132363 0.132363i
\(452\) 0 0
\(453\) 9.79693 + 23.6519i 0.460300 + 1.11126i
\(454\) 0 0
\(455\) 21.9101i 1.02716i
\(456\) 0 0
\(457\) 13.5484 13.5484i 0.633769 0.633769i −0.315242 0.949011i \(-0.602086\pi\)
0.949011 + 0.315242i \(0.102086\pi\)
\(458\) 0 0
\(459\) −2.30850 + 13.3918i −0.107751 + 0.625078i
\(460\) 0 0
\(461\) 13.8643 13.8643i 0.645726 0.645726i −0.306231 0.951957i \(-0.599068\pi\)
0.951957 + 0.306231i \(0.0990681\pi\)
\(462\) 0 0
\(463\) 17.7003i 0.822601i 0.911500 + 0.411300i \(0.134925\pi\)
−0.911500 + 0.411300i \(0.865075\pi\)
\(464\) 0 0
\(465\) 2.69025 + 6.49483i 0.124757 + 0.301190i
\(466\) 0 0
\(467\) 17.5299 + 17.5299i 0.811188 + 0.811188i 0.984812 0.173624i \(-0.0555478\pi\)
−0.173624 + 0.984812i \(0.555548\pi\)
\(468\) 0 0
\(469\) −25.4569 + 10.5446i −1.17549 + 0.486904i
\(470\) 0 0
\(471\) 14.3460 + 5.94232i 0.661030 + 0.273808i
\(472\) 0 0
\(473\) −6.01107 + 14.5120i −0.276389 + 0.667263i
\(474\) 0 0
\(475\) 7.61707 0.349495
\(476\) 0 0
\(477\) 10.0694 0.461047
\(478\) 0 0
\(479\) 6.17703 14.9127i 0.282236 0.681377i −0.717652 0.696402i \(-0.754783\pi\)
0.999887 + 0.0150254i \(0.00478293\pi\)
\(480\) 0 0
\(481\) 43.0731 + 17.8415i 1.96396 + 0.813501i
\(482\) 0 0
\(483\) −42.0630 + 17.4231i −1.91393 + 0.792777i
\(484\) 0 0
\(485\) 6.31147 + 6.31147i 0.286589 + 0.286589i
\(486\) 0 0
\(487\) −3.11081 7.51016i −0.140964 0.340318i 0.837592 0.546296i \(-0.183962\pi\)
−0.978557 + 0.205978i \(0.933962\pi\)
\(488\) 0 0
\(489\) 0.675725i 0.0305573i
\(490\) 0 0
\(491\) −0.950951 + 0.950951i −0.0429158 + 0.0429158i −0.728239 0.685323i \(-0.759661\pi\)
0.685323 + 0.728239i \(0.259661\pi\)
\(492\) 0 0
\(493\) −31.0835 + 21.9428i −1.39993 + 0.988254i
\(494\) 0 0
\(495\) 1.95816 1.95816i 0.0880127 0.0880127i
\(496\) 0 0
\(497\) 14.1386i 0.634203i
\(498\) 0 0
\(499\) −9.95716 24.0387i −0.445744 1.07612i −0.973901 0.226974i \(-0.927117\pi\)
0.528157 0.849147i \(-0.322883\pi\)
\(500\) 0 0
\(501\) −23.4572 23.4572i −1.04799 1.04799i
\(502\) 0 0
\(503\) −19.1675 + 7.93942i −0.854635 + 0.354001i −0.766607 0.642117i \(-0.778056\pi\)
−0.0880277 + 0.996118i \(0.528056\pi\)
\(504\) 0 0
\(505\) 3.41206 + 1.41332i 0.151835 + 0.0628920i
\(506\) 0 0
\(507\) 5.81393 14.0361i 0.258206 0.623364i
\(508\) 0 0
\(509\) −2.60349 −0.115397 −0.0576987 0.998334i \(-0.518376\pi\)
−0.0576987 + 0.998334i \(0.518376\pi\)
\(510\) 0 0
\(511\) −28.6160 −1.26590
\(512\) 0 0
\(513\) −9.60732 + 23.1941i −0.424173 + 1.02405i
\(514\) 0 0
\(515\) −14.0462 5.81813i −0.618949 0.256377i
\(516\) 0 0
\(517\) −10.9352 + 4.52950i −0.480928 + 0.199207i
\(518\) 0 0
\(519\) 27.2176 + 27.2176i 1.19472 + 1.19472i
\(520\) 0 0
\(521\) 9.96740 + 24.0634i 0.436680 + 1.05424i 0.977088 + 0.212835i \(0.0682697\pi\)
−0.540409 + 0.841403i \(0.681730\pi\)
\(522\) 0 0
\(523\) 44.9469i 1.96539i 0.185229 + 0.982695i \(0.440697\pi\)
−0.185229 + 0.982695i \(0.559303\pi\)
\(524\) 0 0
\(525\) −7.25681 + 7.25681i −0.316713 + 0.316713i
\(526\) 0 0
\(527\) −7.93761 11.2442i −0.345768 0.489804i
\(528\) 0 0
\(529\) 2.34685 2.34685i 0.102037 0.102037i
\(530\) 0 0
\(531\) 10.5764i 0.458975i
\(532\) 0 0
\(533\) 3.54413 + 8.55629i 0.153513 + 0.370614i
\(534\) 0 0
\(535\) −10.1390 10.1390i −0.438349 0.438349i
\(536\) 0 0
\(537\) 6.96873 2.88654i 0.300723 0.124564i
\(538\) 0 0
\(539\) 29.8619 + 12.3692i 1.28624 + 0.532779i
\(540\) 0 0
\(541\) 4.44860 10.7399i 0.191260 0.461743i −0.798938 0.601414i \(-0.794604\pi\)
0.990198 + 0.139671i \(0.0446044\pi\)
\(542\) 0 0
\(543\) −30.5312 −1.31022
\(544\) 0 0
\(545\) −12.1965 −0.522440
\(546\) 0 0
\(547\) −12.4848 + 30.1411i −0.533813 + 1.28874i 0.395167 + 0.918609i \(0.370687\pi\)
−0.928980 + 0.370129i \(0.879313\pi\)
\(548\) 0 0
\(549\) 9.31713 + 3.85928i 0.397646 + 0.164710i
\(550\) 0 0
\(551\) −64.9402 + 26.8991i −2.76655 + 1.14594i
\(552\) 0 0
\(553\) −32.7864 32.7864i −1.39422 1.39422i
\(554\) 0 0
\(555\) −8.35693 20.1754i −0.354732 0.856398i
\(556\) 0 0
\(557\) 34.7475i 1.47230i −0.676818 0.736150i \(-0.736642\pi\)
0.676818 0.736150i \(-0.263358\pi\)
\(558\) 0 0
\(559\) 25.8760 25.8760i 1.09444 1.09444i
\(560\) 0 0
\(561\) −8.94935 + 14.1671i −0.377842 + 0.598136i
\(562\) 0 0
\(563\) 26.3555 26.3555i 1.11075 1.11075i 0.117703 0.993049i \(-0.462447\pi\)
0.993049 0.117703i \(-0.0375529\pi\)
\(564\) 0 0
\(565\) 8.39618i 0.353230i
\(566\) 0 0
\(567\) −20.9723 50.6316i −0.880753 2.12633i
\(568\) 0 0
\(569\) −15.0353 15.0353i −0.630311 0.630311i 0.317835 0.948146i \(-0.397044\pi\)
−0.948146 + 0.317835i \(0.897044\pi\)
\(570\) 0 0
\(571\) 27.1423 11.2427i 1.13587 0.470493i 0.266098 0.963946i \(-0.414265\pi\)
0.869773 + 0.493453i \(0.164265\pi\)
\(572\) 0 0
\(573\) −24.6479 10.2095i −1.02968 0.426508i
\(574\) 0 0
\(575\) −1.69771 + 4.09864i −0.0707995 + 0.170925i
\(576\) 0 0
\(577\) −15.1029 −0.628740 −0.314370 0.949300i \(-0.601793\pi\)
−0.314370 + 0.949300i \(0.601793\pi\)
\(578\) 0 0
\(579\) −6.54509 −0.272005
\(580\) 0 0
\(581\) 0.196632 0.474711i 0.00815766 0.0196943i
\(582\) 0 0
\(583\) −12.5116 5.18249i −0.518179 0.214637i
\(584\) 0 0
\(585\) −5.96043 + 2.46889i −0.246433 + 0.102076i
\(586\) 0 0
\(587\) −25.2735 25.2735i −1.04315 1.04315i −0.999026 0.0441247i \(-0.985950\pi\)
−0.0441247 0.999026i \(-0.514050\pi\)
\(588\) 0 0
\(589\) −9.73052 23.4915i −0.400939 0.967952i
\(590\) 0 0
\(591\) 40.4820i 1.66521i
\(592\) 0 0
\(593\) 7.93268 7.93268i 0.325756 0.325756i −0.525214 0.850970i \(-0.676015\pi\)
0.850970 + 0.525214i \(0.176015\pi\)
\(594\) 0 0
\(595\) 10.7309 16.9874i 0.439924 0.696414i
\(596\) 0 0
\(597\) 13.7553 13.7553i 0.562965 0.562965i
\(598\) 0 0
\(599\) 24.6116i 1.00560i 0.864402 + 0.502801i \(0.167697\pi\)
−0.864402 + 0.502801i \(0.832303\pi\)
\(600\) 0 0
\(601\) −11.9527 28.8563i −0.487559 1.17707i −0.955945 0.293547i \(-0.905164\pi\)
0.468386 0.883524i \(-0.344836\pi\)
\(602\) 0 0
\(603\) 5.73709 + 5.73709i 0.233633 + 0.233633i
\(604\) 0 0
\(605\) 6.72177 2.78425i 0.273279 0.113196i
\(606\) 0 0
\(607\) 24.1345 + 9.99684i 0.979589 + 0.405759i 0.814273 0.580482i \(-0.197136\pi\)
0.165316 + 0.986241i \(0.447136\pi\)
\(608\) 0 0
\(609\) 36.2419 87.4957i 1.46860 3.54551i
\(610\) 0 0
\(611\) 27.5746 1.11555
\(612\) 0 0
\(613\) 30.7925 1.24370 0.621849 0.783137i \(-0.286382\pi\)
0.621849 + 0.783137i \(0.286382\pi\)
\(614\) 0 0
\(615\) 1.66007 4.00776i 0.0669404 0.161608i
\(616\) 0 0
\(617\) −34.6954 14.3713i −1.39679 0.578568i −0.447871 0.894098i \(-0.647817\pi\)
−0.948915 + 0.315531i \(0.897817\pi\)
\(618\) 0 0
\(619\) 18.6108 7.70886i 0.748033 0.309845i 0.0240941 0.999710i \(-0.492330\pi\)
0.723939 + 0.689864i \(0.242330\pi\)
\(620\) 0 0
\(621\) −10.3391 10.3391i −0.414895 0.414895i
\(622\) 0 0
\(623\) −19.2191 46.3989i −0.769995 1.85893i
\(624\) 0 0
\(625\) 1.00000i 0.0400000i
\(626\) 0 0
\(627\) −21.8900 + 21.8900i −0.874202 + 0.874202i
\(628\) 0 0
\(629\) 24.6572 + 34.9287i 0.983149 + 1.39270i
\(630\) 0 0
\(631\) −3.50409 + 3.50409i −0.139496 + 0.139496i −0.773406 0.633911i \(-0.781449\pi\)
0.633911 + 0.773406i \(0.281449\pi\)
\(632\) 0 0
\(633\) 41.9245i 1.66635i
\(634\) 0 0
\(635\) 3.91273 + 9.44616i 0.155272 + 0.374859i
\(636\) 0 0
\(637\) −53.2459 53.2459i −2.10968 2.10968i
\(638\) 0 0
\(639\) 3.84626 1.59318i 0.152156 0.0630250i
\(640\) 0 0
\(641\) 3.73965 + 1.54901i 0.147707 + 0.0611823i 0.455312 0.890332i \(-0.349528\pi\)
−0.307605 + 0.951514i \(0.599528\pi\)
\(642\) 0 0
\(643\) −1.87783 + 4.53349i −0.0740545 + 0.178783i −0.956572 0.291496i \(-0.905847\pi\)
0.882517 + 0.470280i \(0.155847\pi\)
\(644\) 0 0
\(645\) −17.1407 −0.674913
\(646\) 0 0
\(647\) −37.6354 −1.47960 −0.739800 0.672827i \(-0.765080\pi\)
−0.739800 + 0.672827i \(0.765080\pi\)
\(648\) 0 0
\(649\) −5.44340 + 13.1415i −0.213672 + 0.515851i
\(650\) 0 0
\(651\) 31.6508 + 13.1102i 1.24049 + 0.513829i
\(652\) 0 0
\(653\) −38.9988 + 16.1538i −1.52614 + 0.632149i −0.978811 0.204767i \(-0.934356\pi\)
−0.547331 + 0.836916i \(0.684356\pi\)
\(654\) 0 0
\(655\) 3.68927 + 3.68927i 0.144152 + 0.144152i
\(656\) 0 0
\(657\) 3.22452 + 7.78469i 0.125801 + 0.303710i
\(658\) 0 0
\(659\) 16.4870i 0.642242i −0.947038 0.321121i \(-0.895940\pi\)
0.947038 0.321121i \(-0.104060\pi\)
\(660\) 0 0
\(661\) −14.3736 + 14.3736i −0.559070 + 0.559070i −0.929043 0.369973i \(-0.879367\pi\)
0.369973 + 0.929043i \(0.379367\pi\)
\(662\) 0 0
\(663\) 31.8927 22.5140i 1.23861 0.874373i
\(664\) 0 0
\(665\) 26.2476 26.2476i 1.01784 1.01784i
\(666\) 0 0
\(667\) 40.9387i 1.58515i
\(668\) 0 0
\(669\) −5.52909 13.3484i −0.213767 0.516079i
\(670\) 0 0
\(671\) −9.59062 9.59062i −0.370242 0.370242i
\(672\) 0 0
\(673\) 15.5797 6.45334i 0.600555 0.248758i −0.0616291 0.998099i \(-0.519630\pi\)
0.662184 + 0.749341i \(0.269630\pi\)
\(674\) 0 0
\(675\) −3.04502 1.26129i −0.117203 0.0485470i
\(676\) 0 0
\(677\) 3.19803 7.72072i 0.122910 0.296731i −0.850434 0.526082i \(-0.823660\pi\)
0.973344 + 0.229351i \(0.0736603\pi\)
\(678\) 0 0
\(679\) 43.4973 1.66927
\(680\) 0 0
\(681\) −26.4133 −1.01216
\(682\) 0 0
\(683\) 18.1884 43.9107i 0.695961 1.68020i −0.0364503 0.999335i \(-0.511605\pi\)
0.732411 0.680863i \(-0.238395\pi\)
\(684\) 0 0
\(685\) −11.0758 4.58775i −0.423185 0.175289i
\(686\) 0 0
\(687\) 33.7647 13.9858i 1.28820 0.533591i
\(688\) 0 0
\(689\) 22.3092 + 22.3092i 0.849912 + 0.849912i
\(690\) 0 0
\(691\) −0.197091 0.475819i −0.00749769 0.0181010i 0.920086 0.391716i \(-0.128118\pi\)
−0.927584 + 0.373615i \(0.878118\pi\)
\(692\) 0 0
\(693\) 13.4952i 0.512641i
\(694\) 0 0
\(695\) −11.5294 + 11.5294i −0.437335 + 0.437335i
\(696\) 0 0
\(697\) −1.44277 + 8.36967i −0.0546488 + 0.317024i
\(698\) 0 0
\(699\) −8.47377 + 8.47377i −0.320507 + 0.320507i
\(700\) 0 0
\(701\) 24.5219i 0.926179i 0.886312 + 0.463089i \(0.153259\pi\)
−0.886312 + 0.463089i \(0.846741\pi\)
\(702\) 0 0
\(703\) 30.2267 + 72.9737i 1.14002 + 2.75225i
\(704\) 0 0
\(705\) −9.13294 9.13294i −0.343967 0.343967i
\(706\) 0 0
\(707\) 16.6278 6.88744i 0.625351 0.259029i
\(708\) 0 0
\(709\) 8.89780 + 3.68559i 0.334164 + 0.138415i 0.543455 0.839438i \(-0.317116\pi\)
−0.209291 + 0.977853i \(0.567116\pi\)
\(710\) 0 0
\(711\) −5.22475 + 12.6137i −0.195943 + 0.473049i
\(712\) 0 0
\(713\) 14.8092 0.554610
\(714\) 0 0
\(715\) 8.67674 0.324492
\(716\) 0 0
\(717\) 9.51074 22.9610i 0.355185 0.857493i
\(718\) 0 0
\(719\) −44.4214 18.3999i −1.65664 0.686202i −0.658825 0.752296i \(-0.728946\pi\)
−0.997813 + 0.0660937i \(0.978946\pi\)
\(720\) 0 0
\(721\) −68.4504 + 28.3531i −2.54923 + 1.05592i
\(722\) 0 0
\(723\) −22.9515 22.9515i −0.853575 0.853575i
\(724\) 0 0
\(725\) −3.53143 8.52562i −0.131154 0.316633i
\(726\) 0 0
\(727\) 28.6934i 1.06418i 0.846688 + 0.532089i \(0.178593\pi\)
−0.846688 + 0.532089i \(0.821407\pi\)
\(728\) 0 0
\(729\) 3.31337 3.31337i 0.122717 0.122717i
\(730\) 0 0
\(731\) 32.7354 7.38891i 1.21076 0.273289i
\(732\) 0 0
\(733\) −15.8642 + 15.8642i −0.585959 + 0.585959i −0.936534 0.350576i \(-0.885986\pi\)
0.350576 + 0.936534i \(0.385986\pi\)
\(734\) 0 0
\(735\) 35.2709i 1.30099i
\(736\) 0 0
\(737\) −4.17581 10.0813i −0.153818 0.371350i
\(738\) 0 0
\(739\) 4.86213 + 4.86213i 0.178856 + 0.178856i 0.790857 0.612001i \(-0.209635\pi\)
−0.612001 + 0.790857i \(0.709635\pi\)
\(740\) 0 0
\(741\) 66.6308 27.5994i 2.44774 1.01389i
\(742\) 0 0
\(743\) 34.0930 + 14.1218i 1.25075 + 0.518078i 0.907058 0.421005i \(-0.138323\pi\)
0.343692 + 0.939083i \(0.388323\pi\)
\(744\) 0 0
\(745\) 2.64280 6.38028i 0.0968246 0.233755i
\(746\) 0 0
\(747\) −0.151297 −0.00553568
\(748\) 0 0
\(749\) −69.8761 −2.55322
\(750\) 0 0
\(751\) −1.62083 + 3.91302i −0.0591448 + 0.142788i −0.950689 0.310145i \(-0.899622\pi\)
0.891544 + 0.452933i \(0.149622\pi\)
\(752\) 0 0
\(753\) 8.34335 + 3.45593i 0.304049 + 0.125941i
\(754\) 0 0
\(755\) 11.2311 4.65207i 0.408741 0.169306i
\(756\) 0 0
\(757\) −11.3288 11.3288i −0.411753 0.411753i 0.470596 0.882349i \(-0.344039\pi\)
−0.882349 + 0.470596i \(0.844039\pi\)
\(758\) 0 0
\(759\) −6.89980 16.6576i −0.250447 0.604632i
\(760\) 0 0
\(761\) 14.9621i 0.542377i 0.962526 + 0.271188i \(0.0874166\pi\)
−0.962526 + 0.271188i \(0.912583\pi\)
\(762\) 0 0
\(763\) −42.0278 + 42.0278i −1.52151 + 1.52151i
\(764\) 0 0
\(765\) −5.83042 1.00505i −0.210799 0.0363377i
\(766\) 0 0
\(767\) 23.4323 23.4323i 0.846092 0.846092i
\(768\) 0 0
\(769\) 48.3875i 1.74490i 0.488706 + 0.872449i \(0.337469\pi\)
−0.488706 + 0.872449i \(0.662531\pi\)
\(770\) 0 0
\(771\) 3.32397 + 8.02477i 0.119710 + 0.289005i
\(772\) 0 0
\(773\) −29.8720 29.8720i −1.07442 1.07442i −0.996998 0.0774218i \(-0.975331\pi\)
−0.0774218 0.996998i \(-0.524669\pi\)
\(774\) 0 0
\(775\) 3.08407 1.27746i 0.110783 0.0458878i
\(776\) 0 0
\(777\) −98.3194 40.7252i −3.52719 1.46101i
\(778\) 0 0
\(779\) −6.00440 + 14.4959i −0.215130 + 0.519370i
\(780\) 0 0
\(781\) −5.59910 −0.200352
\(782\) 0 0
\(783\) 30.4148 1.08694
\(784\) 0 0
\(785\) 2.82171 6.81220i 0.100711 0.243138i
\(786\) 0 0
\(787\) −26.6747 11.0490i −0.950850 0.393855i −0.147300 0.989092i \(-0.547058\pi\)
−0.803550 + 0.595237i \(0.797058\pi\)
\(788\) 0 0
\(789\) 14.0258 5.80966i 0.499330 0.206829i
\(790\) 0 0
\(791\) 28.9324 + 28.9324i 1.02872 + 1.02872i
\(792\) 0 0
\(793\) 12.0921 + 29.1928i 0.429402 + 1.03667i
\(794\) 0 0
\(795\) 14.7780i 0.524120i
\(796\) 0 0
\(797\) 8.65980 8.65980i 0.306746 0.306746i −0.536900 0.843646i \(-0.680405\pi\)
0.843646 + 0.536900i \(0.180405\pi\)
\(798\) 0 0
\(799\) 21.3792 + 13.5052i 0.756340 + 0.477780i
\(800\) 0 0
\(801\) −10.4567 + 10.4567i −0.369469 + 0.369469i
\(802\) 0 0
\(803\) 11.3324i 0.399910i
\(804\) 0 0
\(805\) 8.27334 + 19.9736i 0.291597 + 0.703977i
\(806\) 0 0
\(807\) 2.28990 + 2.28990i 0.0806082 + 0.0806082i
\(808\) 0 0
\(809\) 2.13669 0.885046i 0.0751220 0.0311166i −0.344806 0.938674i \(-0.612055\pi\)
0.419928 + 0.907557i \(0.362055\pi\)
\(810\) 0 0
\(811\) −14.9952 6.21123i −0.526554 0.218106i 0.103539 0.994625i \(-0.466983\pi\)
−0.630093 + 0.776520i \(0.716983\pi\)
\(812\) 0 0
\(813\) 1.66059 4.00902i 0.0582394 0.140602i
\(814\) 0 0
\(815\) −0.320868 −0.0112395
\(816\) 0 0
\(817\) 61.9971 2.16900
\(818\) 0 0
\(819\) −12.0315 + 29.0465i −0.420414 + 1.01497i
\(820\) 0 0
\(821\) −38.8126 16.0767i −1.35457 0.561081i −0.417008 0.908903i \(-0.636921\pi\)
−0.937561 + 0.347822i \(0.886921\pi\)
\(822\) 0 0
\(823\) 16.4663 6.82056i 0.573979 0.237750i −0.0767623 0.997049i \(-0.524458\pi\)
0.650741 + 0.759300i \(0.274458\pi\)
\(824\) 0 0
\(825\) −2.87381 2.87381i −0.100053 0.100053i
\(826\) 0 0
\(827\) −10.8359 26.1602i −0.376802 0.909681i −0.992561 0.121746i \(-0.961151\pi\)
0.615759 0.787934i \(-0.288849\pi\)
\(828\) 0 0
\(829\) 27.0236i 0.938570i 0.883047 + 0.469285i \(0.155488\pi\)
−0.883047 + 0.469285i \(0.844512\pi\)
\(830\) 0 0
\(831\) 26.2737 26.2737i 0.911424 0.911424i
\(832\) 0 0
\(833\) −15.2044 67.3608i −0.526802 2.33391i
\(834\) 0 0
\(835\) −11.1386 + 11.1386i −0.385468 + 0.385468i
\(836\) 0 0
\(837\) 11.0023i 0.380295i
\(838\) 0 0
\(839\) 11.3532 + 27.4090i 0.391955 + 0.946262i 0.989514 + 0.144438i \(0.0461373\pi\)
−0.597559 + 0.801825i \(0.703863\pi\)
\(840\) 0 0
\(841\) 39.7091 + 39.7091i 1.36928 + 1.36928i
\(842\) 0 0
\(843\) −16.2371 + 6.72562i −0.559235 + 0.231643i
\(844\) 0 0
\(845\) −6.66502 2.76074i −0.229284 0.0949724i
\(846\) 0 0
\(847\) 13.5683 32.7568i 0.466212 1.12554i
\(848\) 0 0
\(849\) −16.8140 −0.577056
\(850\) 0 0
\(851\) −46.0031 −1.57697
\(852\) 0 0
\(853\) 6.79304 16.3999i 0.232589 0.561521i −0.763891 0.645345i \(-0.776714\pi\)
0.996481 + 0.0838246i \(0.0267136\pi\)
\(854\) 0 0
\(855\) −10.0980 4.18275i −0.345346 0.143047i
\(856\) 0 0
\(857\) 0.300132 0.124319i 0.0102523 0.00424665i −0.377551 0.925989i \(-0.623234\pi\)
0.387804 + 0.921742i \(0.373234\pi\)
\(858\) 0 0
\(859\) −15.6278 15.6278i −0.533213 0.533213i 0.388314 0.921527i \(-0.373058\pi\)
−0.921527 + 0.388314i \(0.873058\pi\)
\(860\) 0 0
\(861\) −8.08990 19.5307i −0.275703 0.665606i
\(862\) 0 0
\(863\) 16.3972i 0.558167i 0.960267 + 0.279084i \(0.0900307\pi\)
−0.960267 + 0.279084i \(0.909969\pi\)
\(864\) 0 0
\(865\) 12.9242 12.9242i 0.439438 0.439438i
\(866\) 0 0
\(867\) 35.7537 1.83552i 1.21426 0.0623377i
\(868\) 0 0
\(869\) 12.9839 12.9839i 0.440449 0.440449i
\(870\) 0 0
\(871\) 25.4215i 0.861374i
\(872\) 0 0
\(873\) −4.90139 11.8330i −0.165887 0.400487i
\(874\) 0 0
\(875\) 3.44590 + 3.44590i 0.116493 + 0.116493i
\(876\) 0 0
\(877\) −48.8964 + 20.2535i −1.65111 + 0.683913i −0.997348 0.0727838i \(-0.976812\pi\)
−0.653765 + 0.756697i \(0.726812\pi\)
\(878\) 0 0
\(879\) −48.5373 20.1048i −1.63712 0.678118i
\(880\) 0 0
\(881\) 3.48852 8.42203i 0.117531 0.283746i −0.854156 0.520017i \(-0.825926\pi\)
0.971687 + 0.236272i \(0.0759255\pi\)
\(882\) 0 0
\(883\) 53.7479 1.80876 0.904380 0.426728i \(-0.140334\pi\)
0.904380 + 0.426728i \(0.140334\pi\)
\(884\) 0 0
\(885\) −15.5219 −0.521765
\(886\) 0 0
\(887\) 16.9141 40.8342i 0.567919 1.37108i −0.335386 0.942081i \(-0.608867\pi\)
0.903305 0.428998i \(-0.141133\pi\)
\(888\) 0 0
\(889\) 46.0333 + 19.0676i 1.54391 + 0.639508i
\(890\) 0 0
\(891\) 20.0509 8.30534i 0.671729 0.278239i
\(892\) 0 0
\(893\) 33.0335 + 33.0335i 1.10542 + 1.10542i
\(894\) 0 0
\(895\) −1.37067 3.30910i −0.0458166 0.110611i
\(896\) 0 0
\(897\) 42.0045i 1.40249i
\(898\) 0 0
\(899\) −21.7823 + 21.7823i −0.726480 + 0.726480i
\(900\) 0 0
\(901\) 6.37041 + 28.2231i 0.212229 + 0.940247i
\(902\) 0 0
\(903\) −59.0649 + 59.0649i −1.96556 + 1.96556i
\(904\) 0 0
\(905\) 14.4977i 0.481920i
\(906\) 0 0
\(907\) 8.58242 + 20.7198i 0.284974 + 0.687989i 0.999938 0.0111729i \(-0.00355652\pi\)
−0.714963 + 0.699162i \(0.753557\pi\)
\(908\) 0 0
\(909\) −3.74732 3.74732i −0.124291 0.124291i
\(910\) 0 0
\(911\) 33.6148 13.9237i 1.11371 0.461312i 0.251494 0.967859i \(-0.419078\pi\)
0.862213 + 0.506546i \(0.169078\pi\)
\(912\) 0 0
\(913\) 0.187993 + 0.0778691i 0.00622165 + 0.00257709i
\(914\) 0 0
\(915\) 5.66391 13.6739i 0.187243 0.452045i
\(916\) 0 0
\(917\) 25.4257 0.839630
\(918\) 0 0
\(919\) 0.262467 0.00865797 0.00432899 0.999991i \(-0.498622\pi\)
0.00432899 + 0.999991i \(0.498622\pi\)
\(920\) 0 0
\(921\) −12.5700 + 30.3466i −0.414195 + 0.999955i
\(922\) 0 0
\(923\) 12.0513 + 4.99180i 0.396673 + 0.164307i
\(924\) 0 0
\(925\) −9.58028 + 3.96828i −0.314998 + 0.130476i
\(926\) 0 0
\(927\) 15.4263 + 15.4263i 0.506667 + 0.506667i
\(928\) 0 0
\(929\) 15.1196 + 36.5020i 0.496059 + 1.19759i 0.951589 + 0.307372i \(0.0994496\pi\)
−0.455531 + 0.890220i \(0.650550\pi\)
\(930\) 0 0
\(931\) 127.574i 4.18106i
\(932\) 0 0
\(933\) −22.4588 + 22.4588i −0.735270 + 0.735270i
\(934\) 0 0
\(935\) 6.72725 + 4.24960i 0.220005 + 0.138977i
\(936\) 0 0
\(937\) −19.5534 + 19.5534i −0.638781 + 0.638781i −0.950255 0.311474i \(-0.899177\pi\)
0.311474 + 0.950255i \(0.399177\pi\)
\(938\) 0 0
\(939\) 26.6333i 0.869145i
\(940\) 0 0
\(941\) −7.62313 18.4039i −0.248507 0.599949i 0.749571 0.661924i \(-0.230260\pi\)
−0.998078 + 0.0619755i \(0.980260\pi\)
\(942\) 0 0
\(943\) −6.46177 6.46177i −0.210424 0.210424i
\(944\) 0 0
\(945\) −14.8391 + 6.14655i −0.482715 + 0.199947i
\(946\) 0 0
\(947\) 13.5253 + 5.60234i 0.439512 + 0.182052i 0.591456 0.806337i \(-0.298553\pi\)
−0.151944 + 0.988389i \(0.548553\pi\)
\(948\) 0 0
\(949\) −10.1032 + 24.3913i −0.327964 + 0.791775i
\(950\) 0 0
\(951\) −30.1549 −0.977841
\(952\) 0 0
\(953\) 22.9246 0.742601 0.371301 0.928513i \(-0.378912\pi\)
0.371301 + 0.928513i \(0.378912\pi\)
\(954\) 0 0
\(955\) −4.84797 + 11.7040i −0.156877 + 0.378734i
\(956\) 0 0
\(957\) 34.6496 + 14.3523i 1.12006 + 0.463945i
\(958\) 0 0
\(959\) −53.9750 + 22.3572i −1.74294 + 0.721950i
\(960\) 0 0
\(961\) 14.0408 + 14.0408i 0.452928 + 0.452928i
\(962\) 0 0
\(963\) 7.87382 + 19.0091i 0.253730 + 0.612559i
\(964\) 0 0
\(965\) 3.10793i 0.100048i
\(966\) 0 0
\(967\) −8.92138 + 8.92138i −0.286892 + 0.286892i −0.835850 0.548958i \(-0.815025\pi\)
0.548958 + 0.835850i \(0.315025\pi\)
\(968\) 0 0
\(969\) 65.1775 + 11.2353i 2.09380 + 0.360931i
\(970\) 0 0
\(971\) −4.29938 + 4.29938i −0.137974 + 0.137974i −0.772720 0.634747i \(-0.781104\pi\)
0.634747 + 0.772720i \(0.281104\pi\)
\(972\) 0 0
\(973\) 79.4582i 2.54731i
\(974\) 0 0
\(975\) 3.62336 + 8.74757i 0.116040 + 0.280146i
\(976\) 0 0
\(977\) 5.82173 + 5.82173i 0.186254 + 0.186254i 0.794074 0.607821i \(-0.207956\pi\)
−0.607821 + 0.794074i \(0.707956\pi\)
\(978\) 0 0
\(979\) 18.3747 7.61103i 0.587257 0.243250i
\(980\) 0 0
\(981\) 16.1690 + 6.69743i 0.516238 + 0.213833i
\(982\) 0 0
\(983\) 8.27003 19.9656i 0.263773 0.636804i −0.735393 0.677641i \(-0.763002\pi\)
0.999166 + 0.0408369i \(0.0130024\pi\)
\(984\) 0 0
\(985\) 19.2228 0.612491
\(986\) 0 0
\(987\) −62.9423 −2.00348
\(988\) 0 0
\(989\) −13.8181 + 33.3598i −0.439389 + 1.06078i
\(990\) 0 0
\(991\) 11.5935 + 4.80217i 0.368279 + 0.152546i 0.559145 0.829070i \(-0.311130\pi\)
−0.190866 + 0.981616i \(0.561130\pi\)
\(992\) 0 0
\(993\) 48.8063 20.2162i 1.54882 0.641543i
\(994\) 0 0
\(995\) −6.53168 6.53168i −0.207068 0.207068i
\(996\) 0 0
\(997\) −5.95724 14.3821i −0.188668 0.455484i 0.801036 0.598616i \(-0.204283\pi\)
−0.989704 + 0.143132i \(0.954283\pi\)
\(998\) 0 0
\(999\) 34.1773i 1.08132i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 680.2.bo.a.161.1 32
17.15 even 8 inner 680.2.bo.a.321.1 yes 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
680.2.bo.a.161.1 32 1.1 even 1 trivial
680.2.bo.a.321.1 yes 32 17.15 even 8 inner