Properties

Label 680.2.bo.a.121.6
Level $680$
Weight $2$
Character 680.121
Analytic conductor $5.430$
Analytic rank $0$
Dimension $32$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [680,2,Mod(121,680)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(680, base_ring=CyclotomicField(8)) chi = DirichletCharacter(H, H._module([0, 0, 0, 7])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("680.121"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 680 = 2^{3} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 680.bo (of order \(8\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.42982733745\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(8\) over \(\Q(\zeta_{8})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 121.6
Character \(\chi\) \(=\) 680.121
Dual form 680.2.bo.a.281.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.46749 - 0.607854i) q^{3} +(0.382683 + 0.923880i) q^{5} +(-1.67090 + 4.03391i) q^{7} +(-0.337282 + 0.337282i) q^{9} +(3.64531 + 1.50994i) q^{11} +1.55040i q^{13} +(1.12317 + 1.12317i) q^{15} +(-4.11036 + 0.323974i) q^{17} +(-3.33014 - 3.33014i) q^{19} +6.93538i q^{21} +(-1.81673 - 0.752515i) q^{23} +(-0.707107 + 0.707107i) q^{25} +(-2.11350 + 5.10244i) q^{27} +(3.94646 + 9.52759i) q^{29} +(5.18852 - 2.14916i) q^{31} +6.26727 q^{33} -4.36627 q^{35} +(2.96423 - 1.22783i) q^{37} +(0.942417 + 2.27520i) q^{39} +(1.52629 - 3.68478i) q^{41} +(4.89107 - 4.89107i) q^{43} +(-0.440680 - 0.182536i) q^{45} -8.02179i q^{47} +(-8.53078 - 8.53078i) q^{49} +(-5.83498 + 2.97393i) q^{51} +(8.66749 + 8.66749i) q^{53} +3.94565i q^{55} +(-6.91118 - 2.86270i) q^{57} +(6.65674 - 6.65674i) q^{59} +(2.87731 - 6.94644i) q^{61} +(-0.797001 - 1.92413i) q^{63} +(-1.43238 + 0.593312i) q^{65} +6.67116 q^{67} -3.12345 q^{69} +(7.26969 - 3.01120i) q^{71} +(2.19937 + 5.30975i) q^{73} +(-0.607854 + 1.46749i) q^{75} +(-12.1819 + 12.1819i) q^{77} +(5.87417 + 2.43316i) q^{79} +7.34151i q^{81} +(-11.3675 - 11.3675i) q^{83} +(-1.87228 - 3.67350i) q^{85} +(11.5828 + 11.5828i) q^{87} +1.49862i q^{89} +(-6.25418 - 2.59056i) q^{91} +(6.30773 - 6.30773i) q^{93} +(1.80226 - 4.35103i) q^{95} +(4.07938 + 9.84849i) q^{97} +(-1.73877 + 0.720223i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 16 q^{9} + 8 q^{11} - 8 q^{17} + 8 q^{19} + 8 q^{23} - 24 q^{27} - 32 q^{29} + 32 q^{31} + 16 q^{33} + 16 q^{35} + 16 q^{37} - 24 q^{39} - 16 q^{41} - 8 q^{49} + 16 q^{51} + 16 q^{53} + 48 q^{57}+ \cdots + 48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/680\mathbb{Z}\right)^\times\).

\(n\) \(137\) \(241\) \(341\) \(511\)
\(\chi(n)\) \(1\) \(e\left(\frac{7}{8}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.46749 0.607854i 0.847255 0.350945i 0.0835452 0.996504i \(-0.473376\pi\)
0.763710 + 0.645559i \(0.223376\pi\)
\(4\) 0 0
\(5\) 0.382683 + 0.923880i 0.171141 + 0.413171i
\(6\) 0 0
\(7\) −1.67090 + 4.03391i −0.631541 + 1.52467i 0.206144 + 0.978522i \(0.433908\pi\)
−0.837685 + 0.546153i \(0.816092\pi\)
\(8\) 0 0
\(9\) −0.337282 + 0.337282i −0.112427 + 0.112427i
\(10\) 0 0
\(11\) 3.64531 + 1.50994i 1.09910 + 0.455263i 0.857171 0.515031i \(-0.172220\pi\)
0.241930 + 0.970294i \(0.422220\pi\)
\(12\) 0 0
\(13\) 1.55040i 0.430004i 0.976614 + 0.215002i \(0.0689757\pi\)
−0.976614 + 0.215002i \(0.931024\pi\)
\(14\) 0 0
\(15\) 1.12317 + 1.12317i 0.290001 + 0.290001i
\(16\) 0 0
\(17\) −4.11036 + 0.323974i −0.996908 + 0.0785754i
\(18\) 0 0
\(19\) −3.33014 3.33014i −0.763986 0.763986i 0.213054 0.977040i \(-0.431659\pi\)
−0.977040 + 0.213054i \(0.931659\pi\)
\(20\) 0 0
\(21\) 6.93538i 1.51342i
\(22\) 0 0
\(23\) −1.81673 0.752515i −0.378815 0.156910i 0.185148 0.982711i \(-0.440724\pi\)
−0.563962 + 0.825801i \(0.690724\pi\)
\(24\) 0 0
\(25\) −0.707107 + 0.707107i −0.141421 + 0.141421i
\(26\) 0 0
\(27\) −2.11350 + 5.10244i −0.406744 + 0.981966i
\(28\) 0 0
\(29\) 3.94646 + 9.52759i 0.732838 + 1.76923i 0.632898 + 0.774235i \(0.281865\pi\)
0.0999406 + 0.994993i \(0.468135\pi\)
\(30\) 0 0
\(31\) 5.18852 2.14916i 0.931886 0.386000i 0.135493 0.990778i \(-0.456738\pi\)
0.796394 + 0.604778i \(0.206738\pi\)
\(32\) 0 0
\(33\) 6.26727 1.09099
\(34\) 0 0
\(35\) −4.36627 −0.738035
\(36\) 0 0
\(37\) 2.96423 1.22783i 0.487317 0.201853i −0.125476 0.992097i \(-0.540046\pi\)
0.612793 + 0.790243i \(0.290046\pi\)
\(38\) 0 0
\(39\) 0.942417 + 2.27520i 0.150907 + 0.364323i
\(40\) 0 0
\(41\) 1.52629 3.68478i 0.238366 0.575466i −0.758748 0.651384i \(-0.774189\pi\)
0.997114 + 0.0759180i \(0.0241887\pi\)
\(42\) 0 0
\(43\) 4.89107 4.89107i 0.745881 0.745881i −0.227822 0.973703i \(-0.573160\pi\)
0.973703 + 0.227822i \(0.0731603\pi\)
\(44\) 0 0
\(45\) −0.440680 0.182536i −0.0656928 0.0272108i
\(46\) 0 0
\(47\) 8.02179i 1.17010i −0.810998 0.585049i \(-0.801075\pi\)
0.810998 0.585049i \(-0.198925\pi\)
\(48\) 0 0
\(49\) −8.53078 8.53078i −1.21868 1.21868i
\(50\) 0 0
\(51\) −5.83498 + 2.97393i −0.817060 + 0.416433i
\(52\) 0 0
\(53\) 8.66749 + 8.66749i 1.19057 + 1.19057i 0.976907 + 0.213663i \(0.0685396\pi\)
0.213663 + 0.976907i \(0.431460\pi\)
\(54\) 0 0
\(55\) 3.94565i 0.532031i
\(56\) 0 0
\(57\) −6.91118 2.86270i −0.915408 0.379174i
\(58\) 0 0
\(59\) 6.65674 6.65674i 0.866634 0.866634i −0.125465 0.992098i \(-0.540042\pi\)
0.992098 + 0.125465i \(0.0400421\pi\)
\(60\) 0 0
\(61\) 2.87731 6.94644i 0.368402 0.889401i −0.625611 0.780135i \(-0.715150\pi\)
0.994013 0.109265i \(-0.0348499\pi\)
\(62\) 0 0
\(63\) −0.797001 1.92413i −0.100413 0.242418i
\(64\) 0 0
\(65\) −1.43238 + 0.593312i −0.177665 + 0.0735914i
\(66\) 0 0
\(67\) 6.67116 0.815012 0.407506 0.913203i \(-0.366399\pi\)
0.407506 + 0.913203i \(0.366399\pi\)
\(68\) 0 0
\(69\) −3.12345 −0.376020
\(70\) 0 0
\(71\) 7.26969 3.01120i 0.862753 0.357364i 0.0929695 0.995669i \(-0.470364\pi\)
0.769784 + 0.638305i \(0.220364\pi\)
\(72\) 0 0
\(73\) 2.19937 + 5.30975i 0.257417 + 0.621459i 0.998766 0.0496600i \(-0.0158138\pi\)
−0.741349 + 0.671119i \(0.765814\pi\)
\(74\) 0 0
\(75\) −0.607854 + 1.46749i −0.0701889 + 0.169451i
\(76\) 0 0
\(77\) −12.1819 + 12.1819i −1.38825 + 1.38825i
\(78\) 0 0
\(79\) 5.87417 + 2.43316i 0.660896 + 0.273752i 0.687816 0.725886i \(-0.258570\pi\)
−0.0269195 + 0.999638i \(0.508570\pi\)
\(80\) 0 0
\(81\) 7.34151i 0.815724i
\(82\) 0 0
\(83\) −11.3675 11.3675i −1.24774 1.24774i −0.956714 0.291031i \(-0.906002\pi\)
−0.291031 0.956714i \(-0.593998\pi\)
\(84\) 0 0
\(85\) −1.87228 3.67350i −0.203077 0.398447i
\(86\) 0 0
\(87\) 11.5828 + 11.5828i 1.24180 + 1.24180i
\(88\) 0 0
\(89\) 1.49862i 0.158854i 0.996841 + 0.0794269i \(0.0253090\pi\)
−0.996841 + 0.0794269i \(0.974691\pi\)
\(90\) 0 0
\(91\) −6.25418 2.59056i −0.655616 0.271565i
\(92\) 0 0
\(93\) 6.30773 6.30773i 0.654081 0.654081i
\(94\) 0 0
\(95\) 1.80226 4.35103i 0.184908 0.446407i
\(96\) 0 0
\(97\) 4.07938 + 9.84849i 0.414198 + 0.999963i 0.983998 + 0.178179i \(0.0570208\pi\)
−0.569800 + 0.821784i \(0.692979\pi\)
\(98\) 0 0
\(99\) −1.73877 + 0.720223i −0.174753 + 0.0723851i
\(100\) 0 0
\(101\) −19.0954 −1.90007 −0.950033 0.312149i \(-0.898951\pi\)
−0.950033 + 0.312149i \(0.898951\pi\)
\(102\) 0 0
\(103\) 0.668860 0.0659047 0.0329524 0.999457i \(-0.489509\pi\)
0.0329524 + 0.999457i \(0.489509\pi\)
\(104\) 0 0
\(105\) −6.40746 + 2.65406i −0.625304 + 0.259009i
\(106\) 0 0
\(107\) −0.323027 0.779856i −0.0312282 0.0753915i 0.907496 0.420061i \(-0.137991\pi\)
−0.938724 + 0.344669i \(0.887991\pi\)
\(108\) 0 0
\(109\) −5.35444 + 12.9268i −0.512863 + 1.23816i 0.429348 + 0.903139i \(0.358743\pi\)
−0.942211 + 0.335021i \(0.891257\pi\)
\(110\) 0 0
\(111\) 3.60364 3.60364i 0.342043 0.342043i
\(112\) 0 0
\(113\) −10.7873 4.46823i −1.01478 0.420336i −0.187584 0.982249i \(-0.560066\pi\)
−0.827196 + 0.561913i \(0.810066\pi\)
\(114\) 0 0
\(115\) 1.96642i 0.183369i
\(116\) 0 0
\(117\) −0.522922 0.522922i −0.0483442 0.0483442i
\(118\) 0 0
\(119\) 5.56111 17.1221i 0.509786 1.56958i
\(120\) 0 0
\(121\) 3.23018 + 3.23018i 0.293653 + 0.293653i
\(122\) 0 0
\(123\) 6.33513i 0.571220i
\(124\) 0 0
\(125\) −0.923880 0.382683i −0.0826343 0.0342282i
\(126\) 0 0
\(127\) −10.2856 + 10.2856i −0.912696 + 0.912696i −0.996484 0.0837878i \(-0.973298\pi\)
0.0837878 + 0.996484i \(0.473298\pi\)
\(128\) 0 0
\(129\) 4.20454 10.1506i 0.370189 0.893715i
\(130\) 0 0
\(131\) −3.07012 7.41192i −0.268238 0.647583i 0.731163 0.682203i \(-0.238978\pi\)
−0.999401 + 0.0346201i \(0.988978\pi\)
\(132\) 0 0
\(133\) 18.9978 7.86915i 1.64732 0.682342i
\(134\) 0 0
\(135\) −5.52285 −0.475331
\(136\) 0 0
\(137\) −5.62626 −0.480684 −0.240342 0.970688i \(-0.577260\pi\)
−0.240342 + 0.970688i \(0.577260\pi\)
\(138\) 0 0
\(139\) 19.4834 8.07027i 1.65256 0.684511i 0.655084 0.755556i \(-0.272633\pi\)
0.997473 + 0.0710448i \(0.0226333\pi\)
\(140\) 0 0
\(141\) −4.87608 11.7719i −0.410640 0.991372i
\(142\) 0 0
\(143\) −2.34100 + 5.65168i −0.195765 + 0.472618i
\(144\) 0 0
\(145\) −7.29210 + 7.29210i −0.605576 + 0.605576i
\(146\) 0 0
\(147\) −17.7043 7.33336i −1.46023 0.604845i
\(148\) 0 0
\(149\) 10.5546i 0.864663i −0.901715 0.432331i \(-0.857691\pi\)
0.901715 0.432331i \(-0.142309\pi\)
\(150\) 0 0
\(151\) −7.44464 7.44464i −0.605836 0.605836i 0.336019 0.941855i \(-0.390919\pi\)
−0.941855 + 0.336019i \(0.890919\pi\)
\(152\) 0 0
\(153\) 1.27708 1.49562i 0.103246 0.120914i
\(154\) 0 0
\(155\) 3.97112 + 3.97112i 0.318968 + 0.318968i
\(156\) 0 0
\(157\) 1.49458i 0.119280i −0.998220 0.0596402i \(-0.981005\pi\)
0.998220 0.0596402i \(-0.0189953\pi\)
\(158\) 0 0
\(159\) 17.9880 + 7.45088i 1.42654 + 0.590893i
\(160\) 0 0
\(161\) 6.07115 6.07115i 0.478474 0.478474i
\(162\) 0 0
\(163\) −5.69807 + 13.7563i −0.446307 + 1.07748i 0.527388 + 0.849625i \(0.323171\pi\)
−0.973695 + 0.227856i \(0.926829\pi\)
\(164\) 0 0
\(165\) 2.39838 + 5.79020i 0.186714 + 0.450766i
\(166\) 0 0
\(167\) −7.28069 + 3.01576i −0.563397 + 0.233367i −0.646159 0.763203i \(-0.723626\pi\)
0.0827624 + 0.996569i \(0.473626\pi\)
\(168\) 0 0
\(169\) 10.5963 0.815097
\(170\) 0 0
\(171\) 2.24639 0.171786
\(172\) 0 0
\(173\) 10.5199 4.35749i 0.799814 0.331294i 0.0549319 0.998490i \(-0.482506\pi\)
0.744882 + 0.667196i \(0.232506\pi\)
\(174\) 0 0
\(175\) −1.67090 4.03391i −0.126308 0.304935i
\(176\) 0 0
\(177\) 5.72237 13.8150i 0.430119 1.03840i
\(178\) 0 0
\(179\) 4.97401 4.97401i 0.371775 0.371775i −0.496348 0.868123i \(-0.665326\pi\)
0.868123 + 0.496348i \(0.165326\pi\)
\(180\) 0 0
\(181\) 1.68857 + 0.699427i 0.125510 + 0.0519880i 0.444555 0.895752i \(-0.353362\pi\)
−0.319044 + 0.947740i \(0.603362\pi\)
\(182\) 0 0
\(183\) 11.9428i 0.882838i
\(184\) 0 0
\(185\) 2.26873 + 2.26873i 0.166800 + 0.166800i
\(186\) 0 0
\(187\) −15.4727 5.02539i −1.13148 0.367493i
\(188\) 0 0
\(189\) −17.0514 17.0514i −1.24030 1.24030i
\(190\) 0 0
\(191\) 3.68371i 0.266544i 0.991080 + 0.133272i \(0.0425484\pi\)
−0.991080 + 0.133272i \(0.957452\pi\)
\(192\) 0 0
\(193\) 2.89719 + 1.20006i 0.208544 + 0.0863819i 0.484511 0.874785i \(-0.338998\pi\)
−0.275966 + 0.961167i \(0.588998\pi\)
\(194\) 0 0
\(195\) −1.74136 + 1.74136i −0.124701 + 0.124701i
\(196\) 0 0
\(197\) −5.80103 + 14.0049i −0.413307 + 0.997810i 0.570937 + 0.820994i \(0.306580\pi\)
−0.984244 + 0.176817i \(0.943420\pi\)
\(198\) 0 0
\(199\) −2.00499 4.84047i −0.142130 0.343132i 0.836745 0.547593i \(-0.184456\pi\)
−0.978875 + 0.204461i \(0.934456\pi\)
\(200\) 0 0
\(201\) 9.78985 4.05509i 0.690523 0.286024i
\(202\) 0 0
\(203\) −45.0276 −3.16032
\(204\) 0 0
\(205\) 3.98838 0.278560
\(206\) 0 0
\(207\) 0.866561 0.358941i 0.0602302 0.0249481i
\(208\) 0 0
\(209\) −7.11108 17.1677i −0.491884 1.18751i
\(210\) 0 0
\(211\) −5.23435 + 12.6368i −0.360347 + 0.869955i 0.634902 + 0.772593i \(0.281041\pi\)
−0.995249 + 0.0973624i \(0.968959\pi\)
\(212\) 0 0
\(213\) 8.83781 8.83781i 0.605557 0.605557i
\(214\) 0 0
\(215\) 6.39049 + 2.64703i 0.435828 + 0.180526i
\(216\) 0 0
\(217\) 24.5211i 1.66460i
\(218\) 0 0
\(219\) 6.45511 + 6.45511i 0.436196 + 0.436196i
\(220\) 0 0
\(221\) −0.502290 6.37270i −0.0337877 0.428674i
\(222\) 0 0
\(223\) 14.0307 + 14.0307i 0.939565 + 0.939565i 0.998275 0.0587100i \(-0.0186987\pi\)
−0.0587100 + 0.998275i \(0.518699\pi\)
\(224\) 0 0
\(225\) 0.476989i 0.0317993i
\(226\) 0 0
\(227\) −20.2103 8.37137i −1.34140 0.555627i −0.407516 0.913198i \(-0.633605\pi\)
−0.933886 + 0.357571i \(0.883605\pi\)
\(228\) 0 0
\(229\) 16.3720 16.3720i 1.08189 1.08189i 0.0855592 0.996333i \(-0.472732\pi\)
0.996333 0.0855592i \(-0.0272677\pi\)
\(230\) 0 0
\(231\) −10.4720 + 25.2816i −0.689006 + 1.66341i
\(232\) 0 0
\(233\) −1.92852 4.65586i −0.126342 0.305015i 0.848034 0.529941i \(-0.177786\pi\)
−0.974376 + 0.224926i \(0.927786\pi\)
\(234\) 0 0
\(235\) 7.41117 3.06981i 0.483451 0.200252i
\(236\) 0 0
\(237\) 10.0993 0.656019
\(238\) 0 0
\(239\) 18.0660 1.16859 0.584297 0.811540i \(-0.301370\pi\)
0.584297 + 0.811540i \(0.301370\pi\)
\(240\) 0 0
\(241\) 15.5932 6.45890i 1.00444 0.416054i 0.181019 0.983480i \(-0.442061\pi\)
0.823425 + 0.567425i \(0.192061\pi\)
\(242\) 0 0
\(243\) −1.87794 4.53374i −0.120470 0.290839i
\(244\) 0 0
\(245\) 4.61682 11.1460i 0.294958 0.712092i
\(246\) 0 0
\(247\) 5.16305 5.16305i 0.328517 0.328517i
\(248\) 0 0
\(249\) −23.5915 9.77190i −1.49505 0.619269i
\(250\) 0 0
\(251\) 8.94113i 0.564359i 0.959362 + 0.282179i \(0.0910574\pi\)
−0.959362 + 0.282179i \(0.908943\pi\)
\(252\) 0 0
\(253\) −5.48629 5.48629i −0.344920 0.344920i
\(254\) 0 0
\(255\) −4.98050 4.25274i −0.311891 0.266317i
\(256\) 0 0
\(257\) 0.221345 + 0.221345i 0.0138071 + 0.0138071i 0.713977 0.700170i \(-0.246892\pi\)
−0.700170 + 0.713977i \(0.746892\pi\)
\(258\) 0 0
\(259\) 14.0090i 0.870478i
\(260\) 0 0
\(261\) −4.54456 1.88242i −0.281301 0.116519i
\(262\) 0 0
\(263\) 5.55489 5.55489i 0.342529 0.342529i −0.514788 0.857317i \(-0.672129\pi\)
0.857317 + 0.514788i \(0.172129\pi\)
\(264\) 0 0
\(265\) −4.69081 + 11.3246i −0.288154 + 0.695666i
\(266\) 0 0
\(267\) 0.910944 + 2.19921i 0.0557489 + 0.134590i
\(268\) 0 0
\(269\) −5.94376 + 2.46198i −0.362397 + 0.150110i −0.556450 0.830881i \(-0.687837\pi\)
0.194052 + 0.980991i \(0.437837\pi\)
\(270\) 0 0
\(271\) 21.9350 1.33246 0.666229 0.745747i \(-0.267907\pi\)
0.666229 + 0.745747i \(0.267907\pi\)
\(272\) 0 0
\(273\) −10.7526 −0.650778
\(274\) 0 0
\(275\) −3.64531 + 1.50994i −0.219820 + 0.0910525i
\(276\) 0 0
\(277\) −10.4006 25.1093i −0.624912 1.50867i −0.845870 0.533389i \(-0.820918\pi\)
0.220958 0.975283i \(-0.429082\pi\)
\(278\) 0 0
\(279\) −1.02512 + 2.47487i −0.0613726 + 0.148167i
\(280\) 0 0
\(281\) −2.96185 + 2.96185i −0.176689 + 0.176689i −0.789911 0.613222i \(-0.789873\pi\)
0.613222 + 0.789911i \(0.289873\pi\)
\(282\) 0 0
\(283\) 6.23839 + 2.58402i 0.370834 + 0.153604i 0.560314 0.828280i \(-0.310680\pi\)
−0.189481 + 0.981884i \(0.560680\pi\)
\(284\) 0 0
\(285\) 7.48060i 0.443113i
\(286\) 0 0
\(287\) 12.3138 + 12.3138i 0.726861 + 0.726861i
\(288\) 0 0
\(289\) 16.7901 2.66330i 0.987652 0.156665i
\(290\) 0 0
\(291\) 11.9729 + 11.9729i 0.701863 + 0.701863i
\(292\) 0 0
\(293\) 17.6481i 1.03101i 0.856885 + 0.515507i \(0.172396\pi\)
−0.856885 + 0.515507i \(0.827604\pi\)
\(294\) 0 0
\(295\) 8.69745 + 3.60260i 0.506385 + 0.209752i
\(296\) 0 0
\(297\) −15.4087 + 15.4087i −0.894105 + 0.894105i
\(298\) 0 0
\(299\) 1.16670 2.81666i 0.0674719 0.162892i
\(300\) 0 0
\(301\) 11.5576 + 27.9026i 0.666172 + 1.60828i
\(302\) 0 0
\(303\) −28.0223 + 11.6072i −1.60984 + 0.666818i
\(304\) 0 0
\(305\) 7.51878 0.430524
\(306\) 0 0
\(307\) −15.2841 −0.872311 −0.436155 0.899871i \(-0.643660\pi\)
−0.436155 + 0.899871i \(0.643660\pi\)
\(308\) 0 0
\(309\) 0.981545 0.406569i 0.0558381 0.0231289i
\(310\) 0 0
\(311\) −11.7364 28.3343i −0.665513 1.60669i −0.789035 0.614348i \(-0.789419\pi\)
0.123523 0.992342i \(-0.460581\pi\)
\(312\) 0 0
\(313\) 4.68300 11.3058i 0.264699 0.639039i −0.734519 0.678588i \(-0.762592\pi\)
0.999218 + 0.0395489i \(0.0125921\pi\)
\(314\) 0 0
\(315\) 1.47267 1.47267i 0.0829753 0.0829753i
\(316\) 0 0
\(317\) 13.8509 + 5.73724i 0.777945 + 0.322236i 0.736086 0.676888i \(-0.236672\pi\)
0.0418594 + 0.999124i \(0.486672\pi\)
\(318\) 0 0
\(319\) 40.6899i 2.27820i
\(320\) 0 0
\(321\) −0.948077 0.948077i −0.0529165 0.0529165i
\(322\) 0 0
\(323\) 14.7669 + 12.6092i 0.821654 + 0.701593i
\(324\) 0 0
\(325\) −1.09630 1.09630i −0.0608117 0.0608117i
\(326\) 0 0
\(327\) 22.2246i 1.22902i
\(328\) 0 0
\(329\) 32.3592 + 13.4036i 1.78402 + 0.738965i
\(330\) 0 0
\(331\) 7.81279 7.81279i 0.429430 0.429430i −0.459004 0.888434i \(-0.651794\pi\)
0.888434 + 0.459004i \(0.151794\pi\)
\(332\) 0 0
\(333\) −0.585659 + 1.41391i −0.0320939 + 0.0774816i
\(334\) 0 0
\(335\) 2.55294 + 6.16335i 0.139482 + 0.336740i
\(336\) 0 0
\(337\) 1.38300 0.572856i 0.0753367 0.0312055i −0.344697 0.938714i \(-0.612018\pi\)
0.420034 + 0.907509i \(0.362018\pi\)
\(338\) 0 0
\(339\) −18.5462 −1.00729
\(340\) 0 0
\(341\) 22.1588 1.19997
\(342\) 0 0
\(343\) 20.4291 8.46201i 1.10307 0.456905i
\(344\) 0 0
\(345\) −1.19529 2.88569i −0.0643524 0.155361i
\(346\) 0 0
\(347\) 5.42311 13.0925i 0.291128 0.702845i −0.708869 0.705340i \(-0.750794\pi\)
0.999997 + 0.00249540i \(0.000794312\pi\)
\(348\) 0 0
\(349\) −21.1619 + 21.1619i −1.13277 + 1.13277i −0.143055 + 0.989715i \(0.545693\pi\)
−0.989715 + 0.143055i \(0.954307\pi\)
\(350\) 0 0
\(351\) −7.91083 3.27677i −0.422249 0.174901i
\(352\) 0 0
\(353\) 30.3154i 1.61353i 0.590875 + 0.806763i \(0.298783\pi\)
−0.590875 + 0.806763i \(0.701217\pi\)
\(354\) 0 0
\(355\) 5.56398 + 5.56398i 0.295305 + 0.295305i
\(356\) 0 0
\(357\) −2.24689 28.5069i −0.118918 1.50875i
\(358\) 0 0
\(359\) 16.4428 + 16.4428i 0.867819 + 0.867819i 0.992231 0.124412i \(-0.0397044\pi\)
−0.124412 + 0.992231i \(0.539704\pi\)
\(360\) 0 0
\(361\) 3.17963i 0.167349i
\(362\) 0 0
\(363\) 6.70373 + 2.77678i 0.351854 + 0.145743i
\(364\) 0 0
\(365\) −4.06391 + 4.06391i −0.212715 + 0.212715i
\(366\) 0 0
\(367\) −7.79215 + 18.8119i −0.406747 + 0.981974i 0.579241 + 0.815157i \(0.303349\pi\)
−0.985988 + 0.166818i \(0.946651\pi\)
\(368\) 0 0
\(369\) 0.728022 + 1.75760i 0.0378993 + 0.0914970i
\(370\) 0 0
\(371\) −49.4464 + 20.4814i −2.56713 + 1.06334i
\(372\) 0 0
\(373\) −7.82030 −0.404920 −0.202460 0.979291i \(-0.564894\pi\)
−0.202460 + 0.979291i \(0.564894\pi\)
\(374\) 0 0
\(375\) −1.58840 −0.0820246
\(376\) 0 0
\(377\) −14.7716 + 6.11859i −0.760775 + 0.315123i
\(378\) 0 0
\(379\) −6.30403 15.2193i −0.323816 0.781762i −0.999026 0.0441356i \(-0.985947\pi\)
0.675209 0.737626i \(-0.264053\pi\)
\(380\) 0 0
\(381\) −8.84183 + 21.3461i −0.452981 + 1.09359i
\(382\) 0 0
\(383\) −19.4193 + 19.4193i −0.992281 + 0.992281i −0.999970 0.00768945i \(-0.997552\pi\)
0.00768945 + 0.999970i \(0.497552\pi\)
\(384\) 0 0
\(385\) −15.9164 6.59279i −0.811175 0.336000i
\(386\) 0 0
\(387\) 3.29934i 0.167715i
\(388\) 0 0
\(389\) −2.10200 2.10200i −0.106575 0.106575i 0.651808 0.758384i \(-0.274011\pi\)
−0.758384 + 0.651808i \(0.774011\pi\)
\(390\) 0 0
\(391\) 7.71121 + 2.50453i 0.389973 + 0.126660i
\(392\) 0 0
\(393\) −9.01073 9.01073i −0.454531 0.454531i
\(394\) 0 0
\(395\) 6.35816i 0.319914i
\(396\) 0 0
\(397\) 6.74218 + 2.79270i 0.338380 + 0.140162i 0.545402 0.838175i \(-0.316377\pi\)
−0.207022 + 0.978336i \(0.566377\pi\)
\(398\) 0 0
\(399\) 23.0958 23.0958i 1.15624 1.15624i
\(400\) 0 0
\(401\) 7.94504 19.1810i 0.396756 0.957855i −0.591674 0.806178i \(-0.701533\pi\)
0.988430 0.151677i \(-0.0484674\pi\)
\(402\) 0 0
\(403\) 3.33205 + 8.04429i 0.165981 + 0.400715i
\(404\) 0 0
\(405\) −6.78267 + 2.80948i −0.337034 + 0.139604i
\(406\) 0 0
\(407\) 12.6595 0.627507
\(408\) 0 0
\(409\) −1.91681 −0.0947799 −0.0473900 0.998876i \(-0.515090\pi\)
−0.0473900 + 0.998876i \(0.515090\pi\)
\(410\) 0 0
\(411\) −8.25647 + 3.41994i −0.407262 + 0.168693i
\(412\) 0 0
\(413\) 15.7299 + 37.9754i 0.774020 + 1.86865i
\(414\) 0 0
\(415\) 6.15204 14.8523i 0.301992 0.729073i
\(416\) 0 0
\(417\) 23.6861 23.6861i 1.15991 1.15991i
\(418\) 0 0
\(419\) −2.78902 1.15525i −0.136252 0.0564376i 0.313515 0.949583i \(-0.398493\pi\)
−0.449768 + 0.893146i \(0.648493\pi\)
\(420\) 0 0
\(421\) 10.6132i 0.517258i −0.965977 0.258629i \(-0.916729\pi\)
0.965977 0.258629i \(-0.0832707\pi\)
\(422\) 0 0
\(423\) 2.70561 + 2.70561i 0.131551 + 0.131551i
\(424\) 0 0
\(425\) 2.67738 3.13555i 0.129872 0.152096i
\(426\) 0 0
\(427\) 23.2136 + 23.2136i 1.12339 + 1.12339i
\(428\) 0 0
\(429\) 9.71677i 0.469130i
\(430\) 0 0
\(431\) −11.3842 4.71551i −0.548360 0.227138i 0.0912632 0.995827i \(-0.470910\pi\)
−0.639623 + 0.768689i \(0.720910\pi\)
\(432\) 0 0
\(433\) 23.9426 23.9426i 1.15061 1.15061i 0.164174 0.986431i \(-0.447504\pi\)
0.986431 0.164174i \(-0.0524960\pi\)
\(434\) 0 0
\(435\) −6.26855 + 15.1336i −0.300554 + 0.725601i
\(436\) 0 0
\(437\) 3.54399 + 8.55594i 0.169532 + 0.409286i
\(438\) 0 0
\(439\) 8.35988 3.46278i 0.398995 0.165269i −0.174157 0.984718i \(-0.555720\pi\)
0.573153 + 0.819449i \(0.305720\pi\)
\(440\) 0 0
\(441\) 5.75456 0.274027
\(442\) 0 0
\(443\) −25.6397 −1.21818 −0.609090 0.793101i \(-0.708465\pi\)
−0.609090 + 0.793101i \(0.708465\pi\)
\(444\) 0 0
\(445\) −1.38455 + 0.573498i −0.0656339 + 0.0271864i
\(446\) 0 0
\(447\) −6.41563 15.4887i −0.303449 0.732590i
\(448\) 0 0
\(449\) 4.93839 11.9223i 0.233057 0.562649i −0.763477 0.645835i \(-0.776509\pi\)
0.996534 + 0.0831857i \(0.0265095\pi\)
\(450\) 0 0
\(451\) 11.1276 11.1276i 0.523976 0.523976i
\(452\) 0 0
\(453\) −15.4502 6.39967i −0.725913 0.300683i
\(454\) 0 0
\(455\) 6.76947i 0.317358i
\(456\) 0 0
\(457\) 28.1021 + 28.1021i 1.31456 + 1.31456i 0.918016 + 0.396544i \(0.129791\pi\)
0.396544 + 0.918016i \(0.370209\pi\)
\(458\) 0 0
\(459\) 7.03419 21.6576i 0.328328 1.01089i
\(460\) 0 0
\(461\) −4.54917 4.54917i −0.211876 0.211876i 0.593188 0.805064i \(-0.297869\pi\)
−0.805064 + 0.593188i \(0.797869\pi\)
\(462\) 0 0
\(463\) 20.2801i 0.942498i −0.882000 0.471249i \(-0.843803\pi\)
0.882000 0.471249i \(-0.156197\pi\)
\(464\) 0 0
\(465\) 8.24144 + 3.41372i 0.382188 + 0.158307i
\(466\) 0 0
\(467\) 23.6662 23.6662i 1.09514 1.09514i 0.100173 0.994970i \(-0.468061\pi\)
0.994970 0.100173i \(-0.0319395\pi\)
\(468\) 0 0
\(469\) −11.1468 + 26.9108i −0.514713 + 1.24263i
\(470\) 0 0
\(471\) −0.908486 2.19328i −0.0418608 0.101061i
\(472\) 0 0
\(473\) 25.2146 10.4442i 1.15937 0.480227i
\(474\) 0 0
\(475\) 4.70953 0.216088
\(476\) 0 0
\(477\) −5.84678 −0.267706
\(478\) 0 0
\(479\) −36.5438 + 15.1369i −1.66973 + 0.691624i −0.998756 0.0498594i \(-0.984123\pi\)
−0.670971 + 0.741483i \(0.734123\pi\)
\(480\) 0 0
\(481\) 1.90362 + 4.59575i 0.0867977 + 0.209548i
\(482\) 0 0
\(483\) 5.21898 12.5997i 0.237472 0.573307i
\(484\) 0 0
\(485\) −7.53771 + 7.53771i −0.342270 + 0.342270i
\(486\) 0 0
\(487\) 25.1478 + 10.4165i 1.13955 + 0.472019i 0.871018 0.491251i \(-0.163460\pi\)
0.268536 + 0.963270i \(0.413460\pi\)
\(488\) 0 0
\(489\) 23.6509i 1.06953i
\(490\) 0 0
\(491\) −12.9721 12.9721i −0.585420 0.585420i 0.350967 0.936388i \(-0.385853\pi\)
−0.936388 + 0.350967i \(0.885853\pi\)
\(492\) 0 0
\(493\) −19.3080 37.8832i −0.869590 1.70618i
\(494\) 0 0
\(495\) −1.33080 1.33080i −0.0598149 0.0598149i
\(496\) 0 0
\(497\) 34.3567i 1.54111i
\(498\) 0 0
\(499\) 4.31220 + 1.78617i 0.193041 + 0.0799601i 0.477110 0.878844i \(-0.341684\pi\)
−0.284069 + 0.958804i \(0.591684\pi\)
\(500\) 0 0
\(501\) −8.85119 + 8.85119i −0.395442 + 0.395442i
\(502\) 0 0
\(503\) 6.59330 15.9176i 0.293981 0.709732i −0.706018 0.708194i \(-0.749510\pi\)
0.999999 0.00153827i \(-0.000489647\pi\)
\(504\) 0 0
\(505\) −7.30750 17.6419i −0.325180 0.785053i
\(506\) 0 0
\(507\) 15.5499 6.44098i 0.690595 0.286054i
\(508\) 0 0
\(509\) −30.5288 −1.35317 −0.676583 0.736367i \(-0.736540\pi\)
−0.676583 + 0.736367i \(0.736540\pi\)
\(510\) 0 0
\(511\) −25.0940 −1.11009
\(512\) 0 0
\(513\) 24.0301 9.95359i 1.06095 0.439462i
\(514\) 0 0
\(515\) 0.255962 + 0.617946i 0.0112790 + 0.0272300i
\(516\) 0 0
\(517\) 12.1124 29.2419i 0.532702 1.28606i
\(518\) 0 0
\(519\) 12.7891 12.7891i 0.561381 0.561381i
\(520\) 0 0
\(521\) −6.55302 2.71435i −0.287093 0.118918i 0.234490 0.972119i \(-0.424658\pi\)
−0.521583 + 0.853201i \(0.674658\pi\)
\(522\) 0 0
\(523\) 24.7012i 1.08011i −0.841631 0.540053i \(-0.818404\pi\)
0.841631 0.540053i \(-0.181596\pi\)
\(524\) 0 0
\(525\) −4.90406 4.90406i −0.214031 0.214031i
\(526\) 0 0
\(527\) −20.6304 + 10.5148i −0.898675 + 0.458030i
\(528\) 0 0
\(529\) −13.5292 13.5292i −0.588227 0.588227i
\(530\) 0 0
\(531\) 4.49040i 0.194867i
\(532\) 0 0
\(533\) 5.71288 + 2.36635i 0.247452 + 0.102498i
\(534\) 0 0
\(535\) 0.596876 0.596876i 0.0258052 0.0258052i
\(536\) 0 0
\(537\) 4.27584 10.3228i 0.184516 0.445461i
\(538\) 0 0
\(539\) −18.2164 43.9782i −0.784635 1.89428i
\(540\) 0 0
\(541\) −31.3452 + 12.9836i −1.34764 + 0.558209i −0.935633 0.352974i \(-0.885170\pi\)
−0.412002 + 0.911183i \(0.635170\pi\)
\(542\) 0 0
\(543\) 2.90310 0.124584
\(544\) 0 0
\(545\) −13.9918 −0.599344
\(546\) 0 0
\(547\) 10.0303 4.15469i 0.428865 0.177642i −0.157800 0.987471i \(-0.550440\pi\)
0.586666 + 0.809829i \(0.300440\pi\)
\(548\) 0 0
\(549\) 1.37245 + 3.31338i 0.0585746 + 0.141411i
\(550\) 0 0
\(551\) 18.5859 44.8704i 0.791787 1.91154i
\(552\) 0 0
\(553\) −19.6303 + 19.6303i −0.834766 + 0.834766i
\(554\) 0 0
\(555\) 4.70838 + 1.95028i 0.199860 + 0.0827846i
\(556\) 0 0
\(557\) 39.0477i 1.65451i −0.561829 0.827253i \(-0.689902\pi\)
0.561829 0.827253i \(-0.310098\pi\)
\(558\) 0 0
\(559\) 7.58312 + 7.58312i 0.320732 + 0.320732i
\(560\) 0 0
\(561\) −25.7607 + 2.03043i −1.08762 + 0.0857250i
\(562\) 0 0
\(563\) 19.7750 + 19.7750i 0.833419 + 0.833419i 0.987983 0.154564i \(-0.0493973\pi\)
−0.154564 + 0.987983i \(0.549397\pi\)
\(564\) 0 0
\(565\) 11.6760i 0.491215i
\(566\) 0 0
\(567\) −29.6150 12.2669i −1.24371 0.515163i
\(568\) 0 0
\(569\) −25.4541 + 25.4541i −1.06709 + 1.06709i −0.0695089 + 0.997581i \(0.522143\pi\)
−0.997581 + 0.0695089i \(0.977857\pi\)
\(570\) 0 0
\(571\) 5.03077 12.1453i 0.210531 0.508267i −0.782974 0.622054i \(-0.786298\pi\)
0.993505 + 0.113788i \(0.0362983\pi\)
\(572\) 0 0
\(573\) 2.23916 + 5.40581i 0.0935422 + 0.225831i
\(574\) 0 0
\(575\) 1.81673 0.752515i 0.0757629 0.0313820i
\(576\) 0 0
\(577\) −3.15568 −0.131373 −0.0656864 0.997840i \(-0.520924\pi\)
−0.0656864 + 0.997840i \(0.520924\pi\)
\(578\) 0 0
\(579\) 4.98106 0.207006
\(580\) 0 0
\(581\) 64.8494 26.8615i 2.69041 1.11440i
\(582\) 0 0
\(583\) 18.5083 + 44.6830i 0.766535 + 1.85058i
\(584\) 0 0
\(585\) 0.283004 0.683231i 0.0117008 0.0282481i
\(586\) 0 0
\(587\) −11.6311 + 11.6311i −0.480067 + 0.480067i −0.905153 0.425086i \(-0.860244\pi\)
0.425086 + 0.905153i \(0.360244\pi\)
\(588\) 0 0
\(589\) −24.4355 10.1215i −1.00685 0.417049i
\(590\) 0 0
\(591\) 24.0783i 0.990448i
\(592\) 0 0
\(593\) −2.18100 2.18100i −0.0895631 0.0895631i 0.660906 0.750469i \(-0.270172\pi\)
−0.750469 + 0.660906i \(0.770172\pi\)
\(594\) 0 0
\(595\) 17.9469 1.41456i 0.735753 0.0579913i
\(596\) 0 0
\(597\) −5.88460 5.88460i −0.240841 0.240841i
\(598\) 0 0
\(599\) 10.5002i 0.429028i 0.976721 + 0.214514i \(0.0688167\pi\)
−0.976721 + 0.214514i \(0.931183\pi\)
\(600\) 0 0
\(601\) 31.3363 + 12.9799i 1.27823 + 0.529461i 0.915457 0.402415i \(-0.131829\pi\)
0.362776 + 0.931876i \(0.381829\pi\)
\(602\) 0 0
\(603\) −2.25006 + 2.25006i −0.0916296 + 0.0916296i
\(604\) 0 0
\(605\) −1.74816 + 4.22043i −0.0710728 + 0.171585i
\(606\) 0 0
\(607\) −0.558189 1.34759i −0.0226562 0.0546969i 0.912147 0.409864i \(-0.134424\pi\)
−0.934803 + 0.355167i \(0.884424\pi\)
\(608\) 0 0
\(609\) −66.0775 + 27.3702i −2.67759 + 1.10910i
\(610\) 0 0
\(611\) 12.4370 0.503147
\(612\) 0 0
\(613\) −25.4615 −1.02838 −0.514190 0.857676i \(-0.671907\pi\)
−0.514190 + 0.857676i \(0.671907\pi\)
\(614\) 0 0
\(615\) 5.85290 2.42435i 0.236012 0.0977593i
\(616\) 0 0
\(617\) −16.2086 39.1309i −0.652532 1.57535i −0.809092 0.587682i \(-0.800040\pi\)
0.156560 0.987668i \(-0.449960\pi\)
\(618\) 0 0
\(619\) −15.3557 + 37.0720i −0.617198 + 1.49005i 0.237745 + 0.971328i \(0.423592\pi\)
−0.854944 + 0.518721i \(0.826408\pi\)
\(620\) 0 0
\(621\) 7.67933 7.67933i 0.308161 0.308161i
\(622\) 0 0
\(623\) −6.04531 2.50405i −0.242200 0.100323i
\(624\) 0 0
\(625\) 1.00000i 0.0400000i
\(626\) 0 0
\(627\) −20.8709 20.8709i −0.833502 0.833502i
\(628\) 0 0
\(629\) −11.7863 + 6.00714i −0.469950 + 0.239520i
\(630\) 0 0
\(631\) −16.8532 16.8532i −0.670915 0.670915i 0.287012 0.957927i \(-0.407338\pi\)
−0.957927 + 0.287012i \(0.907338\pi\)
\(632\) 0 0
\(633\) 21.7261i 0.863536i
\(634\) 0 0
\(635\) −13.4387 5.56650i −0.533300 0.220900i
\(636\) 0 0
\(637\) 13.2261 13.2261i 0.524038 0.524038i
\(638\) 0 0
\(639\) −1.43631 + 3.46756i −0.0568196 + 0.137175i
\(640\) 0 0
\(641\) −7.01505 16.9358i −0.277078 0.668925i 0.722674 0.691189i \(-0.242913\pi\)
−0.999752 + 0.0222638i \(0.992913\pi\)
\(642\) 0 0
\(643\) −15.2451 + 6.31474i −0.601209 + 0.249029i −0.662465 0.749093i \(-0.730490\pi\)
0.0612555 + 0.998122i \(0.480490\pi\)
\(644\) 0 0
\(645\) 10.9870 0.432612
\(646\) 0 0
\(647\) 5.26603 0.207029 0.103515 0.994628i \(-0.466991\pi\)
0.103515 + 0.994628i \(0.466991\pi\)
\(648\) 0 0
\(649\) 34.3171 14.2146i 1.34706 0.557972i
\(650\) 0 0
\(651\) 14.9052 + 35.9844i 0.584182 + 1.41034i
\(652\) 0 0
\(653\) −8.31888 + 20.0836i −0.325543 + 0.785931i 0.673369 + 0.739306i \(0.264846\pi\)
−0.998912 + 0.0466244i \(0.985154\pi\)
\(654\) 0 0
\(655\) 5.67284 5.67284i 0.221656 0.221656i
\(656\) 0 0
\(657\) −2.53269 1.04908i −0.0988098 0.0409284i
\(658\) 0 0
\(659\) 32.8555i 1.27987i 0.768430 + 0.639934i \(0.221038\pi\)
−0.768430 + 0.639934i \(0.778962\pi\)
\(660\) 0 0
\(661\) 25.9634 + 25.9634i 1.00986 + 1.00986i 0.999951 + 0.00991014i \(0.00315455\pi\)
0.00991014 + 0.999951i \(0.496845\pi\)
\(662\) 0 0
\(663\) −4.61078 9.04655i −0.179068 0.351339i
\(664\) 0 0
\(665\) 14.5403 + 14.5403i 0.563848 + 0.563848i
\(666\) 0 0
\(667\) 20.2788i 0.785200i
\(668\) 0 0
\(669\) 29.1185 + 12.0613i 1.12579 + 0.466316i
\(670\) 0 0
\(671\) 20.9774 20.9774i 0.809822 0.809822i
\(672\) 0 0
\(673\) 9.27659 22.3957i 0.357586 0.863290i −0.638052 0.769993i \(-0.720260\pi\)
0.995638 0.0932966i \(-0.0297405\pi\)
\(674\) 0 0
\(675\) −2.11350 5.10244i −0.0813487 0.196393i
\(676\) 0 0
\(677\) 16.7557 6.94043i 0.643973 0.266742i −0.0367037 0.999326i \(-0.511686\pi\)
0.680677 + 0.732584i \(0.261686\pi\)
\(678\) 0 0
\(679\) −46.5442 −1.78620
\(680\) 0 0
\(681\) −34.7469 −1.33150
\(682\) 0 0
\(683\) 28.4240 11.7736i 1.08761 0.450505i 0.234440 0.972131i \(-0.424674\pi\)
0.853174 + 0.521626i \(0.174674\pi\)
\(684\) 0 0
\(685\) −2.15308 5.19799i −0.0822648 0.198605i
\(686\) 0 0
\(687\) 14.0739 33.9775i 0.536955 1.29632i
\(688\) 0 0
\(689\) −13.4381 + 13.4381i −0.511950 + 0.511950i
\(690\) 0 0
\(691\) −9.30901 3.85592i −0.354131 0.146686i 0.198524 0.980096i \(-0.436385\pi\)
−0.552655 + 0.833410i \(0.686385\pi\)
\(692\) 0 0
\(693\) 8.21747i 0.312156i
\(694\) 0 0
\(695\) 14.9119 + 14.9119i 0.565641 + 0.565641i
\(696\) 0 0
\(697\) −5.07981 + 15.6402i −0.192411 + 0.592416i
\(698\) 0 0
\(699\) −5.66016 5.66016i −0.214087 0.214087i
\(700\) 0 0
\(701\) 32.0760i 1.21150i 0.795657 + 0.605748i \(0.207126\pi\)
−0.795657 + 0.605748i \(0.792874\pi\)
\(702\) 0 0
\(703\) −13.9601 5.78248i −0.526516 0.218090i
\(704\) 0 0
\(705\) 9.00981 9.00981i 0.339329 0.339329i
\(706\) 0 0
\(707\) 31.9066 77.0293i 1.19997 2.89698i
\(708\) 0 0
\(709\) 3.29129 + 7.94589i 0.123607 + 0.298414i 0.973555 0.228453i \(-0.0733667\pi\)
−0.849948 + 0.526867i \(0.823367\pi\)
\(710\) 0 0
\(711\) −2.80192 + 1.16059i −0.105080 + 0.0435256i
\(712\) 0 0
\(713\) −11.0434 −0.413580
\(714\) 0 0
\(715\) −6.11734 −0.228775
\(716\) 0 0
\(717\) 26.5117 10.9815i 0.990098 0.410112i
\(718\) 0 0
\(719\) −8.47004 20.4485i −0.315879 0.762600i −0.999464 0.0327288i \(-0.989580\pi\)
0.683585 0.729871i \(-0.260420\pi\)
\(720\) 0 0
\(721\) −1.11760 + 2.69812i −0.0416215 + 0.100483i
\(722\) 0 0
\(723\) 18.9567 18.9567i 0.705008 0.705008i
\(724\) 0 0
\(725\) −9.52759 3.94646i −0.353846 0.146568i
\(726\) 0 0
\(727\) 19.9059i 0.738270i 0.929376 + 0.369135i \(0.120346\pi\)
−0.929376 + 0.369135i \(0.879654\pi\)
\(728\) 0 0
\(729\) −21.0854 21.0854i −0.780941 0.780941i
\(730\) 0 0
\(731\) −18.5195 + 21.6886i −0.684967 + 0.802183i
\(732\) 0 0
\(733\) −4.88790 4.88790i −0.180539 0.180539i 0.611052 0.791591i \(-0.290747\pi\)
−0.791591 + 0.611052i \(0.790747\pi\)
\(734\) 0 0
\(735\) 19.1630i 0.706837i
\(736\) 0 0
\(737\) 24.3184 + 10.0730i 0.895780 + 0.371044i
\(738\) 0 0
\(739\) 5.23246 5.23246i 0.192479 0.192479i −0.604287 0.796766i \(-0.706542\pi\)
0.796766 + 0.604287i \(0.206542\pi\)
\(740\) 0 0
\(741\) 4.43834 10.7151i 0.163046 0.393629i
\(742\) 0 0
\(743\) 4.94938 + 11.9488i 0.181575 + 0.438361i 0.988291 0.152578i \(-0.0487575\pi\)
−0.806716 + 0.590939i \(0.798758\pi\)
\(744\) 0 0
\(745\) 9.75114 4.03905i 0.357254 0.147979i
\(746\) 0 0
\(747\) 7.66811 0.280561
\(748\) 0 0
\(749\) 3.68562 0.134669
\(750\) 0 0
\(751\) 12.7137 5.26620i 0.463931 0.192166i −0.138460 0.990368i \(-0.544215\pi\)
0.602390 + 0.798202i \(0.294215\pi\)
\(752\) 0 0
\(753\) 5.43490 + 13.1210i 0.198059 + 0.478156i
\(754\) 0 0
\(755\) 4.02901 9.72689i 0.146631 0.353998i
\(756\) 0 0
\(757\) 3.61651 3.61651i 0.131444 0.131444i −0.638324 0.769768i \(-0.720372\pi\)
0.769768 + 0.638324i \(0.220372\pi\)
\(758\) 0 0
\(759\) −11.3859 4.71621i −0.413283 0.171188i
\(760\) 0 0
\(761\) 10.0575i 0.364585i 0.983244 + 0.182292i \(0.0583518\pi\)
−0.983244 + 0.182292i \(0.941648\pi\)
\(762\) 0 0
\(763\) −43.1987 43.1987i −1.56390 1.56390i
\(764\) 0 0
\(765\) 1.87049 + 0.607518i 0.0676278 + 0.0219649i
\(766\) 0 0
\(767\) 10.3206 + 10.3206i 0.372656 + 0.372656i
\(768\) 0 0
\(769\) 19.4115i 0.699997i −0.936750 0.349998i \(-0.886182\pi\)
0.936750 0.349998i \(-0.113818\pi\)
\(770\) 0 0
\(771\) 0.459366 + 0.190276i 0.0165437 + 0.00685262i
\(772\) 0 0
\(773\) −15.6614 + 15.6614i −0.563302 + 0.563302i −0.930244 0.366942i \(-0.880405\pi\)
0.366942 + 0.930244i \(0.380405\pi\)
\(774\) 0 0
\(775\) −2.14916 + 5.18852i −0.0772000 + 0.186377i
\(776\) 0 0
\(777\) 8.51544 + 20.5581i 0.305490 + 0.737517i
\(778\) 0 0
\(779\) −17.3536 + 7.18808i −0.621756 + 0.257540i
\(780\) 0 0
\(781\) 31.0470 1.11095
\(782\) 0 0
\(783\) −56.9548 −2.03540
\(784\) 0 0
\(785\) 1.38081 0.571951i 0.0492833 0.0204138i
\(786\) 0 0
\(787\) −4.04832 9.77350i −0.144307 0.348388i 0.835156 0.550014i \(-0.185377\pi\)
−0.979463 + 0.201626i \(0.935377\pi\)
\(788\) 0 0
\(789\) 4.77518 11.5283i 0.170001 0.410419i
\(790\) 0 0
\(791\) 36.0489 36.0489i 1.28175 1.28175i
\(792\) 0 0
\(793\) 10.7698 + 4.46098i 0.382446 + 0.158414i
\(794\) 0 0
\(795\) 19.4701i 0.690533i
\(796\) 0 0
\(797\) −25.0674 25.0674i −0.887934 0.887934i 0.106391 0.994324i \(-0.466071\pi\)
−0.994324 + 0.106391i \(0.966071\pi\)
\(798\) 0 0
\(799\) 2.59886 + 32.9724i 0.0919409 + 1.16648i
\(800\) 0 0
\(801\) −0.505459 0.505459i −0.0178595 0.0178595i
\(802\) 0 0
\(803\) 22.6766i 0.800239i
\(804\) 0 0
\(805\) 7.93234 + 3.28568i 0.279578 + 0.115805i
\(806\) 0 0
\(807\) −7.22587 + 7.22587i −0.254363 + 0.254363i
\(808\) 0 0
\(809\) −10.0126 + 24.1724i −0.352023 + 0.849858i 0.644348 + 0.764733i \(0.277129\pi\)
−0.996370 + 0.0851252i \(0.972871\pi\)
\(810\) 0 0
\(811\) 14.8001 + 35.7307i 0.519703 + 1.25467i 0.938086 + 0.346403i \(0.112597\pi\)
−0.418383 + 0.908271i \(0.637403\pi\)
\(812\) 0 0
\(813\) 32.1894 13.3333i 1.12893 0.467619i
\(814\) 0 0
\(815\) −14.8898 −0.521566
\(816\) 0 0
\(817\) −32.5759 −1.13969
\(818\) 0 0
\(819\) 2.98317 1.23567i 0.104241 0.0431778i
\(820\) 0 0
\(821\) −18.9919 45.8505i −0.662822 1.60019i −0.793361 0.608751i \(-0.791671\pi\)
0.130539 0.991443i \(-0.458329\pi\)
\(822\) 0 0
\(823\) 6.69230 16.1566i 0.233279 0.563185i −0.763280 0.646067i \(-0.776413\pi\)
0.996559 + 0.0828822i \(0.0264125\pi\)
\(824\) 0 0
\(825\) −4.43163 + 4.43163i −0.154289 + 0.154289i
\(826\) 0 0
\(827\) −5.53017 2.29067i −0.192303 0.0796544i 0.284454 0.958690i \(-0.408188\pi\)
−0.476757 + 0.879035i \(0.658188\pi\)
\(828\) 0 0
\(829\) 17.0473i 0.592076i 0.955176 + 0.296038i \(0.0956655\pi\)
−0.955176 + 0.296038i \(0.904334\pi\)
\(830\) 0 0
\(831\) −30.5256 30.5256i −1.05892 1.05892i
\(832\) 0 0
\(833\) 37.8283 + 32.3008i 1.31067 + 1.11916i
\(834\) 0 0
\(835\) −5.57240 5.57240i −0.192841 0.192841i
\(836\) 0 0
\(837\) 31.0164i 1.07208i
\(838\) 0 0
\(839\) −43.1837 17.8873i −1.49087 0.617537i −0.519361 0.854555i \(-0.673830\pi\)
−0.971505 + 0.237017i \(0.923830\pi\)
\(840\) 0 0
\(841\) −54.6943 + 54.6943i −1.88601 + 1.88601i
\(842\) 0 0
\(843\) −2.54611 + 6.14686i −0.0876928 + 0.211709i
\(844\) 0 0
\(845\) 4.05501 + 9.78967i 0.139497 + 0.336775i
\(846\) 0 0
\(847\) −18.4276 + 7.63294i −0.633178 + 0.262271i
\(848\) 0 0
\(849\) 10.7255 0.368097
\(850\) 0 0
\(851\) −6.30917 −0.216276
\(852\) 0 0
\(853\) −51.7113 + 21.4195i −1.77056 + 0.733390i −0.775820 + 0.630954i \(0.782664\pi\)
−0.994740 + 0.102436i \(0.967336\pi\)
\(854\) 0 0
\(855\) 0.859657 + 2.07540i 0.0293996 + 0.0709770i
\(856\) 0 0
\(857\) 0.986747 2.38222i 0.0337066 0.0813750i −0.906130 0.423000i \(-0.860977\pi\)
0.939836 + 0.341625i \(0.110977\pi\)
\(858\) 0 0
\(859\) 24.7536 24.7536i 0.844581 0.844581i −0.144870 0.989451i \(-0.546276\pi\)
0.989451 + 0.144870i \(0.0462764\pi\)
\(860\) 0 0
\(861\) 25.5554 + 10.5854i 0.870924 + 0.360749i
\(862\) 0 0
\(863\) 21.9363i 0.746720i −0.927687 0.373360i \(-0.878206\pi\)
0.927687 0.373360i \(-0.121794\pi\)
\(864\) 0 0
\(865\) 8.05159 + 8.05159i 0.273762 + 0.273762i
\(866\) 0 0
\(867\) 23.0204 14.1143i 0.781813 0.479346i
\(868\) 0 0
\(869\) 17.7392 + 17.7392i 0.601762 + 0.601762i
\(870\) 0 0
\(871\) 10.3430i 0.350458i
\(872\) 0 0
\(873\) −4.69762 1.94582i −0.158990 0.0658560i
\(874\) 0 0
\(875\) 3.08742 3.08742i 0.104374 0.104374i
\(876\) 0 0
\(877\) −5.09326 + 12.2962i −0.171987 + 0.415214i −0.986245 0.165290i \(-0.947144\pi\)
0.814258 + 0.580503i \(0.197144\pi\)
\(878\) 0 0
\(879\) 10.7275 + 25.8984i 0.361829 + 0.873532i
\(880\) 0 0
\(881\) 36.5719 15.1486i 1.23214 0.510369i 0.330890 0.943670i \(-0.392651\pi\)
0.901249 + 0.433301i \(0.142651\pi\)
\(882\) 0 0
\(883\) 48.3602 1.62745 0.813725 0.581250i \(-0.197436\pi\)
0.813725 + 0.581250i \(0.197436\pi\)
\(884\) 0 0
\(885\) 14.9533 0.502649
\(886\) 0 0
\(887\) 33.1140 13.7163i 1.11186 0.460547i 0.250282 0.968173i \(-0.419477\pi\)
0.861578 + 0.507626i \(0.169477\pi\)
\(888\) 0 0
\(889\) −24.3049 58.6772i −0.815160 1.96797i
\(890\) 0 0
\(891\) −11.0852 + 26.7621i −0.371369 + 0.896563i
\(892\) 0 0
\(893\) −26.7137 + 26.7137i −0.893939 + 0.893939i
\(894\) 0 0
\(895\) 6.49886 + 2.69192i 0.217233 + 0.0899809i
\(896\) 0 0
\(897\) 4.84260i 0.161690i
\(898\) 0 0
\(899\) 40.9526 + 40.9526i 1.36584 + 1.36584i
\(900\) 0 0
\(901\) −38.4345 32.8184i −1.28044 1.09334i
\(902\) 0 0
\(903\) 33.9214 + 33.9214i 1.12883 + 1.12883i
\(904\) 0 0
\(905\) 1.82769i 0.0607545i
\(906\) 0 0
\(907\) 1.65667 + 0.686216i 0.0550089 + 0.0227854i 0.410018 0.912077i \(-0.365522\pi\)
−0.355009 + 0.934863i \(0.615522\pi\)
\(908\) 0 0
\(909\) 6.44055 6.44055i 0.213620 0.213620i
\(910\) 0 0
\(911\) 5.79680 13.9947i 0.192057 0.463666i −0.798291 0.602272i \(-0.794262\pi\)
0.990348 + 0.138606i \(0.0442623\pi\)
\(912\) 0 0
\(913\) −24.2738 58.6022i −0.803346 1.93945i
\(914\) 0 0
\(915\) 11.0337 4.57032i 0.364764 0.151090i
\(916\) 0 0
\(917\) 35.0289 1.15676
\(918\) 0 0
\(919\) −32.8285 −1.08291 −0.541457 0.840729i \(-0.682127\pi\)
−0.541457 + 0.840729i \(0.682127\pi\)
\(920\) 0 0
\(921\) −22.4293 + 9.29051i −0.739070 + 0.306133i
\(922\) 0 0
\(923\) 4.66857 + 11.2709i 0.153668 + 0.370987i
\(924\) 0 0
\(925\) −1.22783 + 2.96423i −0.0403707 + 0.0974634i
\(926\) 0 0
\(927\) −0.225595 + 0.225595i −0.00740950 + 0.00740950i
\(928\) 0 0
\(929\) 32.9725 + 13.6577i 1.08179 + 0.448093i 0.851138 0.524942i \(-0.175913\pi\)
0.230655 + 0.973036i \(0.425913\pi\)
\(930\) 0 0
\(931\) 56.8173i 1.86211i
\(932\) 0 0
\(933\) −34.4462 34.4462i −1.12772 1.12772i
\(934\) 0 0
\(935\) −1.27829 16.2180i −0.0418046 0.530387i
\(936\) 0 0
\(937\) −16.6155 16.6155i −0.542804 0.542804i 0.381546 0.924350i \(-0.375392\pi\)
−0.924350 + 0.381546i \(0.875392\pi\)
\(938\) 0 0
\(939\) 19.4377i 0.634324i
\(940\) 0 0
\(941\) −13.4597 5.57517i −0.438772 0.181745i 0.152351 0.988326i \(-0.451315\pi\)
−0.591124 + 0.806581i \(0.701315\pi\)
\(942\) 0 0
\(943\) −5.54570 + 5.54570i −0.180593 + 0.180593i
\(944\) 0 0
\(945\) 9.22812 22.2787i 0.300191 0.724725i
\(946\) 0 0
\(947\) −10.3654 25.0243i −0.336830 0.813180i −0.998016 0.0629578i \(-0.979947\pi\)
0.661186 0.750222i \(-0.270053\pi\)
\(948\) 0 0
\(949\) −8.23224 + 3.40991i −0.267230 + 0.110690i
\(950\) 0 0
\(951\) 23.8135 0.772205
\(952\) 0 0
\(953\) −30.3486 −0.983089 −0.491544 0.870853i \(-0.663567\pi\)
−0.491544 + 0.870853i \(0.663567\pi\)
\(954\) 0 0
\(955\) −3.40330 + 1.40969i −0.110128 + 0.0456167i
\(956\) 0 0
\(957\) 24.7335 + 59.7119i 0.799520 + 1.93021i
\(958\) 0 0
\(959\) 9.40092 22.6958i 0.303572 0.732886i
\(960\) 0 0
\(961\) 0.381591 0.381591i 0.0123094 0.0123094i
\(962\) 0 0
\(963\) 0.371983 + 0.154080i 0.0119870 + 0.00496517i
\(964\) 0 0
\(965\) 3.13590i 0.100948i
\(966\) 0 0
\(967\) 12.6496 + 12.6496i 0.406784 + 0.406784i 0.880616 0.473831i \(-0.157129\pi\)
−0.473831 + 0.880616i \(0.657129\pi\)
\(968\) 0 0
\(969\) 29.3349 + 9.52769i 0.942371 + 0.306073i
\(970\) 0 0
\(971\) 14.6184 + 14.6184i 0.469128 + 0.469128i 0.901632 0.432504i \(-0.142370\pi\)
−0.432504 + 0.901632i \(0.642370\pi\)
\(972\) 0 0
\(973\) 92.0787i 2.95191i
\(974\) 0 0
\(975\) −2.27520 0.942417i −0.0728646 0.0301815i
\(976\) 0 0
\(977\) −39.6482 + 39.6482i −1.26846 + 1.26846i −0.321572 + 0.946885i \(0.604211\pi\)
−0.946885 + 0.321572i \(0.895789\pi\)
\(978\) 0 0
\(979\) −2.26282 + 5.46294i −0.0723202 + 0.174596i
\(980\) 0 0
\(981\) −2.55401 6.16593i −0.0815433 0.196863i
\(982\) 0 0
\(983\) −0.614437 + 0.254508i −0.0195975 + 0.00811754i −0.392461 0.919769i \(-0.628376\pi\)
0.372863 + 0.927886i \(0.378376\pi\)
\(984\) 0 0
\(985\) −15.1588 −0.483001
\(986\) 0 0
\(987\) 55.6342 1.77086
\(988\) 0 0
\(989\) −12.5664 + 5.20516i −0.399587 + 0.165514i
\(990\) 0 0
\(991\) −2.74076 6.61678i −0.0870631 0.210189i 0.874351 0.485294i \(-0.161287\pi\)
−0.961414 + 0.275105i \(0.911287\pi\)
\(992\) 0 0
\(993\) 6.71615 16.2142i 0.213131 0.514543i
\(994\) 0 0
\(995\) 3.70474 3.70474i 0.117448 0.117448i
\(996\) 0 0
\(997\) −11.1118 4.60266i −0.351914 0.145768i 0.199722 0.979853i \(-0.435996\pi\)
−0.551636 + 0.834085i \(0.685996\pi\)
\(998\) 0 0
\(999\) 17.7198i 0.560631i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 680.2.bo.a.121.6 32
17.9 even 8 inner 680.2.bo.a.281.6 yes 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
680.2.bo.a.121.6 32 1.1 even 1 trivial
680.2.bo.a.281.6 yes 32 17.9 even 8 inner