Properties

Label 680.2.bo.a.121.5
Level $680$
Weight $2$
Character 680.121
Analytic conductor $5.430$
Analytic rank $0$
Dimension $32$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [680,2,Mod(121,680)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(680, base_ring=CyclotomicField(8)) chi = DirichletCharacter(H, H._module([0, 0, 0, 7])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("680.121"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 680 = 2^{3} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 680.bo (of order \(8\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.42982733745\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(8\) over \(\Q(\zeta_{8})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 121.5
Character \(\chi\) \(=\) 680.121
Dual form 680.2.bo.a.281.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.0428807 + 0.0177618i) q^{3} +(-0.382683 - 0.923880i) q^{5} +(-1.01246 + 2.44430i) q^{7} +(-2.11980 + 2.11980i) q^{9} +(-2.19039 - 0.907288i) q^{11} -4.92162i q^{13} +(0.0328194 + 0.0328194i) q^{15} +(-2.99715 - 2.83145i) q^{17} +(-3.28719 - 3.28719i) q^{19} -0.122796i q^{21} +(2.35333 + 0.974780i) q^{23} +(-0.707107 + 0.707107i) q^{25} +(0.106532 - 0.257192i) q^{27} +(-2.20034 - 5.31209i) q^{29} +(-1.46319 + 0.606071i) q^{31} +0.110040 q^{33} +2.64569 q^{35} +(-10.2267 + 4.23603i) q^{37} +(0.0874165 + 0.211042i) q^{39} +(1.27713 - 3.08326i) q^{41} +(-6.83895 + 6.83895i) q^{43} +(2.76965 + 1.14723i) q^{45} +10.8173i q^{47} +(0.000225088 + 0.000225088i) q^{49} +(0.178811 + 0.0681797i) q^{51} +(-4.84149 - 4.84149i) q^{53} +2.37086i q^{55} +(0.199343 + 0.0825705i) q^{57} +(8.18933 - 8.18933i) q^{59} +(0.722571 - 1.74444i) q^{61} +(-3.03521 - 7.32763i) q^{63} +(-4.54698 + 1.88342i) q^{65} +12.0951 q^{67} -0.118226 q^{69} +(-8.91550 + 3.69292i) q^{71} +(-1.64242 - 3.96516i) q^{73} +(0.0177618 - 0.0428807i) q^{75} +(4.43537 - 4.43537i) q^{77} +(-2.83076 - 1.17254i) q^{79} -8.98062i q^{81} +(1.35431 + 1.35431i) q^{83} +(-1.46896 + 3.85255i) q^{85} +(0.188704 + 0.188704i) q^{87} -13.6178i q^{89} +(12.0299 + 4.98295i) q^{91} +(0.0519775 - 0.0519775i) q^{93} +(-1.77901 + 4.29492i) q^{95} +(5.71594 + 13.7995i) q^{97} +(6.56644 - 2.71991i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 16 q^{9} + 8 q^{11} - 8 q^{17} + 8 q^{19} + 8 q^{23} - 24 q^{27} - 32 q^{29} + 32 q^{31} + 16 q^{33} + 16 q^{35} + 16 q^{37} - 24 q^{39} - 16 q^{41} - 8 q^{49} + 16 q^{51} + 16 q^{53} + 48 q^{57}+ \cdots + 48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/680\mathbb{Z}\right)^\times\).

\(n\) \(137\) \(241\) \(341\) \(511\)
\(\chi(n)\) \(1\) \(e\left(\frac{7}{8}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.0428807 + 0.0177618i −0.0247572 + 0.0102548i −0.395028 0.918669i \(-0.629265\pi\)
0.370271 + 0.928924i \(0.379265\pi\)
\(4\) 0 0
\(5\) −0.382683 0.923880i −0.171141 0.413171i
\(6\) 0 0
\(7\) −1.01246 + 2.44430i −0.382675 + 0.923859i 0.608772 + 0.793345i \(0.291662\pi\)
−0.991447 + 0.130513i \(0.958338\pi\)
\(8\) 0 0
\(9\) −2.11980 + 2.11980i −0.706599 + 0.706599i
\(10\) 0 0
\(11\) −2.19039 0.907288i −0.660426 0.273558i 0.0271916 0.999630i \(-0.491344\pi\)
−0.687618 + 0.726073i \(0.741344\pi\)
\(12\) 0 0
\(13\) 4.92162i 1.36501i −0.730880 0.682505i \(-0.760890\pi\)
0.730880 0.682505i \(-0.239110\pi\)
\(14\) 0 0
\(15\) 0.0328194 + 0.0328194i 0.00847394 + 0.00847394i
\(16\) 0 0
\(17\) −2.99715 2.83145i −0.726916 0.686727i
\(18\) 0 0
\(19\) −3.28719 3.28719i −0.754132 0.754132i 0.221115 0.975248i \(-0.429030\pi\)
−0.975248 + 0.221115i \(0.929030\pi\)
\(20\) 0 0
\(21\) 0.122796i 0.0267963i
\(22\) 0 0
\(23\) 2.35333 + 0.974780i 0.490702 + 0.203256i 0.614293 0.789078i \(-0.289441\pi\)
−0.123591 + 0.992333i \(0.539441\pi\)
\(24\) 0 0
\(25\) −0.707107 + 0.707107i −0.141421 + 0.141421i
\(26\) 0 0
\(27\) 0.106532 0.257192i 0.0205021 0.0494965i
\(28\) 0 0
\(29\) −2.20034 5.31209i −0.408593 0.986431i −0.985508 0.169627i \(-0.945744\pi\)
0.576915 0.816804i \(-0.304256\pi\)
\(30\) 0 0
\(31\) −1.46319 + 0.606071i −0.262796 + 0.108854i −0.510191 0.860061i \(-0.670425\pi\)
0.247395 + 0.968915i \(0.420425\pi\)
\(32\) 0 0
\(33\) 0.110040 0.0191555
\(34\) 0 0
\(35\) 2.64569 0.447203
\(36\) 0 0
\(37\) −10.2267 + 4.23603i −1.68126 + 0.696399i −0.999385 0.0350720i \(-0.988834\pi\)
−0.681872 + 0.731471i \(0.738834\pi\)
\(38\) 0 0
\(39\) 0.0874165 + 0.211042i 0.0139978 + 0.0337938i
\(40\) 0 0
\(41\) 1.27713 3.08326i 0.199454 0.481524i −0.792230 0.610223i \(-0.791080\pi\)
0.991684 + 0.128698i \(0.0410799\pi\)
\(42\) 0 0
\(43\) −6.83895 + 6.83895i −1.04293 + 1.04293i −0.0438932 + 0.999036i \(0.513976\pi\)
−0.999036 + 0.0438932i \(0.986024\pi\)
\(44\) 0 0
\(45\) 2.76965 + 1.14723i 0.412875 + 0.171018i
\(46\) 0 0
\(47\) 10.8173i 1.57787i 0.614479 + 0.788933i \(0.289366\pi\)
−0.614479 + 0.788933i \(0.710634\pi\)
\(48\) 0 0
\(49\) 0.000225088 0 0.000225088i 3.21554e−5 0 3.21554e-5i
\(50\) 0 0
\(51\) 0.178811 + 0.0681797i 0.0250386 + 0.00954707i
\(52\) 0 0
\(53\) −4.84149 4.84149i −0.665029 0.665029i 0.291532 0.956561i \(-0.405835\pi\)
−0.956561 + 0.291532i \(0.905835\pi\)
\(54\) 0 0
\(55\) 2.37086i 0.319686i
\(56\) 0 0
\(57\) 0.199343 + 0.0825705i 0.0264036 + 0.0109367i
\(58\) 0 0
\(59\) 8.18933 8.18933i 1.06616 1.06616i 0.0685094 0.997650i \(-0.478176\pi\)
0.997650 0.0685094i \(-0.0218243\pi\)
\(60\) 0 0
\(61\) 0.722571 1.74444i 0.0925158 0.223353i −0.870847 0.491554i \(-0.836429\pi\)
0.963363 + 0.268201i \(0.0864291\pi\)
\(62\) 0 0
\(63\) −3.03521 7.32763i −0.382400 0.923195i
\(64\) 0 0
\(65\) −4.54698 + 1.88342i −0.563984 + 0.233610i
\(66\) 0 0
\(67\) 12.0951 1.47766 0.738828 0.673894i \(-0.235379\pi\)
0.738828 + 0.673894i \(0.235379\pi\)
\(68\) 0 0
\(69\) −0.118226 −0.0142327
\(70\) 0 0
\(71\) −8.91550 + 3.69292i −1.05808 + 0.438269i −0.842768 0.538277i \(-0.819075\pi\)
−0.215307 + 0.976546i \(0.569075\pi\)
\(72\) 0 0
\(73\) −1.64242 3.96516i −0.192231 0.464087i 0.798149 0.602460i \(-0.205813\pi\)
−0.990380 + 0.138373i \(0.955813\pi\)
\(74\) 0 0
\(75\) 0.0177618 0.0428807i 0.00205095 0.00495143i
\(76\) 0 0
\(77\) 4.43537 4.43537i 0.505457 0.505457i
\(78\) 0 0
\(79\) −2.83076 1.17254i −0.318486 0.131921i 0.217713 0.976013i \(-0.430140\pi\)
−0.536199 + 0.844092i \(0.680140\pi\)
\(80\) 0 0
\(81\) 8.98062i 0.997846i
\(82\) 0 0
\(83\) 1.35431 + 1.35431i 0.148655 + 0.148655i 0.777517 0.628862i \(-0.216479\pi\)
−0.628862 + 0.777517i \(0.716479\pi\)
\(84\) 0 0
\(85\) −1.46896 + 3.85255i −0.159331 + 0.417868i
\(86\) 0 0
\(87\) 0.188704 + 0.188704i 0.0202312 + 0.0202312i
\(88\) 0 0
\(89\) 13.6178i 1.44349i −0.692161 0.721743i \(-0.743341\pi\)
0.692161 0.721743i \(-0.256659\pi\)
\(90\) 0 0
\(91\) 12.0299 + 4.98295i 1.26108 + 0.522355i
\(92\) 0 0
\(93\) 0.0519775 0.0519775i 0.00538981 0.00538981i
\(94\) 0 0
\(95\) −1.77901 + 4.29492i −0.182523 + 0.440649i
\(96\) 0 0
\(97\) 5.71594 + 13.7995i 0.580366 + 1.40113i 0.892482 + 0.451084i \(0.148962\pi\)
−0.312116 + 0.950044i \(0.601038\pi\)
\(98\) 0 0
\(99\) 6.56644 2.71991i 0.659952 0.273361i
\(100\) 0 0
\(101\) −4.24135 −0.422030 −0.211015 0.977483i \(-0.567677\pi\)
−0.211015 + 0.977483i \(0.567677\pi\)
\(102\) 0 0
\(103\) −0.0507186 −0.00499745 −0.00249873 0.999997i \(-0.500795\pi\)
−0.00249873 + 0.999997i \(0.500795\pi\)
\(104\) 0 0
\(105\) −0.113449 + 0.0469921i −0.0110715 + 0.00458596i
\(106\) 0 0
\(107\) 1.75802 + 4.24424i 0.169954 + 0.410306i 0.985791 0.167976i \(-0.0537231\pi\)
−0.815837 + 0.578283i \(0.803723\pi\)
\(108\) 0 0
\(109\) −1.71511 + 4.14064i −0.164278 + 0.396602i −0.984486 0.175463i \(-0.943858\pi\)
0.820208 + 0.572065i \(0.193858\pi\)
\(110\) 0 0
\(111\) 0.363288 0.363288i 0.0344817 0.0344817i
\(112\) 0 0
\(113\) 10.7624 + 4.45795i 1.01245 + 0.419369i 0.826347 0.563162i \(-0.190415\pi\)
0.186100 + 0.982531i \(0.440415\pi\)
\(114\) 0 0
\(115\) 2.54722i 0.237530i
\(116\) 0 0
\(117\) 10.4328 + 10.4328i 0.964515 + 0.964515i
\(118\) 0 0
\(119\) 9.95541 4.45920i 0.912611 0.408774i
\(120\) 0 0
\(121\) −3.80355 3.80355i −0.345778 0.345778i
\(122\) 0 0
\(123\) 0.154896i 0.0139665i
\(124\) 0 0
\(125\) 0.923880 + 0.382683i 0.0826343 + 0.0342282i
\(126\) 0 0
\(127\) −13.3521 + 13.3521i −1.18481 + 1.18481i −0.206328 + 0.978483i \(0.566151\pi\)
−0.978483 + 0.206328i \(0.933849\pi\)
\(128\) 0 0
\(129\) 0.171787 0.414730i 0.0151250 0.0365150i
\(130\) 0 0
\(131\) 5.09577 + 12.3023i 0.445220 + 1.07486i 0.974092 + 0.226154i \(0.0726151\pi\)
−0.528872 + 0.848702i \(0.677385\pi\)
\(132\) 0 0
\(133\) 11.3630 4.70672i 0.985299 0.408124i
\(134\) 0 0
\(135\) −0.278382 −0.0239593
\(136\) 0 0
\(137\) 6.00853 0.513344 0.256672 0.966499i \(-0.417374\pi\)
0.256672 + 0.966499i \(0.417374\pi\)
\(138\) 0 0
\(139\) −11.4042 + 4.72378i −0.967293 + 0.400666i −0.809704 0.586839i \(-0.800372\pi\)
−0.157589 + 0.987505i \(0.550372\pi\)
\(140\) 0 0
\(141\) −0.192134 0.463853i −0.0161806 0.0390635i
\(142\) 0 0
\(143\) −4.46532 + 10.7802i −0.373409 + 0.901489i
\(144\) 0 0
\(145\) −4.06570 + 4.06570i −0.337638 + 0.337638i
\(146\) 0 0
\(147\) −1.36499e−5 0 5.65396e-6i −1.12582e−6 0 4.66331e-7i
\(148\) 0 0
\(149\) 1.01511i 0.0831610i −0.999135 0.0415805i \(-0.986761\pi\)
0.999135 0.0415805i \(-0.0132393\pi\)
\(150\) 0 0
\(151\) −7.54390 7.54390i −0.613914 0.613914i 0.330050 0.943964i \(-0.392934\pi\)
−0.943964 + 0.330050i \(0.892934\pi\)
\(152\) 0 0
\(153\) 12.3554 0.351257i 0.998878 0.0283975i
\(154\) 0 0
\(155\) 1.11987 + 1.11987i 0.0899504 + 0.0899504i
\(156\) 0 0
\(157\) 6.83156i 0.545218i −0.962125 0.272609i \(-0.912113\pi\)
0.962125 0.272609i \(-0.0878865\pi\)
\(158\) 0 0
\(159\) 0.293599 + 0.121613i 0.0232840 + 0.00964453i
\(160\) 0 0
\(161\) −4.76531 + 4.76531i −0.375559 + 0.375559i
\(162\) 0 0
\(163\) 3.61062 8.71680i 0.282805 0.682753i −0.717093 0.696977i \(-0.754528\pi\)
0.999899 + 0.0142245i \(0.00452795\pi\)
\(164\) 0 0
\(165\) −0.0421106 0.101664i −0.00327830 0.00791453i
\(166\) 0 0
\(167\) 8.20249 3.39758i 0.634728 0.262913i −0.0420324 0.999116i \(-0.513383\pi\)
0.676760 + 0.736203i \(0.263383\pi\)
\(168\) 0 0
\(169\) −11.2223 −0.863255
\(170\) 0 0
\(171\) 13.9363 1.06574
\(172\) 0 0
\(173\) 11.9048 4.93112i 0.905103 0.374906i 0.118923 0.992903i \(-0.462056\pi\)
0.786180 + 0.617998i \(0.212056\pi\)
\(174\) 0 0
\(175\) −1.01246 2.44430i −0.0765349 0.184772i
\(176\) 0 0
\(177\) −0.205707 + 0.496621i −0.0154619 + 0.0373283i
\(178\) 0 0
\(179\) 17.5607 17.5607i 1.31255 1.31255i 0.393017 0.919531i \(-0.371431\pi\)
0.919531 0.393017i \(-0.128569\pi\)
\(180\) 0 0
\(181\) 20.5508 + 8.51240i 1.52753 + 0.632722i 0.979082 0.203466i \(-0.0652205\pi\)
0.548444 + 0.836188i \(0.315221\pi\)
\(182\) 0 0
\(183\) 0.0876369i 0.00647831i
\(184\) 0 0
\(185\) 7.82717 + 7.82717i 0.575465 + 0.575465i
\(186\) 0 0
\(187\) 3.99598 + 8.92124i 0.292215 + 0.652386i
\(188\) 0 0
\(189\) 0.520794 + 0.520794i 0.0378822 + 0.0378822i
\(190\) 0 0
\(191\) 10.7977i 0.781293i −0.920541 0.390647i \(-0.872251\pi\)
0.920541 0.390647i \(-0.127749\pi\)
\(192\) 0 0
\(193\) −19.0863 7.90581i −1.37386 0.569073i −0.431030 0.902338i \(-0.641850\pi\)
−0.942833 + 0.333265i \(0.891850\pi\)
\(194\) 0 0
\(195\) 0.161525 0.161525i 0.0115670 0.0115670i
\(196\) 0 0
\(197\) −6.61641 + 15.9734i −0.471400 + 1.13806i 0.492145 + 0.870513i \(0.336213\pi\)
−0.963545 + 0.267547i \(0.913787\pi\)
\(198\) 0 0
\(199\) −3.59789 8.68607i −0.255048 0.615739i 0.743550 0.668680i \(-0.233141\pi\)
−0.998598 + 0.0529409i \(0.983141\pi\)
\(200\) 0 0
\(201\) −0.518648 + 0.214831i −0.0365826 + 0.0151530i
\(202\) 0 0
\(203\) 15.2121 1.06768
\(204\) 0 0
\(205\) −3.33730 −0.233087
\(206\) 0 0
\(207\) −7.05491 + 2.92224i −0.490350 + 0.203110i
\(208\) 0 0
\(209\) 4.21778 + 10.1826i 0.291750 + 0.704347i
\(210\) 0 0
\(211\) −3.07946 + 7.43448i −0.211999 + 0.511811i −0.993730 0.111805i \(-0.964337\pi\)
0.781731 + 0.623615i \(0.214337\pi\)
\(212\) 0 0
\(213\) 0.316710 0.316710i 0.0217006 0.0217006i
\(214\) 0 0
\(215\) 8.93551 + 3.70121i 0.609397 + 0.252420i
\(216\) 0 0
\(217\) 4.19009i 0.284442i
\(218\) 0 0
\(219\) 0.140856 + 0.140856i 0.00951820 + 0.00951820i
\(220\) 0 0
\(221\) −13.9353 + 14.7508i −0.937390 + 0.992248i
\(222\) 0 0
\(223\) −9.98887 9.98887i −0.668904 0.668904i 0.288558 0.957462i \(-0.406824\pi\)
−0.957462 + 0.288558i \(0.906824\pi\)
\(224\) 0 0
\(225\) 2.99785i 0.199856i
\(226\) 0 0
\(227\) −17.9596 7.43910i −1.19202 0.493750i −0.303607 0.952797i \(-0.598191\pi\)
−0.888412 + 0.459047i \(0.848191\pi\)
\(228\) 0 0
\(229\) 2.78527 2.78527i 0.184056 0.184056i −0.609065 0.793121i \(-0.708455\pi\)
0.793121 + 0.609065i \(0.208455\pi\)
\(230\) 0 0
\(231\) −0.111412 + 0.268971i −0.00733034 + 0.0176970i
\(232\) 0 0
\(233\) −2.56233 6.18602i −0.167864 0.405260i 0.817453 0.575996i \(-0.195385\pi\)
−0.985317 + 0.170736i \(0.945385\pi\)
\(234\) 0 0
\(235\) 9.99389 4.13960i 0.651929 0.270038i
\(236\) 0 0
\(237\) 0.142211 0.00923762
\(238\) 0 0
\(239\) 15.9469 1.03152 0.515758 0.856734i \(-0.327510\pi\)
0.515758 + 0.856734i \(0.327510\pi\)
\(240\) 0 0
\(241\) 0.919910 0.381039i 0.0592566 0.0245449i −0.352858 0.935677i \(-0.614790\pi\)
0.412115 + 0.911132i \(0.364790\pi\)
\(242\) 0 0
\(243\) 0.479108 + 1.15667i 0.0307348 + 0.0742004i
\(244\) 0 0
\(245\) 0.000121817 0 0.000294091i 7.78258e−6 0 1.87888e-5i
\(246\) 0 0
\(247\) −16.1783 + 16.1783i −1.02940 + 1.02940i
\(248\) 0 0
\(249\) −0.0821285 0.0340187i −0.00520468 0.00215585i
\(250\) 0 0
\(251\) 26.0343i 1.64327i −0.570016 0.821634i \(-0.693063\pi\)
0.570016 0.821634i \(-0.306937\pi\)
\(252\) 0 0
\(253\) −4.27029 4.27029i −0.268471 0.268471i
\(254\) 0 0
\(255\) −0.00543829 0.191291i −0.000340559 0.0119791i
\(256\) 0 0
\(257\) 11.1355 + 11.1355i 0.694611 + 0.694611i 0.963243 0.268632i \(-0.0865714\pi\)
−0.268632 + 0.963243i \(0.586571\pi\)
\(258\) 0 0
\(259\) 29.2859i 1.81974i
\(260\) 0 0
\(261\) 15.9248 + 6.59628i 0.985722 + 0.408300i
\(262\) 0 0
\(263\) −10.3325 + 10.3325i −0.637131 + 0.637131i −0.949847 0.312716i \(-0.898761\pi\)
0.312716 + 0.949847i \(0.398761\pi\)
\(264\) 0 0
\(265\) −2.62019 + 6.32571i −0.160957 + 0.388585i
\(266\) 0 0
\(267\) 0.241876 + 0.583941i 0.0148026 + 0.0357366i
\(268\) 0 0
\(269\) −25.9188 + 10.7359i −1.58030 + 0.654580i −0.988461 0.151478i \(-0.951597\pi\)
−0.591836 + 0.806058i \(0.701597\pi\)
\(270\) 0 0
\(271\) −25.3199 −1.53807 −0.769036 0.639206i \(-0.779263\pi\)
−0.769036 + 0.639206i \(0.779263\pi\)
\(272\) 0 0
\(273\) −0.604356 −0.0365773
\(274\) 0 0
\(275\) 2.19039 0.907288i 0.132085 0.0547115i
\(276\) 0 0
\(277\) 8.70896 + 21.0253i 0.523271 + 1.26329i 0.935861 + 0.352371i \(0.114624\pi\)
−0.412590 + 0.910917i \(0.635376\pi\)
\(278\) 0 0
\(279\) 1.81691 4.38641i 0.108775 0.262607i
\(280\) 0 0
\(281\) 21.2873 21.2873i 1.26989 1.26989i 0.323752 0.946142i \(-0.395056\pi\)
0.946142 0.323752i \(-0.104944\pi\)
\(282\) 0 0
\(283\) −18.1016 7.49794i −1.07603 0.445706i −0.226915 0.973915i \(-0.572864\pi\)
−0.849115 + 0.528208i \(0.822864\pi\)
\(284\) 0 0
\(285\) 0.215767i 0.0127809i
\(286\) 0 0
\(287\) 6.24337 + 6.24337i 0.368534 + 0.368534i
\(288\) 0 0
\(289\) 0.965817 + 16.9725i 0.0568128 + 0.998385i
\(290\) 0 0
\(291\) −0.490207 0.490207i −0.0287364 0.0287364i
\(292\) 0 0
\(293\) 10.2106i 0.596508i −0.954487 0.298254i \(-0.903596\pi\)
0.954487 0.298254i \(-0.0964042\pi\)
\(294\) 0 0
\(295\) −10.6999 4.43203i −0.622971 0.258043i
\(296\) 0 0
\(297\) −0.466694 + 0.466694i −0.0270803 + 0.0270803i
\(298\) 0 0
\(299\) 4.79749 11.5822i 0.277446 0.669814i
\(300\) 0 0
\(301\) −9.79226 23.6406i −0.564417 1.36262i
\(302\) 0 0
\(303\) 0.181872 0.0753339i 0.0104483 0.00432782i
\(304\) 0 0
\(305\) −1.88817 −0.108116
\(306\) 0 0
\(307\) −17.4086 −0.993563 −0.496782 0.867876i \(-0.665485\pi\)
−0.496782 + 0.867876i \(0.665485\pi\)
\(308\) 0 0
\(309\) 0.00217485 0.000900852i 0.000123723 5.12477e-5i
\(310\) 0 0
\(311\) 4.06555 + 9.81512i 0.230536 + 0.556564i 0.996241 0.0866287i \(-0.0276094\pi\)
−0.765704 + 0.643193i \(0.777609\pi\)
\(312\) 0 0
\(313\) −8.87602 + 21.4286i −0.501702 + 1.21122i 0.446854 + 0.894607i \(0.352544\pi\)
−0.948556 + 0.316610i \(0.897456\pi\)
\(314\) 0 0
\(315\) −5.60833 + 5.60833i −0.315994 + 0.315994i
\(316\) 0 0
\(317\) −4.91368 2.03531i −0.275980 0.114315i 0.240401 0.970674i \(-0.422721\pi\)
−0.516381 + 0.856359i \(0.672721\pi\)
\(318\) 0 0
\(319\) 13.6319i 0.763239i
\(320\) 0 0
\(321\) −0.150770 0.150770i −0.00841518 0.00841518i
\(322\) 0 0
\(323\) 0.544697 + 19.1597i 0.0303078 + 1.06607i
\(324\) 0 0
\(325\) 3.48011 + 3.48011i 0.193042 + 0.193042i
\(326\) 0 0
\(327\) 0.208017i 0.0115034i
\(328\) 0 0
\(329\) −26.4407 10.9521i −1.45773 0.603810i
\(330\) 0 0
\(331\) −21.1906 + 21.1906i −1.16474 + 1.16474i −0.181314 + 0.983425i \(0.558035\pi\)
−0.983425 + 0.181314i \(0.941965\pi\)
\(332\) 0 0
\(333\) 12.6990 30.6580i 0.695899 1.68005i
\(334\) 0 0
\(335\) −4.62861 11.1745i −0.252888 0.610526i
\(336\) 0 0
\(337\) 10.3439 4.28458i 0.563467 0.233396i −0.0827226 0.996573i \(-0.526362\pi\)
0.646190 + 0.763177i \(0.276362\pi\)
\(338\) 0 0
\(339\) −0.540682 −0.0293658
\(340\) 0 0
\(341\) 3.75482 0.203335
\(342\) 0 0
\(343\) −17.1109 + 7.08756i −0.923901 + 0.382692i
\(344\) 0 0
\(345\) 0.0452431 + 0.109227i 0.00243581 + 0.00588056i
\(346\) 0 0
\(347\) 5.96576 14.4026i 0.320259 0.773173i −0.678980 0.734157i \(-0.737578\pi\)
0.999239 0.0390162i \(-0.0124224\pi\)
\(348\) 0 0
\(349\) −5.71106 + 5.71106i −0.305706 + 0.305706i −0.843241 0.537535i \(-0.819355\pi\)
0.537535 + 0.843241i \(0.319355\pi\)
\(350\) 0 0
\(351\) −1.26580 0.524311i −0.0675633 0.0279856i
\(352\) 0 0
\(353\) 1.06908i 0.0569015i 0.999595 + 0.0284507i \(0.00905738\pi\)
−0.999595 + 0.0284507i \(0.990943\pi\)
\(354\) 0 0
\(355\) 6.82363 + 6.82363i 0.362161 + 0.362161i
\(356\) 0 0
\(357\) −0.347691 + 0.368039i −0.0184018 + 0.0194787i
\(358\) 0 0
\(359\) −18.8161 18.8161i −0.993077 0.993077i 0.00689921 0.999976i \(-0.497804\pi\)
−0.999976 + 0.00689921i \(0.997804\pi\)
\(360\) 0 0
\(361\) 2.61118i 0.137431i
\(362\) 0 0
\(363\) 0.230657 + 0.0955411i 0.0121063 + 0.00501461i
\(364\) 0 0
\(365\) −3.03480 + 3.03480i −0.158849 + 0.158849i
\(366\) 0 0
\(367\) 11.7048 28.2578i 0.610984 1.47505i −0.250936 0.968004i \(-0.580738\pi\)
0.861921 0.507043i \(-0.169262\pi\)
\(368\) 0 0
\(369\) 3.82863 + 9.24314i 0.199311 + 0.481178i
\(370\) 0 0
\(371\) 16.7359 6.93222i 0.868883 0.359903i
\(372\) 0 0
\(373\) 3.74661 0.193992 0.0969959 0.995285i \(-0.469077\pi\)
0.0969959 + 0.995285i \(0.469077\pi\)
\(374\) 0 0
\(375\) −0.0464137 −0.00239679
\(376\) 0 0
\(377\) −26.1441 + 10.8292i −1.34649 + 0.557734i
\(378\) 0 0
\(379\) −5.34437 12.9024i −0.274522 0.662754i 0.725144 0.688597i \(-0.241773\pi\)
−0.999666 + 0.0258428i \(0.991773\pi\)
\(380\) 0 0
\(381\) 0.335391 0.809706i 0.0171826 0.0414825i
\(382\) 0 0
\(383\) −3.62564 + 3.62564i −0.185261 + 0.185261i −0.793644 0.608383i \(-0.791819\pi\)
0.608383 + 0.793644i \(0.291819\pi\)
\(384\) 0 0
\(385\) −5.79509 2.40040i −0.295345 0.122336i
\(386\) 0 0
\(387\) 28.9944i 1.47387i
\(388\) 0 0
\(389\) −8.65691 8.65691i −0.438923 0.438923i 0.452727 0.891649i \(-0.350451\pi\)
−0.891649 + 0.452727i \(0.850451\pi\)
\(390\) 0 0
\(391\) −4.29323 9.58488i −0.217118 0.484728i
\(392\) 0 0
\(393\) −0.437020 0.437020i −0.0220447 0.0220447i
\(394\) 0 0
\(395\) 3.06400i 0.154166i
\(396\) 0 0
\(397\) −19.0772 7.90203i −0.957457 0.396592i −0.151428 0.988468i \(-0.548387\pi\)
−0.806029 + 0.591877i \(0.798387\pi\)
\(398\) 0 0
\(399\) −0.403654 + 0.403654i −0.0202080 + 0.0202080i
\(400\) 0 0
\(401\) 0.172151 0.415610i 0.00859683 0.0207546i −0.919523 0.393037i \(-0.871425\pi\)
0.928120 + 0.372282i \(0.121425\pi\)
\(402\) 0 0
\(403\) 2.98285 + 7.20124i 0.148586 + 0.358719i
\(404\) 0 0
\(405\) −8.29701 + 3.43673i −0.412282 + 0.170773i
\(406\) 0 0
\(407\) 26.2437 1.30085
\(408\) 0 0
\(409\) 30.4454 1.50543 0.752714 0.658347i \(-0.228744\pi\)
0.752714 + 0.658347i \(0.228744\pi\)
\(410\) 0 0
\(411\) −0.257650 + 0.106722i −0.0127089 + 0.00526421i
\(412\) 0 0
\(413\) 11.7258 + 28.3086i 0.576988 + 1.39297i
\(414\) 0 0
\(415\) 0.732946 1.76949i 0.0359789 0.0868608i
\(416\) 0 0
\(417\) 0.405118 0.405118i 0.0198387 0.0198387i
\(418\) 0 0
\(419\) 8.22105 + 3.40527i 0.401625 + 0.166358i 0.574347 0.818612i \(-0.305256\pi\)
−0.172722 + 0.984971i \(0.555256\pi\)
\(420\) 0 0
\(421\) 4.18156i 0.203797i 0.994795 + 0.101898i \(0.0324916\pi\)
−0.994795 + 0.101898i \(0.967508\pi\)
\(422\) 0 0
\(423\) −22.9305 22.9305i −1.11492 1.11492i
\(424\) 0 0
\(425\) 4.12144 0.117170i 0.199919 0.00568357i
\(426\) 0 0
\(427\) 3.53236 + 3.53236i 0.170943 + 0.170943i
\(428\) 0 0
\(429\) 0.541576i 0.0261475i
\(430\) 0 0
\(431\) −25.3483 10.4996i −1.22098 0.505748i −0.323262 0.946310i \(-0.604779\pi\)
−0.897723 + 0.440561i \(0.854779\pi\)
\(432\) 0 0
\(433\) 12.1973 12.1973i 0.586165 0.586165i −0.350426 0.936591i \(-0.613963\pi\)
0.936591 + 0.350426i \(0.113963\pi\)
\(434\) 0 0
\(435\) 0.102126 0.246554i 0.00489656 0.0118214i
\(436\) 0 0
\(437\) −4.53154 10.9401i −0.216773 0.523336i
\(438\) 0 0
\(439\) 2.65428 1.09944i 0.126682 0.0524733i −0.318442 0.947942i \(-0.603160\pi\)
0.445124 + 0.895469i \(0.353160\pi\)
\(440\) 0 0
\(441\) −0.000954281 0 −4.54419e−5 0
\(442\) 0 0
\(443\) 17.6741 0.839724 0.419862 0.907588i \(-0.362078\pi\)
0.419862 + 0.907588i \(0.362078\pi\)
\(444\) 0 0
\(445\) −12.5812 + 5.21132i −0.596407 + 0.247040i
\(446\) 0 0
\(447\) 0.0180301 + 0.0435285i 0.000852795 + 0.00205883i
\(448\) 0 0
\(449\) −11.5287 + 27.8327i −0.544072 + 1.31351i 0.377755 + 0.925906i \(0.376696\pi\)
−0.921827 + 0.387601i \(0.873304\pi\)
\(450\) 0 0
\(451\) −5.59481 + 5.59481i −0.263449 + 0.263449i
\(452\) 0 0
\(453\) 0.457480 + 0.189495i 0.0214943 + 0.00890323i
\(454\) 0 0
\(455\) 13.0211i 0.610438i
\(456\) 0 0
\(457\) −18.4395 18.4395i −0.862563 0.862563i 0.129072 0.991635i \(-0.458800\pi\)
−0.991635 + 0.129072i \(0.958800\pi\)
\(458\) 0 0
\(459\) −1.04752 + 0.469201i −0.0488939 + 0.0219004i
\(460\) 0 0
\(461\) −22.1455 22.1455i −1.03142 1.03142i −0.999490 0.0319303i \(-0.989835\pi\)
−0.0319303 0.999490i \(-0.510165\pi\)
\(462\) 0 0
\(463\) 19.7237i 0.916639i 0.888787 + 0.458320i \(0.151549\pi\)
−0.888787 + 0.458320i \(0.848451\pi\)
\(464\) 0 0
\(465\) −0.0679119 0.0281300i −0.00314934 0.00130450i
\(466\) 0 0
\(467\) −12.4081 + 12.4081i −0.574180 + 0.574180i −0.933294 0.359114i \(-0.883079\pi\)
0.359114 + 0.933294i \(0.383079\pi\)
\(468\) 0 0
\(469\) −12.2459 + 29.5642i −0.565462 + 1.36515i
\(470\) 0 0
\(471\) 0.121340 + 0.292942i 0.00559107 + 0.0134980i
\(472\) 0 0
\(473\) 21.1848 8.77504i 0.974079 0.403477i
\(474\) 0 0
\(475\) 4.64878 0.213301
\(476\) 0 0
\(477\) 20.5259 0.939818
\(478\) 0 0
\(479\) −23.2625 + 9.63566i −1.06289 + 0.440264i −0.844477 0.535592i \(-0.820089\pi\)
−0.218415 + 0.975856i \(0.570089\pi\)
\(480\) 0 0
\(481\) 20.8481 + 50.3318i 0.950593 + 2.29493i
\(482\) 0 0
\(483\) 0.119699 0.288980i 0.00544651 0.0131490i
\(484\) 0 0
\(485\) 10.5617 10.5617i 0.479581 0.479581i
\(486\) 0 0
\(487\) 11.2288 + 4.65110i 0.508823 + 0.210762i 0.622300 0.782779i \(-0.286199\pi\)
−0.113476 + 0.993541i \(0.536199\pi\)
\(488\) 0 0
\(489\) 0.437913i 0.0198031i
\(490\) 0 0
\(491\) −0.708515 0.708515i −0.0319748 0.0319748i 0.690939 0.722913i \(-0.257197\pi\)
−0.722913 + 0.690939i \(0.757197\pi\)
\(492\) 0 0
\(493\) −8.44616 + 22.1513i −0.380396 + 0.997644i
\(494\) 0 0
\(495\) −5.02574 5.02574i −0.225890 0.225890i
\(496\) 0 0
\(497\) 25.5311i 1.14523i
\(498\) 0 0
\(499\) 36.2598 + 15.0193i 1.62321 + 0.672357i 0.994447 0.105239i \(-0.0335607\pi\)
0.628765 + 0.777595i \(0.283561\pi\)
\(500\) 0 0
\(501\) −0.291381 + 0.291381i −0.0130180 + 0.0130180i
\(502\) 0 0
\(503\) −6.90768 + 16.6766i −0.307998 + 0.743573i 0.691772 + 0.722116i \(0.256831\pi\)
−0.999770 + 0.0214570i \(0.993169\pi\)
\(504\) 0 0
\(505\) 1.62310 + 3.91850i 0.0722268 + 0.174371i
\(506\) 0 0
\(507\) 0.481220 0.199328i 0.0213717 0.00885246i
\(508\) 0 0
\(509\) 13.1870 0.584504 0.292252 0.956341i \(-0.405595\pi\)
0.292252 + 0.956341i \(0.405595\pi\)
\(510\) 0 0
\(511\) 11.3549 0.502313
\(512\) 0 0
\(513\) −1.19563 + 0.495245i −0.0527883 + 0.0218656i
\(514\) 0 0
\(515\) 0.0194092 + 0.0468579i 0.000855271 + 0.00206481i
\(516\) 0 0
\(517\) 9.81441 23.6941i 0.431637 1.04206i
\(518\) 0 0
\(519\) −0.422899 + 0.422899i −0.0185632 + 0.0185632i
\(520\) 0 0
\(521\) −7.97279 3.30244i −0.349294 0.144682i 0.201137 0.979563i \(-0.435537\pi\)
−0.550431 + 0.834881i \(0.685537\pi\)
\(522\) 0 0
\(523\) 43.5509i 1.90435i −0.305559 0.952173i \(-0.598843\pi\)
0.305559 0.952173i \(-0.401157\pi\)
\(524\) 0 0
\(525\) 0.0868301 + 0.0868301i 0.00378958 + 0.00378958i
\(526\) 0 0
\(527\) 6.10145 + 2.32645i 0.265783 + 0.101342i
\(528\) 0 0
\(529\) −11.6755 11.6755i −0.507631 0.507631i
\(530\) 0 0
\(531\) 34.7194i 1.50670i
\(532\) 0 0
\(533\) −15.1746 6.28553i −0.657286 0.272257i
\(534\) 0 0
\(535\) 3.24840 3.24840i 0.140441 0.140441i
\(536\) 0 0
\(537\) −0.441106 + 1.06492i −0.0190351 + 0.0459548i
\(538\) 0 0
\(539\) −0.000288810 0 0.000697248i −1.24399e−5 0 3.00326e-5i
\(540\) 0 0
\(541\) −0.702711 + 0.291073i −0.0302119 + 0.0125142i −0.397738 0.917499i \(-0.630205\pi\)
0.367526 + 0.930013i \(0.380205\pi\)
\(542\) 0 0
\(543\) −1.03243 −0.0443056
\(544\) 0 0
\(545\) 4.48180 0.191979
\(546\) 0 0
\(547\) −17.2898 + 7.16168i −0.739260 + 0.306212i −0.720351 0.693610i \(-0.756019\pi\)
−0.0189090 + 0.999821i \(0.506019\pi\)
\(548\) 0 0
\(549\) 2.16616 + 5.22957i 0.0924493 + 0.223192i
\(550\) 0 0
\(551\) −10.2289 + 24.6948i −0.435766 + 1.05203i
\(552\) 0 0
\(553\) 5.73208 5.73208i 0.243753 0.243753i
\(554\) 0 0
\(555\) −0.474658 0.196610i −0.0201481 0.00834563i
\(556\) 0 0
\(557\) 18.2983i 0.775324i −0.921802 0.387662i \(-0.873283\pi\)
0.921802 0.387662i \(-0.126717\pi\)
\(558\) 0 0
\(559\) 33.6587 + 33.6587i 1.42361 + 1.42361i
\(560\) 0 0
\(561\) −0.329807 0.311573i −0.0139245 0.0131546i
\(562\) 0 0
\(563\) −7.87431 7.87431i −0.331863 0.331863i 0.521431 0.853293i \(-0.325398\pi\)
−0.853293 + 0.521431i \(0.825398\pi\)
\(564\) 0 0
\(565\) 11.6492i 0.490085i
\(566\) 0 0
\(567\) 21.9513 + 9.09253i 0.921869 + 0.381851i
\(568\) 0 0
\(569\) 24.8909 24.8909i 1.04348 1.04348i 0.0444710 0.999011i \(-0.485840\pi\)
0.999011 0.0444710i \(-0.0141602\pi\)
\(570\) 0 0
\(571\) 1.32607 3.20142i 0.0554944 0.133975i −0.893701 0.448664i \(-0.851900\pi\)
0.949195 + 0.314689i \(0.101900\pi\)
\(572\) 0 0
\(573\) 0.191786 + 0.463012i 0.00801197 + 0.0193426i
\(574\) 0 0
\(575\) −2.35333 + 0.974780i −0.0981405 + 0.0406511i
\(576\) 0 0
\(577\) 7.17791 0.298820 0.149410 0.988775i \(-0.452263\pi\)
0.149410 + 0.988775i \(0.452263\pi\)
\(578\) 0 0
\(579\) 0.958855 0.0398486
\(580\) 0 0
\(581\) −4.68152 + 1.93915i −0.194222 + 0.0804495i
\(582\) 0 0
\(583\) 6.21211 + 14.9973i 0.257279 + 0.621127i
\(584\) 0 0
\(585\) 5.64621 13.6311i 0.233442 0.563579i
\(586\) 0 0
\(587\) 4.59581 4.59581i 0.189689 0.189689i −0.605872 0.795562i \(-0.707176\pi\)
0.795562 + 0.605872i \(0.207176\pi\)
\(588\) 0 0
\(589\) 6.80203 + 2.81749i 0.280273 + 0.116093i
\(590\) 0 0
\(591\) 0.802471i 0.0330092i
\(592\) 0 0
\(593\) 12.4388 + 12.4388i 0.510800 + 0.510800i 0.914772 0.403971i \(-0.132370\pi\)
−0.403971 + 0.914772i \(0.632370\pi\)
\(594\) 0 0
\(595\) −7.92953 7.49113i −0.325079 0.307107i
\(596\) 0 0
\(597\) 0.308560 + 0.308560i 0.0126285 + 0.0126285i
\(598\) 0 0
\(599\) 19.3164i 0.789248i 0.918843 + 0.394624i \(0.129125\pi\)
−0.918843 + 0.394624i \(0.870875\pi\)
\(600\) 0 0
\(601\) −14.2096 5.88583i −0.579623 0.240088i 0.0735559 0.997291i \(-0.476565\pi\)
−0.653179 + 0.757203i \(0.726565\pi\)
\(602\) 0 0
\(603\) −25.6392 + 25.6392i −1.04411 + 1.04411i
\(604\) 0 0
\(605\) −2.05847 + 4.96958i −0.0836886 + 0.202042i
\(606\) 0 0
\(607\) 6.77408 + 16.3541i 0.274952 + 0.663792i 0.999681 0.0252414i \(-0.00803545\pi\)
−0.724730 + 0.689033i \(0.758035\pi\)
\(608\) 0 0
\(609\) −0.652305 + 0.270194i −0.0264327 + 0.0109488i
\(610\) 0 0
\(611\) 53.2386 2.15380
\(612\) 0 0
\(613\) 0.172428 0.00696430 0.00348215 0.999994i \(-0.498892\pi\)
0.00348215 + 0.999994i \(0.498892\pi\)
\(614\) 0 0
\(615\) 0.143105 0.0592762i 0.00577057 0.00239025i
\(616\) 0 0
\(617\) −7.57029 18.2763i −0.304768 0.735776i −0.999858 0.0168527i \(-0.994635\pi\)
0.695090 0.718923i \(-0.255365\pi\)
\(618\) 0 0
\(619\) −1.06571 + 2.57284i −0.0428344 + 0.103411i −0.943849 0.330378i \(-0.892824\pi\)
0.901014 + 0.433789i \(0.142824\pi\)
\(620\) 0 0
\(621\) 0.501410 0.501410i 0.0201209 0.0201209i
\(622\) 0 0
\(623\) 33.2860 + 13.7875i 1.33358 + 0.552386i
\(624\) 0 0
\(625\) 1.00000i 0.0400000i
\(626\) 0 0
\(627\) −0.361723 0.361723i −0.0144458 0.0144458i
\(628\) 0 0
\(629\) 42.6450 + 16.2603i 1.70037 + 0.648340i
\(630\) 0 0
\(631\) −20.1667 20.1667i −0.802823 0.802823i 0.180712 0.983536i \(-0.442160\pi\)
−0.983536 + 0.180712i \(0.942160\pi\)
\(632\) 0 0
\(633\) 0.373492i 0.0148450i
\(634\) 0 0
\(635\) 17.4454 + 7.22613i 0.692300 + 0.286760i
\(636\) 0 0
\(637\) 0.00110780 0.00110780i 4.38925e−5 4.38925e-5i
\(638\) 0 0
\(639\) 11.0708 26.7273i 0.437954 1.05732i
\(640\) 0 0
\(641\) −10.3402 24.9635i −0.408414 0.985998i −0.985555 0.169354i \(-0.945832\pi\)
0.577142 0.816644i \(-0.304168\pi\)
\(642\) 0 0
\(643\) −7.97587 + 3.30371i −0.314537 + 0.130286i −0.534367 0.845253i \(-0.679450\pi\)
0.219829 + 0.975538i \(0.429450\pi\)
\(644\) 0 0
\(645\) −0.448901 −0.0176754
\(646\) 0 0
\(647\) 3.64937 0.143471 0.0717357 0.997424i \(-0.477146\pi\)
0.0717357 + 0.997424i \(0.477146\pi\)
\(648\) 0 0
\(649\) −25.3679 + 10.5077i −0.995776 + 0.412464i
\(650\) 0 0
\(651\) 0.0744233 + 0.179674i 0.00291688 + 0.00704197i
\(652\) 0 0
\(653\) 2.49072 6.01313i 0.0974694 0.235312i −0.867622 0.497224i \(-0.834353\pi\)
0.965092 + 0.261912i \(0.0843529\pi\)
\(654\) 0 0
\(655\) 9.41576 9.41576i 0.367904 0.367904i
\(656\) 0 0
\(657\) 11.8869 + 4.92374i 0.463754 + 0.192093i
\(658\) 0 0
\(659\) 16.5602i 0.645092i 0.946554 + 0.322546i \(0.104539\pi\)
−0.946554 + 0.322546i \(0.895461\pi\)
\(660\) 0 0
\(661\) 19.0713 + 19.0713i 0.741788 + 0.741788i 0.972922 0.231134i \(-0.0742436\pi\)
−0.231134 + 0.972922i \(0.574244\pi\)
\(662\) 0 0
\(663\) 0.335554 0.880040i 0.0130318 0.0341779i
\(664\) 0 0
\(665\) −8.69688 8.69688i −0.337251 0.337251i
\(666\) 0 0
\(667\) 14.6459i 0.567093i
\(668\) 0 0
\(669\) 0.605749 + 0.250909i 0.0234196 + 0.00970072i
\(670\) 0 0
\(671\) −3.16542 + 3.16542i −0.122200 + 0.122200i
\(672\) 0 0
\(673\) 11.0722 26.7307i 0.426802 1.03039i −0.553493 0.832854i \(-0.686705\pi\)
0.980295 0.197538i \(-0.0632946\pi\)
\(674\) 0 0
\(675\) 0.106532 + 0.257192i 0.00410043 + 0.00989931i
\(676\) 0 0
\(677\) 9.18323 3.80382i 0.352940 0.146193i −0.199167 0.979965i \(-0.563824\pi\)
0.552108 + 0.833773i \(0.313824\pi\)
\(678\) 0 0
\(679\) −39.5173 −1.51654
\(680\) 0 0
\(681\) 0.902250 0.0345743
\(682\) 0 0
\(683\) 17.2893 7.16147i 0.661557 0.274026i −0.0265366 0.999648i \(-0.508448\pi\)
0.688094 + 0.725622i \(0.258448\pi\)
\(684\) 0 0
\(685\) −2.29937 5.55116i −0.0878543 0.212099i
\(686\) 0 0
\(687\) −0.0699629 + 0.168905i −0.00266925 + 0.00644414i
\(688\) 0 0
\(689\) −23.8279 + 23.8279i −0.907772 + 0.907772i
\(690\) 0 0
\(691\) 15.9249 + 6.59633i 0.605813 + 0.250936i 0.664437 0.747344i \(-0.268671\pi\)
−0.0586240 + 0.998280i \(0.518671\pi\)
\(692\) 0 0
\(693\) 18.8042i 0.714311i
\(694\) 0 0
\(695\) 8.72841 + 8.72841i 0.331087 + 0.331087i
\(696\) 0 0
\(697\) −12.5578 + 5.62487i −0.475662 + 0.213057i
\(698\) 0 0
\(699\) 0.219749 + 0.219749i 0.00831167 + 0.00831167i
\(700\) 0 0
\(701\) 31.3063i 1.18242i −0.806517 0.591211i \(-0.798650\pi\)
0.806517 0.591211i \(-0.201350\pi\)
\(702\) 0 0
\(703\) 47.5416 + 19.6924i 1.79307 + 0.742713i
\(704\) 0 0
\(705\) −0.355018 + 0.355018i −0.0133707 + 0.0133707i
\(706\) 0 0
\(707\) 4.29421 10.3671i 0.161500 0.389896i
\(708\) 0 0
\(709\) −4.69124 11.3257i −0.176183 0.425344i 0.810977 0.585078i \(-0.198936\pi\)
−0.987160 + 0.159734i \(0.948936\pi\)
\(710\) 0 0
\(711\) 8.48619 3.51510i 0.318257 0.131826i
\(712\) 0 0
\(713\) −4.03414 −0.151080
\(714\) 0 0
\(715\) 11.6685 0.436375
\(716\) 0 0
\(717\) −0.683812 + 0.283244i −0.0255374 + 0.0105779i
\(718\) 0 0
\(719\) 12.2748 + 29.6340i 0.457773 + 1.10516i 0.969297 + 0.245893i \(0.0790813\pi\)
−0.511524 + 0.859269i \(0.670919\pi\)
\(720\) 0 0
\(721\) 0.0513507 0.123972i 0.00191240 0.00461694i
\(722\) 0 0
\(723\) −0.0326784 + 0.0326784i −0.00121532 + 0.00121532i
\(724\) 0 0
\(725\) 5.31209 + 2.20034i 0.197286 + 0.0817186i
\(726\) 0 0
\(727\) 4.75521i 0.176361i 0.996105 + 0.0881805i \(0.0281052\pi\)
−0.996105 + 0.0881805i \(0.971895\pi\)
\(728\) 0 0
\(729\) 19.0097 + 19.0097i 0.704062 + 0.704062i
\(730\) 0 0
\(731\) 39.8615 1.13324i 1.47433 0.0419142i
\(732\) 0 0
\(733\) 8.87653 + 8.87653i 0.327862 + 0.327862i 0.851773 0.523911i \(-0.175528\pi\)
−0.523911 + 0.851773i \(0.675528\pi\)
\(734\) 0 0
\(735\) 0 1.47745e-5i 0 5.44966e-7i
\(736\) 0 0
\(737\) −26.4930 10.9738i −0.975883 0.404224i
\(738\) 0 0
\(739\) −23.6516 + 23.6516i −0.870038 + 0.870038i −0.992476 0.122438i \(-0.960929\pi\)
0.122438 + 0.992476i \(0.460929\pi\)
\(740\) 0 0
\(741\) 0.406381 0.981089i 0.0149288 0.0360412i
\(742\) 0 0
\(743\) 9.97338 + 24.0779i 0.365888 + 0.883331i 0.994415 + 0.105543i \(0.0336582\pi\)
−0.628527 + 0.777788i \(0.716342\pi\)
\(744\) 0 0
\(745\) −0.937838 + 0.388465i −0.0343597 + 0.0142323i
\(746\) 0 0
\(747\) −5.74172 −0.210078
\(748\) 0 0
\(749\) −12.1541 −0.444102
\(750\) 0 0
\(751\) 19.0426 7.88770i 0.694874 0.287826i −0.00715519 0.999974i \(-0.502278\pi\)
0.702029 + 0.712148i \(0.252278\pi\)
\(752\) 0 0
\(753\) 0.462414 + 1.11637i 0.0168513 + 0.0406826i
\(754\) 0 0
\(755\) −4.08273 + 9.85658i −0.148586 + 0.358718i
\(756\) 0 0
\(757\) 8.03416 8.03416i 0.292006 0.292006i −0.545866 0.837872i \(-0.683799\pi\)
0.837872 + 0.545866i \(0.183799\pi\)
\(758\) 0 0
\(759\) 0.258961 + 0.107265i 0.00939967 + 0.00389347i
\(760\) 0 0
\(761\) 7.45322i 0.270179i −0.990833 0.135090i \(-0.956868\pi\)
0.990833 0.135090i \(-0.0431322\pi\)
\(762\) 0 0
\(763\) −8.38449 8.38449i −0.303539 0.303539i
\(764\) 0 0
\(765\) −5.05274 11.2805i −0.182682 0.407848i
\(766\) 0 0
\(767\) −40.3047 40.3047i −1.45532 1.45532i
\(768\) 0 0
\(769\) 15.1949i 0.547943i −0.961738 0.273972i \(-0.911663\pi\)
0.961738 0.273972i \(-0.0883374\pi\)
\(770\) 0 0
\(771\) −0.675282 0.279711i −0.0243197 0.0100735i
\(772\) 0 0
\(773\) −27.9242 + 27.9242i −1.00436 + 1.00436i −0.00437428 + 0.999990i \(0.501392\pi\)
−0.999990 + 0.00437428i \(0.998608\pi\)
\(774\) 0 0
\(775\) 0.606071 1.46319i 0.0217707 0.0525592i
\(776\) 0 0
\(777\) 0.520169 + 1.25580i 0.0186610 + 0.0450515i
\(778\) 0 0
\(779\) −14.3334 + 5.93709i −0.513548 + 0.212718i
\(780\) 0 0
\(781\) 22.8789 0.818673
\(782\) 0 0
\(783\) −1.60063 −0.0572019
\(784\) 0 0
\(785\) −6.31154 + 2.61432i −0.225268 + 0.0933093i
\(786\) 0 0
\(787\) −16.2435 39.2153i −0.579019 1.39788i −0.893694 0.448676i \(-0.851896\pi\)
0.314675 0.949199i \(-0.398104\pi\)
\(788\) 0 0
\(789\) 0.259542 0.626589i 0.00923993 0.0223072i
\(790\) 0 0
\(791\) −21.7931 + 21.7931i −0.774875 + 0.774875i
\(792\) 0 0
\(793\) −8.58547 3.55622i −0.304879 0.126285i
\(794\) 0 0
\(795\) 0.317790i 0.0112708i
\(796\) 0 0
\(797\) 7.46528 + 7.46528i 0.264434 + 0.264434i 0.826852 0.562419i \(-0.190129\pi\)
−0.562419 + 0.826852i \(0.690129\pi\)
\(798\) 0 0
\(799\) 30.6286 32.4211i 1.08356 1.14698i
\(800\) 0 0
\(801\) 28.8670 + 28.8670i 1.01997 + 1.01997i
\(802\) 0 0
\(803\) 10.1754i 0.359082i
\(804\) 0 0
\(805\) 6.22617 + 2.57897i 0.219444 + 0.0908966i
\(806\) 0 0
\(807\) 0.920726 0.920726i 0.0324111 0.0324111i
\(808\) 0 0
\(809\) −16.9009 + 40.8024i −0.594204 + 1.43453i 0.285205 + 0.958467i \(0.407938\pi\)
−0.879408 + 0.476068i \(0.842062\pi\)
\(810\) 0 0
\(811\) 16.3850 + 39.5568i 0.575354 + 1.38903i 0.896942 + 0.442147i \(0.145783\pi\)
−0.321589 + 0.946879i \(0.604217\pi\)
\(812\) 0 0
\(813\) 1.08573 0.449725i 0.0380783 0.0157725i
\(814\) 0 0
\(815\) −9.43500 −0.330494
\(816\) 0 0
\(817\) 44.9618 1.57301
\(818\) 0 0
\(819\) −36.0638 + 14.9381i −1.26017 + 0.521980i
\(820\) 0 0
\(821\) −7.02173 16.9519i −0.245060 0.591627i 0.752712 0.658350i \(-0.228745\pi\)
−0.997772 + 0.0667234i \(0.978745\pi\)
\(822\) 0 0
\(823\) −12.3818 + 29.8924i −0.431604 + 1.04198i 0.547167 + 0.837024i \(0.315706\pi\)
−0.978770 + 0.204960i \(0.934294\pi\)
\(824\) 0 0
\(825\) −0.0778102 + 0.0778102i −0.00270900 + 0.00270900i
\(826\) 0 0
\(827\) −10.1388 4.19965i −0.352562 0.146036i 0.199372 0.979924i \(-0.436110\pi\)
−0.551934 + 0.833888i \(0.686110\pi\)
\(828\) 0 0
\(829\) 23.0619i 0.800973i −0.916303 0.400487i \(-0.868841\pi\)
0.916303 0.400487i \(-0.131159\pi\)
\(830\) 0 0
\(831\) −0.746892 0.746892i −0.0259094 0.0259094i
\(832\) 0 0
\(833\) −3.72978e−5 0.00131195i −1.29229e−6 4.54562e-5i
\(834\) 0 0
\(835\) −6.27792 6.27792i −0.217256 0.217256i
\(836\) 0 0
\(837\) 0.440885i 0.0152392i
\(838\) 0 0
\(839\) 41.4693 + 17.1771i 1.43168 + 0.593021i 0.957765 0.287551i \(-0.0928411\pi\)
0.473913 + 0.880572i \(0.342841\pi\)
\(840\) 0 0
\(841\) −2.87073 + 2.87073i −0.0989905 + 0.0989905i
\(842\) 0 0
\(843\) −0.534714 + 1.29091i −0.0184165 + 0.0444614i
\(844\) 0 0
\(845\) 4.29459 + 10.3681i 0.147739 + 0.356672i
\(846\) 0 0
\(847\) 13.1480 5.44607i 0.451770 0.187129i
\(848\) 0 0
\(849\) 0.909386 0.0312101
\(850\) 0 0
\(851\) −28.1959 −0.966544
\(852\) 0 0
\(853\) −36.5727 + 15.1489i −1.25222 + 0.518688i −0.907514 0.420021i \(-0.862023\pi\)
−0.344710 + 0.938709i \(0.612023\pi\)
\(854\) 0 0
\(855\) −5.33320 12.8755i −0.182392 0.440333i
\(856\) 0 0
\(857\) 2.86679 6.92105i 0.0979278 0.236419i −0.867322 0.497747i \(-0.834161\pi\)
0.965250 + 0.261329i \(0.0841607\pi\)
\(858\) 0 0
\(859\) −31.9984 + 31.9984i −1.09177 + 1.09177i −0.0964306 + 0.995340i \(0.530743\pi\)
−0.995340 + 0.0964306i \(0.969257\pi\)
\(860\) 0 0
\(861\) −0.378613 0.156827i −0.0129031 0.00534464i
\(862\) 0 0
\(863\) 22.3654i 0.761328i −0.924713 0.380664i \(-0.875696\pi\)
0.924713 0.380664i \(-0.124304\pi\)
\(864\) 0 0
\(865\) −9.11152 9.11152i −0.309801 0.309801i
\(866\) 0 0
\(867\) −0.342877 0.710639i −0.0116447 0.0241346i
\(868\) 0 0
\(869\) 5.13663 + 5.13663i 0.174248 + 0.174248i
\(870\) 0 0
\(871\) 59.5277i 2.01702i
\(872\) 0 0
\(873\) −41.3688 17.1355i −1.40012 0.579949i
\(874\) 0 0
\(875\) −1.87079 + 1.87079i −0.0632441 + 0.0632441i
\(876\) 0 0
\(877\) 17.4383 42.0999i 0.588851 1.42161i −0.295751 0.955265i \(-0.595570\pi\)
0.884602 0.466347i \(-0.154430\pi\)
\(878\) 0 0
\(879\) 0.181358 + 0.437836i 0.00611704 + 0.0147678i
\(880\) 0 0
\(881\) 9.15563 3.79239i 0.308461 0.127769i −0.223083 0.974799i \(-0.571612\pi\)
0.531544 + 0.847031i \(0.321612\pi\)
\(882\) 0 0
\(883\) −14.6843 −0.494167 −0.247083 0.968994i \(-0.579472\pi\)
−0.247083 + 0.968994i \(0.579472\pi\)
\(884\) 0 0
\(885\) 0.537538 0.0180692
\(886\) 0 0
\(887\) 14.7394 6.10526i 0.494901 0.204995i −0.121251 0.992622i \(-0.538691\pi\)
0.616152 + 0.787627i \(0.288691\pi\)
\(888\) 0 0
\(889\) −19.1181 46.1552i −0.641200 1.54799i
\(890\) 0 0
\(891\) −8.14800 + 19.6710i −0.272968 + 0.659004i
\(892\) 0 0
\(893\) 35.5585 35.5585i 1.18992 1.18992i
\(894\) 0 0
\(895\) −22.9442 9.50378i −0.766939 0.317676i
\(896\) 0 0
\(897\) 0.581863i 0.0194278i
\(898\) 0 0
\(899\) 6.43901 + 6.43901i 0.214753 + 0.214753i
\(900\) 0 0
\(901\) 0.802250 + 28.2191i 0.0267268 + 0.940114i
\(902\) 0 0
\(903\) 0.839797 + 0.839797i 0.0279467 + 0.0279467i
\(904\) 0 0
\(905\) 22.2440i 0.739415i
\(906\) 0 0
\(907\) −31.0500 12.8613i −1.03100 0.427054i −0.197926 0.980217i \(-0.563421\pi\)
−0.833073 + 0.553163i \(0.813421\pi\)
\(908\) 0 0
\(909\) 8.99081 8.99081i 0.298206 0.298206i
\(910\) 0 0
\(911\) 6.27104 15.1396i 0.207769 0.501598i −0.785302 0.619112i \(-0.787493\pi\)
0.993071 + 0.117514i \(0.0374926\pi\)
\(912\) 0 0
\(913\) −1.73771 4.19521i −0.0575098 0.138841i
\(914\) 0 0
\(915\) 0.0809660 0.0335372i 0.00267665 0.00110871i
\(916\) 0 0
\(917\) −35.2297 −1.16339
\(918\) 0 0
\(919\) 45.4361 1.49880 0.749399 0.662118i \(-0.230342\pi\)
0.749399 + 0.662118i \(0.230342\pi\)
\(920\) 0 0
\(921\) 0.746494 0.309208i 0.0245978 0.0101887i
\(922\) 0 0
\(923\) 18.1751 + 43.8787i 0.598242 + 1.44428i
\(924\) 0 0
\(925\) 4.23603 10.2267i 0.139280 0.336251i
\(926\) 0 0
\(927\) 0.107513 0.107513i 0.00353120 0.00353120i
\(928\) 0 0
\(929\) −2.79655 1.15837i −0.0917520 0.0380049i 0.336335 0.941742i \(-0.390812\pi\)
−0.428087 + 0.903737i \(0.640812\pi\)
\(930\) 0 0
\(931\) 0.00147981i 4.84988e-5i
\(932\) 0 0
\(933\) −0.348667 0.348667i −0.0114149 0.0114149i
\(934\) 0 0
\(935\) 6.71296 7.10581i 0.219537 0.232385i
\(936\) 0 0
\(937\) −11.0166 11.0166i −0.359898 0.359898i 0.503877 0.863775i \(-0.331906\pi\)
−0.863775 + 0.503877i \(0.831906\pi\)
\(938\) 0 0
\(939\) 1.07653i 0.0351311i
\(940\) 0 0
\(941\) −40.9831 16.9757i −1.33601 0.553393i −0.403646 0.914915i \(-0.632257\pi\)
−0.932364 + 0.361522i \(0.882257\pi\)
\(942\) 0 0
\(943\) 6.01100 6.01100i 0.195745 0.195745i
\(944\) 0 0
\(945\) 0.281851 0.680450i 0.00916863 0.0221350i
\(946\) 0 0
\(947\) −16.7470 40.4307i −0.544203 1.31382i −0.921733 0.387825i \(-0.873227\pi\)
0.377530 0.925997i \(-0.376773\pi\)
\(948\) 0 0
\(949\) −19.5150 + 8.08338i −0.633484 + 0.262398i
\(950\) 0 0
\(951\) 0.246853 0.00800474
\(952\) 0 0
\(953\) −14.4469 −0.467980 −0.233990 0.972239i \(-0.575178\pi\)
−0.233990 + 0.972239i \(0.575178\pi\)
\(954\) 0 0
\(955\) −9.97576 + 4.13210i −0.322808 + 0.133712i
\(956\) 0 0
\(957\) −0.242126 0.584544i −0.00782682 0.0188956i
\(958\) 0 0
\(959\) −6.08341 + 14.6867i −0.196444 + 0.474257i
\(960\) 0 0
\(961\) −20.1467 + 20.1467i −0.649894 + 0.649894i
\(962\) 0 0
\(963\) −12.7236 5.27028i −0.410012 0.169832i
\(964\) 0 0
\(965\) 20.6589i 0.665033i
\(966\) 0 0
\(967\) 22.8881 + 22.8881i 0.736030 + 0.736030i 0.971807 0.235777i \(-0.0757635\pi\)
−0.235777 + 0.971807i \(0.575763\pi\)
\(968\) 0 0
\(969\) −0.363667 0.811905i −0.0116827 0.0260821i
\(970\) 0 0
\(971\) 3.78792 + 3.78792i 0.121560 + 0.121560i 0.765270 0.643710i \(-0.222606\pi\)
−0.643710 + 0.765270i \(0.722606\pi\)
\(972\) 0 0
\(973\) 32.6580i 1.04697i
\(974\) 0 0
\(975\) −0.211042 0.0874165i −0.00675876 0.00279957i
\(976\) 0 0
\(977\) 0.777635 0.777635i 0.0248788 0.0248788i −0.694558 0.719437i \(-0.744400\pi\)
0.719437 + 0.694558i \(0.244400\pi\)
\(978\) 0 0
\(979\) −12.3553 + 29.8283i −0.394877 + 0.953317i
\(980\) 0 0
\(981\) −5.14164 12.4130i −0.164160 0.396317i
\(982\) 0 0
\(983\) 18.1518 7.51873i 0.578953 0.239810i −0.0739370 0.997263i \(-0.523556\pi\)
0.652890 + 0.757453i \(0.273556\pi\)
\(984\) 0 0
\(985\) 17.2895 0.550890
\(986\) 0 0
\(987\) 1.32833 0.0422811
\(988\) 0 0
\(989\) −22.7607 + 9.42780i −0.723749 + 0.299787i
\(990\) 0 0
\(991\) −11.6083 28.0248i −0.368748 0.890237i −0.993956 0.109779i \(-0.964986\pi\)
0.625208 0.780458i \(-0.285014\pi\)
\(992\) 0 0
\(993\) 0.532284 1.28505i 0.0168915 0.0407798i
\(994\) 0 0
\(995\) −6.64803 + 6.64803i −0.210757 + 0.210757i
\(996\) 0 0
\(997\) 20.2309 + 8.37993i 0.640720 + 0.265395i 0.679300 0.733861i \(-0.262283\pi\)
−0.0385800 + 0.999256i \(0.512283\pi\)
\(998\) 0 0
\(999\) 3.08149i 0.0974941i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 680.2.bo.a.121.5 32
17.9 even 8 inner 680.2.bo.a.281.5 yes 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
680.2.bo.a.121.5 32 1.1 even 1 trivial
680.2.bo.a.281.5 yes 32 17.9 even 8 inner