Properties

Label 680.2.bl.a.387.36
Level $680$
Weight $2$
Character 680.387
Analytic conductor $5.430$
Analytic rank $0$
Dimension $208$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [680,2,Mod(123,680)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(680, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 2, 3, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("680.123"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 680 = 2^{3} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 680.bl (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.42982733745\)
Analytic rank: \(0\)
Dimension: \(208\)
Relative dimension: \(104\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 387.36
Character \(\chi\) \(=\) 680.387
Dual form 680.2.bl.a.123.36

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.738875 + 1.20585i) q^{2} +2.74346 q^{3} +(-0.908129 - 1.78194i) q^{4} +(-0.584289 - 2.15838i) q^{5} +(-2.02707 + 3.30818i) q^{6} -1.18693i q^{7} +(2.81974 + 0.221566i) q^{8} +4.52655 q^{9} +(3.03439 + 0.890211i) q^{10} +(0.557635 - 0.557635i) q^{11} +(-2.49141 - 4.88867i) q^{12} +(-2.54503 - 2.54503i) q^{13} +(1.43125 + 0.876993i) q^{14} +(-1.60297 - 5.92142i) q^{15} +(-2.35061 + 3.23646i) q^{16} +(2.10422 - 3.54574i) q^{17} +(-3.34455 + 5.45832i) q^{18} -3.23494 q^{19} +(-3.31549 + 3.00125i) q^{20} -3.25629i q^{21} +(0.260399 + 1.08444i) q^{22} -0.472228 q^{23} +(7.73582 + 0.607856i) q^{24} +(-4.31721 + 2.52223i) q^{25} +(4.94938 - 1.18846i) q^{26} +4.18802 q^{27} +(-2.11504 + 1.07789i) q^{28} +(0.887208 + 0.887208i) q^{29} +(8.32472 + 2.44225i) q^{30} +(3.45960 - 3.45960i) q^{31} +(-2.16587 - 5.22580i) q^{32} +(1.52985 - 1.52985i) q^{33} +(2.72085 + 5.15722i) q^{34} +(-2.56185 + 0.693510i) q^{35} +(-4.11069 - 8.06603i) q^{36} +9.40220 q^{37} +(2.39022 - 3.90084i) q^{38} +(-6.98219 - 6.98219i) q^{39} +(-1.16932 - 6.21552i) q^{40} +(4.79693 - 4.79693i) q^{41} +(3.92658 + 2.40599i) q^{42} +(5.51569 + 5.51569i) q^{43} +(-1.50007 - 0.487267i) q^{44} +(-2.64481 - 9.77001i) q^{45} +(0.348917 - 0.569434i) q^{46} +(-4.67838 + 4.67838i) q^{47} +(-6.44878 + 8.87908i) q^{48} +5.59120 q^{49} +(0.148453 - 7.06951i) q^{50} +(5.77284 - 9.72757i) q^{51} +(-2.22388 + 6.84631i) q^{52} +(-6.53086 + 6.53086i) q^{53} +(-3.09442 + 5.05010i) q^{54} +(-1.52941 - 0.877769i) q^{55} +(0.262983 - 3.34683i) q^{56} -8.87492 q^{57} +(-1.72537 + 0.414301i) q^{58} -6.07501 q^{59} +(-9.09590 + 8.23380i) q^{60} +(4.43972 + 4.43972i) q^{61} +(1.61553 + 6.72796i) q^{62} -5.37270i q^{63} +(7.90182 + 1.24951i) q^{64} +(-4.00612 + 6.98019i) q^{65} +(0.714394 + 2.97512i) q^{66} +(-1.65991 - 1.65991i) q^{67} +(-8.22919 - 0.529613i) q^{68} -1.29554 q^{69} +(1.05662 - 3.60161i) q^{70} +(-1.62888 + 1.62888i) q^{71} +(12.7637 + 1.00293i) q^{72} +4.91927 q^{73} +(-6.94705 + 11.3376i) q^{74} +(-11.8441 + 6.91964i) q^{75} +(2.93774 + 5.76447i) q^{76} +(-0.661874 - 0.661874i) q^{77} +(13.5784 - 3.26048i) q^{78} +(2.30907 - 2.30907i) q^{79} +(8.35894 + 3.18248i) q^{80} -2.09000 q^{81} +(2.24003 + 9.32869i) q^{82} +(10.0536 + 10.0536i) q^{83} +(-5.80251 + 2.95713i) q^{84} +(-8.88252 - 2.46998i) q^{85} +(-10.7265 + 2.57567i) q^{86} +(2.43402 + 2.43402i) q^{87} +(1.69594 - 1.44883i) q^{88} +4.84722i q^{89} +(13.7353 + 4.02958i) q^{90} +(-3.02078 + 3.02078i) q^{91} +(0.428844 + 0.841481i) q^{92} +(9.49126 - 9.49126i) q^{93} +(-2.18467 - 9.09814i) q^{94} +(1.89014 + 6.98224i) q^{95} +(-5.94196 - 14.3368i) q^{96} +3.62936i q^{97} +(-4.13119 + 6.74212i) q^{98} +(2.52416 - 2.52416i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 208 q - 8 q^{3} - 8 q^{6} + 192 q^{9} - 6 q^{10} - 8 q^{11} + 16 q^{14} - 16 q^{16} - 12 q^{18} - 10 q^{20} - 16 q^{24} - 32 q^{27} - 24 q^{30} - 20 q^{32} - 8 q^{33} + 4 q^{34} - 8 q^{35} - 12 q^{38} + 38 q^{40}+ \cdots - 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/680\mathbb{Z}\right)^\times\).

\(n\) \(137\) \(241\) \(341\) \(511\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{1}{4}\right)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.738875 + 1.20585i −0.522463 + 0.852662i
\(3\) 2.74346 1.58393 0.791967 0.610563i \(-0.209057\pi\)
0.791967 + 0.610563i \(0.209057\pi\)
\(4\) −0.908129 1.78194i −0.454064 0.890969i
\(5\) −0.584289 2.15838i −0.261302 0.965257i
\(6\) −2.02707 + 3.30818i −0.827548 + 1.35056i
\(7\) 1.18693i 0.448617i −0.974518 0.224309i \(-0.927988\pi\)
0.974518 0.224309i \(-0.0720124\pi\)
\(8\) 2.81974 + 0.221566i 0.996927 + 0.0783353i
\(9\) 4.52655 1.50885
\(10\) 3.03439 + 0.890211i 0.959558 + 0.281509i
\(11\) 0.557635 0.557635i 0.168133 0.168133i −0.618025 0.786158i \(-0.712067\pi\)
0.786158 + 0.618025i \(0.212067\pi\)
\(12\) −2.49141 4.88867i −0.719208 1.41124i
\(13\) −2.54503 2.54503i −0.705866 0.705866i 0.259797 0.965663i \(-0.416344\pi\)
−0.965663 + 0.259797i \(0.916344\pi\)
\(14\) 1.43125 + 0.876993i 0.382519 + 0.234386i
\(15\) −1.60297 5.92142i −0.413885 1.52890i
\(16\) −2.35061 + 3.23646i −0.587651 + 0.809114i
\(17\) 2.10422 3.54574i 0.510349 0.859967i
\(18\) −3.34455 + 5.45832i −0.788318 + 1.28654i
\(19\) −3.23494 −0.742147 −0.371073 0.928604i \(-0.621010\pi\)
−0.371073 + 0.928604i \(0.621010\pi\)
\(20\) −3.31549 + 3.00125i −0.741366 + 0.671101i
\(21\) 3.25629i 0.710581i
\(22\) 0.260399 + 1.08444i 0.0555174 + 0.231204i
\(23\) −0.472228 −0.0984663 −0.0492332 0.998787i \(-0.515678\pi\)
−0.0492332 + 0.998787i \(0.515678\pi\)
\(24\) 7.73582 + 0.607856i 1.57907 + 0.124078i
\(25\) −4.31721 + 2.52223i −0.863443 + 0.504447i
\(26\) 4.94938 1.18846i 0.970654 0.233076i
\(27\) 4.18802 0.805984
\(28\) −2.11504 + 1.07789i −0.399704 + 0.203701i
\(29\) 0.887208 + 0.887208i 0.164750 + 0.164750i 0.784667 0.619917i \(-0.212834\pi\)
−0.619917 + 0.784667i \(0.712834\pi\)
\(30\) 8.32472 + 2.44225i 1.51988 + 0.445892i
\(31\) 3.45960 3.45960i 0.621363 0.621363i −0.324517 0.945880i \(-0.605202\pi\)
0.945880 + 0.324517i \(0.105202\pi\)
\(32\) −2.16587 5.22580i −0.382875 0.923800i
\(33\) 1.52985 1.52985i 0.266312 0.266312i
\(34\) 2.72085 + 5.15722i 0.466622 + 0.884457i
\(35\) −2.56185 + 0.693510i −0.433031 + 0.117225i
\(36\) −4.11069 8.06603i −0.685115 1.34434i
\(37\) 9.40220 1.54571 0.772856 0.634582i \(-0.218828\pi\)
0.772856 + 0.634582i \(0.218828\pi\)
\(38\) 2.39022 3.90084i 0.387744 0.632800i
\(39\) −6.98219 6.98219i −1.11805 1.11805i
\(40\) −1.16932 6.21552i −0.184885 0.982760i
\(41\) 4.79693 4.79693i 0.749154 0.749154i −0.225166 0.974320i \(-0.572292\pi\)
0.974320 + 0.225166i \(0.0722924\pi\)
\(42\) 3.92658 + 2.40599i 0.605885 + 0.371252i
\(43\) 5.51569 + 5.51569i 0.841135 + 0.841135i 0.989007 0.147871i \(-0.0472422\pi\)
−0.147871 + 0.989007i \(0.547242\pi\)
\(44\) −1.50007 0.487267i −0.226145 0.0734582i
\(45\) −2.64481 9.77001i −0.394265 1.45643i
\(46\) 0.348917 0.569434i 0.0514450 0.0839585i
\(47\) −4.67838 + 4.67838i −0.682411 + 0.682411i −0.960543 0.278132i \(-0.910285\pi\)
0.278132 + 0.960543i \(0.410285\pi\)
\(48\) −6.44878 + 8.87908i −0.930801 + 1.28158i
\(49\) 5.59120 0.798742
\(50\) 0.148453 7.06951i 0.0209945 0.999780i
\(51\) 5.77284 9.72757i 0.808360 1.36213i
\(52\) −2.22388 + 6.84631i −0.308396 + 0.949413i
\(53\) −6.53086 + 6.53086i −0.897083 + 0.897083i −0.995177 0.0980943i \(-0.968725\pi\)
0.0980943 + 0.995177i \(0.468725\pi\)
\(54\) −3.09442 + 5.05010i −0.421097 + 0.687232i
\(55\) −1.52941 0.877769i −0.206225 0.118358i
\(56\) 0.262983 3.34683i 0.0351426 0.447239i
\(57\) −8.87492 −1.17551
\(58\) −1.72537 + 0.414301i −0.226552 + 0.0544004i
\(59\) −6.07501 −0.790899 −0.395450 0.918488i \(-0.629411\pi\)
−0.395450 + 0.918488i \(0.629411\pi\)
\(60\) −9.09590 + 8.23380i −1.17428 + 1.06298i
\(61\) 4.43972 + 4.43972i 0.568448 + 0.568448i 0.931693 0.363246i \(-0.118331\pi\)
−0.363246 + 0.931693i \(0.618331\pi\)
\(62\) 1.61553 + 6.72796i 0.205173 + 0.854451i
\(63\) 5.37270i 0.676896i
\(64\) 7.90182 + 1.24951i 0.987727 + 0.156189i
\(65\) −4.00612 + 6.98019i −0.496898 + 0.865786i
\(66\) 0.714394 + 2.97512i 0.0879359 + 0.366212i
\(67\) −1.65991 1.65991i −0.202790 0.202790i 0.598404 0.801194i \(-0.295802\pi\)
−0.801194 + 0.598404i \(0.795802\pi\)
\(68\) −8.22919 0.529613i −0.997935 0.0642250i
\(69\) −1.29554 −0.155964
\(70\) 1.05662 3.60161i 0.126290 0.430475i
\(71\) −1.62888 + 1.62888i −0.193313 + 0.193313i −0.797126 0.603813i \(-0.793647\pi\)
0.603813 + 0.797126i \(0.293647\pi\)
\(72\) 12.7637 + 1.00293i 1.50421 + 0.118196i
\(73\) 4.91927 0.575757 0.287879 0.957667i \(-0.407050\pi\)
0.287879 + 0.957667i \(0.407050\pi\)
\(74\) −6.94705 + 11.3376i −0.807578 + 1.31797i
\(75\) −11.8441 + 6.91964i −1.36764 + 0.799011i
\(76\) 2.93774 + 5.76447i 0.336982 + 0.661230i
\(77\) −0.661874 0.661874i −0.0754275 0.0754275i
\(78\) 13.5784 3.26048i 1.53745 0.369177i
\(79\) 2.30907 2.30907i 0.259790 0.259790i −0.565178 0.824969i \(-0.691193\pi\)
0.824969 + 0.565178i \(0.191193\pi\)
\(80\) 8.35894 + 3.18248i 0.934558 + 0.355812i
\(81\) −2.09000 −0.232223
\(82\) 2.24003 + 9.32869i 0.247370 + 1.03018i
\(83\) 10.0536 + 10.0536i 1.10353 + 1.10353i 0.993981 + 0.109549i \(0.0349407\pi\)
0.109549 + 0.993981i \(0.465059\pi\)
\(84\) −5.80251 + 2.95713i −0.633105 + 0.322649i
\(85\) −8.88252 2.46998i −0.963445 0.267907i
\(86\) −10.7265 + 2.57567i −1.15667 + 0.277742i
\(87\) 2.43402 + 2.43402i 0.260954 + 0.260954i
\(88\) 1.69594 1.44883i 0.180787 0.154446i
\(89\) 4.84722i 0.513804i 0.966437 + 0.256902i \(0.0827017\pi\)
−0.966437 + 0.256902i \(0.917298\pi\)
\(90\) 13.7353 + 4.02958i 1.44783 + 0.424755i
\(91\) −3.02078 + 3.02078i −0.316664 + 0.316664i
\(92\) 0.428844 + 0.841481i 0.0447100 + 0.0877304i
\(93\) 9.49126 9.49126i 0.984198 0.984198i
\(94\) −2.18467 9.09814i −0.225331 0.938401i
\(95\) 1.89014 + 6.98224i 0.193924 + 0.716362i
\(96\) −5.94196 14.3368i −0.606448 1.46324i
\(97\) 3.62936i 0.368506i 0.982879 + 0.184253i \(0.0589865\pi\)
−0.982879 + 0.184253i \(0.941013\pi\)
\(98\) −4.13119 + 6.74212i −0.417314 + 0.681057i
\(99\) 2.52416 2.52416i 0.253688 0.253688i
\(100\) 8.41505 + 5.40249i 0.841505 + 0.540249i
\(101\) 11.1782i 1.11228i −0.831090 0.556138i \(-0.812283\pi\)
0.831090 0.556138i \(-0.187717\pi\)
\(102\) 7.46454 + 14.1486i 0.739100 + 1.40092i
\(103\) 12.5477 + 12.5477i 1.23636 + 1.23636i 0.961476 + 0.274888i \(0.0886407\pi\)
0.274888 + 0.961476i \(0.411359\pi\)
\(104\) −6.61243 7.74022i −0.648402 0.758991i
\(105\) −7.02831 + 1.90261i −0.685893 + 0.185676i
\(106\) −3.04972 12.7007i −0.296215 1.23360i
\(107\) 4.31495i 0.417142i −0.978007 0.208571i \(-0.933119\pi\)
0.978007 0.208571i \(-0.0668812\pi\)
\(108\) −3.80326 7.46279i −0.365969 0.718107i
\(109\) −7.66591 + 7.66591i −0.734261 + 0.734261i −0.971461 0.237200i \(-0.923770\pi\)
0.237200 + 0.971461i \(0.423770\pi\)
\(110\) 2.18849 1.19567i 0.208665 0.114003i
\(111\) 25.7945 2.44831
\(112\) 3.84145 + 2.79000i 0.362983 + 0.263631i
\(113\) 17.7291i 1.66781i −0.551905 0.833907i \(-0.686099\pi\)
0.551905 0.833907i \(-0.313901\pi\)
\(114\) 6.55745 10.7018i 0.614162 1.00231i
\(115\) 0.275917 + 1.01925i 0.0257294 + 0.0950453i
\(116\) 0.775251 2.38665i 0.0719802 0.221595i
\(117\) −11.5202 11.5202i −1.06505 1.06505i
\(118\) 4.48867 7.32553i 0.413216 0.674370i
\(119\) −4.20854 2.49757i −0.385796 0.228952i
\(120\) −3.20797 17.0520i −0.292846 1.55663i
\(121\) 10.3781i 0.943462i
\(122\) −8.63401 + 2.07322i −0.781686 + 0.187701i
\(123\) 13.1602 13.1602i 1.18661 1.18661i
\(124\) −9.30656 3.02303i −0.835753 0.271476i
\(125\) 7.96644 + 7.84448i 0.712540 + 0.701631i
\(126\) 6.47864 + 3.96975i 0.577163 + 0.353653i
\(127\) 13.5467 + 13.5467i 1.20208 + 1.20208i 0.973533 + 0.228545i \(0.0733968\pi\)
0.228545 + 0.973533i \(0.426603\pi\)
\(128\) −7.34517 + 8.60514i −0.649228 + 0.760594i
\(129\) 15.1321 + 15.1321i 1.33230 + 1.33230i
\(130\) −5.45701 9.98825i −0.478612 0.876027i
\(131\) −3.62682 3.62682i −0.316877 0.316877i 0.530689 0.847566i \(-0.321933\pi\)
−0.847566 + 0.530689i \(0.821933\pi\)
\(132\) −4.11539 1.33679i −0.358199 0.116353i
\(133\) 3.83965i 0.332940i
\(134\) 3.22806 0.775129i 0.278862 0.0669609i
\(135\) −2.44701 9.03934i −0.210605 0.777982i
\(136\) 6.71897 9.53181i 0.576147 0.817346i
\(137\) −9.09793 9.09793i −0.777289 0.777289i 0.202080 0.979369i \(-0.435230\pi\)
−0.979369 + 0.202080i \(0.935230\pi\)
\(138\) 0.957239 1.56222i 0.0814856 0.132985i
\(139\) −5.75698 + 5.75698i −0.488301 + 0.488301i −0.907770 0.419469i \(-0.862216\pi\)
0.419469 + 0.907770i \(0.362216\pi\)
\(140\) 3.56228 + 3.93526i 0.301067 + 0.332590i
\(141\) −12.8349 + 12.8349i −1.08090 + 1.08090i
\(142\) −0.760642 3.16772i −0.0638317 0.265830i
\(143\) −2.83840 −0.237359
\(144\) −10.6401 + 14.6500i −0.886677 + 1.22083i
\(145\) 1.39655 2.43332i 0.115977 0.202076i
\(146\) −3.63472 + 5.93188i −0.300812 + 0.490926i
\(147\) 15.3392 1.26516
\(148\) −8.53840 16.7541i −0.701852 1.37718i
\(149\) −20.7473 −1.69969 −0.849844 0.527034i \(-0.823304\pi\)
−0.849844 + 0.527034i \(0.823304\pi\)
\(150\) 0.407275 19.3949i 0.0332539 1.58359i
\(151\) 6.77920 0.551684 0.275842 0.961203i \(-0.411043\pi\)
0.275842 + 0.961203i \(0.411043\pi\)
\(152\) −9.12168 0.716752i −0.739866 0.0581363i
\(153\) 9.52487 16.0499i 0.770040 1.29756i
\(154\) 1.28716 0.309076i 0.103722 0.0249060i
\(155\) −9.48854 5.44573i −0.762138 0.437412i
\(156\) −6.10110 + 18.7826i −0.488479 + 1.50381i
\(157\) −10.3523 + 10.3523i −0.826203 + 0.826203i −0.986989 0.160787i \(-0.948597\pi\)
0.160787 + 0.986989i \(0.448597\pi\)
\(158\) 1.07827 + 4.49049i 0.0857823 + 0.357244i
\(159\) −17.9171 + 17.9171i −1.42092 + 1.42092i
\(160\) −10.0138 + 7.72814i −0.791659 + 0.610963i
\(161\) 0.560502i 0.0441737i
\(162\) 1.54425 2.52022i 0.121328 0.198007i
\(163\) 4.34001i 0.339936i 0.985450 + 0.169968i \(0.0543665\pi\)
−0.985450 + 0.169968i \(0.945634\pi\)
\(164\) −12.9041 4.19160i −1.00764 0.327309i
\(165\) −4.19586 2.40812i −0.326648 0.187472i
\(166\) −19.5515 + 4.69476i −1.51749 + 0.364384i
\(167\) 6.25000 0.483640 0.241820 0.970321i \(-0.422256\pi\)
0.241820 + 0.970321i \(0.422256\pi\)
\(168\) 0.721482 9.18188i 0.0556636 0.708397i
\(169\) 0.0455960i 0.00350738i
\(170\) 9.54149 8.88594i 0.731799 0.681521i
\(171\) −14.6431 −1.11979
\(172\) 4.81966 14.8376i 0.367496 1.13135i
\(173\) 25.2426i 1.91916i 0.281436 + 0.959580i \(0.409189\pi\)
−0.281436 + 0.959580i \(0.590811\pi\)
\(174\) −4.73348 + 1.13662i −0.358844 + 0.0861666i
\(175\) 2.99372 + 5.12423i 0.226304 + 0.387355i
\(176\) 0.493982 + 3.11554i 0.0372353 + 0.234843i
\(177\) −16.6665 −1.25273
\(178\) −5.84500 3.58149i −0.438101 0.268444i
\(179\) −19.5352 −1.46013 −0.730066 0.683377i \(-0.760511\pi\)
−0.730066 + 0.683377i \(0.760511\pi\)
\(180\) −15.0077 + 13.5853i −1.11861 + 1.01259i
\(181\) −17.1034 17.1034i −1.27129 1.27129i −0.945413 0.325875i \(-0.894341\pi\)
−0.325875 0.945413i \(-0.605659\pi\)
\(182\) −1.41062 5.87457i −0.104562 0.435452i
\(183\) 12.1802 + 12.1802i 0.900384 + 0.900384i
\(184\) −1.33156 0.104630i −0.0981638 0.00771339i
\(185\) −5.49360 20.2935i −0.403897 1.49201i
\(186\) 4.43215 + 18.4579i 0.324981 + 1.35340i
\(187\) −0.803837 3.15061i −0.0587824 0.230396i
\(188\) 12.5851 + 4.08801i 0.917866 + 0.298149i
\(189\) 4.97088i 0.361579i
\(190\) −9.81608 2.87978i −0.712133 0.208921i
\(191\) 1.60952i 0.116461i 0.998303 + 0.0582306i \(0.0185459\pi\)
−0.998303 + 0.0582306i \(0.981454\pi\)
\(192\) 21.6783 + 3.42798i 1.56450 + 0.247393i
\(193\) 12.0974i 0.870789i −0.900240 0.435394i \(-0.856609\pi\)
0.900240 0.435394i \(-0.143391\pi\)
\(194\) −4.37645 2.68164i −0.314211 0.192531i
\(195\) −10.9906 + 19.1498i −0.787054 + 1.37135i
\(196\) −5.07753 9.96317i −0.362680 0.711655i
\(197\) 27.2727i 1.94310i −0.236835 0.971550i \(-0.576110\pi\)
0.236835 0.971550i \(-0.423890\pi\)
\(198\) 1.17871 + 4.90879i 0.0837673 + 0.348852i
\(199\) 14.7893 + 14.7893i 1.04839 + 1.04839i 0.998768 + 0.0496211i \(0.0158014\pi\)
0.0496211 + 0.998768i \(0.484199\pi\)
\(200\) −12.7322 + 6.15549i −0.900305 + 0.435259i
\(201\) −4.55388 4.55388i −0.321206 0.321206i
\(202\) 13.4792 + 8.25931i 0.948395 + 0.581123i
\(203\) 1.05305 1.05305i 0.0739099 0.0739099i
\(204\) −22.5764 1.45297i −1.58066 0.101728i
\(205\) −13.1564 7.55081i −0.918882 0.527371i
\(206\) −24.4018 + 5.85943i −1.70016 + 0.408246i
\(207\) −2.13756 −0.148571
\(208\) 14.2193 2.25452i 0.985929 0.156323i
\(209\) −1.80392 + 1.80392i −0.124780 + 0.124780i
\(210\) 2.89878 9.88085i 0.200035 0.681844i
\(211\) 12.0624 12.0624i 0.830408 0.830408i −0.157164 0.987572i \(-0.550235\pi\)
0.987572 + 0.157164i \(0.0502352\pi\)
\(212\) 17.5685 + 5.70673i 1.20661 + 0.391940i
\(213\) −4.46877 + 4.46877i −0.306195 + 0.306195i
\(214\) 5.20316 + 3.18820i 0.355681 + 0.217941i
\(215\) 8.68221 15.1277i 0.592122 1.03170i
\(216\) 11.8091 + 0.927921i 0.803508 + 0.0631370i
\(217\) −4.10630 4.10630i −0.278754 0.278754i
\(218\) −3.57976 14.9081i −0.242452 1.00970i
\(219\) 13.4958 0.911962
\(220\) −0.175230 + 3.52244i −0.0118140 + 0.237483i
\(221\) −14.3793 + 3.66870i −0.967259 + 0.246783i
\(222\) −19.0589 + 31.1042i −1.27915 + 2.08758i
\(223\) −1.96944 + 1.96944i −0.131883 + 0.131883i −0.769967 0.638084i \(-0.779727\pi\)
0.638084 + 0.769967i \(0.279727\pi\)
\(224\) −6.20266 + 2.57073i −0.414433 + 0.171764i
\(225\) −19.5421 + 11.4170i −1.30281 + 0.761135i
\(226\) 21.3786 + 13.0996i 1.42208 + 0.871372i
\(227\) 13.7782 0.914493 0.457247 0.889340i \(-0.348836\pi\)
0.457247 + 0.889340i \(0.348836\pi\)
\(228\) 8.05957 + 15.8146i 0.533758 + 1.04734i
\(229\) 17.9808i 1.18821i −0.804388 0.594104i \(-0.797507\pi\)
0.804388 0.594104i \(-0.202493\pi\)
\(230\) −1.43292 0.420382i −0.0944842 0.0277192i
\(231\) −1.81582 1.81582i −0.119472 0.119472i
\(232\) 2.30512 + 2.69827i 0.151338 + 0.177150i
\(233\) 14.6545 0.960048 0.480024 0.877255i \(-0.340628\pi\)
0.480024 + 0.877255i \(0.340628\pi\)
\(234\) 22.4036 5.37961i 1.46457 0.351676i
\(235\) 12.8312 + 7.36419i 0.837018 + 0.480387i
\(236\) 5.51689 + 10.8253i 0.359119 + 0.704667i
\(237\) 6.33482 6.33482i 0.411491 0.411491i
\(238\) 6.12126 3.22946i 0.396783 0.209335i
\(239\) 24.8818 1.60947 0.804734 0.593636i \(-0.202308\pi\)
0.804734 + 0.593636i \(0.202308\pi\)
\(240\) 22.9324 + 8.73098i 1.48028 + 0.563582i
\(241\) −1.57909 1.57909i −0.101718 0.101718i 0.654416 0.756134i \(-0.272914\pi\)
−0.756134 + 0.654416i \(0.772914\pi\)
\(242\) −12.5144 7.66811i −0.804454 0.492924i
\(243\) −18.2979 −1.17381
\(244\) 3.87947 11.9431i 0.248357 0.764581i
\(245\) −3.26687 12.0679i −0.208713 0.770992i
\(246\) 6.14542 + 25.5928i 0.391817 + 1.63174i
\(247\) 8.23304 + 8.23304i 0.523856 + 0.523856i
\(248\) 10.5217 8.98863i 0.668128 0.570779i
\(249\) 27.5817 + 27.5817i 1.74792 + 1.74792i
\(250\) −15.3454 + 3.81022i −0.970530 + 0.240979i
\(251\) −27.3206 −1.72446 −0.862232 0.506514i \(-0.830934\pi\)
−0.862232 + 0.506514i \(0.830934\pi\)
\(252\) −9.57381 + 4.87910i −0.603093 + 0.307354i
\(253\) −0.263331 + 0.263331i −0.0165555 + 0.0165555i
\(254\) −26.3446 + 6.32593i −1.65301 + 0.396924i
\(255\) −24.3688 6.77629i −1.52603 0.424348i
\(256\) −4.94931 15.2153i −0.309332 0.950954i
\(257\) −5.63189 + 5.63189i −0.351308 + 0.351308i −0.860596 0.509288i \(-0.829909\pi\)
0.509288 + 0.860596i \(0.329909\pi\)
\(258\) −29.4276 + 7.06623i −1.83208 + 0.439925i
\(259\) 11.1598i 0.693433i
\(260\) 16.0763 + 0.799746i 0.997012 + 0.0495982i
\(261\) 4.01599 + 4.01599i 0.248584 + 0.248584i
\(262\) 7.05316 1.69362i 0.435746 0.104632i
\(263\) −8.73122 + 8.73122i −0.538390 + 0.538390i −0.923056 0.384666i \(-0.874317\pi\)
0.384666 + 0.923056i \(0.374317\pi\)
\(264\) 4.65272 3.97480i 0.286355 0.244632i
\(265\) 17.9120 + 10.2802i 1.10033 + 0.631506i
\(266\) −4.63003 2.83702i −0.283885 0.173949i
\(267\) 13.2981i 0.813832i
\(268\) −1.45044 + 4.46526i −0.0885999 + 0.272759i
\(269\) 8.44539 + 8.44539i 0.514925 + 0.514925i 0.916031 0.401107i \(-0.131374\pi\)
−0.401107 + 0.916031i \(0.631374\pi\)
\(270\) 12.7081 + 3.72822i 0.773389 + 0.226892i
\(271\) 4.62963i 0.281230i −0.990064 0.140615i \(-0.955092\pi\)
0.990064 0.140615i \(-0.0449080\pi\)
\(272\) 6.52942 + 15.1449i 0.395904 + 0.918292i
\(273\) −8.28737 + 8.28737i −0.501575 + 0.501575i
\(274\) 17.6929 4.24847i 1.06887 0.256660i
\(275\) −1.00094 + 3.81392i −0.0603591 + 0.229988i
\(276\) 1.17651 + 2.30857i 0.0708178 + 0.138959i
\(277\) 3.60475 0.216588 0.108294 0.994119i \(-0.465461\pi\)
0.108294 + 0.994119i \(0.465461\pi\)
\(278\) −2.68835 11.1957i −0.161236 0.671475i
\(279\) 15.6601 15.6601i 0.937543 0.937543i
\(280\) −7.37739 + 1.38790i −0.440883 + 0.0829427i
\(281\) 5.60340i 0.334271i −0.985934 0.167135i \(-0.946548\pi\)
0.985934 0.167135i \(-0.0534517\pi\)
\(282\) −5.99354 24.9603i −0.356910 1.48637i
\(283\) 1.56049i 0.0927615i −0.998924 0.0463808i \(-0.985231\pi\)
0.998924 0.0463808i \(-0.0147688\pi\)
\(284\) 4.38181 + 1.42333i 0.260012 + 0.0844594i
\(285\) 5.18552 + 19.1555i 0.307163 + 1.13467i
\(286\) 2.09722 3.42267i 0.124011 0.202387i
\(287\) −5.69362 5.69362i −0.336084 0.336084i
\(288\) −9.80390 23.6549i −0.577700 1.39388i
\(289\) −8.14448 14.9220i −0.479087 0.877767i
\(290\) 1.90233 + 3.48194i 0.111709 + 0.204466i
\(291\) 9.95699i 0.583689i
\(292\) −4.46733 8.76584i −0.261431 0.512982i
\(293\) 1.52126 + 1.52126i 0.0888731 + 0.0888731i 0.750146 0.661273i \(-0.229983\pi\)
−0.661273 + 0.750146i \(0.729983\pi\)
\(294\) −11.3337 + 18.4967i −0.660998 + 1.07875i
\(295\) 3.54956 + 13.1122i 0.206663 + 0.763421i
\(296\) 26.5117 + 2.08320i 1.54096 + 0.121084i
\(297\) 2.33539 2.33539i 0.135513 0.135513i
\(298\) 15.3297 25.0181i 0.888025 1.44926i
\(299\) 1.20184 + 1.20184i 0.0695040 + 0.0695040i
\(300\) 23.0863 + 14.8215i 1.33289 + 0.855720i
\(301\) 6.54674 6.54674i 0.377348 0.377348i
\(302\) −5.00898 + 8.17467i −0.288235 + 0.470400i
\(303\) 30.6670i 1.76177i
\(304\) 7.60407 10.4698i 0.436123 0.600482i
\(305\) 6.98852 12.1767i 0.400162 0.697234i
\(306\) 12.3161 + 23.3444i 0.704063 + 1.33451i
\(307\) 15.1392 + 15.1392i 0.864042 + 0.864042i 0.991805 0.127763i \(-0.0407796\pi\)
−0.127763 + 0.991805i \(0.540780\pi\)
\(308\) −0.578351 + 1.78048i −0.0329546 + 0.101452i
\(309\) 34.4241 + 34.4241i 1.95832 + 1.95832i
\(310\) 13.5776 7.41801i 0.771153 0.421314i
\(311\) −13.2017 + 13.2017i −0.748597 + 0.748597i −0.974216 0.225618i \(-0.927560\pi\)
0.225618 + 0.974216i \(0.427560\pi\)
\(312\) −18.1409 21.2349i −1.02703 1.20219i
\(313\) 3.52888i 0.199464i 0.995014 + 0.0997321i \(0.0317986\pi\)
−0.995014 + 0.0997321i \(0.968201\pi\)
\(314\) −4.83422 20.1323i −0.272811 1.13613i
\(315\) −11.5963 + 3.13921i −0.653379 + 0.176874i
\(316\) −6.21154 2.01768i −0.349426 0.113504i
\(317\) 2.68127i 0.150595i 0.997161 + 0.0752975i \(0.0239907\pi\)
−0.997161 + 0.0752975i \(0.976009\pi\)
\(318\) −8.36678 34.8438i −0.469186 1.95394i
\(319\) 0.989477 0.0554001
\(320\) −1.92002 17.7852i −0.107332 0.994223i
\(321\) 11.8379i 0.660725i
\(322\) −0.675878 0.414140i −0.0376652 0.0230791i
\(323\) −6.80704 + 11.4703i −0.378754 + 0.638222i
\(324\) 1.89799 + 3.72426i 0.105444 + 0.206903i
\(325\) 17.4066 + 4.56828i 0.965546 + 0.253403i
\(326\) −5.23339 3.20673i −0.289851 0.177604i
\(327\) −21.0311 + 21.0311i −1.16302 + 1.16302i
\(328\) 14.5889 12.4632i 0.805538 0.688167i
\(329\) 5.55291 + 5.55291i 0.306142 + 0.306142i
\(330\) 6.00404 3.28027i 0.330511 0.180573i
\(331\) 0.0382552i 0.00210269i 0.999999 + 0.00105135i \(0.000334654\pi\)
−0.999999 + 0.00105135i \(0.999665\pi\)
\(332\) 8.78497 27.0450i 0.482138 1.48429i
\(333\) 42.5595 2.33225
\(334\) −4.61797 + 7.53654i −0.252684 + 0.412381i
\(335\) −2.61285 + 4.55258i −0.142755 + 0.248734i
\(336\) 10.5388 + 7.65425i 0.574941 + 0.417574i
\(337\) 28.9062i 1.57462i 0.616556 + 0.787311i \(0.288527\pi\)
−0.616556 + 0.787311i \(0.711473\pi\)
\(338\) 0.0549817 + 0.0336897i 0.00299061 + 0.00183248i
\(339\) 48.6390i 2.64171i
\(340\) 3.66511 + 18.0712i 0.198769 + 0.980046i
\(341\) 3.85839i 0.208943i
\(342\) 10.8194 17.6574i 0.585048 0.954800i
\(343\) 14.9449i 0.806947i
\(344\) 14.3307 + 16.7749i 0.772660 + 0.904441i
\(345\) 0.756967 + 2.79626i 0.0407537 + 0.150546i
\(346\) −30.4387 18.6511i −1.63639 1.00269i
\(347\) 10.7142 0.575168 0.287584 0.957755i \(-0.407148\pi\)
0.287584 + 0.957755i \(0.407148\pi\)
\(348\) 2.12687 6.54767i 0.114012 0.350992i
\(349\) 4.56718i 0.244475i 0.992501 + 0.122238i \(0.0390070\pi\)
−0.992501 + 0.122238i \(0.960993\pi\)
\(350\) −8.39101 0.176204i −0.448519 0.00941848i
\(351\) −10.6587 10.6587i −0.568917 0.568917i
\(352\) −4.12185 1.70633i −0.219696 0.0909476i
\(353\) −4.41530 + 4.41530i −0.235003 + 0.235003i −0.814777 0.579774i \(-0.803141\pi\)
0.579774 + 0.814777i \(0.303141\pi\)
\(354\) 12.3145 20.0973i 0.654507 1.06816i
\(355\) 4.46749 + 2.56401i 0.237110 + 0.136084i
\(356\) 8.63744 4.40190i 0.457783 0.233300i
\(357\) −11.5459 6.85196i −0.611076 0.362644i
\(358\) 14.4341 23.5565i 0.762865 1.24500i
\(359\) 28.8563i 1.52298i −0.648178 0.761489i \(-0.724469\pi\)
0.648178 0.761489i \(-0.275531\pi\)
\(360\) −5.29297 28.1349i −0.278964 1.48284i
\(361\) −8.53515 −0.449218
\(362\) 33.2614 7.98681i 1.74818 0.419777i
\(363\) 28.4718i 1.49438i
\(364\) 8.12609 + 2.63958i 0.425923 + 0.138352i
\(365\) −2.87427 10.6177i −0.150446 0.555754i
\(366\) −23.6870 + 5.68779i −1.23814 + 0.297305i
\(367\) 13.6218i 0.711050i −0.934667 0.355525i \(-0.884302\pi\)
0.934667 0.355525i \(-0.115698\pi\)
\(368\) 1.11002 1.52835i 0.0578639 0.0796705i
\(369\) 21.7135 21.7135i 1.13036 1.13036i
\(370\) 28.5299 + 8.36994i 1.48320 + 0.435132i
\(371\) 7.75168 + 7.75168i 0.402447 + 0.402447i
\(372\) −25.5321 8.29355i −1.32378 0.430001i
\(373\) −18.8307 18.8307i −0.975017 0.975017i 0.0246788 0.999695i \(-0.492144\pi\)
−0.999695 + 0.0246788i \(0.992144\pi\)
\(374\) 4.39309 + 1.35861i 0.227161 + 0.0702518i
\(375\) 21.8556 + 21.5210i 1.12862 + 1.11134i
\(376\) −14.2284 + 12.1552i −0.733771 + 0.626857i
\(377\) 4.51595i 0.232583i
\(378\) 5.99412 + 3.67286i 0.308304 + 0.188912i
\(379\) −4.91018 + 4.91018i −0.252219 + 0.252219i −0.821880 0.569661i \(-0.807075\pi\)
0.569661 + 0.821880i \(0.307075\pi\)
\(380\) 10.7254 9.70888i 0.550203 0.498055i
\(381\) 37.1649 + 37.1649i 1.90401 + 1.90401i
\(382\) −1.94084 1.18924i −0.0993019 0.0608466i
\(383\) −3.89730 + 3.89730i −0.199143 + 0.199143i −0.799632 0.600490i \(-0.794972\pi\)
0.600490 + 0.799632i \(0.294972\pi\)
\(384\) −20.1512 + 23.6078i −1.02833 + 1.20473i
\(385\) −1.04185 + 1.81530i −0.0530976 + 0.0925163i
\(386\) 14.5876 + 8.93845i 0.742488 + 0.454955i
\(387\) 24.9670 + 24.9670i 1.26915 + 1.26915i
\(388\) 6.46729 3.29592i 0.328327 0.167325i
\(389\) 0.662332i 0.0335815i 0.999859 + 0.0167908i \(0.00534492\pi\)
−0.999859 + 0.0167908i \(0.994655\pi\)
\(390\) −14.9711 27.4023i −0.758090 1.38757i
\(391\) −0.993673 + 1.67440i −0.0502522 + 0.0846778i
\(392\) 15.7657 + 1.23882i 0.796288 + 0.0625697i
\(393\) −9.95003 9.95003i −0.501913 0.501913i
\(394\) 32.8867 + 20.1511i 1.65681 + 1.01520i
\(395\) −6.33300 3.63468i −0.318648 0.182881i
\(396\) −6.79016 2.20564i −0.341218 0.110837i
\(397\) 20.6467i 1.03623i 0.855312 + 0.518114i \(0.173366\pi\)
−0.855312 + 0.518114i \(0.826634\pi\)
\(398\) −28.7612 + 6.90620i −1.44167 + 0.346177i
\(399\) 10.5339i 0.527355i
\(400\) 1.98496 19.9013i 0.0992480 0.995063i
\(401\) 8.23865 8.23865i 0.411418 0.411418i −0.470814 0.882232i \(-0.656040\pi\)
0.882232 + 0.470814i \(0.156040\pi\)
\(402\) 8.85603 2.12653i 0.441699 0.106062i
\(403\) −17.6096 −0.877197
\(404\) −19.9189 + 10.1513i −0.991003 + 0.505045i
\(405\) 1.22117 + 4.51102i 0.0606802 + 0.224155i
\(406\) 0.491746 + 2.04790i 0.0244049 + 0.101635i
\(407\) 5.24299 5.24299i 0.259886 0.259886i
\(408\) 18.4332 26.1501i 0.912579 1.29462i
\(409\) 17.7959i 0.879948i −0.898010 0.439974i \(-0.854988\pi\)
0.898010 0.439974i \(-0.145012\pi\)
\(410\) 18.8260 10.2855i 0.929751 0.507964i
\(411\) −24.9598 24.9598i −1.23117 1.23117i
\(412\) 10.9643 33.7542i 0.540173 1.66295i
\(413\) 7.21061i 0.354811i
\(414\) 1.57939 2.57757i 0.0776228 0.126681i
\(415\) 15.8254 27.5738i 0.776836 1.35355i
\(416\) −7.78765 + 18.8121i −0.381821 + 0.922337i
\(417\) −15.7940 + 15.7940i −0.773437 + 0.773437i
\(418\) −0.842377 3.50811i −0.0412020 0.171587i
\(419\) 20.5726 + 20.5726i 1.00504 + 1.00504i 0.999987 + 0.00504921i \(0.00160722\pi\)
0.00504921 + 0.999987i \(0.498393\pi\)
\(420\) 9.77295 + 10.7962i 0.476871 + 0.526801i
\(421\) 10.0185i 0.488270i −0.969741 0.244135i \(-0.921496\pi\)
0.969741 0.244135i \(-0.0785039\pi\)
\(422\) 5.63278 + 23.4579i 0.274200 + 1.14191i
\(423\) −21.1769 + 21.1769i −1.02966 + 1.02966i
\(424\) −19.8623 + 16.9683i −0.964599 + 0.824053i
\(425\) −0.141206 + 20.6150i −0.00684952 + 0.999977i
\(426\) −2.08679 8.69051i −0.101105 0.421057i
\(427\) 5.26963 5.26963i 0.255015 0.255015i
\(428\) −7.68897 + 3.91853i −0.371660 + 0.189409i
\(429\) −7.78703 −0.375961
\(430\) 11.8266 + 21.6469i 0.570331 + 1.04391i
\(431\) −2.55950 2.55950i −0.123287 0.123287i 0.642771 0.766058i \(-0.277785\pi\)
−0.766058 + 0.642771i \(0.777785\pi\)
\(432\) −9.84438 + 13.5543i −0.473638 + 0.652134i
\(433\) 24.3763 + 24.3763i 1.17145 + 1.17145i 0.981864 + 0.189585i \(0.0607143\pi\)
0.189585 + 0.981864i \(0.439286\pi\)
\(434\) 7.98562 1.91753i 0.383322 0.0920442i
\(435\) 3.83137 6.67570i 0.183700 0.320075i
\(436\) 20.6218 + 6.69854i 0.987605 + 0.320802i
\(437\) 1.52763 0.0730765
\(438\) −9.97171 + 16.2739i −0.476467 + 0.777595i
\(439\) 16.6455 + 16.6455i 0.794446 + 0.794446i 0.982214 0.187767i \(-0.0601251\pi\)
−0.187767 + 0.982214i \(0.560125\pi\)
\(440\) −4.11804 2.81394i −0.196320 0.134149i
\(441\) 25.3088 1.20518
\(442\) 6.20065 20.0500i 0.294935 0.953680i
\(443\) −23.3454 + 23.3454i −1.10918 + 1.10918i −0.115917 + 0.993259i \(0.536981\pi\)
−0.993259 + 0.115917i \(0.963019\pi\)
\(444\) −23.4247 45.9642i −1.11169 2.18137i
\(445\) 10.4621 2.83217i 0.495953 0.134258i
\(446\) −0.919672 3.83001i −0.0435477 0.181356i
\(447\) −56.9194 −2.69220
\(448\) 1.48309 9.37890i 0.0700692 0.443112i
\(449\) 12.7750 + 12.7750i 0.602891 + 0.602891i 0.941079 0.338188i \(-0.109814\pi\)
−0.338188 + 0.941079i \(0.609814\pi\)
\(450\) 0.671981 32.0005i 0.0316775 1.50852i
\(451\) 5.34987i 0.251916i
\(452\) −31.5922 + 16.1003i −1.48597 + 0.757295i
\(453\) 18.5984 0.873831
\(454\) −10.1804 + 16.6144i −0.477789 + 0.779754i
\(455\) 8.28500 + 4.75498i 0.388407 + 0.222917i
\(456\) −25.0249 1.96638i −1.17190 0.0920841i
\(457\) −18.4516 + 18.4516i −0.863128 + 0.863128i −0.991700 0.128573i \(-0.958960\pi\)
0.128573 + 0.991700i \(0.458960\pi\)
\(458\) 21.6821 + 13.2856i 1.01314 + 0.620795i
\(459\) 8.81253 14.8496i 0.411334 0.693120i
\(460\) 1.56567 1.41728i 0.0729996 0.0660808i
\(461\) 19.1015 0.889644 0.444822 0.895619i \(-0.353267\pi\)
0.444822 + 0.895619i \(0.353267\pi\)
\(462\) 3.53126 0.847936i 0.164289 0.0394496i
\(463\) 24.7437 + 24.7437i 1.14994 + 1.14994i 0.986564 + 0.163375i \(0.0522380\pi\)
0.163375 + 0.986564i \(0.447762\pi\)
\(464\) −4.95689 + 0.785935i −0.230118 + 0.0364861i
\(465\) −26.0314 14.9401i −1.20718 0.692831i
\(466\) −10.8278 + 17.6711i −0.501590 + 0.818596i
\(467\) 21.9192 21.9192i 1.01430 1.01430i 0.0144021 0.999896i \(-0.495415\pi\)
0.999896 0.0144021i \(-0.00458451\pi\)
\(468\) −10.0665 + 30.9902i −0.465323 + 1.43252i
\(469\) −1.97019 + 1.97019i −0.0909751 + 0.0909751i
\(470\) −18.3608 + 10.0313i −0.846919 + 0.462708i
\(471\) −28.4010 + 28.4010i −1.30865 + 1.30865i
\(472\) −17.1299 1.34601i −0.788469 0.0619553i
\(473\) 6.15148 0.282846
\(474\) 2.95818 + 12.3195i 0.135874 + 0.565851i
\(475\) 13.9659 8.15928i 0.640801 0.374374i
\(476\) −0.628613 + 9.76747i −0.0288124 + 0.447691i
\(477\) −29.5623 + 29.5623i −1.35356 + 1.35356i
\(478\) −18.3845 + 30.0036i −0.840887 + 1.37233i
\(479\) −29.4006 29.4006i −1.34335 1.34335i −0.892703 0.450645i \(-0.851194\pi\)
−0.450645 0.892703i \(-0.648806\pi\)
\(480\) −27.4724 + 21.2018i −1.25394 + 0.967726i
\(481\) −23.9289 23.9289i −1.09106 1.09106i
\(482\) 3.07088 0.737388i 0.139875 0.0335871i
\(483\) 1.53771i 0.0699683i
\(484\) 18.4931 9.42464i 0.840596 0.428393i
\(485\) 7.83354 2.12059i 0.355703 0.0962912i
\(486\) 13.5198 22.0644i 0.613273 1.00086i
\(487\) 0.342177i 0.0155055i −0.999970 0.00775277i \(-0.997532\pi\)
0.999970 0.00775277i \(-0.00246781\pi\)
\(488\) 11.5351 + 13.5025i 0.522171 + 0.611230i
\(489\) 11.9066i 0.538437i
\(490\) 16.9659 + 4.97734i 0.766440 + 0.224853i
\(491\) 21.6329i 0.976278i −0.872766 0.488139i \(-0.837676\pi\)
0.872766 0.488139i \(-0.162324\pi\)
\(492\) −35.4017 11.4995i −1.59603 0.518436i
\(493\) 5.01269 1.27892i 0.225760 0.0575997i
\(494\) −16.0110 + 3.84459i −0.720367 + 0.172976i
\(495\) −6.92294 3.97326i −0.311163 0.178585i
\(496\) 3.06469 + 19.3290i 0.137609 + 0.867898i
\(497\) 1.93337 + 1.93337i 0.0867236 + 0.0867236i
\(498\) −53.6387 + 12.8799i −2.40361 + 0.577161i
\(499\) −21.0190 21.0190i −0.940939 0.940939i 0.0574114 0.998351i \(-0.481715\pi\)
−0.998351 + 0.0574114i \(0.981715\pi\)
\(500\) 6.74382 21.3195i 0.301593 0.953437i
\(501\) 17.1466 0.766053
\(502\) 20.1865 32.9445i 0.900969 1.47038i
\(503\) 0.704050 0.0313920 0.0156960 0.999877i \(-0.495004\pi\)
0.0156960 + 0.999877i \(0.495004\pi\)
\(504\) 1.19041 15.1496i 0.0530249 0.674816i
\(505\) −24.1269 + 6.53132i −1.07363 + 0.290640i
\(506\) −0.122968 0.512105i −0.00546659 0.0227658i
\(507\) 0.125091i 0.00555547i
\(508\) 11.8373 36.4416i 0.525194 1.61684i
\(509\) 8.81873 0.390883 0.195442 0.980715i \(-0.437386\pi\)
0.195442 + 0.980715i \(0.437386\pi\)
\(510\) 26.1766 24.3782i 1.15912 1.07948i
\(511\) 5.83883i 0.258295i
\(512\) 22.0042 + 5.27407i 0.972457 + 0.233083i
\(513\) −13.5480 −0.598159
\(514\) −2.62993 10.9524i −0.116001 0.483092i
\(515\) 19.7513 34.4143i 0.870345 1.51647i
\(516\) 13.2225 40.7062i 0.582090 1.79199i
\(517\) 5.21765i 0.229472i
\(518\) 13.4569 + 8.24566i 0.591264 + 0.362293i
\(519\) 69.2520i 3.03982i
\(520\) −12.8428 + 18.7947i −0.563193 + 0.824201i
\(521\) −21.2780 + 21.2780i −0.932207 + 0.932207i −0.997844 0.0656368i \(-0.979092\pi\)
0.0656368 + 0.997844i \(0.479092\pi\)
\(522\) −7.80998 + 1.87535i −0.341834 + 0.0820819i
\(523\) 16.8090 16.8090i 0.735006 0.735006i −0.236601 0.971607i \(-0.576033\pi\)
0.971607 + 0.236601i \(0.0760333\pi\)
\(524\) −3.16915 + 9.75640i −0.138445 + 0.426210i
\(525\) 8.21313 + 14.0581i 0.358450 + 0.613546i
\(526\) −4.07723 16.9798i −0.177776 0.740353i
\(527\) −4.98706 19.5466i −0.217240 0.851464i
\(528\) 1.35522 + 8.54735i 0.0589783 + 0.371976i
\(529\) −22.7770 −0.990304
\(530\) −25.6310 + 14.0033i −1.11334 + 0.608266i
\(531\) −27.4988 −1.19335
\(532\) 6.84202 3.48690i 0.296639 0.151176i
\(533\) −24.4167 −1.05760
\(534\) −16.0355 9.82565i −0.693923 0.425197i
\(535\) −9.31330 + 2.52117i −0.402649 + 0.109000i
\(536\) −4.31272 5.04828i −0.186281 0.218052i
\(537\) −53.5940 −2.31275
\(538\) −16.4239 + 3.94376i −0.708086 + 0.170027i
\(539\) 3.11785 3.11785i 0.134295 0.134295i
\(540\) −13.8853 + 12.5693i −0.597530 + 0.540897i
\(541\) 18.5242 18.5242i 0.796419 0.796419i −0.186110 0.982529i \(-0.559588\pi\)
0.982529 + 0.186110i \(0.0595882\pi\)
\(542\) 5.58262 + 3.42072i 0.239794 + 0.146932i
\(543\) −46.9225 46.9225i −2.01364 2.01364i
\(544\) −23.0868 3.31667i −0.989838 0.142201i
\(545\) 21.0251 + 12.0668i 0.900614 + 0.516887i
\(546\) −3.86996 16.1166i −0.165619 0.689728i
\(547\) 12.4469i 0.532190i 0.963947 + 0.266095i \(0.0857335\pi\)
−0.963947 + 0.266095i \(0.914266\pi\)
\(548\) −7.94986 + 24.4740i −0.339601 + 1.04548i
\(549\) 20.0966 + 20.0966i 0.857702 + 0.857702i
\(550\) −3.85942 4.02499i −0.164566 0.171626i
\(551\) −2.87007 2.87007i −0.122269 0.122269i
\(552\) −3.65307 0.287046i −0.155485 0.0122175i
\(553\) −2.74070 2.74070i −0.116546 0.116546i
\(554\) −2.66346 + 4.34677i −0.113160 + 0.184677i
\(555\) −15.0714 55.6744i −0.639747 2.36325i
\(556\) 15.4867 + 5.03051i 0.656781 + 0.213341i
\(557\) 10.8212 10.8212i 0.458508 0.458508i −0.439658 0.898165i \(-0.644900\pi\)
0.898165 + 0.439658i \(0.144900\pi\)
\(558\) 7.31279 + 30.4544i 0.309575 + 1.28924i
\(559\) 28.0753i 1.18746i
\(560\) 3.77738 9.92148i 0.159623 0.419259i
\(561\) −2.20529 8.64357i −0.0931075 0.364932i
\(562\) 6.75683 + 4.14021i 0.285020 + 0.174644i
\(563\) 30.1456 + 30.1456i 1.27048 + 1.27048i 0.945834 + 0.324651i \(0.105247\pi\)
0.324651 + 0.945834i \(0.394753\pi\)
\(564\) 34.5268 + 11.2153i 1.45384 + 0.472248i
\(565\) −38.2662 + 10.3589i −1.60987 + 0.435803i
\(566\) 1.88171 + 1.15301i 0.0790942 + 0.0484645i
\(567\) 2.48069i 0.104179i
\(568\) −4.95393 + 4.23212i −0.207862 + 0.177576i
\(569\) −16.7390 −0.701736 −0.350868 0.936425i \(-0.614113\pi\)
−0.350868 + 0.936425i \(0.614113\pi\)
\(570\) −26.9300 7.90055i −1.12797 0.330918i
\(571\) −19.8158 + 19.8158i −0.829266 + 0.829266i −0.987415 0.158150i \(-0.949447\pi\)
0.158150 + 0.987415i \(0.449447\pi\)
\(572\) 2.57763 + 5.05785i 0.107776 + 0.211479i
\(573\) 4.41566i 0.184467i
\(574\) 11.0725 2.65876i 0.462157 0.110974i
\(575\) 2.03871 1.19107i 0.0850200 0.0496710i
\(576\) 35.7680 + 5.65598i 1.49033 + 0.235666i
\(577\) 13.8155 + 13.8155i 0.575148 + 0.575148i 0.933563 0.358414i \(-0.116682\pi\)
−0.358414 + 0.933563i \(0.616682\pi\)
\(578\) 24.0114 + 1.20453i 0.998744 + 0.0501018i
\(579\) 33.1886i 1.37927i
\(580\) −5.60427 0.278794i −0.232705 0.0115763i
\(581\) 11.9330 11.9330i 0.495063 0.495063i
\(582\) −12.0066 7.35696i −0.497689 0.304956i
\(583\) 7.28367i 0.301659i
\(584\) 13.8710 + 1.08994i 0.573988 + 0.0451021i
\(585\) −18.1339 + 31.5962i −0.749744 + 1.30634i
\(586\) −2.95843 + 0.710386i −0.122212 + 0.0293458i
\(587\) −23.4199 + 23.4199i −0.966641 + 0.966641i −0.999461 0.0328203i \(-0.989551\pi\)
0.0328203 + 0.999461i \(0.489551\pi\)
\(588\) −13.9300 27.3335i −0.574462 1.12721i
\(589\) −11.1916 + 11.1916i −0.461142 + 0.461142i
\(590\) −18.4340 5.40804i −0.758914 0.222645i
\(591\) 74.8215i 3.07774i
\(592\) −22.1009 + 30.4298i −0.908340 + 1.25066i
\(593\) 15.4067 + 15.4067i 0.632677 + 0.632677i 0.948739 0.316062i \(-0.102361\pi\)
−0.316062 + 0.948739i \(0.602361\pi\)
\(594\) 1.09056 + 4.54167i 0.0447461 + 0.186347i
\(595\) −2.93170 + 10.5429i −0.120188 + 0.432218i
\(596\) 18.8413 + 36.9705i 0.771768 + 1.51437i
\(597\) 40.5739 + 40.5739i 1.66058 + 1.66058i
\(598\) −2.33724 + 0.561223i −0.0955767 + 0.0229501i
\(599\) −19.9151 −0.813710 −0.406855 0.913493i \(-0.633375\pi\)
−0.406855 + 0.913493i \(0.633375\pi\)
\(600\) −34.9303 + 16.8873i −1.42603 + 0.689422i
\(601\) 24.0776 24.0776i 0.982144 0.982144i −0.0176995 0.999843i \(-0.505634\pi\)
0.999843 + 0.0176995i \(0.00563422\pi\)
\(602\) 3.05714 + 12.7316i 0.124600 + 0.518900i
\(603\) −7.51365 7.51365i −0.305980 0.305980i
\(604\) −6.15639 12.0801i −0.250500 0.491533i
\(605\) 22.3999 6.06380i 0.910684 0.246528i
\(606\) 36.9797 + 22.6591i 1.50220 + 0.920461i
\(607\) −10.8898 −0.442002 −0.221001 0.975274i \(-0.570932\pi\)
−0.221001 + 0.975274i \(0.570932\pi\)
\(608\) 7.00645 + 16.9052i 0.284149 + 0.685595i
\(609\) 2.88901 2.88901i 0.117068 0.117068i
\(610\) 9.51955 + 17.4241i 0.385435 + 0.705482i
\(611\) 23.8133 0.963382
\(612\) −37.2498 2.39732i −1.50573 0.0969058i
\(613\) −14.4866 14.4866i −0.585109 0.585109i 0.351193 0.936303i \(-0.385776\pi\)
−0.936303 + 0.351193i \(0.885776\pi\)
\(614\) −29.4416 + 7.06959i −1.18817 + 0.285305i
\(615\) −36.0940 20.7153i −1.45545 0.835322i
\(616\) −1.71966 2.01296i −0.0692871 0.0811044i
\(617\) 21.9850i 0.885083i −0.896748 0.442542i \(-0.854077\pi\)
0.896748 0.442542i \(-0.145923\pi\)
\(618\) −66.9453 + 16.0751i −2.69294 + 0.646634i
\(619\) 23.6274 + 23.6274i 0.949666 + 0.949666i 0.998793 0.0491265i \(-0.0156437\pi\)
−0.0491265 + 0.998793i \(0.515644\pi\)
\(620\) −1.08714 + 21.8534i −0.0436605 + 0.877654i
\(621\) −1.97770 −0.0793623
\(622\) −6.16479 25.6735i −0.247186 1.02941i
\(623\) 5.75331 0.230501
\(624\) 39.0099 6.18519i 1.56165 0.247606i
\(625\) 12.2767 21.7781i 0.491067 0.871122i
\(626\) −4.25529 2.60740i −0.170076 0.104213i
\(627\) −4.94897 + 4.94897i −0.197643 + 0.197643i
\(628\) 27.8483 + 9.04593i 1.11127 + 0.360972i
\(629\) 19.7843 33.3377i 0.788853 1.32926i
\(630\) 4.78283 16.3029i 0.190553 0.649521i
\(631\) 13.8266 0.550428 0.275214 0.961383i \(-0.411251\pi\)
0.275214 + 0.961383i \(0.411251\pi\)
\(632\) 7.02256 5.99934i 0.279343 0.238641i
\(633\) 33.0926 33.0926i 1.31531 1.31531i
\(634\) −3.23320 1.98112i −0.128407 0.0786804i
\(635\) 21.3238 37.1542i 0.846209 1.47442i
\(636\) 48.1983 + 15.6562i 1.91119 + 0.620807i
\(637\) −14.2298 14.2298i −0.563805 0.563805i
\(638\) −0.731099 + 1.19316i −0.0289445 + 0.0472375i
\(639\) −7.37322 + 7.37322i −0.291680 + 0.291680i
\(640\) 22.8649 + 10.8258i 0.903813 + 0.427927i
\(641\) 1.51664 + 1.51664i 0.0599038 + 0.0599038i 0.736424 0.676520i \(-0.236513\pi\)
−0.676520 + 0.736424i \(0.736513\pi\)
\(642\) 14.2746 + 8.74670i 0.563375 + 0.345205i
\(643\) −29.8655 −1.17778 −0.588890 0.808213i \(-0.700435\pi\)
−0.588890 + 0.808213i \(0.700435\pi\)
\(644\) 0.998779 0.509007i 0.0393574 0.0200577i
\(645\) 23.8192 41.5022i 0.937882 1.63415i
\(646\) −8.80180 16.6833i −0.346302 0.656397i
\(647\) 2.34060 2.34060i 0.0920183 0.0920183i −0.659599 0.751618i \(-0.729274\pi\)
0.751618 + 0.659599i \(0.229274\pi\)
\(648\) −5.89326 0.463073i −0.231509 0.0181912i
\(649\) −3.38764 + 3.38764i −0.132976 + 0.132976i
\(650\) −18.3700 + 17.6143i −0.720529 + 0.690891i
\(651\) −11.2655 11.2655i −0.441528 0.441528i
\(652\) 7.73364 3.94129i 0.302873 0.154353i
\(653\) −31.4935 −1.23243 −0.616217 0.787576i \(-0.711336\pi\)
−0.616217 + 0.787576i \(0.711336\pi\)
\(654\) −9.82091 40.8996i −0.384028 1.59930i
\(655\) −5.70895 + 9.94718i −0.223067 + 0.388668i
\(656\) 4.24937 + 26.8007i 0.165910 + 1.04639i
\(657\) 22.2673 0.868731
\(658\) −10.7989 + 2.59305i −0.420983 + 0.101088i
\(659\) 4.23508i 0.164975i 0.996592 + 0.0824876i \(0.0262865\pi\)
−0.996592 + 0.0824876i \(0.973714\pi\)
\(660\) −0.480736 + 9.66365i −0.0187126 + 0.376157i
\(661\) 9.54965 0.371438 0.185719 0.982603i \(-0.440539\pi\)
0.185719 + 0.982603i \(0.440539\pi\)
\(662\) −0.0461298 0.0282658i −0.00179289 0.00109858i
\(663\) −39.4491 + 10.0649i −1.53208 + 0.390889i
\(664\) 26.1211 + 30.5762i 1.01369 + 1.18658i
\(665\) 8.28743 2.24346i 0.321373 0.0869978i
\(666\) −31.4461 + 51.3202i −1.21851 + 1.98862i
\(667\) −0.418965 0.418965i −0.0162224 0.0162224i
\(668\) −5.67580 11.1371i −0.219603 0.430908i
\(669\) −5.40307 + 5.40307i −0.208895 + 0.208895i
\(670\) −3.55914 6.51447i −0.137502 0.251676i
\(671\) 4.95148 0.191150
\(672\) −17.0167 + 7.05269i −0.656435 + 0.272063i
\(673\) 23.5472i 0.907680i 0.891083 + 0.453840i \(0.149946\pi\)
−0.891083 + 0.453840i \(0.850054\pi\)
\(674\) −34.8564 21.3581i −1.34262 0.822682i
\(675\) −18.0806 + 10.5632i −0.695921 + 0.406576i
\(676\) −0.0812492 + 0.0414070i −0.00312497 + 0.00159258i
\(677\) −5.28053 −0.202947 −0.101474 0.994838i \(-0.532356\pi\)
−0.101474 + 0.994838i \(0.532356\pi\)
\(678\) 58.6512 + 35.9381i 2.25248 + 1.38020i
\(679\) 4.30780 0.165318
\(680\) −24.4991 8.93276i −0.939498 0.342556i
\(681\) 37.8000 1.44850
\(682\) 4.65262 + 2.85087i 0.178158 + 0.109165i
\(683\) 36.7608 1.40661 0.703306 0.710887i \(-0.251706\pi\)
0.703306 + 0.710887i \(0.251706\pi\)
\(684\) 13.2978 + 26.0931i 0.508456 + 0.997696i
\(685\) −14.3210 + 24.9526i −0.547177 + 0.953391i
\(686\) 18.0212 + 11.0424i 0.688053 + 0.421600i
\(687\) 49.3296i 1.88204i
\(688\) −30.8165 + 4.88609i −1.17487 + 0.186280i
\(689\) 33.2425 1.26644
\(690\) −3.93116 1.15330i −0.149657 0.0439054i
\(691\) −2.78868 + 2.78868i −0.106086 + 0.106086i −0.758158 0.652071i \(-0.773900\pi\)
0.652071 + 0.758158i \(0.273900\pi\)
\(692\) 44.9808 22.9235i 1.70991 0.871422i
\(693\) −2.99600 2.99600i −0.113809 0.113809i
\(694\) −7.91645 + 12.9197i −0.300504 + 0.490424i
\(695\) 15.7895 + 9.06202i 0.598930 + 0.343742i
\(696\) 6.32399 + 7.40258i 0.239710 + 0.280594i
\(697\) −6.91483 27.1025i −0.261918 1.02658i
\(698\) −5.50731 3.37457i −0.208455 0.127729i
\(699\) 40.2039 1.52065
\(700\) 6.41238 9.98808i 0.242365 0.377514i
\(701\) 4.28238i 0.161743i −0.996725 0.0808717i \(-0.974230\pi\)
0.996725 0.0808717i \(-0.0257704\pi\)
\(702\) 20.7281 4.97728i 0.782332 0.187855i
\(703\) −30.4156 −1.14714
\(704\) 5.10310 3.70956i 0.192330 0.139809i
\(705\) 35.2019 + 20.2033i 1.32578 + 0.760902i
\(706\) −2.06182 8.58653i −0.0775976 0.323158i
\(707\) −13.2678 −0.498986
\(708\) 15.1353 + 29.6987i 0.568821 + 1.11615i
\(709\) −28.4197 28.4197i −1.06733 1.06733i −0.997564 0.0697621i \(-0.977776\pi\)
−0.0697621 0.997564i \(-0.522224\pi\)
\(710\) −6.39272 + 3.49262i −0.239915 + 0.131076i
\(711\) 10.4521 10.4521i 0.391984 0.391984i
\(712\) −1.07398 + 13.6679i −0.0402490 + 0.512225i
\(713\) −1.63372 + 1.63372i −0.0611833 + 0.0611833i
\(714\) 16.7934 8.85989i 0.628478 0.331573i
\(715\) 1.65845 + 6.12635i 0.0620223 + 0.229112i
\(716\) 17.7405 + 34.8106i 0.662993 + 1.30093i
\(717\) 68.2620 2.54929
\(718\) 34.7963 + 21.3212i 1.29859 + 0.795700i
\(719\) −22.7796 22.7796i −0.849535 0.849535i 0.140540 0.990075i \(-0.455116\pi\)
−0.990075 + 0.140540i \(0.955116\pi\)
\(720\) 37.8371 + 14.4056i 1.41011 + 0.536866i
\(721\) 14.8933 14.8933i 0.554654 0.554654i
\(722\) 6.30640 10.2921i 0.234700 0.383031i
\(723\) −4.33215 4.33215i −0.161115 0.161115i
\(724\) −14.9451 + 46.0094i −0.555432 + 1.70992i
\(725\) −6.06802 1.59252i −0.225360 0.0591447i
\(726\) −34.3326 21.0371i −1.27420 0.780760i
\(727\) 36.7379 36.7379i 1.36253 1.36253i 0.491856 0.870677i \(-0.336319\pi\)
0.870677 0.491856i \(-0.163681\pi\)
\(728\) −9.18710 + 7.84850i −0.340496 + 0.290885i
\(729\) −43.9294 −1.62702
\(730\) 14.9270 + 4.37919i 0.552473 + 0.162081i
\(731\) 31.1634 7.95093i 1.15262 0.294076i
\(732\) 10.6431 32.7655i 0.393382 1.21105i
\(733\) 10.0360 10.0360i 0.370689 0.370689i −0.497039 0.867728i \(-0.665579\pi\)
0.867728 + 0.497039i \(0.165579\pi\)
\(734\) 16.4257 + 10.0648i 0.606285 + 0.371497i
\(735\) −8.96252 33.1078i −0.330588 1.22120i
\(736\) 1.02278 + 2.46777i 0.0377003 + 0.0909632i
\(737\) −1.85124 −0.0681915
\(738\) 10.1396 + 42.2268i 0.373244 + 1.55439i
\(739\) −32.6464 −1.20092 −0.600459 0.799656i \(-0.705015\pi\)
−0.600459 + 0.799656i \(0.705015\pi\)
\(740\) −31.1729 + 28.2184i −1.14594 + 1.03733i
\(741\) 22.5870 + 22.5870i 0.829754 + 0.829754i
\(742\) −15.0748 + 3.61981i −0.553415 + 0.132887i
\(743\) 2.05470i 0.0753796i −0.999289 0.0376898i \(-0.988000\pi\)
0.999289 0.0376898i \(-0.0119999\pi\)
\(744\) 28.8658 24.6599i 1.05827 0.904076i
\(745\) 12.1224 + 44.7807i 0.444132 + 1.64064i
\(746\) 36.6204 8.79339i 1.34077 0.321949i
\(747\) 45.5083 + 45.5083i 1.66506 + 1.66506i
\(748\) −4.88421 + 4.29355i −0.178584 + 0.156988i
\(749\) −5.12154 −0.187137
\(750\) −42.0995 + 10.4532i −1.53726 + 0.381695i
\(751\) −3.48860 + 3.48860i −0.127301 + 0.127301i −0.767887 0.640586i \(-0.778692\pi\)
0.640586 + 0.767887i \(0.278692\pi\)
\(752\) −4.14435 26.1384i −0.151129 0.953169i
\(753\) −74.9530 −2.73144
\(754\) 5.44554 + 3.33672i 0.198315 + 0.121516i
\(755\) −3.96101 14.6321i −0.144156 0.532517i
\(756\) −8.85781 + 4.51420i −0.322155 + 0.164180i
\(757\) −29.1555 29.1555i −1.05968 1.05968i −0.998103 0.0615726i \(-0.980388\pi\)
−0.0615726 0.998103i \(-0.519612\pi\)
\(758\) −2.29291 9.54892i −0.0832823 0.346832i
\(759\) −0.722436 + 0.722436i −0.0262228 + 0.0262228i
\(760\) 3.78267 + 20.1069i 0.137212 + 0.729352i
\(761\) 22.9265 0.831086 0.415543 0.909574i \(-0.363592\pi\)
0.415543 + 0.909574i \(0.363592\pi\)
\(762\) −72.2753 + 17.3549i −2.61826 + 0.628702i
\(763\) 9.09890 + 9.09890i 0.329402 + 0.329402i
\(764\) 2.86807 1.46166i 0.103763 0.0528808i
\(765\) −40.2072 11.1805i −1.45369 0.404232i
\(766\) −1.81993 7.57915i −0.0657566 0.273846i
\(767\) 15.4611 + 15.4611i 0.558269 + 0.558269i
\(768\) −13.5782 41.7424i −0.489962 1.50625i
\(769\) 22.3026i 0.804254i −0.915584 0.402127i \(-0.868271\pi\)
0.915584 0.402127i \(-0.131729\pi\)
\(770\) −1.41918 2.59759i −0.0511436 0.0936106i
\(771\) −15.4508 + 15.4508i −0.556448 + 0.556448i
\(772\) −21.5568 + 10.9860i −0.775846 + 0.395394i
\(773\) 19.2579 19.2579i 0.692658 0.692658i −0.270158 0.962816i \(-0.587076\pi\)
0.962816 + 0.270158i \(0.0870760\pi\)
\(774\) −48.5539 + 11.6589i −1.74523 + 0.419070i
\(775\) −6.20991 + 23.6618i −0.223067 + 0.849956i
\(776\) −0.804141 + 10.2338i −0.0288670 + 0.367373i
\(777\) 30.6163i 1.09835i
\(778\) −0.798670 0.489380i −0.0286337 0.0175451i
\(779\) −15.5178 + 15.5178i −0.555982 + 0.555982i
\(780\) 44.1047 + 2.19407i 1.57920 + 0.0785602i
\(781\) 1.81665i 0.0650047i
\(782\) −1.28486 2.43539i −0.0459466 0.0870892i
\(783\) 3.71564 + 3.71564i 0.132786 + 0.132786i
\(784\) −13.1427 + 18.0957i −0.469382 + 0.646274i
\(785\) 28.3929 + 16.2955i 1.01339 + 0.581610i
\(786\) 19.3500 4.64638i 0.690193 0.165731i
\(787\) 20.4683i 0.729617i 0.931083 + 0.364809i \(0.118866\pi\)
−0.931083 + 0.364809i \(0.881134\pi\)
\(788\) −48.5983 + 24.7671i −1.73124 + 0.882292i
\(789\) −23.9537 + 23.9537i −0.852774 + 0.852774i
\(790\) 9.06216 4.95105i 0.322417 0.176151i
\(791\) −21.0432 −0.748211
\(792\) 7.67674 6.55820i 0.272781 0.233036i
\(793\) 22.5985i 0.802495i
\(794\) −24.8967 15.2553i −0.883552 0.541391i
\(795\) 49.1408 + 28.2032i 1.74284 + 1.00026i
\(796\) 12.9231 39.7843i 0.458046 1.41012i
\(797\) −30.0902 30.0902i −1.06585 1.06585i −0.997673 0.0681748i \(-0.978282\pi\)
−0.0681748 0.997673i \(-0.521718\pi\)
\(798\) −12.7023 7.78324i −0.449656 0.275524i
\(799\) 6.74393 + 26.4326i 0.238583 + 0.935120i
\(800\) 22.5312 + 17.0981i 0.796599 + 0.604509i
\(801\) 21.9412i 0.775253i
\(802\) 3.84721 + 16.0219i 0.135850 + 0.565752i
\(803\) 2.74316 2.74316i 0.0968039 0.0968039i
\(804\) −3.97922 + 12.2502i −0.140336 + 0.432033i
\(805\) 1.20978 0.327495i 0.0426390 0.0115427i
\(806\) 13.0113 21.2345i 0.458303 0.747953i
\(807\) 23.1696 + 23.1696i 0.815607 + 0.815607i
\(808\) 2.47671 31.5197i 0.0871305 1.10886i
\(809\) 2.61310 + 2.61310i 0.0918717 + 0.0918717i 0.751549 0.659677i \(-0.229307\pi\)
−0.659677 + 0.751549i \(0.729307\pi\)
\(810\) −6.34189 1.86054i −0.222831 0.0653728i
\(811\) −1.78985 1.78985i −0.0628500 0.0628500i 0.674983 0.737833i \(-0.264151\pi\)
−0.737833 + 0.674983i \(0.764151\pi\)
\(812\) −2.83279 0.920169i −0.0994113 0.0322916i
\(813\) 12.7012i 0.445450i
\(814\) 2.44833 + 10.1962i 0.0858138 + 0.357375i
\(815\) 9.36740 2.53582i 0.328126 0.0888259i
\(816\) 17.9132 + 41.5492i 0.627087 + 1.45451i
\(817\) −17.8429 17.8429i −0.624246 0.624246i
\(818\) 21.4591 + 13.1489i 0.750298 + 0.459741i
\(819\) −13.6737 + 13.6737i −0.477798 + 0.477798i
\(820\) −1.50738 + 30.3010i −0.0526399 + 1.05816i
\(821\) −24.4251 + 24.4251i −0.852444 + 0.852444i −0.990434 0.137990i \(-0.955936\pi\)
0.137990 + 0.990434i \(0.455936\pi\)
\(822\) 48.5398 11.6555i 1.69302 0.406532i
\(823\) 25.4357 0.886632 0.443316 0.896365i \(-0.353802\pi\)
0.443316 + 0.896365i \(0.353802\pi\)
\(824\) 32.6011 + 38.1614i 1.13571 + 1.32942i
\(825\) −2.74604 + 10.4633i −0.0956049 + 0.364286i
\(826\) −8.69489 5.32774i −0.302534 0.185376i
\(827\) −55.7481 −1.93855 −0.969275 0.245978i \(-0.920891\pi\)
−0.969275 + 0.245978i \(0.920891\pi\)
\(828\) 1.94118 + 3.80900i 0.0674607 + 0.132372i
\(829\) 0.274786 0.00954370 0.00477185 0.999989i \(-0.498481\pi\)
0.00477185 + 0.999989i \(0.498481\pi\)
\(830\) 21.5568 + 39.4565i 0.748248 + 1.36956i
\(831\) 9.88947 0.343062
\(832\) −16.9303 23.2905i −0.586954 0.807451i
\(833\) 11.7651 19.8249i 0.407638 0.686892i
\(834\) −7.37536 30.7150i −0.255388 1.06357i
\(835\) −3.65180 13.4899i −0.126376 0.466836i
\(836\) 4.85266 + 1.57628i 0.167833 + 0.0545168i
\(837\) 14.4889 14.4889i 0.500809 0.500809i
\(838\) −40.0079 + 9.60680i −1.38205 + 0.331862i
\(839\) 22.2504 22.2504i 0.768169 0.768169i −0.209615 0.977784i \(-0.567221\pi\)
0.977784 + 0.209615i \(0.0672211\pi\)
\(840\) −20.2395 + 3.80763i −0.698330 + 0.131376i
\(841\) 27.4257i 0.945715i
\(842\) 12.0807 + 7.40238i 0.416329 + 0.255103i
\(843\) 15.3727i 0.529463i
\(844\) −32.4486 10.5402i −1.11693 0.362809i
\(845\) −0.0984135 + 0.0266412i −0.00338553 + 0.000916486i
\(846\) −9.88900 41.1832i −0.339991 1.41591i
\(847\) 12.3181 0.423254
\(848\) −5.78538 36.4883i −0.198671 1.25301i
\(849\) 4.28114i 0.146928i
\(850\) −24.7542 15.4022i −0.849063 0.528291i
\(851\) −4.43998 −0.152201
\(852\) 12.0213 + 3.90485i 0.411843 + 0.133778i
\(853\) 24.3488i 0.833686i −0.908979 0.416843i \(-0.863136\pi\)
0.908979 0.416843i \(-0.136864\pi\)
\(854\) 2.46077 + 10.2480i 0.0842057 + 0.350678i
\(855\) 8.55581 + 31.6054i 0.292603 + 1.08088i
\(856\) 0.956044 12.1670i 0.0326769 0.415860i
\(857\) −17.1041 −0.584265 −0.292132 0.956378i \(-0.594365\pi\)
−0.292132 + 0.956378i \(0.594365\pi\)
\(858\) 5.75364 9.38995i 0.196426 0.320568i
\(859\) 7.55056 0.257622 0.128811 0.991669i \(-0.458884\pi\)
0.128811 + 0.991669i \(0.458884\pi\)
\(860\) −34.8412 1.73324i −1.18808 0.0591030i
\(861\) −15.6202 15.6202i −0.532335 0.532335i
\(862\) 4.97751 1.19521i 0.169535 0.0407091i
\(863\) −29.1069 29.1069i −0.990810 0.990810i 0.00914807 0.999958i \(-0.497088\pi\)
−0.999958 + 0.00914807i \(0.997088\pi\)
\(864\) −9.07069 21.8858i −0.308591 0.744569i
\(865\) 54.4831 14.7490i 1.85248 0.501480i
\(866\) −47.4051 + 11.3830i −1.61089 + 0.386811i
\(867\) −22.3440 40.9380i −0.758843 1.39033i
\(868\) −3.58813 + 11.0462i −0.121789 + 0.374934i
\(869\) 2.57523i 0.0873587i
\(870\) 5.21897 + 9.55254i 0.176940 + 0.323862i
\(871\) 8.44904i 0.286285i
\(872\) −23.3143 + 19.9173i −0.789523 + 0.674486i
\(873\) 16.4285i 0.556019i
\(874\) −1.12873 + 1.84209i −0.0381798 + 0.0623095i
\(875\) 9.31085 9.45561i 0.314764 0.319658i
\(876\) −12.2559 24.0487i −0.414089 0.812530i
\(877\) 10.9656i 0.370283i 0.982712 + 0.185142i \(0.0592744\pi\)
−0.982712 + 0.185142i \(0.940726\pi\)
\(878\) −32.3708 + 7.77297i −1.09246 + 0.262325i
\(879\) 4.17351 + 4.17351i 0.140769 + 0.140769i
\(880\) 6.43590 2.88658i 0.216954 0.0973065i
\(881\) −35.2679 35.2679i −1.18821 1.18821i −0.977563 0.210642i \(-0.932444\pi\)
−0.210642 0.977563i \(-0.567556\pi\)
\(882\) −18.7000 + 30.5185i −0.629663 + 1.02761i
\(883\) −29.9632 + 29.9632i −1.00834 + 1.00834i −0.00837847 + 0.999965i \(0.502667\pi\)
−0.999965 + 0.00837847i \(0.997333\pi\)
\(884\) 19.5957 + 22.2914i 0.659074 + 0.749743i
\(885\) 9.73806 + 35.9727i 0.327341 + 1.20921i
\(886\) −10.9017 45.4004i −0.366248 1.52526i
\(887\) −48.5465 −1.63003 −0.815016 0.579439i \(-0.803272\pi\)
−0.815016 + 0.579439i \(0.803272\pi\)
\(888\) 72.7337 + 5.71518i 2.44078 + 0.191789i
\(889\) 16.0790 16.0790i 0.539273 0.539273i
\(890\) −4.31504 + 14.7083i −0.144641 + 0.493025i
\(891\) −1.16546 + 1.16546i −0.0390443 + 0.0390443i
\(892\) 5.29793 + 1.72092i 0.177388 + 0.0576205i
\(893\) 15.1343 15.1343i 0.506449 0.506449i
\(894\) 42.0563 68.6361i 1.40657 2.29553i
\(895\) 11.4142 + 42.1645i 0.381535 + 1.40940i
\(896\) 10.2137 + 8.71821i 0.341216 + 0.291255i
\(897\) 3.29719 + 3.29719i 0.110090 + 0.110090i
\(898\) −24.8439 + 5.96557i −0.829051 + 0.199074i
\(899\) 6.13877 0.204740
\(900\) 38.0911 + 24.4546i 1.26970 + 0.815155i
\(901\) 9.41431 + 36.8991i 0.313636 + 1.22929i
\(902\) 6.45112 + 3.95288i 0.214799 + 0.131617i
\(903\) 17.9607 17.9607i 0.597694 0.597694i
\(904\) 3.92816 49.9914i 0.130649 1.66269i
\(905\) −26.9224 + 46.9090i −0.894930 + 1.55931i
\(906\) −13.7419 + 22.4269i −0.456545 + 0.745082i
\(907\) −10.7948 −0.358437 −0.179218 0.983809i \(-0.557357\pi\)
−0.179218 + 0.983809i \(0.557357\pi\)
\(908\) −12.5124 24.5520i −0.415239 0.814785i
\(909\) 50.5988i 1.67826i
\(910\) −11.8553 + 6.47709i −0.393001 + 0.214714i
\(911\) 13.9247 + 13.9247i 0.461345 + 0.461345i 0.899096 0.437751i \(-0.144225\pi\)
−0.437751 + 0.899096i \(0.644225\pi\)
\(912\) 20.8614 28.7233i 0.690791 0.951124i
\(913\) 11.2125 0.371080
\(914\) −8.61635 35.8831i −0.285003 1.18691i
\(915\) 19.1727 33.4062i 0.633830 1.10437i
\(916\) −32.0407 + 16.3289i −1.05866 + 0.539522i
\(917\) −4.30479 + 4.30479i −0.142157 + 0.142157i
\(918\) 11.3950 + 21.5985i 0.376090 + 0.712858i
\(919\) 47.6999 1.57347 0.786737 0.617288i \(-0.211769\pi\)
0.786737 + 0.617288i \(0.211769\pi\)
\(920\) 0.552184 + 2.93514i 0.0182050 + 0.0967688i
\(921\) 41.5338 + 41.5338i 1.36859 + 1.36859i
\(922\) −14.1136 + 23.0334i −0.464806 + 0.758565i
\(923\) 8.29113 0.272906
\(924\) −1.58668 + 4.88468i −0.0521980 + 0.160694i
\(925\) −40.5913 + 23.7145i −1.33463 + 0.779730i
\(926\) −48.1197 + 11.5546i −1.58131 + 0.379708i
\(927\) 56.7979 + 56.7979i 1.86549 + 1.86549i
\(928\) 2.71480 6.55795i 0.0891177 0.215275i
\(929\) −26.1971 26.1971i −0.859498 0.859498i 0.131781 0.991279i \(-0.457930\pi\)
−0.991279 + 0.131781i \(0.957930\pi\)
\(930\) 37.2494 20.3510i 1.22146 0.667335i
\(931\) −18.0872 −0.592784
\(932\) −13.3082 26.1134i −0.435923 0.855373i
\(933\) −36.2182 + 36.2182i −1.18573 + 1.18573i
\(934\) 10.2356 + 42.6267i 0.334920 + 1.39479i
\(935\) −6.33055 + 3.57586i −0.207031 + 0.116943i
\(936\) −29.9315 35.0365i −0.978342 1.14520i
\(937\) 16.9484 16.9484i 0.553681 0.553681i −0.373820 0.927501i \(-0.621952\pi\)
0.927501 + 0.373820i \(0.121952\pi\)
\(938\) −0.920024 3.83148i −0.0300398 0.125102i
\(939\) 9.68133i 0.315938i
\(940\) 1.47012 29.5521i 0.0479501 0.963883i
\(941\) −2.24164 2.24164i −0.0730755 0.0730755i 0.669624 0.742700i \(-0.266455\pi\)
−0.742700 + 0.669624i \(0.766455\pi\)
\(942\) −13.2625 55.2321i −0.432115 1.79956i
\(943\) −2.26524 + 2.26524i −0.0737665 + 0.0737665i
\(944\) 14.2800 19.6615i 0.464773 0.639928i
\(945\) −10.7291 + 2.90443i −0.349016 + 0.0944812i
\(946\) −4.54518 + 7.41774i −0.147776 + 0.241172i
\(947\) 17.5791i 0.571243i −0.958342 0.285622i \(-0.907800\pi\)
0.958342 0.285622i \(-0.0922001\pi\)
\(948\) −17.0411 5.53542i −0.553469 0.179782i
\(949\) −12.5197 12.5197i −0.406407 0.406407i
\(950\) −0.480238 + 22.8695i −0.0155810 + 0.741983i
\(951\) 7.35594i 0.238533i
\(952\) −11.3136 7.97495i −0.366676 0.258469i
\(953\) −24.2292 + 24.2292i −0.784862 + 0.784862i −0.980647 0.195785i \(-0.937275\pi\)
0.195785 + 0.980647i \(0.437275\pi\)
\(954\) −13.8047 57.4903i −0.446945 1.86132i
\(955\) 3.47397 0.940427i 0.112415 0.0304315i
\(956\) −22.5958 44.3377i −0.730801 1.43399i
\(957\) 2.71459 0.0877501
\(958\) 57.1760 13.7292i 1.84727 0.443572i
\(959\) −10.7986 + 10.7986i −0.348705 + 0.348705i
\(960\) −5.26748 48.7929i −0.170007 1.57478i
\(961\) 7.06232i 0.227817i
\(962\) 46.5351 11.1741i 1.50035 0.360268i
\(963\) 19.5318i 0.629404i
\(964\) −1.37982 + 4.24785i −0.0444410 + 0.136814i
\(965\) −26.1108 + 7.06836i −0.840535 + 0.227539i
\(966\) −1.85424 1.13618i −0.0596593 0.0365559i
\(967\) −10.2794 10.2794i −0.330562 0.330562i 0.522238 0.852800i \(-0.325097\pi\)
−0.852800 + 0.522238i \(0.825097\pi\)
\(968\) −2.29943 + 29.2635i −0.0739064 + 0.940563i
\(969\) −18.6748 + 31.4681i −0.599922 + 1.01090i
\(970\) −3.23089 + 11.0129i −0.103738 + 0.353603i
\(971\) 38.7947i 1.24498i 0.782627 + 0.622491i \(0.213879\pi\)
−0.782627 + 0.622491i \(0.786121\pi\)
\(972\) 16.6168 + 32.6057i 0.532985 + 1.04583i
\(973\) 6.83314 + 6.83314i 0.219060 + 0.219060i
\(974\) 0.412613 + 0.252826i 0.0132210 + 0.00810107i
\(975\) 47.7543 + 12.5329i 1.52936 + 0.401373i
\(976\) −24.8050 + 3.93293i −0.793988 + 0.125890i
\(977\) 32.9960 32.9960i 1.05563 1.05563i 0.0572759 0.998358i \(-0.481759\pi\)
0.998358 0.0572759i \(-0.0182415\pi\)
\(978\) −14.3576 8.79751i −0.459104 0.281313i
\(979\) 2.70298 + 2.70298i 0.0863875 + 0.0863875i
\(980\) −18.5376 + 16.7806i −0.592161 + 0.536037i
\(981\) −34.7001 + 34.7001i −1.10789 + 1.10789i
\(982\) 26.0859 + 15.9840i 0.832435 + 0.510069i
\(983\) 55.4327i 1.76803i 0.467459 + 0.884015i \(0.345169\pi\)
−0.467459 + 0.884015i \(0.654831\pi\)
\(984\) 40.0240 34.1923i 1.27592 1.09001i
\(985\) −58.8649 + 15.9351i −1.87559 + 0.507736i
\(986\) −2.16157 + 6.98950i −0.0688384 + 0.222591i
\(987\) 15.2342 + 15.2342i 0.484908 + 0.484908i
\(988\) 7.19411 22.1474i 0.228875 0.704604i
\(989\) −2.60466 2.60466i −0.0828235 0.0828235i
\(990\) 9.90633 5.41226i 0.314844 0.172013i
\(991\) −2.78499 + 2.78499i −0.0884682 + 0.0884682i −0.749956 0.661488i \(-0.769925\pi\)
0.661488 + 0.749956i \(0.269925\pi\)
\(992\) −25.5722 10.5862i −0.811919 0.336111i
\(993\) 0.104951i 0.00333053i
\(994\) −3.75987 + 0.902829i −0.119256 + 0.0286360i
\(995\) 23.2798 40.5623i 0.738019 1.28591i
\(996\) 24.1012 74.1967i 0.763675 2.35101i
\(997\) 25.2309i 0.799069i 0.916718 + 0.399535i \(0.130828\pi\)
−0.916718 + 0.399535i \(0.869172\pi\)
\(998\) 40.8761 9.81526i 1.29391 0.310697i
\(999\) 39.3766 1.24582
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 680.2.bl.a.387.36 yes 208
5.3 odd 4 680.2.t.a.523.87 yes 208
8.3 odd 2 inner 680.2.bl.a.387.18 yes 208
17.4 even 4 680.2.t.a.667.69 yes 208
40.3 even 4 680.2.t.a.523.69 208
85.38 odd 4 inner 680.2.bl.a.123.18 yes 208
136.123 odd 4 680.2.t.a.667.87 yes 208
680.123 even 4 inner 680.2.bl.a.123.36 yes 208
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
680.2.t.a.523.69 208 40.3 even 4
680.2.t.a.523.87 yes 208 5.3 odd 4
680.2.t.a.667.69 yes 208 17.4 even 4
680.2.t.a.667.87 yes 208 136.123 odd 4
680.2.bl.a.123.18 yes 208 85.38 odd 4 inner
680.2.bl.a.123.36 yes 208 680.123 even 4 inner
680.2.bl.a.387.18 yes 208 8.3 odd 2 inner
680.2.bl.a.387.36 yes 208 1.1 even 1 trivial