Properties

Label 680.2.a.f.1.3
Level $680$
Weight $2$
Character 680.1
Self dual yes
Analytic conductor $5.430$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [680,2,Mod(1,680)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(680, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("680.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 680 = 2^{3} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 680.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,0,1,0,-3,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(5.42982733745\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.229.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 4x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-0.254102\) of defining polynomial
Character \(\chi\) \(=\) 680.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.68133 q^{3} -1.00000 q^{5} -0.508203 q^{7} +4.18953 q^{9} +5.87086 q^{11} -1.18953 q^{13} -2.68133 q^{15} +1.00000 q^{17} +0.810466 q^{19} -1.36266 q^{21} -0.508203 q^{23} +1.00000 q^{25} +3.18953 q^{27} -0.173127 q^{29} +9.06040 q^{31} +15.7417 q^{33} +0.508203 q^{35} -4.37907 q^{37} -3.18953 q^{39} +2.00000 q^{41} -1.36266 q^{43} -4.18953 q^{45} -10.1731 q^{47} -6.74173 q^{49} +2.68133 q^{51} +8.17313 q^{53} -5.87086 q^{55} +2.17313 q^{57} -9.91486 q^{59} -6.55220 q^{61} -2.12914 q^{63} +1.18953 q^{65} +2.37907 q^{67} -1.36266 q^{69} -11.6977 q^{71} +10.5522 q^{73} +2.68133 q^{75} -2.98359 q^{77} -4.85446 q^{79} -4.01641 q^{81} -15.7417 q^{83} -1.00000 q^{85} -0.464211 q^{87} -1.53579 q^{89} +0.604525 q^{91} +24.2939 q^{93} -0.810466 q^{95} +8.93126 q^{97} +24.5962 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + q^{3} - 3 q^{5} + 4 q^{9} + 2 q^{11} + 5 q^{13} - q^{15} + 3 q^{17} + 11 q^{19} + 10 q^{21} + 3 q^{25} + q^{27} + 5 q^{29} + 3 q^{31} + 16 q^{33} + 4 q^{37} - q^{39} + 6 q^{41} + 10 q^{43} - 4 q^{45}+ \cdots + 30 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.68133 1.54807 0.774033 0.633145i \(-0.218236\pi\)
0.774033 + 0.633145i \(0.218236\pi\)
\(4\) 0 0
\(5\) −1.00000 −0.447214
\(6\) 0 0
\(7\) −0.508203 −0.192083 −0.0960414 0.995377i \(-0.530618\pi\)
−0.0960414 + 0.995377i \(0.530618\pi\)
\(8\) 0 0
\(9\) 4.18953 1.39651
\(10\) 0 0
\(11\) 5.87086 1.77013 0.885066 0.465465i \(-0.154113\pi\)
0.885066 + 0.465465i \(0.154113\pi\)
\(12\) 0 0
\(13\) −1.18953 −0.329917 −0.164959 0.986300i \(-0.552749\pi\)
−0.164959 + 0.986300i \(0.552749\pi\)
\(14\) 0 0
\(15\) −2.68133 −0.692317
\(16\) 0 0
\(17\) 1.00000 0.242536
\(18\) 0 0
\(19\) 0.810466 0.185934 0.0929668 0.995669i \(-0.470365\pi\)
0.0929668 + 0.995669i \(0.470365\pi\)
\(20\) 0 0
\(21\) −1.36266 −0.297357
\(22\) 0 0
\(23\) −0.508203 −0.105968 −0.0529839 0.998595i \(-0.516873\pi\)
−0.0529839 + 0.998595i \(0.516873\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 3.18953 0.613826
\(28\) 0 0
\(29\) −0.173127 −0.0321489 −0.0160745 0.999871i \(-0.505117\pi\)
−0.0160745 + 0.999871i \(0.505117\pi\)
\(30\) 0 0
\(31\) 9.06040 1.62730 0.813648 0.581358i \(-0.197478\pi\)
0.813648 + 0.581358i \(0.197478\pi\)
\(32\) 0 0
\(33\) 15.7417 2.74028
\(34\) 0 0
\(35\) 0.508203 0.0859020
\(36\) 0 0
\(37\) −4.37907 −0.719914 −0.359957 0.932969i \(-0.617209\pi\)
−0.359957 + 0.932969i \(0.617209\pi\)
\(38\) 0 0
\(39\) −3.18953 −0.510734
\(40\) 0 0
\(41\) 2.00000 0.312348 0.156174 0.987730i \(-0.450084\pi\)
0.156174 + 0.987730i \(0.450084\pi\)
\(42\) 0 0
\(43\) −1.36266 −0.207804 −0.103902 0.994588i \(-0.533133\pi\)
−0.103902 + 0.994588i \(0.533133\pi\)
\(44\) 0 0
\(45\) −4.18953 −0.624539
\(46\) 0 0
\(47\) −10.1731 −1.48390 −0.741952 0.670453i \(-0.766100\pi\)
−0.741952 + 0.670453i \(0.766100\pi\)
\(48\) 0 0
\(49\) −6.74173 −0.963104
\(50\) 0 0
\(51\) 2.68133 0.375461
\(52\) 0 0
\(53\) 8.17313 1.12267 0.561333 0.827590i \(-0.310289\pi\)
0.561333 + 0.827590i \(0.310289\pi\)
\(54\) 0 0
\(55\) −5.87086 −0.791627
\(56\) 0 0
\(57\) 2.17313 0.287838
\(58\) 0 0
\(59\) −9.91486 −1.29080 −0.645402 0.763843i \(-0.723310\pi\)
−0.645402 + 0.763843i \(0.723310\pi\)
\(60\) 0 0
\(61\) −6.55220 −0.838923 −0.419461 0.907773i \(-0.637781\pi\)
−0.419461 + 0.907773i \(0.637781\pi\)
\(62\) 0 0
\(63\) −2.12914 −0.268246
\(64\) 0 0
\(65\) 1.18953 0.147544
\(66\) 0 0
\(67\) 2.37907 0.290649 0.145325 0.989384i \(-0.453577\pi\)
0.145325 + 0.989384i \(0.453577\pi\)
\(68\) 0 0
\(69\) −1.36266 −0.164045
\(70\) 0 0
\(71\) −11.6977 −1.38827 −0.694133 0.719847i \(-0.744212\pi\)
−0.694133 + 0.719847i \(0.744212\pi\)
\(72\) 0 0
\(73\) 10.5522 1.23504 0.617521 0.786555i \(-0.288137\pi\)
0.617521 + 0.786555i \(0.288137\pi\)
\(74\) 0 0
\(75\) 2.68133 0.309613
\(76\) 0 0
\(77\) −2.98359 −0.340012
\(78\) 0 0
\(79\) −4.85446 −0.546169 −0.273085 0.961990i \(-0.588044\pi\)
−0.273085 + 0.961990i \(0.588044\pi\)
\(80\) 0 0
\(81\) −4.01641 −0.446267
\(82\) 0 0
\(83\) −15.7417 −1.72788 −0.863940 0.503595i \(-0.832010\pi\)
−0.863940 + 0.503595i \(0.832010\pi\)
\(84\) 0 0
\(85\) −1.00000 −0.108465
\(86\) 0 0
\(87\) −0.464211 −0.0497687
\(88\) 0 0
\(89\) −1.53579 −0.162793 −0.0813966 0.996682i \(-0.525938\pi\)
−0.0813966 + 0.996682i \(0.525938\pi\)
\(90\) 0 0
\(91\) 0.604525 0.0633715
\(92\) 0 0
\(93\) 24.2939 2.51916
\(94\) 0 0
\(95\) −0.810466 −0.0831521
\(96\) 0 0
\(97\) 8.93126 0.906832 0.453416 0.891299i \(-0.350205\pi\)
0.453416 + 0.891299i \(0.350205\pi\)
\(98\) 0 0
\(99\) 24.5962 2.47201
\(100\) 0 0
\(101\) 13.7417 1.36735 0.683677 0.729785i \(-0.260380\pi\)
0.683677 + 0.729785i \(0.260380\pi\)
\(102\) 0 0
\(103\) 2.03281 0.200299 0.100150 0.994972i \(-0.468068\pi\)
0.100150 + 0.994972i \(0.468068\pi\)
\(104\) 0 0
\(105\) 1.36266 0.132982
\(106\) 0 0
\(107\) −13.8709 −1.34095 −0.670474 0.741933i \(-0.733909\pi\)
−0.670474 + 0.741933i \(0.733909\pi\)
\(108\) 0 0
\(109\) 8.93126 0.855460 0.427730 0.903907i \(-0.359313\pi\)
0.427730 + 0.903907i \(0.359313\pi\)
\(110\) 0 0
\(111\) −11.7417 −1.11448
\(112\) 0 0
\(113\) −6.55220 −0.616379 −0.308189 0.951325i \(-0.599723\pi\)
−0.308189 + 0.951325i \(0.599723\pi\)
\(114\) 0 0
\(115\) 0.508203 0.0473902
\(116\) 0 0
\(117\) −4.98359 −0.460733
\(118\) 0 0
\(119\) −0.508203 −0.0465869
\(120\) 0 0
\(121\) 23.4671 2.13337
\(122\) 0 0
\(123\) 5.36266 0.483535
\(124\) 0 0
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) −7.53579 −0.668693 −0.334347 0.942450i \(-0.608516\pi\)
−0.334347 + 0.942450i \(0.608516\pi\)
\(128\) 0 0
\(129\) −3.65375 −0.321694
\(130\) 0 0
\(131\) −9.52461 −0.832169 −0.416085 0.909326i \(-0.636598\pi\)
−0.416085 + 0.909326i \(0.636598\pi\)
\(132\) 0 0
\(133\) −0.411882 −0.0357147
\(134\) 0 0
\(135\) −3.18953 −0.274511
\(136\) 0 0
\(137\) −15.7745 −1.34771 −0.673855 0.738864i \(-0.735363\pi\)
−0.673855 + 0.738864i \(0.735363\pi\)
\(138\) 0 0
\(139\) 14.8873 1.26272 0.631361 0.775489i \(-0.282497\pi\)
0.631361 + 0.775489i \(0.282497\pi\)
\(140\) 0 0
\(141\) −27.2775 −2.29718
\(142\) 0 0
\(143\) −6.98359 −0.583997
\(144\) 0 0
\(145\) 0.173127 0.0143774
\(146\) 0 0
\(147\) −18.0768 −1.49095
\(148\) 0 0
\(149\) −5.65375 −0.463173 −0.231586 0.972814i \(-0.574392\pi\)
−0.231586 + 0.972814i \(0.574392\pi\)
\(150\) 0 0
\(151\) 20.8461 1.69643 0.848217 0.529650i \(-0.177677\pi\)
0.848217 + 0.529650i \(0.177677\pi\)
\(152\) 0 0
\(153\) 4.18953 0.338704
\(154\) 0 0
\(155\) −9.06040 −0.727749
\(156\) 0 0
\(157\) −10.6925 −0.853355 −0.426678 0.904404i \(-0.640316\pi\)
−0.426678 + 0.904404i \(0.640316\pi\)
\(158\) 0 0
\(159\) 21.9149 1.73796
\(160\) 0 0
\(161\) 0.258271 0.0203546
\(162\) 0 0
\(163\) −20.3379 −1.59299 −0.796494 0.604646i \(-0.793315\pi\)
−0.796494 + 0.604646i \(0.793315\pi\)
\(164\) 0 0
\(165\) −15.7417 −1.22549
\(166\) 0 0
\(167\) 11.2335 0.869276 0.434638 0.900605i \(-0.356876\pi\)
0.434638 + 0.900605i \(0.356876\pi\)
\(168\) 0 0
\(169\) −11.5850 −0.891155
\(170\) 0 0
\(171\) 3.39547 0.259658
\(172\) 0 0
\(173\) 15.4506 1.17469 0.587345 0.809336i \(-0.300173\pi\)
0.587345 + 0.809336i \(0.300173\pi\)
\(174\) 0 0
\(175\) −0.508203 −0.0384166
\(176\) 0 0
\(177\) −26.5850 −1.99825
\(178\) 0 0
\(179\) 25.7745 1.92648 0.963240 0.268643i \(-0.0865751\pi\)
0.963240 + 0.268643i \(0.0865751\pi\)
\(180\) 0 0
\(181\) −6.69251 −0.497450 −0.248725 0.968574i \(-0.580012\pi\)
−0.248725 + 0.968574i \(0.580012\pi\)
\(182\) 0 0
\(183\) −17.5686 −1.29871
\(184\) 0 0
\(185\) 4.37907 0.321955
\(186\) 0 0
\(187\) 5.87086 0.429320
\(188\) 0 0
\(189\) −1.62093 −0.117905
\(190\) 0 0
\(191\) −18.7253 −1.35492 −0.677458 0.735561i \(-0.736919\pi\)
−0.677458 + 0.735561i \(0.736919\pi\)
\(192\) 0 0
\(193\) −0.725323 −0.0522099 −0.0261049 0.999659i \(-0.508310\pi\)
−0.0261049 + 0.999659i \(0.508310\pi\)
\(194\) 0 0
\(195\) 3.18953 0.228407
\(196\) 0 0
\(197\) −21.0716 −1.50129 −0.750644 0.660707i \(-0.770257\pi\)
−0.750644 + 0.660707i \(0.770257\pi\)
\(198\) 0 0
\(199\) 2.68133 0.190074 0.0950372 0.995474i \(-0.469703\pi\)
0.0950372 + 0.995474i \(0.469703\pi\)
\(200\) 0 0
\(201\) 6.37907 0.449945
\(202\) 0 0
\(203\) 0.0879839 0.00617526
\(204\) 0 0
\(205\) −2.00000 −0.139686
\(206\) 0 0
\(207\) −2.12914 −0.147985
\(208\) 0 0
\(209\) 4.75814 0.329127
\(210\) 0 0
\(211\) 4.76647 0.328138 0.164069 0.986449i \(-0.447538\pi\)
0.164069 + 0.986449i \(0.447538\pi\)
\(212\) 0 0
\(213\) −31.3655 −2.14913
\(214\) 0 0
\(215\) 1.36266 0.0929327
\(216\) 0 0
\(217\) −4.60453 −0.312576
\(218\) 0 0
\(219\) 28.2939 1.91193
\(220\) 0 0
\(221\) −1.18953 −0.0800167
\(222\) 0 0
\(223\) −10.2611 −0.687135 −0.343567 0.939128i \(-0.611635\pi\)
−0.343567 + 0.939128i \(0.611635\pi\)
\(224\) 0 0
\(225\) 4.18953 0.279302
\(226\) 0 0
\(227\) 10.0768 0.668821 0.334411 0.942428i \(-0.391463\pi\)
0.334411 + 0.942428i \(0.391463\pi\)
\(228\) 0 0
\(229\) 27.7089 1.83106 0.915528 0.402253i \(-0.131773\pi\)
0.915528 + 0.402253i \(0.131773\pi\)
\(230\) 0 0
\(231\) −8.00000 −0.526361
\(232\) 0 0
\(233\) −12.5194 −0.820172 −0.410086 0.912047i \(-0.634501\pi\)
−0.410086 + 0.912047i \(0.634501\pi\)
\(234\) 0 0
\(235\) 10.1731 0.663622
\(236\) 0 0
\(237\) −13.0164 −0.845506
\(238\) 0 0
\(239\) −21.8625 −1.41417 −0.707085 0.707129i \(-0.749990\pi\)
−0.707085 + 0.707129i \(0.749990\pi\)
\(240\) 0 0
\(241\) −3.96719 −0.255549 −0.127774 0.991803i \(-0.540783\pi\)
−0.127774 + 0.991803i \(0.540783\pi\)
\(242\) 0 0
\(243\) −20.3379 −1.30468
\(244\) 0 0
\(245\) 6.74173 0.430713
\(246\) 0 0
\(247\) −0.964077 −0.0613427
\(248\) 0 0
\(249\) −42.2088 −2.67487
\(250\) 0 0
\(251\) 14.0328 0.885743 0.442872 0.896585i \(-0.353960\pi\)
0.442872 + 0.896585i \(0.353960\pi\)
\(252\) 0 0
\(253\) −2.98359 −0.187577
\(254\) 0 0
\(255\) −2.68133 −0.167911
\(256\) 0 0
\(257\) 23.7089 1.47892 0.739461 0.673200i \(-0.235081\pi\)
0.739461 + 0.673200i \(0.235081\pi\)
\(258\) 0 0
\(259\) 2.22546 0.138283
\(260\) 0 0
\(261\) −0.725323 −0.0448963
\(262\) 0 0
\(263\) −11.1895 −0.689976 −0.344988 0.938607i \(-0.612117\pi\)
−0.344988 + 0.938607i \(0.612117\pi\)
\(264\) 0 0
\(265\) −8.17313 −0.502071
\(266\) 0 0
\(267\) −4.11796 −0.252015
\(268\) 0 0
\(269\) 10.1403 0.618266 0.309133 0.951019i \(-0.399961\pi\)
0.309133 + 0.951019i \(0.399961\pi\)
\(270\) 0 0
\(271\) −20.7581 −1.26097 −0.630483 0.776203i \(-0.717143\pi\)
−0.630483 + 0.776203i \(0.717143\pi\)
\(272\) 0 0
\(273\) 1.62093 0.0981033
\(274\) 0 0
\(275\) 5.87086 0.354026
\(276\) 0 0
\(277\) 25.4835 1.53115 0.765576 0.643345i \(-0.222454\pi\)
0.765576 + 0.643345i \(0.222454\pi\)
\(278\) 0 0
\(279\) 37.9588 2.27254
\(280\) 0 0
\(281\) 4.17313 0.248948 0.124474 0.992223i \(-0.460276\pi\)
0.124474 + 0.992223i \(0.460276\pi\)
\(282\) 0 0
\(283\) 31.5275 1.87411 0.937056 0.349179i \(-0.113539\pi\)
0.937056 + 0.349179i \(0.113539\pi\)
\(284\) 0 0
\(285\) −2.17313 −0.128725
\(286\) 0 0
\(287\) −1.01641 −0.0599966
\(288\) 0 0
\(289\) 1.00000 0.0588235
\(290\) 0 0
\(291\) 23.9477 1.40384
\(292\) 0 0
\(293\) 16.1731 0.944844 0.472422 0.881372i \(-0.343380\pi\)
0.472422 + 0.881372i \(0.343380\pi\)
\(294\) 0 0
\(295\) 9.91486 0.577265
\(296\) 0 0
\(297\) 18.7253 1.08655
\(298\) 0 0
\(299\) 0.604525 0.0349606
\(300\) 0 0
\(301\) 0.692509 0.0399156
\(302\) 0 0
\(303\) 36.8461 2.11675
\(304\) 0 0
\(305\) 6.55220 0.375178
\(306\) 0 0
\(307\) −19.4835 −1.11198 −0.555990 0.831189i \(-0.687661\pi\)
−0.555990 + 0.831189i \(0.687661\pi\)
\(308\) 0 0
\(309\) 5.45065 0.310076
\(310\) 0 0
\(311\) −1.11273 −0.0630970 −0.0315485 0.999502i \(-0.510044\pi\)
−0.0315485 + 0.999502i \(0.510044\pi\)
\(312\) 0 0
\(313\) 2.00000 0.113047 0.0565233 0.998401i \(-0.481998\pi\)
0.0565233 + 0.998401i \(0.481998\pi\)
\(314\) 0 0
\(315\) 2.12914 0.119963
\(316\) 0 0
\(317\) −27.8625 −1.56492 −0.782458 0.622704i \(-0.786034\pi\)
−0.782458 + 0.622704i \(0.786034\pi\)
\(318\) 0 0
\(319\) −1.01641 −0.0569079
\(320\) 0 0
\(321\) −37.1924 −2.07588
\(322\) 0 0
\(323\) 0.810466 0.0450955
\(324\) 0 0
\(325\) −1.18953 −0.0659835
\(326\) 0 0
\(327\) 23.9477 1.32431
\(328\) 0 0
\(329\) 5.17002 0.285032
\(330\) 0 0
\(331\) 23.1895 1.27461 0.637306 0.770611i \(-0.280049\pi\)
0.637306 + 0.770611i \(0.280049\pi\)
\(332\) 0 0
\(333\) −18.3463 −1.00537
\(334\) 0 0
\(335\) −2.37907 −0.129982
\(336\) 0 0
\(337\) 20.5850 1.12134 0.560668 0.828040i \(-0.310544\pi\)
0.560668 + 0.828040i \(0.310544\pi\)
\(338\) 0 0
\(339\) −17.5686 −0.954195
\(340\) 0 0
\(341\) 53.1924 2.88053
\(342\) 0 0
\(343\) 6.98359 0.377079
\(344\) 0 0
\(345\) 1.36266 0.0733632
\(346\) 0 0
\(347\) 22.4231 1.20373 0.601866 0.798597i \(-0.294424\pi\)
0.601866 + 0.798597i \(0.294424\pi\)
\(348\) 0 0
\(349\) 10.3463 0.553822 0.276911 0.960896i \(-0.410689\pi\)
0.276911 + 0.960896i \(0.410689\pi\)
\(350\) 0 0
\(351\) −3.79406 −0.202512
\(352\) 0 0
\(353\) −19.4506 −1.03525 −0.517627 0.855607i \(-0.673184\pi\)
−0.517627 + 0.855607i \(0.673184\pi\)
\(354\) 0 0
\(355\) 11.6977 0.620851
\(356\) 0 0
\(357\) −1.36266 −0.0721197
\(358\) 0 0
\(359\) 20.1536 1.06367 0.531833 0.846849i \(-0.321503\pi\)
0.531833 + 0.846849i \(0.321503\pi\)
\(360\) 0 0
\(361\) −18.3431 −0.965429
\(362\) 0 0
\(363\) 62.9229 3.30260
\(364\) 0 0
\(365\) −10.5522 −0.552327
\(366\) 0 0
\(367\) −9.20071 −0.480273 −0.240137 0.970739i \(-0.577192\pi\)
−0.240137 + 0.970739i \(0.577192\pi\)
\(368\) 0 0
\(369\) 8.37907 0.436197
\(370\) 0 0
\(371\) −4.15361 −0.215645
\(372\) 0 0
\(373\) 22.4342 1.16160 0.580800 0.814046i \(-0.302740\pi\)
0.580800 + 0.814046i \(0.302740\pi\)
\(374\) 0 0
\(375\) −2.68133 −0.138463
\(376\) 0 0
\(377\) 0.205941 0.0106065
\(378\) 0 0
\(379\) 14.8873 0.764708 0.382354 0.924016i \(-0.375114\pi\)
0.382354 + 0.924016i \(0.375114\pi\)
\(380\) 0 0
\(381\) −20.2059 −1.03518
\(382\) 0 0
\(383\) 1.15672 0.0591057 0.0295528 0.999563i \(-0.490592\pi\)
0.0295528 + 0.999563i \(0.490592\pi\)
\(384\) 0 0
\(385\) 2.98359 0.152058
\(386\) 0 0
\(387\) −5.70892 −0.290201
\(388\) 0 0
\(389\) 12.8133 0.649660 0.324830 0.945772i \(-0.394693\pi\)
0.324830 + 0.945772i \(0.394693\pi\)
\(390\) 0 0
\(391\) −0.508203 −0.0257009
\(392\) 0 0
\(393\) −25.5386 −1.28825
\(394\) 0 0
\(395\) 4.85446 0.244254
\(396\) 0 0
\(397\) 3.62093 0.181729 0.0908647 0.995863i \(-0.471037\pi\)
0.0908647 + 0.995863i \(0.471037\pi\)
\(398\) 0 0
\(399\) −1.10439 −0.0552887
\(400\) 0 0
\(401\) 9.07158 0.453013 0.226506 0.974010i \(-0.427270\pi\)
0.226506 + 0.974010i \(0.427270\pi\)
\(402\) 0 0
\(403\) −10.7777 −0.536873
\(404\) 0 0
\(405\) 4.01641 0.199577
\(406\) 0 0
\(407\) −25.7089 −1.27434
\(408\) 0 0
\(409\) 12.5850 0.622289 0.311144 0.950363i \(-0.399288\pi\)
0.311144 + 0.950363i \(0.399288\pi\)
\(410\) 0 0
\(411\) −42.2968 −2.08635
\(412\) 0 0
\(413\) 5.03876 0.247941
\(414\) 0 0
\(415\) 15.7417 0.772731
\(416\) 0 0
\(417\) 39.9177 1.95478
\(418\) 0 0
\(419\) −6.47539 −0.316343 −0.158172 0.987412i \(-0.550560\pi\)
−0.158172 + 0.987412i \(0.550560\pi\)
\(420\) 0 0
\(421\) 27.6043 1.34535 0.672675 0.739938i \(-0.265145\pi\)
0.672675 + 0.739938i \(0.265145\pi\)
\(422\) 0 0
\(423\) −42.6207 −2.07229
\(424\) 0 0
\(425\) 1.00000 0.0485071
\(426\) 0 0
\(427\) 3.32985 0.161143
\(428\) 0 0
\(429\) −18.7253 −0.904067
\(430\) 0 0
\(431\) −4.85446 −0.233831 −0.116916 0.993142i \(-0.537301\pi\)
−0.116916 + 0.993142i \(0.537301\pi\)
\(432\) 0 0
\(433\) 18.2583 0.877436 0.438718 0.898625i \(-0.355433\pi\)
0.438718 + 0.898625i \(0.355433\pi\)
\(434\) 0 0
\(435\) 0.464211 0.0222572
\(436\) 0 0
\(437\) −0.411882 −0.0197030
\(438\) 0 0
\(439\) −2.62900 −0.125475 −0.0627377 0.998030i \(-0.519983\pi\)
−0.0627377 + 0.998030i \(0.519983\pi\)
\(440\) 0 0
\(441\) −28.2447 −1.34499
\(442\) 0 0
\(443\) −38.7253 −1.83990 −0.919948 0.392041i \(-0.871769\pi\)
−0.919948 + 0.392041i \(0.871769\pi\)
\(444\) 0 0
\(445\) 1.53579 0.0728034
\(446\) 0 0
\(447\) −15.1596 −0.717023
\(448\) 0 0
\(449\) −11.0388 −0.520951 −0.260476 0.965480i \(-0.583879\pi\)
−0.260476 + 0.965480i \(0.583879\pi\)
\(450\) 0 0
\(451\) 11.7417 0.552896
\(452\) 0 0
\(453\) 55.8953 2.62619
\(454\) 0 0
\(455\) −0.604525 −0.0283406
\(456\) 0 0
\(457\) −34.4999 −1.61384 −0.806918 0.590664i \(-0.798866\pi\)
−0.806918 + 0.590664i \(0.798866\pi\)
\(458\) 0 0
\(459\) 3.18953 0.148875
\(460\) 0 0
\(461\) 36.1432 1.68335 0.841677 0.539981i \(-0.181569\pi\)
0.841677 + 0.539981i \(0.181569\pi\)
\(462\) 0 0
\(463\) 19.2775 0.895902 0.447951 0.894058i \(-0.352154\pi\)
0.447951 + 0.894058i \(0.352154\pi\)
\(464\) 0 0
\(465\) −24.2939 −1.12660
\(466\) 0 0
\(467\) 10.2911 0.476215 0.238107 0.971239i \(-0.423473\pi\)
0.238107 + 0.971239i \(0.423473\pi\)
\(468\) 0 0
\(469\) −1.20905 −0.0558288
\(470\) 0 0
\(471\) −28.6702 −1.32105
\(472\) 0 0
\(473\) −8.00000 −0.367840
\(474\) 0 0
\(475\) 0.810466 0.0371867
\(476\) 0 0
\(477\) 34.2416 1.56781
\(478\) 0 0
\(479\) −42.7693 −1.95418 −0.977090 0.212827i \(-0.931733\pi\)
−0.977090 + 0.212827i \(0.931733\pi\)
\(480\) 0 0
\(481\) 5.20905 0.237512
\(482\) 0 0
\(483\) 0.692509 0.0315103
\(484\) 0 0
\(485\) −8.93126 −0.405548
\(486\) 0 0
\(487\) 0.184306 0.00835169 0.00417584 0.999991i \(-0.498671\pi\)
0.00417584 + 0.999991i \(0.498671\pi\)
\(488\) 0 0
\(489\) −54.5327 −2.46605
\(490\) 0 0
\(491\) 34.6074 1.56181 0.780904 0.624651i \(-0.214759\pi\)
0.780904 + 0.624651i \(0.214759\pi\)
\(492\) 0 0
\(493\) −0.173127 −0.00779726
\(494\) 0 0
\(495\) −24.5962 −1.10552
\(496\) 0 0
\(497\) 5.94483 0.266662
\(498\) 0 0
\(499\) −34.7170 −1.55415 −0.777073 0.629411i \(-0.783296\pi\)
−0.777073 + 0.629411i \(0.783296\pi\)
\(500\) 0 0
\(501\) 30.1208 1.34570
\(502\) 0 0
\(503\) −5.37100 −0.239481 −0.119741 0.992805i \(-0.538206\pi\)
−0.119741 + 0.992805i \(0.538206\pi\)
\(504\) 0 0
\(505\) −13.7417 −0.611499
\(506\) 0 0
\(507\) −31.0632 −1.37957
\(508\) 0 0
\(509\) −15.8625 −0.703094 −0.351547 0.936170i \(-0.614344\pi\)
−0.351547 + 0.936170i \(0.614344\pi\)
\(510\) 0 0
\(511\) −5.36266 −0.237230
\(512\) 0 0
\(513\) 2.58501 0.114131
\(514\) 0 0
\(515\) −2.03281 −0.0895765
\(516\) 0 0
\(517\) −59.7251 −2.62670
\(518\) 0 0
\(519\) 41.4283 1.81850
\(520\) 0 0
\(521\) 0.895609 0.0392374 0.0196187 0.999808i \(-0.493755\pi\)
0.0196187 + 0.999808i \(0.493755\pi\)
\(522\) 0 0
\(523\) 29.7969 1.30293 0.651464 0.758680i \(-0.274155\pi\)
0.651464 + 0.758680i \(0.274155\pi\)
\(524\) 0 0
\(525\) −1.36266 −0.0594714
\(526\) 0 0
\(527\) 9.06040 0.394677
\(528\) 0 0
\(529\) −22.7417 −0.988771
\(530\) 0 0
\(531\) −41.5386 −1.80262
\(532\) 0 0
\(533\) −2.37907 −0.103049
\(534\) 0 0
\(535\) 13.8709 0.599690
\(536\) 0 0
\(537\) 69.1101 2.98232
\(538\) 0 0
\(539\) −39.5798 −1.70482
\(540\) 0 0
\(541\) 19.5163 0.839070 0.419535 0.907739i \(-0.362193\pi\)
0.419535 + 0.907739i \(0.362193\pi\)
\(542\) 0 0
\(543\) −17.9448 −0.770086
\(544\) 0 0
\(545\) −8.93126 −0.382573
\(546\) 0 0
\(547\) −3.28586 −0.140493 −0.0702465 0.997530i \(-0.522379\pi\)
−0.0702465 + 0.997530i \(0.522379\pi\)
\(548\) 0 0
\(549\) −27.4506 −1.17156
\(550\) 0 0
\(551\) −0.140314 −0.00597757
\(552\) 0 0
\(553\) 2.46705 0.104910
\(554\) 0 0
\(555\) 11.7417 0.498409
\(556\) 0 0
\(557\) 2.87609 0.121864 0.0609320 0.998142i \(-0.480593\pi\)
0.0609320 + 0.998142i \(0.480593\pi\)
\(558\) 0 0
\(559\) 1.62093 0.0685581
\(560\) 0 0
\(561\) 15.7417 0.664616
\(562\) 0 0
\(563\) −41.5386 −1.75064 −0.875322 0.483540i \(-0.839351\pi\)
−0.875322 + 0.483540i \(0.839351\pi\)
\(564\) 0 0
\(565\) 6.55220 0.275653
\(566\) 0 0
\(567\) 2.04115 0.0857203
\(568\) 0 0
\(569\) 4.17313 0.174947 0.0874733 0.996167i \(-0.472121\pi\)
0.0874733 + 0.996167i \(0.472121\pi\)
\(570\) 0 0
\(571\) 31.6678 1.32525 0.662627 0.748949i \(-0.269441\pi\)
0.662627 + 0.748949i \(0.269441\pi\)
\(572\) 0 0
\(573\) −50.2088 −2.09750
\(574\) 0 0
\(575\) −0.508203 −0.0211935
\(576\) 0 0
\(577\) 29.3955 1.22375 0.611875 0.790955i \(-0.290416\pi\)
0.611875 + 0.790955i \(0.290416\pi\)
\(578\) 0 0
\(579\) −1.94483 −0.0808244
\(580\) 0 0
\(581\) 8.00000 0.331896
\(582\) 0 0
\(583\) 47.9833 1.98727
\(584\) 0 0
\(585\) 4.98359 0.206046
\(586\) 0 0
\(587\) 12.0880 0.498924 0.249462 0.968385i \(-0.419746\pi\)
0.249462 + 0.968385i \(0.419746\pi\)
\(588\) 0 0
\(589\) 7.34314 0.302569
\(590\) 0 0
\(591\) −56.4999 −2.32409
\(592\) 0 0
\(593\) −35.4506 −1.45578 −0.727892 0.685692i \(-0.759500\pi\)
−0.727892 + 0.685692i \(0.759500\pi\)
\(594\) 0 0
\(595\) 0.508203 0.0208343
\(596\) 0 0
\(597\) 7.18953 0.294248
\(598\) 0 0
\(599\) 41.2804 1.68667 0.843335 0.537388i \(-0.180589\pi\)
0.843335 + 0.537388i \(0.180589\pi\)
\(600\) 0 0
\(601\) −21.0716 −0.859528 −0.429764 0.902941i \(-0.641403\pi\)
−0.429764 + 0.902941i \(0.641403\pi\)
\(602\) 0 0
\(603\) 9.96719 0.405895
\(604\) 0 0
\(605\) −23.4671 −0.954071
\(606\) 0 0
\(607\) 15.2992 0.620973 0.310487 0.950578i \(-0.399508\pi\)
0.310487 + 0.950578i \(0.399508\pi\)
\(608\) 0 0
\(609\) 0.235914 0.00955971
\(610\) 0 0
\(611\) 12.1013 0.489565
\(612\) 0 0
\(613\) 11.8269 0.477683 0.238841 0.971059i \(-0.423232\pi\)
0.238841 + 0.971059i \(0.423232\pi\)
\(614\) 0 0
\(615\) −5.36266 −0.216243
\(616\) 0 0
\(617\) −16.5850 −0.667687 −0.333844 0.942628i \(-0.608346\pi\)
−0.333844 + 0.942628i \(0.608346\pi\)
\(618\) 0 0
\(619\) −47.9917 −1.92895 −0.964474 0.264178i \(-0.914899\pi\)
−0.964474 + 0.264178i \(0.914899\pi\)
\(620\) 0 0
\(621\) −1.62093 −0.0650458
\(622\) 0 0
\(623\) 0.780493 0.0312698
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 12.7581 0.509511
\(628\) 0 0
\(629\) −4.37907 −0.174605
\(630\) 0 0
\(631\) 20.4342 0.813474 0.406737 0.913545i \(-0.366667\pi\)
0.406737 + 0.913545i \(0.366667\pi\)
\(632\) 0 0
\(633\) 12.7805 0.507979
\(634\) 0 0
\(635\) 7.53579 0.299049
\(636\) 0 0
\(637\) 8.01952 0.317745
\(638\) 0 0
\(639\) −49.0081 −1.93873
\(640\) 0 0
\(641\) 27.5163 1.08683 0.543414 0.839465i \(-0.317132\pi\)
0.543414 + 0.839465i \(0.317132\pi\)
\(642\) 0 0
\(643\) 9.61259 0.379084 0.189542 0.981873i \(-0.439300\pi\)
0.189542 + 0.981873i \(0.439300\pi\)
\(644\) 0 0
\(645\) 3.65375 0.143866
\(646\) 0 0
\(647\) 34.3491 1.35040 0.675201 0.737634i \(-0.264057\pi\)
0.675201 + 0.737634i \(0.264057\pi\)
\(648\) 0 0
\(649\) −58.2088 −2.28489
\(650\) 0 0
\(651\) −12.3463 −0.483888
\(652\) 0 0
\(653\) −19.9672 −0.781376 −0.390688 0.920523i \(-0.627763\pi\)
−0.390688 + 0.920523i \(0.627763\pi\)
\(654\) 0 0
\(655\) 9.52461 0.372157
\(656\) 0 0
\(657\) 44.2088 1.72475
\(658\) 0 0
\(659\) 0.898450 0.0349986 0.0174993 0.999847i \(-0.494430\pi\)
0.0174993 + 0.999847i \(0.494430\pi\)
\(660\) 0 0
\(661\) −26.4119 −1.02730 −0.513652 0.857999i \(-0.671708\pi\)
−0.513652 + 0.857999i \(0.671708\pi\)
\(662\) 0 0
\(663\) −3.18953 −0.123871
\(664\) 0 0
\(665\) 0.411882 0.0159721
\(666\) 0 0
\(667\) 0.0879839 0.00340675
\(668\) 0 0
\(669\) −27.5134 −1.06373
\(670\) 0 0
\(671\) −38.4671 −1.48500
\(672\) 0 0
\(673\) 3.76125 0.144985 0.0724927 0.997369i \(-0.476905\pi\)
0.0724927 + 0.997369i \(0.476905\pi\)
\(674\) 0 0
\(675\) 3.18953 0.122765
\(676\) 0 0
\(677\) 10.0000 0.384331 0.192166 0.981363i \(-0.438449\pi\)
0.192166 + 0.981363i \(0.438449\pi\)
\(678\) 0 0
\(679\) −4.53890 −0.174187
\(680\) 0 0
\(681\) 27.0192 1.03538
\(682\) 0 0
\(683\) 1.34103 0.0513129 0.0256565 0.999671i \(-0.491832\pi\)
0.0256565 + 0.999671i \(0.491832\pi\)
\(684\) 0 0
\(685\) 15.7745 0.602714
\(686\) 0 0
\(687\) 74.2968 2.83460
\(688\) 0 0
\(689\) −9.72221 −0.370387
\(690\) 0 0
\(691\) −4.16195 −0.158328 −0.0791640 0.996862i \(-0.525225\pi\)
−0.0791640 + 0.996862i \(0.525225\pi\)
\(692\) 0 0
\(693\) −12.4999 −0.474831
\(694\) 0 0
\(695\) −14.8873 −0.564706
\(696\) 0 0
\(697\) 2.00000 0.0757554
\(698\) 0 0
\(699\) −33.5686 −1.26968
\(700\) 0 0
\(701\) 42.0880 1.58964 0.794821 0.606844i \(-0.207565\pi\)
0.794821 + 0.606844i \(0.207565\pi\)
\(702\) 0 0
\(703\) −3.54909 −0.133856
\(704\) 0 0
\(705\) 27.2775 1.02733
\(706\) 0 0
\(707\) −6.98359 −0.262645
\(708\) 0 0
\(709\) 18.5522 0.696742 0.348371 0.937357i \(-0.386735\pi\)
0.348371 + 0.937357i \(0.386735\pi\)
\(710\) 0 0
\(711\) −20.3379 −0.762731
\(712\) 0 0
\(713\) −4.60453 −0.172441
\(714\) 0 0
\(715\) 6.98359 0.261172
\(716\) 0 0
\(717\) −58.6207 −2.18923
\(718\) 0 0
\(719\) −3.69774 −0.137902 −0.0689512 0.997620i \(-0.521965\pi\)
−0.0689512 + 0.997620i \(0.521965\pi\)
\(720\) 0 0
\(721\) −1.03308 −0.0384740
\(722\) 0 0
\(723\) −10.6373 −0.395607
\(724\) 0 0
\(725\) −0.173127 −0.00642979
\(726\) 0 0
\(727\) 15.2119 0.564178 0.282089 0.959388i \(-0.408973\pi\)
0.282089 + 0.959388i \(0.408973\pi\)
\(728\) 0 0
\(729\) −42.4835 −1.57346
\(730\) 0 0
\(731\) −1.36266 −0.0503998
\(732\) 0 0
\(733\) 13.3075 0.491523 0.245762 0.969330i \(-0.420962\pi\)
0.245762 + 0.969330i \(0.420962\pi\)
\(734\) 0 0
\(735\) 18.0768 0.666773
\(736\) 0 0
\(737\) 13.9672 0.514488
\(738\) 0 0
\(739\) 3.94767 0.145217 0.0726087 0.997361i \(-0.476868\pi\)
0.0726087 + 0.997361i \(0.476868\pi\)
\(740\) 0 0
\(741\) −2.58501 −0.0949627
\(742\) 0 0
\(743\) −50.3931 −1.84874 −0.924372 0.381493i \(-0.875410\pi\)
−0.924372 + 0.381493i \(0.875410\pi\)
\(744\) 0 0
\(745\) 5.65375 0.207137
\(746\) 0 0
\(747\) −65.9505 −2.41300
\(748\) 0 0
\(749\) 7.04922 0.257573
\(750\) 0 0
\(751\) −52.9781 −1.93320 −0.966599 0.256293i \(-0.917499\pi\)
−0.966599 + 0.256293i \(0.917499\pi\)
\(752\) 0 0
\(753\) 37.6266 1.37119
\(754\) 0 0
\(755\) −20.8461 −0.758668
\(756\) 0 0
\(757\) −25.3655 −0.921925 −0.460962 0.887420i \(-0.652496\pi\)
−0.460962 + 0.887420i \(0.652496\pi\)
\(758\) 0 0
\(759\) −8.00000 −0.290382
\(760\) 0 0
\(761\) 47.1924 1.71072 0.855361 0.518032i \(-0.173335\pi\)
0.855361 + 0.518032i \(0.173335\pi\)
\(762\) 0 0
\(763\) −4.53890 −0.164319
\(764\) 0 0
\(765\) −4.18953 −0.151473
\(766\) 0 0
\(767\) 11.7941 0.425859
\(768\) 0 0
\(769\) 10.8105 0.389835 0.194918 0.980820i \(-0.437556\pi\)
0.194918 + 0.980820i \(0.437556\pi\)
\(770\) 0 0
\(771\) 63.5714 2.28947
\(772\) 0 0
\(773\) 49.9833 1.79778 0.898888 0.438179i \(-0.144376\pi\)
0.898888 + 0.438179i \(0.144376\pi\)
\(774\) 0 0
\(775\) 9.06040 0.325459
\(776\) 0 0
\(777\) 5.96719 0.214072
\(778\) 0 0
\(779\) 1.62093 0.0580759
\(780\) 0 0
\(781\) −68.6758 −2.45741
\(782\) 0 0
\(783\) −0.552195 −0.0197339
\(784\) 0 0
\(785\) 10.6925 0.381632
\(786\) 0 0
\(787\) 8.13198 0.289874 0.144937 0.989441i \(-0.453702\pi\)
0.144937 + 0.989441i \(0.453702\pi\)
\(788\) 0 0
\(789\) −30.0028 −1.06813
\(790\) 0 0
\(791\) 3.32985 0.118396
\(792\) 0 0
\(793\) 7.79406 0.276775
\(794\) 0 0
\(795\) −21.9149 −0.777240
\(796\) 0 0
\(797\) 49.7251 1.76135 0.880676 0.473719i \(-0.157089\pi\)
0.880676 + 0.473719i \(0.157089\pi\)
\(798\) 0 0
\(799\) −10.1731 −0.359899
\(800\) 0 0
\(801\) −6.43424 −0.227343
\(802\) 0 0
\(803\) 61.9505 2.18619
\(804\) 0 0
\(805\) −0.258271 −0.00910285
\(806\) 0 0
\(807\) 27.1895 0.957117
\(808\) 0 0
\(809\) 13.4178 0.471746 0.235873 0.971784i \(-0.424205\pi\)
0.235873 + 0.971784i \(0.424205\pi\)
\(810\) 0 0
\(811\) −13.4590 −0.472609 −0.236304 0.971679i \(-0.575936\pi\)
−0.236304 + 0.971679i \(0.575936\pi\)
\(812\) 0 0
\(813\) −55.6594 −1.95206
\(814\) 0 0
\(815\) 20.3379 0.712406
\(816\) 0 0
\(817\) −1.10439 −0.0386377
\(818\) 0 0
\(819\) 2.53268 0.0884990
\(820\) 0 0
\(821\) −38.7282 −1.35162 −0.675811 0.737075i \(-0.736206\pi\)
−0.675811 + 0.737075i \(0.736206\pi\)
\(822\) 0 0
\(823\) −29.4423 −1.02629 −0.513147 0.858301i \(-0.671520\pi\)
−0.513147 + 0.858301i \(0.671520\pi\)
\(824\) 0 0
\(825\) 15.7417 0.548057
\(826\) 0 0
\(827\) −17.6126 −0.612450 −0.306225 0.951959i \(-0.599066\pi\)
−0.306225 + 0.951959i \(0.599066\pi\)
\(828\) 0 0
\(829\) −0.895609 −0.0311058 −0.0155529 0.999879i \(-0.504951\pi\)
−0.0155529 + 0.999879i \(0.504951\pi\)
\(830\) 0 0
\(831\) 68.3296 2.37033
\(832\) 0 0
\(833\) −6.74173 −0.233587
\(834\) 0 0
\(835\) −11.2335 −0.388752
\(836\) 0 0
\(837\) 28.8984 0.998877
\(838\) 0 0
\(839\) −39.0276 −1.34738 −0.673691 0.739013i \(-0.735292\pi\)
−0.673691 + 0.739013i \(0.735292\pi\)
\(840\) 0 0
\(841\) −28.9700 −0.998966
\(842\) 0 0
\(843\) 11.1895 0.385388
\(844\) 0 0
\(845\) 11.5850 0.398536
\(846\) 0 0
\(847\) −11.9260 −0.409783
\(848\) 0 0
\(849\) 84.5355 2.90125
\(850\) 0 0
\(851\) 2.22546 0.0762877
\(852\) 0 0
\(853\) 28.2088 0.965850 0.482925 0.875662i \(-0.339574\pi\)
0.482925 + 0.875662i \(0.339574\pi\)
\(854\) 0 0
\(855\) −3.39547 −0.116123
\(856\) 0 0
\(857\) −33.9700 −1.16039 −0.580197 0.814476i \(-0.697024\pi\)
−0.580197 + 0.814476i \(0.697024\pi\)
\(858\) 0 0
\(859\) −2.60737 −0.0889622 −0.0444811 0.999010i \(-0.514163\pi\)
−0.0444811 + 0.999010i \(0.514163\pi\)
\(860\) 0 0
\(861\) −2.72532 −0.0928787
\(862\) 0 0
\(863\) −3.93437 −0.133928 −0.0669638 0.997755i \(-0.521331\pi\)
−0.0669638 + 0.997755i \(0.521331\pi\)
\(864\) 0 0
\(865\) −15.4506 −0.525338
\(866\) 0 0
\(867\) 2.68133 0.0910628
\(868\) 0 0
\(869\) −28.4999 −0.966792
\(870\) 0 0
\(871\) −2.82998 −0.0958903
\(872\) 0 0
\(873\) 37.4178 1.26640
\(874\) 0 0
\(875\) 0.508203 0.0171804
\(876\) 0 0
\(877\) −15.1044 −0.510039 −0.255020 0.966936i \(-0.582082\pi\)
−0.255020 + 0.966936i \(0.582082\pi\)
\(878\) 0 0
\(879\) 43.3655 1.46268
\(880\) 0 0
\(881\) −28.9669 −0.975920 −0.487960 0.872866i \(-0.662259\pi\)
−0.487960 + 0.872866i \(0.662259\pi\)
\(882\) 0 0
\(883\) −22.3134 −0.750907 −0.375454 0.926841i \(-0.622513\pi\)
−0.375454 + 0.926841i \(0.622513\pi\)
\(884\) 0 0
\(885\) 26.5850 0.893645
\(886\) 0 0
\(887\) −14.4587 −0.485476 −0.242738 0.970092i \(-0.578046\pi\)
−0.242738 + 0.970092i \(0.578046\pi\)
\(888\) 0 0
\(889\) 3.82971 0.128444
\(890\) 0 0
\(891\) −23.5798 −0.789952
\(892\) 0 0
\(893\) −8.24497 −0.275908
\(894\) 0 0
\(895\) −25.7745 −0.861548
\(896\) 0 0
\(897\) 1.62093 0.0541213
\(898\) 0 0
\(899\) −1.56860 −0.0523158
\(900\) 0 0
\(901\) 8.17313 0.272286
\(902\) 0 0
\(903\) 1.85685 0.0617920
\(904\) 0 0
\(905\) 6.69251 0.222467
\(906\) 0 0
\(907\) −28.1976 −0.936286 −0.468143 0.883653i \(-0.655077\pi\)
−0.468143 + 0.883653i \(0.655077\pi\)
\(908\) 0 0
\(909\) 57.5714 1.90952
\(910\) 0 0
\(911\) 22.0468 0.730444 0.365222 0.930920i \(-0.380993\pi\)
0.365222 + 0.930920i \(0.380993\pi\)
\(912\) 0 0
\(913\) −92.4176 −3.05857
\(914\) 0 0
\(915\) 17.5686 0.580800
\(916\) 0 0
\(917\) 4.84044 0.159845
\(918\) 0 0
\(919\) 29.8625 0.985074 0.492537 0.870292i \(-0.336070\pi\)
0.492537 + 0.870292i \(0.336070\pi\)
\(920\) 0 0
\(921\) −52.2416 −1.72142
\(922\) 0 0
\(923\) 13.9149 0.458013
\(924\) 0 0
\(925\) −4.37907 −0.143983
\(926\) 0 0
\(927\) 8.51654 0.279720
\(928\) 0 0
\(929\) 50.8685 1.66894 0.834470 0.551053i \(-0.185774\pi\)
0.834470 + 0.551053i \(0.185774\pi\)
\(930\) 0 0
\(931\) −5.46394 −0.179073
\(932\) 0 0
\(933\) −2.98359 −0.0976785
\(934\) 0 0
\(935\) −5.87086 −0.191998
\(936\) 0 0
\(937\) 14.3463 0.468672 0.234336 0.972156i \(-0.424708\pi\)
0.234336 + 0.972156i \(0.424708\pi\)
\(938\) 0 0
\(939\) 5.36266 0.175004
\(940\) 0 0
\(941\) −26.3819 −0.860026 −0.430013 0.902823i \(-0.641491\pi\)
−0.430013 + 0.902823i \(0.641491\pi\)
\(942\) 0 0
\(943\) −1.01641 −0.0330988
\(944\) 0 0
\(945\) 1.62093 0.0527289
\(946\) 0 0
\(947\) −33.6649 −1.09396 −0.546982 0.837145i \(-0.684223\pi\)
−0.546982 + 0.837145i \(0.684223\pi\)
\(948\) 0 0
\(949\) −12.5522 −0.407462
\(950\) 0 0
\(951\) −74.7086 −2.42259
\(952\) 0 0
\(953\) −22.3296 −0.723326 −0.361663 0.932309i \(-0.617791\pi\)
−0.361663 + 0.932309i \(0.617791\pi\)
\(954\) 0 0
\(955\) 18.7253 0.605937
\(956\) 0 0
\(957\) −2.72532 −0.0880972
\(958\) 0 0
\(959\) 8.01668 0.258872
\(960\) 0 0
\(961\) 51.0908 1.64809
\(962\) 0 0
\(963\) −58.1125 −1.87265
\(964\) 0 0
\(965\) 0.725323 0.0233490
\(966\) 0 0
\(967\) 37.7745 1.21475 0.607374 0.794416i \(-0.292223\pi\)
0.607374 + 0.794416i \(0.292223\pi\)
\(968\) 0 0
\(969\) 2.17313 0.0698109
\(970\) 0 0
\(971\) 25.5030 0.818429 0.409215 0.912438i \(-0.365803\pi\)
0.409215 + 0.912438i \(0.365803\pi\)
\(972\) 0 0
\(973\) −7.56576 −0.242547
\(974\) 0 0
\(975\) −3.18953 −0.102147
\(976\) 0 0
\(977\) 7.17002 0.229389 0.114695 0.993401i \(-0.463411\pi\)
0.114695 + 0.993401i \(0.463411\pi\)
\(978\) 0 0
\(979\) −9.01641 −0.288166
\(980\) 0 0
\(981\) 37.4178 1.19466
\(982\) 0 0
\(983\) −32.1843 −1.02652 −0.513260 0.858233i \(-0.671562\pi\)
−0.513260 + 0.858233i \(0.671562\pi\)
\(984\) 0 0
\(985\) 21.0716 0.671396
\(986\) 0 0
\(987\) 13.8625 0.441249
\(988\) 0 0
\(989\) 0.692509 0.0220205
\(990\) 0 0
\(991\) −12.3902 −0.393589 −0.196795 0.980445i \(-0.563053\pi\)
−0.196795 + 0.980445i \(0.563053\pi\)
\(992\) 0 0
\(993\) 62.1788 1.97318
\(994\) 0 0
\(995\) −2.68133 −0.0850039
\(996\) 0 0
\(997\) 12.0328 0.381083 0.190542 0.981679i \(-0.438976\pi\)
0.190542 + 0.981679i \(0.438976\pi\)
\(998\) 0 0
\(999\) −13.9672 −0.441902
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 680.2.a.f.1.3 3
3.2 odd 2 6120.2.a.br.1.2 3
4.3 odd 2 1360.2.a.r.1.1 3
5.2 odd 4 3400.2.e.k.2449.1 6
5.3 odd 4 3400.2.e.k.2449.6 6
5.4 even 2 3400.2.a.n.1.1 3
8.3 odd 2 5440.2.a.bt.1.3 3
8.5 even 2 5440.2.a.bo.1.1 3
20.19 odd 2 6800.2.a.bo.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
680.2.a.f.1.3 3 1.1 even 1 trivial
1360.2.a.r.1.1 3 4.3 odd 2
3400.2.a.n.1.1 3 5.4 even 2
3400.2.e.k.2449.1 6 5.2 odd 4
3400.2.e.k.2449.6 6 5.3 odd 4
5440.2.a.bo.1.1 3 8.5 even 2
5440.2.a.bt.1.3 3 8.3 odd 2
6120.2.a.br.1.2 3 3.2 odd 2
6800.2.a.bo.1.3 3 20.19 odd 2