Properties

Label 680.2.a
Level $680$
Weight $2$
Character orbit 680.a
Rep. character $\chi_{680}(1,\cdot)$
Character field $\Q$
Dimension $16$
Newform subspaces $8$
Sturm bound $216$
Trace bound $7$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 680 = 2^{3} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 680.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 8 \)
Sturm bound: \(216\)
Trace bound: \(7\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(680))\).

Total New Old
Modular forms 116 16 100
Cusp forms 101 16 85
Eisenstein series 15 0 15

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(5\)\(17\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(+\)\(12\)\(2\)\(10\)\(11\)\(2\)\(9\)\(1\)\(0\)\(1\)
\(+\)\(+\)\(-\)\(-\)\(17\)\(3\)\(14\)\(15\)\(3\)\(12\)\(2\)\(0\)\(2\)
\(+\)\(-\)\(+\)\(-\)\(15\)\(3\)\(12\)\(13\)\(3\)\(10\)\(2\)\(0\)\(2\)
\(+\)\(-\)\(-\)\(+\)\(14\)\(0\)\(14\)\(12\)\(0\)\(12\)\(2\)\(0\)\(2\)
\(-\)\(+\)\(+\)\(-\)\(17\)\(3\)\(14\)\(15\)\(3\)\(12\)\(2\)\(0\)\(2\)
\(-\)\(+\)\(-\)\(+\)\(12\)\(1\)\(11\)\(10\)\(1\)\(9\)\(2\)\(0\)\(2\)
\(-\)\(-\)\(+\)\(+\)\(14\)\(2\)\(12\)\(12\)\(2\)\(10\)\(2\)\(0\)\(2\)
\(-\)\(-\)\(-\)\(-\)\(15\)\(2\)\(13\)\(13\)\(2\)\(11\)\(2\)\(0\)\(2\)
Plus space\(+\)\(52\)\(5\)\(47\)\(45\)\(5\)\(40\)\(7\)\(0\)\(7\)
Minus space\(-\)\(64\)\(11\)\(53\)\(56\)\(11\)\(45\)\(8\)\(0\)\(8\)

Trace form

\( 16 q + 4 q^{3} - 2 q^{5} + 8 q^{7} + 12 q^{9} - 4 q^{11} + 8 q^{13} - 4 q^{17} + 4 q^{19} + 8 q^{21} - 8 q^{23} + 16 q^{25} + 16 q^{27} + 12 q^{29} + 24 q^{31} - 8 q^{33} - 4 q^{35} + 4 q^{37} + 8 q^{39}+ \cdots - 20 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(680))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 5 17
680.2.a.a 680.a 1.a $1$ $5.430$ \(\Q\) None 680.2.a.a \(0\) \(-1\) \(1\) \(2\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{3}+q^{5}+2q^{7}-2q^{9}+4q^{11}+\cdots\)
680.2.a.b 680.a 1.a $1$ $5.430$ \(\Q\) None 680.2.a.b \(0\) \(0\) \(-1\) \(0\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{5}-3q^{9}-2q^{13}+q^{17}-4q^{19}+\cdots\)
680.2.a.c 680.a 1.a $1$ $5.430$ \(\Q\) None 680.2.a.c \(0\) \(2\) \(1\) \(2\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+2q^{3}+q^{5}+2q^{7}+q^{9}-2q^{11}+\cdots\)
680.2.a.d 680.a 1.a $2$ $5.430$ \(\Q(\sqrt{3}) \) None 680.2.a.d \(0\) \(-2\) \(2\) \(-6\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+(-1+\beta )q^{3}+q^{5}+(-3-\beta )q^{7}+\cdots\)
680.2.a.e 680.a 1.a $2$ $5.430$ \(\Q(\sqrt{2}) \) None 680.2.a.e \(0\) \(0\) \(-2\) \(0\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q+\beta q^{3}-q^{5}-\beta q^{7}-q^{9}+(-2-3\beta )q^{11}+\cdots\)
680.2.a.f 680.a 1.a $3$ $5.430$ 3.3.229.1 None 680.2.a.f \(0\) \(1\) \(-3\) \(0\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-\beta _{2}q^{3}-q^{5}+(\beta _{1}-\beta _{2})q^{7}+(1-\beta _{1}+\cdots)q^{9}+\cdots\)
680.2.a.g 680.a 1.a $3$ $5.430$ 3.3.1016.1 None 680.2.a.g \(0\) \(1\) \(-3\) \(6\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{3}-q^{5}+(2+\beta _{2})q^{7}+(1+\beta _{1}+\cdots)q^{9}+\cdots\)
680.2.a.h 680.a 1.a $3$ $5.430$ 3.3.940.1 None 680.2.a.h \(0\) \(3\) \(3\) \(4\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q+(1-\beta _{1})q^{3}+q^{5}+(1-\beta _{2})q^{7}+(3+\cdots)q^{9}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(680))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(680)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(17))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(20))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(34))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(40))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(68))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(85))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(136))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(170))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(340))\)\(^{\oplus 2}\)