Properties

Label 680.2.a.d.1.2
Level $680$
Weight $2$
Character 680.1
Self dual yes
Analytic conductor $5.430$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [680,2,Mod(1,680)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(680, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("680.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 680 = 2^{3} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 680.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,-2,0,2,0,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(5.42982733745\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{12})^+\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(1.73205\) of defining polynomial
Character \(\chi\) \(=\) 680.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.732051 q^{3} +1.00000 q^{5} -4.73205 q^{7} -2.46410 q^{9} -2.73205 q^{11} +0.732051 q^{15} -1.00000 q^{17} -5.46410 q^{19} -3.46410 q^{21} -3.26795 q^{23} +1.00000 q^{25} -4.00000 q^{27} -3.46410 q^{29} +9.66025 q^{31} -2.00000 q^{33} -4.73205 q^{35} -0.535898 q^{37} +10.3923 q^{41} +8.92820 q^{43} -2.46410 q^{45} -11.4641 q^{47} +15.3923 q^{49} -0.732051 q^{51} -2.00000 q^{53} -2.73205 q^{55} -4.00000 q^{57} +9.46410 q^{59} -12.9282 q^{61} +11.6603 q^{63} -7.46410 q^{67} -2.39230 q^{69} -10.7321 q^{71} -7.46410 q^{73} +0.732051 q^{75} +12.9282 q^{77} -16.5885 q^{79} +4.46410 q^{81} -8.92820 q^{83} -1.00000 q^{85} -2.53590 q^{87} +13.4641 q^{89} +7.07180 q^{93} -5.46410 q^{95} +0.928203 q^{97} +6.73205 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{3} + 2 q^{5} - 6 q^{7} + 2 q^{9} - 2 q^{11} - 2 q^{15} - 2 q^{17} - 4 q^{19} - 10 q^{23} + 2 q^{25} - 8 q^{27} + 2 q^{31} - 4 q^{33} - 6 q^{35} - 8 q^{37} + 4 q^{43} + 2 q^{45} - 16 q^{47} + 10 q^{49}+ \cdots + 10 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.732051 0.422650 0.211325 0.977416i \(-0.432222\pi\)
0.211325 + 0.977416i \(0.432222\pi\)
\(4\) 0 0
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) −4.73205 −1.78855 −0.894274 0.447521i \(-0.852307\pi\)
−0.894274 + 0.447521i \(0.852307\pi\)
\(8\) 0 0
\(9\) −2.46410 −0.821367
\(10\) 0 0
\(11\) −2.73205 −0.823744 −0.411872 0.911242i \(-0.635125\pi\)
−0.411872 + 0.911242i \(0.635125\pi\)
\(12\) 0 0
\(13\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(14\) 0 0
\(15\) 0.732051 0.189015
\(16\) 0 0
\(17\) −1.00000 −0.242536
\(18\) 0 0
\(19\) −5.46410 −1.25355 −0.626775 0.779200i \(-0.715626\pi\)
−0.626775 + 0.779200i \(0.715626\pi\)
\(20\) 0 0
\(21\) −3.46410 −0.755929
\(22\) 0 0
\(23\) −3.26795 −0.681415 −0.340707 0.940169i \(-0.610666\pi\)
−0.340707 + 0.940169i \(0.610666\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) −4.00000 −0.769800
\(28\) 0 0
\(29\) −3.46410 −0.643268 −0.321634 0.946864i \(-0.604232\pi\)
−0.321634 + 0.946864i \(0.604232\pi\)
\(30\) 0 0
\(31\) 9.66025 1.73503 0.867516 0.497409i \(-0.165715\pi\)
0.867516 + 0.497409i \(0.165715\pi\)
\(32\) 0 0
\(33\) −2.00000 −0.348155
\(34\) 0 0
\(35\) −4.73205 −0.799863
\(36\) 0 0
\(37\) −0.535898 −0.0881012 −0.0440506 0.999029i \(-0.514026\pi\)
−0.0440506 + 0.999029i \(0.514026\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 10.3923 1.62301 0.811503 0.584349i \(-0.198650\pi\)
0.811503 + 0.584349i \(0.198650\pi\)
\(42\) 0 0
\(43\) 8.92820 1.36154 0.680769 0.732498i \(-0.261646\pi\)
0.680769 + 0.732498i \(0.261646\pi\)
\(44\) 0 0
\(45\) −2.46410 −0.367327
\(46\) 0 0
\(47\) −11.4641 −1.67221 −0.836106 0.548569i \(-0.815173\pi\)
−0.836106 + 0.548569i \(0.815173\pi\)
\(48\) 0 0
\(49\) 15.3923 2.19890
\(50\) 0 0
\(51\) −0.732051 −0.102508
\(52\) 0 0
\(53\) −2.00000 −0.274721 −0.137361 0.990521i \(-0.543862\pi\)
−0.137361 + 0.990521i \(0.543862\pi\)
\(54\) 0 0
\(55\) −2.73205 −0.368390
\(56\) 0 0
\(57\) −4.00000 −0.529813
\(58\) 0 0
\(59\) 9.46410 1.23212 0.616061 0.787699i \(-0.288728\pi\)
0.616061 + 0.787699i \(0.288728\pi\)
\(60\) 0 0
\(61\) −12.9282 −1.65529 −0.827643 0.561254i \(-0.810319\pi\)
−0.827643 + 0.561254i \(0.810319\pi\)
\(62\) 0 0
\(63\) 11.6603 1.46905
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −7.46410 −0.911885 −0.455943 0.890009i \(-0.650698\pi\)
−0.455943 + 0.890009i \(0.650698\pi\)
\(68\) 0 0
\(69\) −2.39230 −0.288000
\(70\) 0 0
\(71\) −10.7321 −1.27366 −0.636830 0.771004i \(-0.719755\pi\)
−0.636830 + 0.771004i \(0.719755\pi\)
\(72\) 0 0
\(73\) −7.46410 −0.873607 −0.436804 0.899557i \(-0.643889\pi\)
−0.436804 + 0.899557i \(0.643889\pi\)
\(74\) 0 0
\(75\) 0.732051 0.0845299
\(76\) 0 0
\(77\) 12.9282 1.47331
\(78\) 0 0
\(79\) −16.5885 −1.86635 −0.933174 0.359426i \(-0.882973\pi\)
−0.933174 + 0.359426i \(0.882973\pi\)
\(80\) 0 0
\(81\) 4.46410 0.496011
\(82\) 0 0
\(83\) −8.92820 −0.979998 −0.489999 0.871723i \(-0.663003\pi\)
−0.489999 + 0.871723i \(0.663003\pi\)
\(84\) 0 0
\(85\) −1.00000 −0.108465
\(86\) 0 0
\(87\) −2.53590 −0.271877
\(88\) 0 0
\(89\) 13.4641 1.42719 0.713596 0.700557i \(-0.247065\pi\)
0.713596 + 0.700557i \(0.247065\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 7.07180 0.733311
\(94\) 0 0
\(95\) −5.46410 −0.560605
\(96\) 0 0
\(97\) 0.928203 0.0942448 0.0471224 0.998889i \(-0.484995\pi\)
0.0471224 + 0.998889i \(0.484995\pi\)
\(98\) 0 0
\(99\) 6.73205 0.676597
\(100\) 0 0
\(101\) 8.39230 0.835066 0.417533 0.908662i \(-0.362895\pi\)
0.417533 + 0.908662i \(0.362895\pi\)
\(102\) 0 0
\(103\) 3.46410 0.341328 0.170664 0.985329i \(-0.445409\pi\)
0.170664 + 0.985329i \(0.445409\pi\)
\(104\) 0 0
\(105\) −3.46410 −0.338062
\(106\) 0 0
\(107\) 4.73205 0.457465 0.228732 0.973489i \(-0.426542\pi\)
0.228732 + 0.973489i \(0.426542\pi\)
\(108\) 0 0
\(109\) 6.00000 0.574696 0.287348 0.957826i \(-0.407226\pi\)
0.287348 + 0.957826i \(0.407226\pi\)
\(110\) 0 0
\(111\) −0.392305 −0.0372359
\(112\) 0 0
\(113\) −3.46410 −0.325875 −0.162938 0.986636i \(-0.552097\pi\)
−0.162938 + 0.986636i \(0.552097\pi\)
\(114\) 0 0
\(115\) −3.26795 −0.304738
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 4.73205 0.433786
\(120\) 0 0
\(121\) −3.53590 −0.321445
\(122\) 0 0
\(123\) 7.60770 0.685963
\(124\) 0 0
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) −4.92820 −0.437307 −0.218654 0.975803i \(-0.570166\pi\)
−0.218654 + 0.975803i \(0.570166\pi\)
\(128\) 0 0
\(129\) 6.53590 0.575454
\(130\) 0 0
\(131\) −1.66025 −0.145057 −0.0725285 0.997366i \(-0.523107\pi\)
−0.0725285 + 0.997366i \(0.523107\pi\)
\(132\) 0 0
\(133\) 25.8564 2.24203
\(134\) 0 0
\(135\) −4.00000 −0.344265
\(136\) 0 0
\(137\) 1.07180 0.0915698 0.0457849 0.998951i \(-0.485421\pi\)
0.0457849 + 0.998951i \(0.485421\pi\)
\(138\) 0 0
\(139\) 12.5885 1.06774 0.533870 0.845567i \(-0.320737\pi\)
0.533870 + 0.845567i \(0.320737\pi\)
\(140\) 0 0
\(141\) −8.39230 −0.706760
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) −3.46410 −0.287678
\(146\) 0 0
\(147\) 11.2679 0.929365
\(148\) 0 0
\(149\) 18.0000 1.47462 0.737309 0.675556i \(-0.236096\pi\)
0.737309 + 0.675556i \(0.236096\pi\)
\(150\) 0 0
\(151\) −8.39230 −0.682956 −0.341478 0.939890i \(-0.610927\pi\)
−0.341478 + 0.939890i \(0.610927\pi\)
\(152\) 0 0
\(153\) 2.46410 0.199211
\(154\) 0 0
\(155\) 9.66025 0.775930
\(156\) 0 0
\(157\) −20.9282 −1.67025 −0.835126 0.550058i \(-0.814605\pi\)
−0.835126 + 0.550058i \(0.814605\pi\)
\(158\) 0 0
\(159\) −1.46410 −0.116111
\(160\) 0 0
\(161\) 15.4641 1.21874
\(162\) 0 0
\(163\) 8.73205 0.683947 0.341974 0.939710i \(-0.388905\pi\)
0.341974 + 0.939710i \(0.388905\pi\)
\(164\) 0 0
\(165\) −2.00000 −0.155700
\(166\) 0 0
\(167\) 3.66025 0.283239 0.141619 0.989921i \(-0.454769\pi\)
0.141619 + 0.989921i \(0.454769\pi\)
\(168\) 0 0
\(169\) −13.0000 −1.00000
\(170\) 0 0
\(171\) 13.4641 1.02963
\(172\) 0 0
\(173\) −10.3923 −0.790112 −0.395056 0.918657i \(-0.629275\pi\)
−0.395056 + 0.918657i \(0.629275\pi\)
\(174\) 0 0
\(175\) −4.73205 −0.357709
\(176\) 0 0
\(177\) 6.92820 0.520756
\(178\) 0 0
\(179\) 9.46410 0.707380 0.353690 0.935363i \(-0.384927\pi\)
0.353690 + 0.935363i \(0.384927\pi\)
\(180\) 0 0
\(181\) 9.32051 0.692788 0.346394 0.938089i \(-0.387406\pi\)
0.346394 + 0.938089i \(0.387406\pi\)
\(182\) 0 0
\(183\) −9.46410 −0.699607
\(184\) 0 0
\(185\) −0.535898 −0.0394000
\(186\) 0 0
\(187\) 2.73205 0.199787
\(188\) 0 0
\(189\) 18.9282 1.37682
\(190\) 0 0
\(191\) 9.07180 0.656412 0.328206 0.944606i \(-0.393556\pi\)
0.328206 + 0.944606i \(0.393556\pi\)
\(192\) 0 0
\(193\) −7.46410 −0.537278 −0.268639 0.963241i \(-0.586574\pi\)
−0.268639 + 0.963241i \(0.586574\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −26.3923 −1.88037 −0.940187 0.340659i \(-0.889350\pi\)
−0.940187 + 0.340659i \(0.889350\pi\)
\(198\) 0 0
\(199\) −10.3397 −0.732965 −0.366483 0.930425i \(-0.619438\pi\)
−0.366483 + 0.930425i \(0.619438\pi\)
\(200\) 0 0
\(201\) −5.46410 −0.385408
\(202\) 0 0
\(203\) 16.3923 1.15051
\(204\) 0 0
\(205\) 10.3923 0.725830
\(206\) 0 0
\(207\) 8.05256 0.559692
\(208\) 0 0
\(209\) 14.9282 1.03261
\(210\) 0 0
\(211\) −12.1962 −0.839618 −0.419809 0.907613i \(-0.637903\pi\)
−0.419809 + 0.907613i \(0.637903\pi\)
\(212\) 0 0
\(213\) −7.85641 −0.538312
\(214\) 0 0
\(215\) 8.92820 0.608898
\(216\) 0 0
\(217\) −45.7128 −3.10319
\(218\) 0 0
\(219\) −5.46410 −0.369230
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 7.85641 0.526104 0.263052 0.964782i \(-0.415271\pi\)
0.263052 + 0.964782i \(0.415271\pi\)
\(224\) 0 0
\(225\) −2.46410 −0.164273
\(226\) 0 0
\(227\) 12.7321 0.845056 0.422528 0.906350i \(-0.361143\pi\)
0.422528 + 0.906350i \(0.361143\pi\)
\(228\) 0 0
\(229\) −4.39230 −0.290252 −0.145126 0.989413i \(-0.546359\pi\)
−0.145126 + 0.989413i \(0.546359\pi\)
\(230\) 0 0
\(231\) 9.46410 0.622692
\(232\) 0 0
\(233\) −26.0000 −1.70332 −0.851658 0.524097i \(-0.824403\pi\)
−0.851658 + 0.524097i \(0.824403\pi\)
\(234\) 0 0
\(235\) −11.4641 −0.747836
\(236\) 0 0
\(237\) −12.1436 −0.788811
\(238\) 0 0
\(239\) −12.0000 −0.776215 −0.388108 0.921614i \(-0.626871\pi\)
−0.388108 + 0.921614i \(0.626871\pi\)
\(240\) 0 0
\(241\) −11.4641 −0.738468 −0.369234 0.929337i \(-0.620380\pi\)
−0.369234 + 0.929337i \(0.620380\pi\)
\(242\) 0 0
\(243\) 15.2679 0.979439
\(244\) 0 0
\(245\) 15.3923 0.983378
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) −6.53590 −0.414196
\(250\) 0 0
\(251\) 6.92820 0.437304 0.218652 0.975803i \(-0.429834\pi\)
0.218652 + 0.975803i \(0.429834\pi\)
\(252\) 0 0
\(253\) 8.92820 0.561311
\(254\) 0 0
\(255\) −0.732051 −0.0458428
\(256\) 0 0
\(257\) 2.14359 0.133714 0.0668568 0.997763i \(-0.478703\pi\)
0.0668568 + 0.997763i \(0.478703\pi\)
\(258\) 0 0
\(259\) 2.53590 0.157573
\(260\) 0 0
\(261\) 8.53590 0.528359
\(262\) 0 0
\(263\) 20.9282 1.29049 0.645244 0.763976i \(-0.276756\pi\)
0.645244 + 0.763976i \(0.276756\pi\)
\(264\) 0 0
\(265\) −2.00000 −0.122859
\(266\) 0 0
\(267\) 9.85641 0.603202
\(268\) 0 0
\(269\) 30.7846 1.87697 0.938485 0.345319i \(-0.112229\pi\)
0.938485 + 0.345319i \(0.112229\pi\)
\(270\) 0 0
\(271\) 16.7846 1.01959 0.509796 0.860295i \(-0.329721\pi\)
0.509796 + 0.860295i \(0.329721\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −2.73205 −0.164749
\(276\) 0 0
\(277\) −3.07180 −0.184566 −0.0922832 0.995733i \(-0.529417\pi\)
−0.0922832 + 0.995733i \(0.529417\pi\)
\(278\) 0 0
\(279\) −23.8038 −1.42510
\(280\) 0 0
\(281\) 11.0718 0.660488 0.330244 0.943896i \(-0.392869\pi\)
0.330244 + 0.943896i \(0.392869\pi\)
\(282\) 0 0
\(283\) −8.05256 −0.478675 −0.239337 0.970936i \(-0.576930\pi\)
−0.239337 + 0.970936i \(0.576930\pi\)
\(284\) 0 0
\(285\) −4.00000 −0.236940
\(286\) 0 0
\(287\) −49.1769 −2.90282
\(288\) 0 0
\(289\) 1.00000 0.0588235
\(290\) 0 0
\(291\) 0.679492 0.0398325
\(292\) 0 0
\(293\) −8.92820 −0.521591 −0.260796 0.965394i \(-0.583985\pi\)
−0.260796 + 0.965394i \(0.583985\pi\)
\(294\) 0 0
\(295\) 9.46410 0.551021
\(296\) 0 0
\(297\) 10.9282 0.634119
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) −42.2487 −2.43518
\(302\) 0 0
\(303\) 6.14359 0.352940
\(304\) 0 0
\(305\) −12.9282 −0.740267
\(306\) 0 0
\(307\) −5.32051 −0.303657 −0.151829 0.988407i \(-0.548516\pi\)
−0.151829 + 0.988407i \(0.548516\pi\)
\(308\) 0 0
\(309\) 2.53590 0.144262
\(310\) 0 0
\(311\) 3.12436 0.177166 0.0885830 0.996069i \(-0.471766\pi\)
0.0885830 + 0.996069i \(0.471766\pi\)
\(312\) 0 0
\(313\) −32.2487 −1.82280 −0.911402 0.411516i \(-0.864999\pi\)
−0.911402 + 0.411516i \(0.864999\pi\)
\(314\) 0 0
\(315\) 11.6603 0.656981
\(316\) 0 0
\(317\) −3.07180 −0.172529 −0.0862646 0.996272i \(-0.527493\pi\)
−0.0862646 + 0.996272i \(0.527493\pi\)
\(318\) 0 0
\(319\) 9.46410 0.529888
\(320\) 0 0
\(321\) 3.46410 0.193347
\(322\) 0 0
\(323\) 5.46410 0.304031
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 4.39230 0.242895
\(328\) 0 0
\(329\) 54.2487 2.99083
\(330\) 0 0
\(331\) 19.3205 1.06195 0.530976 0.847387i \(-0.321826\pi\)
0.530976 + 0.847387i \(0.321826\pi\)
\(332\) 0 0
\(333\) 1.32051 0.0723634
\(334\) 0 0
\(335\) −7.46410 −0.407807
\(336\) 0 0
\(337\) −16.9282 −0.922138 −0.461069 0.887364i \(-0.652534\pi\)
−0.461069 + 0.887364i \(0.652534\pi\)
\(338\) 0 0
\(339\) −2.53590 −0.137731
\(340\) 0 0
\(341\) −26.3923 −1.42922
\(342\) 0 0
\(343\) −39.7128 −2.14429
\(344\) 0 0
\(345\) −2.39230 −0.128797
\(346\) 0 0
\(347\) −4.05256 −0.217553 −0.108776 0.994066i \(-0.534693\pi\)
−0.108776 + 0.994066i \(0.534693\pi\)
\(348\) 0 0
\(349\) −32.9282 −1.76261 −0.881303 0.472551i \(-0.843333\pi\)
−0.881303 + 0.472551i \(0.843333\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 26.7846 1.42560 0.712800 0.701367i \(-0.247427\pi\)
0.712800 + 0.701367i \(0.247427\pi\)
\(354\) 0 0
\(355\) −10.7321 −0.569598
\(356\) 0 0
\(357\) 3.46410 0.183340
\(358\) 0 0
\(359\) −9.46410 −0.499496 −0.249748 0.968311i \(-0.580348\pi\)
−0.249748 + 0.968311i \(0.580348\pi\)
\(360\) 0 0
\(361\) 10.8564 0.571390
\(362\) 0 0
\(363\) −2.58846 −0.135859
\(364\) 0 0
\(365\) −7.46410 −0.390689
\(366\) 0 0
\(367\) −15.6603 −0.817459 −0.408729 0.912656i \(-0.634028\pi\)
−0.408729 + 0.912656i \(0.634028\pi\)
\(368\) 0 0
\(369\) −25.6077 −1.33308
\(370\) 0 0
\(371\) 9.46410 0.491352
\(372\) 0 0
\(373\) −8.00000 −0.414224 −0.207112 0.978317i \(-0.566407\pi\)
−0.207112 + 0.978317i \(0.566407\pi\)
\(374\) 0 0
\(375\) 0.732051 0.0378029
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) −32.5885 −1.67396 −0.836978 0.547236i \(-0.815680\pi\)
−0.836978 + 0.547236i \(0.815680\pi\)
\(380\) 0 0
\(381\) −3.60770 −0.184828
\(382\) 0 0
\(383\) −26.7846 −1.36863 −0.684315 0.729187i \(-0.739899\pi\)
−0.684315 + 0.729187i \(0.739899\pi\)
\(384\) 0 0
\(385\) 12.9282 0.658882
\(386\) 0 0
\(387\) −22.0000 −1.11832
\(388\) 0 0
\(389\) −30.2487 −1.53367 −0.766835 0.641844i \(-0.778170\pi\)
−0.766835 + 0.641844i \(0.778170\pi\)
\(390\) 0 0
\(391\) 3.26795 0.165267
\(392\) 0 0
\(393\) −1.21539 −0.0613083
\(394\) 0 0
\(395\) −16.5885 −0.834656
\(396\) 0 0
\(397\) 33.7128 1.69200 0.845999 0.533185i \(-0.179005\pi\)
0.845999 + 0.533185i \(0.179005\pi\)
\(398\) 0 0
\(399\) 18.9282 0.947595
\(400\) 0 0
\(401\) −6.78461 −0.338807 −0.169404 0.985547i \(-0.554184\pi\)
−0.169404 + 0.985547i \(0.554184\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 4.46410 0.221823
\(406\) 0 0
\(407\) 1.46410 0.0725728
\(408\) 0 0
\(409\) 2.00000 0.0988936 0.0494468 0.998777i \(-0.484254\pi\)
0.0494468 + 0.998777i \(0.484254\pi\)
\(410\) 0 0
\(411\) 0.784610 0.0387019
\(412\) 0 0
\(413\) −44.7846 −2.20371
\(414\) 0 0
\(415\) −8.92820 −0.438268
\(416\) 0 0
\(417\) 9.21539 0.451280
\(418\) 0 0
\(419\) 18.7321 0.915121 0.457560 0.889179i \(-0.348723\pi\)
0.457560 + 0.889179i \(0.348723\pi\)
\(420\) 0 0
\(421\) −22.5359 −1.09833 −0.549166 0.835713i \(-0.685055\pi\)
−0.549166 + 0.835713i \(0.685055\pi\)
\(422\) 0 0
\(423\) 28.2487 1.37350
\(424\) 0 0
\(425\) −1.00000 −0.0485071
\(426\) 0 0
\(427\) 61.1769 2.96056
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −6.73205 −0.324271 −0.162136 0.986768i \(-0.551838\pi\)
−0.162136 + 0.986768i \(0.551838\pi\)
\(432\) 0 0
\(433\) −2.92820 −0.140720 −0.0703602 0.997522i \(-0.522415\pi\)
−0.0703602 + 0.997522i \(0.522415\pi\)
\(434\) 0 0
\(435\) −2.53590 −0.121587
\(436\) 0 0
\(437\) 17.8564 0.854188
\(438\) 0 0
\(439\) −9.66025 −0.461059 −0.230529 0.973065i \(-0.574046\pi\)
−0.230529 + 0.973065i \(0.574046\pi\)
\(440\) 0 0
\(441\) −37.9282 −1.80610
\(442\) 0 0
\(443\) 11.4641 0.544676 0.272338 0.962202i \(-0.412203\pi\)
0.272338 + 0.962202i \(0.412203\pi\)
\(444\) 0 0
\(445\) 13.4641 0.638260
\(446\) 0 0
\(447\) 13.1769 0.623247
\(448\) 0 0
\(449\) −16.2487 −0.766824 −0.383412 0.923577i \(-0.625251\pi\)
−0.383412 + 0.923577i \(0.625251\pi\)
\(450\) 0 0
\(451\) −28.3923 −1.33694
\(452\) 0 0
\(453\) −6.14359 −0.288651
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(458\) 0 0
\(459\) 4.00000 0.186704
\(460\) 0 0
\(461\) 7.07180 0.329366 0.164683 0.986347i \(-0.447340\pi\)
0.164683 + 0.986347i \(0.447340\pi\)
\(462\) 0 0
\(463\) 38.3923 1.78424 0.892121 0.451797i \(-0.149217\pi\)
0.892121 + 0.451797i \(0.149217\pi\)
\(464\) 0 0
\(465\) 7.07180 0.327947
\(466\) 0 0
\(467\) 11.0718 0.512342 0.256171 0.966632i \(-0.417539\pi\)
0.256171 + 0.966632i \(0.417539\pi\)
\(468\) 0 0
\(469\) 35.3205 1.63095
\(470\) 0 0
\(471\) −15.3205 −0.705932
\(472\) 0 0
\(473\) −24.3923 −1.12156
\(474\) 0 0
\(475\) −5.46410 −0.250710
\(476\) 0 0
\(477\) 4.92820 0.225647
\(478\) 0 0
\(479\) −16.1962 −0.740021 −0.370011 0.929028i \(-0.620646\pi\)
−0.370011 + 0.929028i \(0.620646\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 11.3205 0.515101
\(484\) 0 0
\(485\) 0.928203 0.0421475
\(486\) 0 0
\(487\) 19.2679 0.873114 0.436557 0.899677i \(-0.356198\pi\)
0.436557 + 0.899677i \(0.356198\pi\)
\(488\) 0 0
\(489\) 6.39230 0.289070
\(490\) 0 0
\(491\) 6.24871 0.282000 0.141000 0.990010i \(-0.454968\pi\)
0.141000 + 0.990010i \(0.454968\pi\)
\(492\) 0 0
\(493\) 3.46410 0.156015
\(494\) 0 0
\(495\) 6.73205 0.302583
\(496\) 0 0
\(497\) 50.7846 2.27800
\(498\) 0 0
\(499\) 26.7321 1.19669 0.598345 0.801238i \(-0.295825\pi\)
0.598345 + 0.801238i \(0.295825\pi\)
\(500\) 0 0
\(501\) 2.67949 0.119711
\(502\) 0 0
\(503\) −21.8038 −0.972186 −0.486093 0.873907i \(-0.661578\pi\)
−0.486093 + 0.873907i \(0.661578\pi\)
\(504\) 0 0
\(505\) 8.39230 0.373453
\(506\) 0 0
\(507\) −9.51666 −0.422650
\(508\) 0 0
\(509\) −23.8564 −1.05742 −0.528708 0.848804i \(-0.677323\pi\)
−0.528708 + 0.848804i \(0.677323\pi\)
\(510\) 0 0
\(511\) 35.3205 1.56249
\(512\) 0 0
\(513\) 21.8564 0.964984
\(514\) 0 0
\(515\) 3.46410 0.152647
\(516\) 0 0
\(517\) 31.3205 1.37747
\(518\) 0 0
\(519\) −7.60770 −0.333941
\(520\) 0 0
\(521\) −22.0000 −0.963837 −0.481919 0.876216i \(-0.660060\pi\)
−0.481919 + 0.876216i \(0.660060\pi\)
\(522\) 0 0
\(523\) −24.5359 −1.07288 −0.536440 0.843938i \(-0.680231\pi\)
−0.536440 + 0.843938i \(0.680231\pi\)
\(524\) 0 0
\(525\) −3.46410 −0.151186
\(526\) 0 0
\(527\) −9.66025 −0.420807
\(528\) 0 0
\(529\) −12.3205 −0.535674
\(530\) 0 0
\(531\) −23.3205 −1.01202
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 4.73205 0.204584
\(536\) 0 0
\(537\) 6.92820 0.298974
\(538\) 0 0
\(539\) −42.0526 −1.81133
\(540\) 0 0
\(541\) 33.3205 1.43256 0.716280 0.697813i \(-0.245843\pi\)
0.716280 + 0.697813i \(0.245843\pi\)
\(542\) 0 0
\(543\) 6.82309 0.292807
\(544\) 0 0
\(545\) 6.00000 0.257012
\(546\) 0 0
\(547\) −3.26795 −0.139727 −0.0698637 0.997557i \(-0.522256\pi\)
−0.0698637 + 0.997557i \(0.522256\pi\)
\(548\) 0 0
\(549\) 31.8564 1.35960
\(550\) 0 0
\(551\) 18.9282 0.806369
\(552\) 0 0
\(553\) 78.4974 3.33805
\(554\) 0 0
\(555\) −0.392305 −0.0166524
\(556\) 0 0
\(557\) −2.92820 −0.124072 −0.0620360 0.998074i \(-0.519759\pi\)
−0.0620360 + 0.998074i \(0.519759\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 2.00000 0.0844401
\(562\) 0 0
\(563\) 13.7128 0.577926 0.288963 0.957340i \(-0.406690\pi\)
0.288963 + 0.957340i \(0.406690\pi\)
\(564\) 0 0
\(565\) −3.46410 −0.145736
\(566\) 0 0
\(567\) −21.1244 −0.887140
\(568\) 0 0
\(569\) −6.78461 −0.284426 −0.142213 0.989836i \(-0.545422\pi\)
−0.142213 + 0.989836i \(0.545422\pi\)
\(570\) 0 0
\(571\) −31.1244 −1.30251 −0.651257 0.758857i \(-0.725758\pi\)
−0.651257 + 0.758857i \(0.725758\pi\)
\(572\) 0 0
\(573\) 6.64102 0.277432
\(574\) 0 0
\(575\) −3.26795 −0.136283
\(576\) 0 0
\(577\) −31.7128 −1.32022 −0.660111 0.751168i \(-0.729491\pi\)
−0.660111 + 0.751168i \(0.729491\pi\)
\(578\) 0 0
\(579\) −5.46410 −0.227080
\(580\) 0 0
\(581\) 42.2487 1.75277
\(582\) 0 0
\(583\) 5.46410 0.226300
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 40.6410 1.67743 0.838717 0.544567i \(-0.183306\pi\)
0.838717 + 0.544567i \(0.183306\pi\)
\(588\) 0 0
\(589\) −52.7846 −2.17495
\(590\) 0 0
\(591\) −19.3205 −0.794740
\(592\) 0 0
\(593\) 25.7128 1.05590 0.527949 0.849276i \(-0.322961\pi\)
0.527949 + 0.849276i \(0.322961\pi\)
\(594\) 0 0
\(595\) 4.73205 0.193995
\(596\) 0 0
\(597\) −7.56922 −0.309788
\(598\) 0 0
\(599\) −1.07180 −0.0437924 −0.0218962 0.999760i \(-0.506970\pi\)
−0.0218962 + 0.999760i \(0.506970\pi\)
\(600\) 0 0
\(601\) −25.3205 −1.03285 −0.516423 0.856334i \(-0.672737\pi\)
−0.516423 + 0.856334i \(0.672737\pi\)
\(602\) 0 0
\(603\) 18.3923 0.748993
\(604\) 0 0
\(605\) −3.53590 −0.143755
\(606\) 0 0
\(607\) −46.3013 −1.87931 −0.939655 0.342123i \(-0.888854\pi\)
−0.939655 + 0.342123i \(0.888854\pi\)
\(608\) 0 0
\(609\) 12.0000 0.486265
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 2.00000 0.0807792 0.0403896 0.999184i \(-0.487140\pi\)
0.0403896 + 0.999184i \(0.487140\pi\)
\(614\) 0 0
\(615\) 7.60770 0.306772
\(616\) 0 0
\(617\) −1.32051 −0.0531617 −0.0265808 0.999647i \(-0.508462\pi\)
−0.0265808 + 0.999647i \(0.508462\pi\)
\(618\) 0 0
\(619\) −19.8038 −0.795984 −0.397992 0.917389i \(-0.630293\pi\)
−0.397992 + 0.917389i \(0.630293\pi\)
\(620\) 0 0
\(621\) 13.0718 0.524553
\(622\) 0 0
\(623\) −63.7128 −2.55260
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 10.9282 0.436430
\(628\) 0 0
\(629\) 0.535898 0.0213677
\(630\) 0 0
\(631\) −4.39230 −0.174855 −0.0874274 0.996171i \(-0.527865\pi\)
−0.0874274 + 0.996171i \(0.527865\pi\)
\(632\) 0 0
\(633\) −8.92820 −0.354864
\(634\) 0 0
\(635\) −4.92820 −0.195570
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 26.4449 1.04614
\(640\) 0 0
\(641\) 21.6077 0.853453 0.426726 0.904381i \(-0.359667\pi\)
0.426726 + 0.904381i \(0.359667\pi\)
\(642\) 0 0
\(643\) 29.8038 1.17535 0.587675 0.809097i \(-0.300044\pi\)
0.587675 + 0.809097i \(0.300044\pi\)
\(644\) 0 0
\(645\) 6.53590 0.257351
\(646\) 0 0
\(647\) 34.3923 1.35210 0.676051 0.736855i \(-0.263690\pi\)
0.676051 + 0.736855i \(0.263690\pi\)
\(648\) 0 0
\(649\) −25.8564 −1.01495
\(650\) 0 0
\(651\) −33.4641 −1.31156
\(652\) 0 0
\(653\) 16.5359 0.647100 0.323550 0.946211i \(-0.395124\pi\)
0.323550 + 0.946211i \(0.395124\pi\)
\(654\) 0 0
\(655\) −1.66025 −0.0648715
\(656\) 0 0
\(657\) 18.3923 0.717552
\(658\) 0 0
\(659\) 29.8564 1.16304 0.581520 0.813532i \(-0.302458\pi\)
0.581520 + 0.813532i \(0.302458\pi\)
\(660\) 0 0
\(661\) 20.1436 0.783495 0.391747 0.920073i \(-0.371871\pi\)
0.391747 + 0.920073i \(0.371871\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 25.8564 1.00267
\(666\) 0 0
\(667\) 11.3205 0.438332
\(668\) 0 0
\(669\) 5.75129 0.222358
\(670\) 0 0
\(671\) 35.3205 1.36353
\(672\) 0 0
\(673\) −14.3923 −0.554783 −0.277391 0.960757i \(-0.589470\pi\)
−0.277391 + 0.960757i \(0.589470\pi\)
\(674\) 0 0
\(675\) −4.00000 −0.153960
\(676\) 0 0
\(677\) 23.0718 0.886721 0.443361 0.896343i \(-0.353786\pi\)
0.443361 + 0.896343i \(0.353786\pi\)
\(678\) 0 0
\(679\) −4.39230 −0.168561
\(680\) 0 0
\(681\) 9.32051 0.357163
\(682\) 0 0
\(683\) −37.1244 −1.42052 −0.710262 0.703937i \(-0.751424\pi\)
−0.710262 + 0.703937i \(0.751424\pi\)
\(684\) 0 0
\(685\) 1.07180 0.0409512
\(686\) 0 0
\(687\) −3.21539 −0.122675
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 46.8372 1.78177 0.890885 0.454229i \(-0.150085\pi\)
0.890885 + 0.454229i \(0.150085\pi\)
\(692\) 0 0
\(693\) −31.8564 −1.21012
\(694\) 0 0
\(695\) 12.5885 0.477507
\(696\) 0 0
\(697\) −10.3923 −0.393637
\(698\) 0 0
\(699\) −19.0333 −0.719906
\(700\) 0 0
\(701\) 37.1769 1.40415 0.702076 0.712102i \(-0.252257\pi\)
0.702076 + 0.712102i \(0.252257\pi\)
\(702\) 0 0
\(703\) 2.92820 0.110439
\(704\) 0 0
\(705\) −8.39230 −0.316072
\(706\) 0 0
\(707\) −39.7128 −1.49355
\(708\) 0 0
\(709\) −15.1769 −0.569981 −0.284990 0.958530i \(-0.591990\pi\)
−0.284990 + 0.958530i \(0.591990\pi\)
\(710\) 0 0
\(711\) 40.8756 1.53296
\(712\) 0 0
\(713\) −31.5692 −1.18228
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −8.78461 −0.328067
\(718\) 0 0
\(719\) −46.7321 −1.74281 −0.871406 0.490563i \(-0.836791\pi\)
−0.871406 + 0.490563i \(0.836791\pi\)
\(720\) 0 0
\(721\) −16.3923 −0.610481
\(722\) 0 0
\(723\) −8.39230 −0.312113
\(724\) 0 0
\(725\) −3.46410 −0.128654
\(726\) 0 0
\(727\) 20.2487 0.750983 0.375492 0.926826i \(-0.377474\pi\)
0.375492 + 0.926826i \(0.377474\pi\)
\(728\) 0 0
\(729\) −2.21539 −0.0820515
\(730\) 0 0
\(731\) −8.92820 −0.330222
\(732\) 0 0
\(733\) −38.0000 −1.40356 −0.701781 0.712393i \(-0.747612\pi\)
−0.701781 + 0.712393i \(0.747612\pi\)
\(734\) 0 0
\(735\) 11.2679 0.415625
\(736\) 0 0
\(737\) 20.3923 0.751160
\(738\) 0 0
\(739\) 38.2487 1.40700 0.703501 0.710694i \(-0.251619\pi\)
0.703501 + 0.710694i \(0.251619\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 26.9808 0.989828 0.494914 0.868942i \(-0.335200\pi\)
0.494914 + 0.868942i \(0.335200\pi\)
\(744\) 0 0
\(745\) 18.0000 0.659469
\(746\) 0 0
\(747\) 22.0000 0.804938
\(748\) 0 0
\(749\) −22.3923 −0.818197
\(750\) 0 0
\(751\) −4.87564 −0.177915 −0.0889574 0.996035i \(-0.528353\pi\)
−0.0889574 + 0.996035i \(0.528353\pi\)
\(752\) 0 0
\(753\) 5.07180 0.184827
\(754\) 0 0
\(755\) −8.39230 −0.305427
\(756\) 0 0
\(757\) 52.7846 1.91849 0.959245 0.282577i \(-0.0911893\pi\)
0.959245 + 0.282577i \(0.0911893\pi\)
\(758\) 0 0
\(759\) 6.53590 0.237238
\(760\) 0 0
\(761\) 8.39230 0.304221 0.152110 0.988364i \(-0.451393\pi\)
0.152110 + 0.988364i \(0.451393\pi\)
\(762\) 0 0
\(763\) −28.3923 −1.02787
\(764\) 0 0
\(765\) 2.46410 0.0890898
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 41.1769 1.48488 0.742439 0.669914i \(-0.233669\pi\)
0.742439 + 0.669914i \(0.233669\pi\)
\(770\) 0 0
\(771\) 1.56922 0.0565141
\(772\) 0 0
\(773\) 30.9282 1.11241 0.556205 0.831045i \(-0.312257\pi\)
0.556205 + 0.831045i \(0.312257\pi\)
\(774\) 0 0
\(775\) 9.66025 0.347007
\(776\) 0 0
\(777\) 1.85641 0.0665982
\(778\) 0 0
\(779\) −56.7846 −2.03452
\(780\) 0 0
\(781\) 29.3205 1.04917
\(782\) 0 0
\(783\) 13.8564 0.495188
\(784\) 0 0
\(785\) −20.9282 −0.746960
\(786\) 0 0
\(787\) −0.732051 −0.0260948 −0.0130474 0.999915i \(-0.504153\pi\)
−0.0130474 + 0.999915i \(0.504153\pi\)
\(788\) 0 0
\(789\) 15.3205 0.545425
\(790\) 0 0
\(791\) 16.3923 0.582843
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) −1.46410 −0.0519263
\(796\) 0 0
\(797\) 4.92820 0.174566 0.0872830 0.996184i \(-0.472182\pi\)
0.0872830 + 0.996184i \(0.472182\pi\)
\(798\) 0 0
\(799\) 11.4641 0.405571
\(800\) 0 0
\(801\) −33.1769 −1.17225
\(802\) 0 0
\(803\) 20.3923 0.719629
\(804\) 0 0
\(805\) 15.4641 0.545038
\(806\) 0 0
\(807\) 22.5359 0.793301
\(808\) 0 0
\(809\) −15.8564 −0.557482 −0.278741 0.960366i \(-0.589917\pi\)
−0.278741 + 0.960366i \(0.589917\pi\)
\(810\) 0 0
\(811\) −21.2679 −0.746819 −0.373409 0.927667i \(-0.621811\pi\)
−0.373409 + 0.927667i \(0.621811\pi\)
\(812\) 0 0
\(813\) 12.2872 0.430930
\(814\) 0 0
\(815\) 8.73205 0.305870
\(816\) 0 0
\(817\) −48.7846 −1.70676
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 24.6410 0.859977 0.429989 0.902834i \(-0.358518\pi\)
0.429989 + 0.902834i \(0.358518\pi\)
\(822\) 0 0
\(823\) −22.1962 −0.773709 −0.386855 0.922141i \(-0.626438\pi\)
−0.386855 + 0.922141i \(0.626438\pi\)
\(824\) 0 0
\(825\) −2.00000 −0.0696311
\(826\) 0 0
\(827\) 24.0526 0.836389 0.418195 0.908357i \(-0.362663\pi\)
0.418195 + 0.908357i \(0.362663\pi\)
\(828\) 0 0
\(829\) −18.0000 −0.625166 −0.312583 0.949890i \(-0.601194\pi\)
−0.312583 + 0.949890i \(0.601194\pi\)
\(830\) 0 0
\(831\) −2.24871 −0.0780069
\(832\) 0 0
\(833\) −15.3923 −0.533312
\(834\) 0 0
\(835\) 3.66025 0.126668
\(836\) 0 0
\(837\) −38.6410 −1.33563
\(838\) 0 0
\(839\) −39.1244 −1.35072 −0.675361 0.737487i \(-0.736012\pi\)
−0.675361 + 0.737487i \(0.736012\pi\)
\(840\) 0 0
\(841\) −17.0000 −0.586207
\(842\) 0 0
\(843\) 8.10512 0.279155
\(844\) 0 0
\(845\) −13.0000 −0.447214
\(846\) 0 0
\(847\) 16.7321 0.574920
\(848\) 0 0
\(849\) −5.89488 −0.202312
\(850\) 0 0
\(851\) 1.75129 0.0600334
\(852\) 0 0
\(853\) −15.1769 −0.519648 −0.259824 0.965656i \(-0.583664\pi\)
−0.259824 + 0.965656i \(0.583664\pi\)
\(854\) 0 0
\(855\) 13.4641 0.460463
\(856\) 0 0
\(857\) 29.6077 1.01138 0.505690 0.862715i \(-0.331238\pi\)
0.505690 + 0.862715i \(0.331238\pi\)
\(858\) 0 0
\(859\) −21.4641 −0.732346 −0.366173 0.930547i \(-0.619332\pi\)
−0.366173 + 0.930547i \(0.619332\pi\)
\(860\) 0 0
\(861\) −36.0000 −1.22688
\(862\) 0 0
\(863\) −27.4641 −0.934889 −0.467444 0.884022i \(-0.654825\pi\)
−0.467444 + 0.884022i \(0.654825\pi\)
\(864\) 0 0
\(865\) −10.3923 −0.353349
\(866\) 0 0
\(867\) 0.732051 0.0248617
\(868\) 0 0
\(869\) 45.3205 1.53739
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) −2.28719 −0.0774096
\(874\) 0 0
\(875\) −4.73205 −0.159973
\(876\) 0 0
\(877\) 20.6410 0.696998 0.348499 0.937309i \(-0.386692\pi\)
0.348499 + 0.937309i \(0.386692\pi\)
\(878\) 0 0
\(879\) −6.53590 −0.220450
\(880\) 0 0
\(881\) −17.3205 −0.583543 −0.291771 0.956488i \(-0.594245\pi\)
−0.291771 + 0.956488i \(0.594245\pi\)
\(882\) 0 0
\(883\) −21.3205 −0.717492 −0.358746 0.933435i \(-0.616796\pi\)
−0.358746 + 0.933435i \(0.616796\pi\)
\(884\) 0 0
\(885\) 6.92820 0.232889
\(886\) 0 0
\(887\) −47.6603 −1.60027 −0.800137 0.599817i \(-0.795240\pi\)
−0.800137 + 0.599817i \(0.795240\pi\)
\(888\) 0 0
\(889\) 23.3205 0.782145
\(890\) 0 0
\(891\) −12.1962 −0.408586
\(892\) 0 0
\(893\) 62.6410 2.09620
\(894\) 0 0
\(895\) 9.46410 0.316350
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −33.4641 −1.11609
\(900\) 0 0
\(901\) 2.00000 0.0666297
\(902\) 0 0
\(903\) −30.9282 −1.02923
\(904\) 0 0
\(905\) 9.32051 0.309824
\(906\) 0 0
\(907\) 1.01924 0.0338432 0.0169216 0.999857i \(-0.494613\pi\)
0.0169216 + 0.999857i \(0.494613\pi\)
\(908\) 0 0
\(909\) −20.6795 −0.685895
\(910\) 0 0
\(911\) 8.58846 0.284548 0.142274 0.989827i \(-0.454559\pi\)
0.142274 + 0.989827i \(0.454559\pi\)
\(912\) 0 0
\(913\) 24.3923 0.807267
\(914\) 0 0
\(915\) −9.46410 −0.312874
\(916\) 0 0
\(917\) 7.85641 0.259441
\(918\) 0 0
\(919\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(920\) 0 0
\(921\) −3.89488 −0.128341
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) −0.535898 −0.0176202
\(926\) 0 0
\(927\) −8.53590 −0.280356
\(928\) 0 0
\(929\) 8.24871 0.270631 0.135316 0.990803i \(-0.456795\pi\)
0.135316 + 0.990803i \(0.456795\pi\)
\(930\) 0 0
\(931\) −84.1051 −2.75643
\(932\) 0 0
\(933\) 2.28719 0.0748791
\(934\) 0 0
\(935\) 2.73205 0.0893476
\(936\) 0 0
\(937\) −52.9282 −1.72909 −0.864545 0.502556i \(-0.832393\pi\)
−0.864545 + 0.502556i \(0.832393\pi\)
\(938\) 0 0
\(939\) −23.6077 −0.770408
\(940\) 0 0
\(941\) −1.32051 −0.0430473 −0.0215237 0.999768i \(-0.506852\pi\)
−0.0215237 + 0.999768i \(0.506852\pi\)
\(942\) 0 0
\(943\) −33.9615 −1.10594
\(944\) 0 0
\(945\) 18.9282 0.615734
\(946\) 0 0
\(947\) 39.2679 1.27604 0.638018 0.770021i \(-0.279754\pi\)
0.638018 + 0.770021i \(0.279754\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) −2.24871 −0.0729195
\(952\) 0 0
\(953\) −6.14359 −0.199011 −0.0995053 0.995037i \(-0.531726\pi\)
−0.0995053 + 0.995037i \(0.531726\pi\)
\(954\) 0 0
\(955\) 9.07180 0.293556
\(956\) 0 0
\(957\) 6.92820 0.223957
\(958\) 0 0
\(959\) −5.07180 −0.163777
\(960\) 0 0
\(961\) 62.3205 2.01034
\(962\) 0 0
\(963\) −11.6603 −0.375746
\(964\) 0 0
\(965\) −7.46410 −0.240278
\(966\) 0 0
\(967\) 47.8564 1.53896 0.769479 0.638672i \(-0.220516\pi\)
0.769479 + 0.638672i \(0.220516\pi\)
\(968\) 0 0
\(969\) 4.00000 0.128499
\(970\) 0 0
\(971\) −40.1051 −1.28703 −0.643517 0.765432i \(-0.722526\pi\)
−0.643517 + 0.765432i \(0.722526\pi\)
\(972\) 0 0
\(973\) −59.5692 −1.90970
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 53.4256 1.70924 0.854619 0.519256i \(-0.173791\pi\)
0.854619 + 0.519256i \(0.173791\pi\)
\(978\) 0 0
\(979\) −36.7846 −1.17564
\(980\) 0 0
\(981\) −14.7846 −0.472036
\(982\) 0 0
\(983\) 32.4449 1.03483 0.517415 0.855734i \(-0.326894\pi\)
0.517415 + 0.855734i \(0.326894\pi\)
\(984\) 0 0
\(985\) −26.3923 −0.840929
\(986\) 0 0
\(987\) 39.7128 1.26407
\(988\) 0 0
\(989\) −29.1769 −0.927772
\(990\) 0 0
\(991\) 27.9090 0.886558 0.443279 0.896384i \(-0.353815\pi\)
0.443279 + 0.896384i \(0.353815\pi\)
\(992\) 0 0
\(993\) 14.1436 0.448833
\(994\) 0 0
\(995\) −10.3397 −0.327792
\(996\) 0 0
\(997\) −28.5359 −0.903741 −0.451870 0.892084i \(-0.649243\pi\)
−0.451870 + 0.892084i \(0.649243\pi\)
\(998\) 0 0
\(999\) 2.14359 0.0678203
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 680.2.a.d.1.2 2
3.2 odd 2 6120.2.a.ba.1.1 2
4.3 odd 2 1360.2.a.n.1.1 2
5.2 odd 4 3400.2.e.g.2449.2 4
5.3 odd 4 3400.2.e.g.2449.3 4
5.4 even 2 3400.2.a.j.1.1 2
8.3 odd 2 5440.2.a.bc.1.2 2
8.5 even 2 5440.2.a.bk.1.1 2
20.19 odd 2 6800.2.a.bb.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
680.2.a.d.1.2 2 1.1 even 1 trivial
1360.2.a.n.1.1 2 4.3 odd 2
3400.2.a.j.1.1 2 5.4 even 2
3400.2.e.g.2449.2 4 5.2 odd 4
3400.2.e.g.2449.3 4 5.3 odd 4
5440.2.a.bc.1.2 2 8.3 odd 2
5440.2.a.bk.1.1 2 8.5 even 2
6120.2.a.ba.1.1 2 3.2 odd 2
6800.2.a.bb.1.2 2 20.19 odd 2