Properties

Label 675.3.c.r.26.6
Level $675$
Weight $3$
Character 675.26
Analytic conductor $18.392$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [675,3,Mod(26,675)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("675.26"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(675, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 675 = 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 675.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,0,-14,0,0,-16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.3924178443\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.60217600.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 16x^{4} + 64x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2\cdot 3^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 26.6
Root \(2.69399i\) of defining polynomial
Character \(\chi\) \(=\) 675.26
Dual form 675.3.c.r.26.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.69399i q^{2} -9.64560 q^{4} -9.20921 q^{7} -20.8548i q^{8} -15.5488i q^{11} +20.6004 q^{13} -34.0188i q^{14} +38.4552 q^{16} +22.4668i q^{17} +2.33644 q^{19} +57.4372 q^{22} -19.3092i q^{23} +76.0976i q^{26} +88.8283 q^{28} +2.92117i q^{29} -28.1912 q^{31} +58.6339i q^{32} -82.9923 q^{34} +65.4099 q^{37} +8.63079i q^{38} -7.48875i q^{41} +11.9915 q^{43} +149.978i q^{44} +71.3279 q^{46} -50.5075i q^{47} +35.8096 q^{49} -198.703 q^{52} +80.8323i q^{53} +192.056i q^{56} -10.7908 q^{58} -9.46697i q^{59} +52.7557 q^{61} -104.138i q^{62} -62.7728 q^{64} +65.2195 q^{67} -216.706i q^{68} -0.942951i q^{71} -12.8471 q^{73} +241.624i q^{74} -22.5363 q^{76} +143.192i q^{77} +68.4459 q^{79} +27.6634 q^{82} -38.9905i q^{83} +44.2965i q^{86} -324.267 q^{88} -63.7095i q^{89} -189.713 q^{91} +186.248i q^{92} +186.575 q^{94} +186.330 q^{97} +132.280i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 14 q^{4} - 16 q^{7} + 22 q^{13} + 46 q^{16} - 16 q^{19} + 86 q^{22} + 212 q^{28} - 56 q^{31} - 80 q^{34} + 150 q^{37} - 92 q^{43} + 234 q^{46} + 74 q^{49} - 354 q^{52} - 104 q^{58} - 46 q^{61} - 342 q^{64}+ \cdots + 162 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/675\mathbb{Z}\right)^\times\).

\(n\) \(326\) \(352\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 3.69399i 1.84700i 0.383602 + 0.923499i \(0.374684\pi\)
−0.383602 + 0.923499i \(0.625316\pi\)
\(3\) 0 0
\(4\) −9.64560 −2.41140
\(5\) 0 0
\(6\) 0 0
\(7\) −9.20921 −1.31560 −0.657801 0.753192i \(-0.728513\pi\)
−0.657801 + 0.753192i \(0.728513\pi\)
\(8\) − 20.8548i − 2.60685i
\(9\) 0 0
\(10\) 0 0
\(11\) − 15.5488i − 1.41353i −0.707450 0.706764i \(-0.750154\pi\)
0.707450 0.706764i \(-0.249846\pi\)
\(12\) 0 0
\(13\) 20.6004 1.58464 0.792321 0.610104i \(-0.208872\pi\)
0.792321 + 0.610104i \(0.208872\pi\)
\(14\) − 34.0188i − 2.42991i
\(15\) 0 0
\(16\) 38.4552 2.40345
\(17\) 22.4668i 1.32158i 0.750572 + 0.660789i \(0.229778\pi\)
−0.750572 + 0.660789i \(0.770222\pi\)
\(18\) 0 0
\(19\) 2.33644 0.122970 0.0614852 0.998108i \(-0.480416\pi\)
0.0614852 + 0.998108i \(0.480416\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 57.4372 2.61078
\(23\) − 19.3092i − 0.839529i −0.907633 0.419764i \(-0.862113\pi\)
0.907633 0.419764i \(-0.137887\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 76.0976i 2.92683i
\(27\) 0 0
\(28\) 88.8283 3.17244
\(29\) 2.92117i 0.100730i 0.998731 + 0.0503650i \(0.0160385\pi\)
−0.998731 + 0.0503650i \(0.983962\pi\)
\(30\) 0 0
\(31\) −28.1912 −0.909395 −0.454698 0.890646i \(-0.650253\pi\)
−0.454698 + 0.890646i \(0.650253\pi\)
\(32\) 58.6339i 1.83231i
\(33\) 0 0
\(34\) −82.9923 −2.44095
\(35\) 0 0
\(36\) 0 0
\(37\) 65.4099 1.76784 0.883918 0.467642i \(-0.154896\pi\)
0.883918 + 0.467642i \(0.154896\pi\)
\(38\) 8.63079i 0.227126i
\(39\) 0 0
\(40\) 0 0
\(41\) − 7.48875i − 0.182652i −0.995821 0.0913262i \(-0.970889\pi\)
0.995821 0.0913262i \(-0.0291106\pi\)
\(42\) 0 0
\(43\) 11.9915 0.278872 0.139436 0.990231i \(-0.455471\pi\)
0.139436 + 0.990231i \(0.455471\pi\)
\(44\) 149.978i 3.40858i
\(45\) 0 0
\(46\) 71.3279 1.55061
\(47\) − 50.5075i − 1.07463i −0.843382 0.537314i \(-0.819439\pi\)
0.843382 0.537314i \(-0.180561\pi\)
\(48\) 0 0
\(49\) 35.8096 0.730807
\(50\) 0 0
\(51\) 0 0
\(52\) −198.703 −3.82121
\(53\) 80.8323i 1.52514i 0.646907 + 0.762569i \(0.276062\pi\)
−0.646907 + 0.762569i \(0.723938\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 192.056i 3.42958i
\(57\) 0 0
\(58\) −10.7908 −0.186048
\(59\) − 9.46697i − 0.160457i −0.996776 0.0802286i \(-0.974435\pi\)
0.996776 0.0802286i \(-0.0255650\pi\)
\(60\) 0 0
\(61\) 52.7557 0.864847 0.432424 0.901671i \(-0.357659\pi\)
0.432424 + 0.901671i \(0.357659\pi\)
\(62\) − 104.138i − 1.67965i
\(63\) 0 0
\(64\) −62.7728 −0.980825
\(65\) 0 0
\(66\) 0 0
\(67\) 65.2195 0.973425 0.486713 0.873562i \(-0.338196\pi\)
0.486713 + 0.873562i \(0.338196\pi\)
\(68\) − 216.706i − 3.18685i
\(69\) 0 0
\(70\) 0 0
\(71\) − 0.942951i − 0.0132810i −0.999978 0.00664050i \(-0.997886\pi\)
0.999978 0.00664050i \(-0.00211375\pi\)
\(72\) 0 0
\(73\) −12.8471 −0.175988 −0.0879940 0.996121i \(-0.528046\pi\)
−0.0879940 + 0.996121i \(0.528046\pi\)
\(74\) 241.624i 3.26519i
\(75\) 0 0
\(76\) −22.5363 −0.296531
\(77\) 143.192i 1.85964i
\(78\) 0 0
\(79\) 68.4459 0.866403 0.433202 0.901297i \(-0.357384\pi\)
0.433202 + 0.901297i \(0.357384\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 27.6634 0.337359
\(83\) − 38.9905i − 0.469765i −0.972024 0.234883i \(-0.924529\pi\)
0.972024 0.234883i \(-0.0754706\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 44.2965i 0.515076i
\(87\) 0 0
\(88\) −324.267 −3.68486
\(89\) − 63.7095i − 0.715837i −0.933753 0.357918i \(-0.883487\pi\)
0.933753 0.357918i \(-0.116513\pi\)
\(90\) 0 0
\(91\) −189.713 −2.08476
\(92\) 186.248i 2.02444i
\(93\) 0 0
\(94\) 186.575 1.98484
\(95\) 0 0
\(96\) 0 0
\(97\) 186.330 1.92093 0.960466 0.278398i \(-0.0898034\pi\)
0.960466 + 0.278398i \(0.0898034\pi\)
\(98\) 132.280i 1.34980i
\(99\) 0 0
\(100\) 0 0
\(101\) − 53.1922i − 0.526656i −0.964706 0.263328i \(-0.915180\pi\)
0.964706 0.263328i \(-0.0848201\pi\)
\(102\) 0 0
\(103\) 24.1194 0.234169 0.117084 0.993122i \(-0.462645\pi\)
0.117084 + 0.993122i \(0.462645\pi\)
\(104\) − 429.616i − 4.13093i
\(105\) 0 0
\(106\) −298.594 −2.81693
\(107\) − 53.4287i − 0.499334i −0.968332 0.249667i \(-0.919679\pi\)
0.968332 0.249667i \(-0.0803211\pi\)
\(108\) 0 0
\(109\) 43.8293 0.402104 0.201052 0.979581i \(-0.435564\pi\)
0.201052 + 0.979581i \(0.435564\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −354.142 −3.16198
\(113\) − 121.798i − 1.07786i −0.842351 0.538929i \(-0.818829\pi\)
0.842351 0.538929i \(-0.181171\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) − 28.1764i − 0.242900i
\(117\) 0 0
\(118\) 34.9709 0.296364
\(119\) − 206.902i − 1.73867i
\(120\) 0 0
\(121\) −120.765 −0.998060
\(122\) 194.879i 1.59737i
\(123\) 0 0
\(124\) 271.921 2.19291
\(125\) 0 0
\(126\) 0 0
\(127\) −25.3201 −0.199371 −0.0996854 0.995019i \(-0.531784\pi\)
−0.0996854 + 0.995019i \(0.531784\pi\)
\(128\) 2.65328i 0.0207288i
\(129\) 0 0
\(130\) 0 0
\(131\) − 43.3536i − 0.330943i −0.986215 0.165472i \(-0.947085\pi\)
0.986215 0.165472i \(-0.0529147\pi\)
\(132\) 0 0
\(133\) −21.5167 −0.161780
\(134\) 240.920i 1.79791i
\(135\) 0 0
\(136\) 468.541 3.44516
\(137\) − 96.4475i − 0.703996i −0.936001 0.351998i \(-0.885502\pi\)
0.936001 0.351998i \(-0.114498\pi\)
\(138\) 0 0
\(139\) −31.7095 −0.228126 −0.114063 0.993474i \(-0.536387\pi\)
−0.114063 + 0.993474i \(0.536387\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 3.48325 0.0245300
\(143\) − 320.311i − 2.23994i
\(144\) 0 0
\(145\) 0 0
\(146\) − 47.4572i − 0.325049i
\(147\) 0 0
\(148\) −630.918 −4.26296
\(149\) − 187.489i − 1.25831i −0.777278 0.629157i \(-0.783400\pi\)
0.777278 0.629157i \(-0.216600\pi\)
\(150\) 0 0
\(151\) −113.910 −0.754369 −0.377184 0.926138i \(-0.623108\pi\)
−0.377184 + 0.926138i \(0.623108\pi\)
\(152\) − 48.7260i − 0.320566i
\(153\) 0 0
\(154\) −528.951 −3.43475
\(155\) 0 0
\(156\) 0 0
\(157\) −122.473 −0.780083 −0.390041 0.920797i \(-0.627539\pi\)
−0.390041 + 0.920797i \(0.627539\pi\)
\(158\) 252.839i 1.60024i
\(159\) 0 0
\(160\) 0 0
\(161\) 177.822i 1.10449i
\(162\) 0 0
\(163\) 201.136 1.23396 0.616981 0.786978i \(-0.288355\pi\)
0.616981 + 0.786978i \(0.288355\pi\)
\(164\) 72.2335i 0.440448i
\(165\) 0 0
\(166\) 144.031 0.867656
\(167\) − 32.4447i − 0.194280i −0.995271 0.0971399i \(-0.969031\pi\)
0.995271 0.0971399i \(-0.0309694\pi\)
\(168\) 0 0
\(169\) 255.375 1.51109
\(170\) 0 0
\(171\) 0 0
\(172\) −115.665 −0.672472
\(173\) 218.485i 1.26292i 0.775409 + 0.631460i \(0.217544\pi\)
−0.775409 + 0.631460i \(0.782456\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) − 597.932i − 3.39734i
\(177\) 0 0
\(178\) 235.342 1.32215
\(179\) 217.112i 1.21292i 0.795116 + 0.606458i \(0.207410\pi\)
−0.795116 + 0.606458i \(0.792590\pi\)
\(180\) 0 0
\(181\) 1.18977 0.00657333 0.00328667 0.999995i \(-0.498954\pi\)
0.00328667 + 0.999995i \(0.498954\pi\)
\(182\) − 700.799i − 3.85054i
\(183\) 0 0
\(184\) −402.689 −2.18853
\(185\) 0 0
\(186\) 0 0
\(187\) 349.332 1.86809
\(188\) 487.175i 2.59136i
\(189\) 0 0
\(190\) 0 0
\(191\) − 343.880i − 1.80042i −0.435458 0.900209i \(-0.643413\pi\)
0.435458 0.900209i \(-0.356587\pi\)
\(192\) 0 0
\(193\) 124.422 0.644673 0.322337 0.946625i \(-0.395532\pi\)
0.322337 + 0.946625i \(0.395532\pi\)
\(194\) 688.303i 3.54796i
\(195\) 0 0
\(196\) −345.405 −1.76227
\(197\) 311.040i 1.57888i 0.613826 + 0.789442i \(0.289630\pi\)
−0.613826 + 0.789442i \(0.710370\pi\)
\(198\) 0 0
\(199\) 351.943 1.76856 0.884280 0.466958i \(-0.154650\pi\)
0.884280 + 0.466958i \(0.154650\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 196.492 0.972731
\(203\) − 26.9017i − 0.132521i
\(204\) 0 0
\(205\) 0 0
\(206\) 89.0969i 0.432509i
\(207\) 0 0
\(208\) 792.190 3.80861
\(209\) − 36.3288i − 0.173822i
\(210\) 0 0
\(211\) 301.368 1.42829 0.714143 0.700000i \(-0.246817\pi\)
0.714143 + 0.700000i \(0.246817\pi\)
\(212\) − 779.676i − 3.67772i
\(213\) 0 0
\(214\) 197.365 0.922268
\(215\) 0 0
\(216\) 0 0
\(217\) 259.619 1.19640
\(218\) 161.905i 0.742685i
\(219\) 0 0
\(220\) 0 0
\(221\) 462.824i 2.09423i
\(222\) 0 0
\(223\) 145.658 0.653177 0.326588 0.945167i \(-0.394101\pi\)
0.326588 + 0.945167i \(0.394101\pi\)
\(224\) − 539.972i − 2.41059i
\(225\) 0 0
\(226\) 449.921 1.99080
\(227\) 309.131i 1.36181i 0.732372 + 0.680904i \(0.238413\pi\)
−0.732372 + 0.680904i \(0.761587\pi\)
\(228\) 0 0
\(229\) −199.658 −0.871867 −0.435934 0.899979i \(-0.643582\pi\)
−0.435934 + 0.899979i \(0.643582\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 60.9205 0.262588
\(233\) − 186.675i − 0.801180i −0.916257 0.400590i \(-0.868805\pi\)
0.916257 0.400590i \(-0.131195\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 91.3146i 0.386926i
\(237\) 0 0
\(238\) 764.294 3.21132
\(239\) − 37.6186i − 0.157400i −0.996898 0.0787000i \(-0.974923\pi\)
0.996898 0.0787000i \(-0.0250769\pi\)
\(240\) 0 0
\(241\) −84.0894 −0.348919 −0.174459 0.984664i \(-0.555818\pi\)
−0.174459 + 0.984664i \(0.555818\pi\)
\(242\) − 446.106i − 1.84341i
\(243\) 0 0
\(244\) −508.860 −2.08549
\(245\) 0 0
\(246\) 0 0
\(247\) 48.1314 0.194864
\(248\) 587.923i 2.37066i
\(249\) 0 0
\(250\) 0 0
\(251\) − 389.119i − 1.55028i −0.631792 0.775138i \(-0.717680\pi\)
0.631792 0.775138i \(-0.282320\pi\)
\(252\) 0 0
\(253\) −300.234 −1.18670
\(254\) − 93.5323i − 0.368237i
\(255\) 0 0
\(256\) −260.893 −1.01911
\(257\) 168.018i 0.653768i 0.945064 + 0.326884i \(0.105999\pi\)
−0.945064 + 0.326884i \(0.894001\pi\)
\(258\) 0 0
\(259\) −602.374 −2.32577
\(260\) 0 0
\(261\) 0 0
\(262\) 160.148 0.611252
\(263\) 345.794i 1.31480i 0.753540 + 0.657402i \(0.228345\pi\)
−0.753540 + 0.657402i \(0.771655\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) − 79.4827i − 0.298807i
\(267\) 0 0
\(268\) −629.081 −2.34732
\(269\) − 502.182i − 1.86685i −0.358777 0.933423i \(-0.616806\pi\)
0.358777 0.933423i \(-0.383194\pi\)
\(270\) 0 0
\(271\) 253.603 0.935806 0.467903 0.883780i \(-0.345010\pi\)
0.467903 + 0.883780i \(0.345010\pi\)
\(272\) 863.965i 3.17634i
\(273\) 0 0
\(274\) 356.276 1.30028
\(275\) 0 0
\(276\) 0 0
\(277\) −415.895 −1.50143 −0.750714 0.660628i \(-0.770290\pi\)
−0.750714 + 0.660628i \(0.770290\pi\)
\(278\) − 117.135i − 0.421347i
\(279\) 0 0
\(280\) 0 0
\(281\) − 410.907i − 1.46230i −0.682215 0.731151i \(-0.738983\pi\)
0.682215 0.731151i \(-0.261017\pi\)
\(282\) 0 0
\(283\) −499.088 −1.76356 −0.881780 0.471660i \(-0.843655\pi\)
−0.881780 + 0.471660i \(0.843655\pi\)
\(284\) 9.09532i 0.0320258i
\(285\) 0 0
\(286\) 1183.23 4.13716
\(287\) 68.9655i 0.240298i
\(288\) 0 0
\(289\) −215.758 −0.746567
\(290\) 0 0
\(291\) 0 0
\(292\) 123.918 0.424377
\(293\) − 466.667i − 1.59272i −0.604822 0.796361i \(-0.706756\pi\)
0.604822 0.796361i \(-0.293244\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) − 1364.11i − 4.60848i
\(297\) 0 0
\(298\) 692.582 2.32410
\(299\) − 397.776i − 1.33035i
\(300\) 0 0
\(301\) −110.432 −0.366885
\(302\) − 420.782i − 1.39332i
\(303\) 0 0
\(304\) 89.8481 0.295553
\(305\) 0 0
\(306\) 0 0
\(307\) −183.976 −0.599271 −0.299636 0.954054i \(-0.596865\pi\)
−0.299636 + 0.954054i \(0.596865\pi\)
\(308\) − 1381.17i − 4.48433i
\(309\) 0 0
\(310\) 0 0
\(311\) 256.734i 0.825510i 0.910842 + 0.412755i \(0.135433\pi\)
−0.910842 + 0.412755i \(0.864567\pi\)
\(312\) 0 0
\(313\) 257.923 0.824034 0.412017 0.911176i \(-0.364824\pi\)
0.412017 + 0.911176i \(0.364824\pi\)
\(314\) − 452.415i − 1.44081i
\(315\) 0 0
\(316\) −660.201 −2.08924
\(317\) − 173.381i − 0.546942i −0.961880 0.273471i \(-0.911828\pi\)
0.961880 0.273471i \(-0.0881718\pi\)
\(318\) 0 0
\(319\) 45.4207 0.142385
\(320\) 0 0
\(321\) 0 0
\(322\) −656.874 −2.03998
\(323\) 52.4923i 0.162515i
\(324\) 0 0
\(325\) 0 0
\(326\) 742.995i 2.27913i
\(327\) 0 0
\(328\) −156.176 −0.476148
\(329\) 465.134i 1.41378i
\(330\) 0 0
\(331\) −25.2825 −0.0763823 −0.0381912 0.999270i \(-0.512160\pi\)
−0.0381912 + 0.999270i \(0.512160\pi\)
\(332\) 376.087i 1.13279i
\(333\) 0 0
\(334\) 119.851 0.358834
\(335\) 0 0
\(336\) 0 0
\(337\) −384.796 −1.14183 −0.570914 0.821010i \(-0.693411\pi\)
−0.570914 + 0.821010i \(0.693411\pi\)
\(338\) 943.353i 2.79098i
\(339\) 0 0
\(340\) 0 0
\(341\) 438.340i 1.28545i
\(342\) 0 0
\(343\) 121.473 0.354150
\(344\) − 250.080i − 0.726978i
\(345\) 0 0
\(346\) −807.083 −2.33261
\(347\) 543.336i 1.56581i 0.622142 + 0.782904i \(0.286263\pi\)
−0.622142 + 0.782904i \(0.713737\pi\)
\(348\) 0 0
\(349\) 102.381 0.293356 0.146678 0.989184i \(-0.453142\pi\)
0.146678 + 0.989184i \(0.453142\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 911.688 2.59002
\(353\) − 609.853i − 1.72763i −0.503810 0.863814i \(-0.668069\pi\)
0.503810 0.863814i \(-0.331931\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 614.516i 1.72617i
\(357\) 0 0
\(358\) −802.010 −2.24025
\(359\) − 322.621i − 0.898665i −0.893364 0.449333i \(-0.851662\pi\)
0.893364 0.449333i \(-0.148338\pi\)
\(360\) 0 0
\(361\) −355.541 −0.984878
\(362\) 4.39502i 0.0121409i
\(363\) 0 0
\(364\) 1829.90 5.02719
\(365\) 0 0
\(366\) 0 0
\(367\) −509.283 −1.38769 −0.693846 0.720123i \(-0.744085\pi\)
−0.693846 + 0.720123i \(0.744085\pi\)
\(368\) − 742.537i − 2.01776i
\(369\) 0 0
\(370\) 0 0
\(371\) − 744.402i − 2.00647i
\(372\) 0 0
\(373\) 291.668 0.781952 0.390976 0.920401i \(-0.372138\pi\)
0.390976 + 0.920401i \(0.372138\pi\)
\(374\) 1290.43i 3.45035i
\(375\) 0 0
\(376\) −1053.32 −2.80140
\(377\) 60.1772i 0.159621i
\(378\) 0 0
\(379\) 132.116 0.348591 0.174295 0.984693i \(-0.444235\pi\)
0.174295 + 0.984693i \(0.444235\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 1270.29 3.32537
\(383\) − 1.23436i − 0.00322286i −0.999999 0.00161143i \(-0.999487\pi\)
0.999999 0.00161143i \(-0.000512934\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 459.614i 1.19071i
\(387\) 0 0
\(388\) −1797.27 −4.63213
\(389\) − 97.6209i − 0.250953i −0.992097 0.125477i \(-0.959954\pi\)
0.992097 0.125477i \(-0.0400460\pi\)
\(390\) 0 0
\(391\) 433.815 1.10950
\(392\) − 746.802i − 1.90511i
\(393\) 0 0
\(394\) −1148.98 −2.91619
\(395\) 0 0
\(396\) 0 0
\(397\) 259.982 0.654866 0.327433 0.944874i \(-0.393816\pi\)
0.327433 + 0.944874i \(0.393816\pi\)
\(398\) 1300.08i 3.26652i
\(399\) 0 0
\(400\) 0 0
\(401\) − 158.010i − 0.394040i −0.980400 0.197020i \(-0.936874\pi\)
0.980400 0.197020i \(-0.0631263\pi\)
\(402\) 0 0
\(403\) −580.750 −1.44107
\(404\) 513.071i 1.26998i
\(405\) 0 0
\(406\) 99.3747 0.244765
\(407\) − 1017.05i − 2.49888i
\(408\) 0 0
\(409\) −300.817 −0.735495 −0.367747 0.929926i \(-0.619871\pi\)
−0.367747 + 0.929926i \(0.619871\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −232.646 −0.564675
\(413\) 87.1833i 0.211098i
\(414\) 0 0
\(415\) 0 0
\(416\) 1207.88i 2.90356i
\(417\) 0 0
\(418\) 134.198 0.321049
\(419\) 162.498i 0.387823i 0.981019 + 0.193911i \(0.0621175\pi\)
−0.981019 + 0.193911i \(0.937883\pi\)
\(420\) 0 0
\(421\) 201.966 0.479730 0.239865 0.970806i \(-0.422897\pi\)
0.239865 + 0.970806i \(0.422897\pi\)
\(422\) 1113.25i 2.63804i
\(423\) 0 0
\(424\) 1685.74 3.97581
\(425\) 0 0
\(426\) 0 0
\(427\) −485.838 −1.13779
\(428\) 515.352i 1.20409i
\(429\) 0 0
\(430\) 0 0
\(431\) 335.503i 0.778429i 0.921147 + 0.389215i \(0.127254\pi\)
−0.921147 + 0.389215i \(0.872746\pi\)
\(432\) 0 0
\(433\) −104.346 −0.240985 −0.120492 0.992714i \(-0.538447\pi\)
−0.120492 + 0.992714i \(0.538447\pi\)
\(434\) 959.032i 2.20975i
\(435\) 0 0
\(436\) −422.760 −0.969633
\(437\) − 45.1146i − 0.103237i
\(438\) 0 0
\(439\) 256.928 0.585256 0.292628 0.956226i \(-0.405470\pi\)
0.292628 + 0.956226i \(0.405470\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −1709.67 −3.86803
\(443\) 764.139i 1.72492i 0.506127 + 0.862459i \(0.331077\pi\)
−0.506127 + 0.862459i \(0.668923\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 538.062i 1.20642i
\(447\) 0 0
\(448\) 578.088 1.29038
\(449\) 543.053i 1.20947i 0.796426 + 0.604736i \(0.206722\pi\)
−0.796426 + 0.604736i \(0.793278\pi\)
\(450\) 0 0
\(451\) −116.441 −0.258184
\(452\) 1174.82i 2.59915i
\(453\) 0 0
\(454\) −1141.93 −2.51526
\(455\) 0 0
\(456\) 0 0
\(457\) −447.094 −0.978323 −0.489161 0.872193i \(-0.662697\pi\)
−0.489161 + 0.872193i \(0.662697\pi\)
\(458\) − 737.534i − 1.61034i
\(459\) 0 0
\(460\) 0 0
\(461\) − 221.719i − 0.480953i −0.970655 0.240477i \(-0.922696\pi\)
0.970655 0.240477i \(-0.0773037\pi\)
\(462\) 0 0
\(463\) −612.697 −1.32332 −0.661659 0.749805i \(-0.730147\pi\)
−0.661659 + 0.749805i \(0.730147\pi\)
\(464\) 112.334i 0.242099i
\(465\) 0 0
\(466\) 689.576 1.47978
\(467\) 132.891i 0.284564i 0.989826 + 0.142282i \(0.0454440\pi\)
−0.989826 + 0.142282i \(0.954556\pi\)
\(468\) 0 0
\(469\) −600.620 −1.28064
\(470\) 0 0
\(471\) 0 0
\(472\) −197.432 −0.418288
\(473\) − 186.453i − 0.394193i
\(474\) 0 0
\(475\) 0 0
\(476\) 1995.69i 4.19263i
\(477\) 0 0
\(478\) 138.963 0.290717
\(479\) − 525.127i − 1.09630i −0.836381 0.548149i \(-0.815333\pi\)
0.836381 0.548149i \(-0.184667\pi\)
\(480\) 0 0
\(481\) 1347.47 2.80139
\(482\) − 310.626i − 0.644452i
\(483\) 0 0
\(484\) 1164.85 2.40672
\(485\) 0 0
\(486\) 0 0
\(487\) −100.812 −0.207007 −0.103503 0.994629i \(-0.533005\pi\)
−0.103503 + 0.994629i \(0.533005\pi\)
\(488\) − 1100.21i − 2.25453i
\(489\) 0 0
\(490\) 0 0
\(491\) 321.463i 0.654711i 0.944901 + 0.327356i \(0.106158\pi\)
−0.944901 + 0.327356i \(0.893842\pi\)
\(492\) 0 0
\(493\) −65.6294 −0.133123
\(494\) 177.797i 0.359914i
\(495\) 0 0
\(496\) −1084.10 −2.18568
\(497\) 8.68383i 0.0174725i
\(498\) 0 0
\(499\) −320.785 −0.642856 −0.321428 0.946934i \(-0.604163\pi\)
−0.321428 + 0.946934i \(0.604163\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 1437.40 2.86336
\(503\) 31.7672i 0.0631555i 0.999501 + 0.0315778i \(0.0100532\pi\)
−0.999501 + 0.0315778i \(0.989947\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) − 1109.06i − 2.19183i
\(507\) 0 0
\(508\) 244.227 0.480763
\(509\) − 107.552i − 0.211300i −0.994403 0.105650i \(-0.966308\pi\)
0.994403 0.105650i \(-0.0336924\pi\)
\(510\) 0 0
\(511\) 118.312 0.231530
\(512\) − 953.122i − 1.86157i
\(513\) 0 0
\(514\) −620.659 −1.20751
\(515\) 0 0
\(516\) 0 0
\(517\) −785.332 −1.51902
\(518\) − 2225.17i − 4.29569i
\(519\) 0 0
\(520\) 0 0
\(521\) 509.938i 0.978767i 0.872069 + 0.489384i \(0.162778\pi\)
−0.872069 + 0.489384i \(0.837222\pi\)
\(522\) 0 0
\(523\) 10.6268 0.0203188 0.0101594 0.999948i \(-0.496766\pi\)
0.0101594 + 0.999948i \(0.496766\pi\)
\(524\) 418.171i 0.798037i
\(525\) 0 0
\(526\) −1277.36 −2.42844
\(527\) − 633.368i − 1.20184i
\(528\) 0 0
\(529\) 156.156 0.295192
\(530\) 0 0
\(531\) 0 0
\(532\) 207.542 0.390116
\(533\) − 154.271i − 0.289439i
\(534\) 0 0
\(535\) 0 0
\(536\) − 1360.14i − 2.53757i
\(537\) 0 0
\(538\) 1855.06 3.44806
\(539\) − 556.796i − 1.03302i
\(540\) 0 0
\(541\) 407.714 0.753630 0.376815 0.926289i \(-0.377019\pi\)
0.376815 + 0.926289i \(0.377019\pi\)
\(542\) 936.810i 1.72843i
\(543\) 0 0
\(544\) −1317.32 −2.42154
\(545\) 0 0
\(546\) 0 0
\(547\) 690.828 1.26294 0.631470 0.775400i \(-0.282452\pi\)
0.631470 + 0.775400i \(0.282452\pi\)
\(548\) 930.294i 1.69762i
\(549\) 0 0
\(550\) 0 0
\(551\) 6.82513i 0.0123868i
\(552\) 0 0
\(553\) −630.332 −1.13984
\(554\) − 1536.32i − 2.77313i
\(555\) 0 0
\(556\) 305.857 0.550102
\(557\) 751.961i 1.35002i 0.737809 + 0.675010i \(0.235861\pi\)
−0.737809 + 0.675010i \(0.764139\pi\)
\(558\) 0 0
\(559\) 247.029 0.441913
\(560\) 0 0
\(561\) 0 0
\(562\) 1517.89 2.70087
\(563\) 262.222i 0.465759i 0.972506 + 0.232879i \(0.0748148\pi\)
−0.972506 + 0.232879i \(0.925185\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) − 1843.63i − 3.25729i
\(567\) 0 0
\(568\) −19.6651 −0.0346216
\(569\) − 131.216i − 0.230607i −0.993330 0.115304i \(-0.963216\pi\)
0.993330 0.115304i \(-0.0367841\pi\)
\(570\) 0 0
\(571\) −372.767 −0.652831 −0.326416 0.945226i \(-0.605841\pi\)
−0.326416 + 0.945226i \(0.605841\pi\)
\(572\) 3089.59i 5.40138i
\(573\) 0 0
\(574\) −254.758 −0.443830
\(575\) 0 0
\(576\) 0 0
\(577\) 125.906 0.218208 0.109104 0.994030i \(-0.465202\pi\)
0.109104 + 0.994030i \(0.465202\pi\)
\(578\) − 797.009i − 1.37891i
\(579\) 0 0
\(580\) 0 0
\(581\) 359.072i 0.618024i
\(582\) 0 0
\(583\) 1256.85 2.15582
\(584\) 267.924i 0.458774i
\(585\) 0 0
\(586\) 1723.87 2.94175
\(587\) − 569.861i − 0.970802i −0.874292 0.485401i \(-0.838674\pi\)
0.874292 0.485401i \(-0.161326\pi\)
\(588\) 0 0
\(589\) −65.8671 −0.111829
\(590\) 0 0
\(591\) 0 0
\(592\) 2515.35 4.24890
\(593\) − 584.546i − 0.985744i −0.870102 0.492872i \(-0.835947\pi\)
0.870102 0.492872i \(-0.164053\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 1808.44i 3.03430i
\(597\) 0 0
\(598\) 1469.38 2.45716
\(599\) − 986.412i − 1.64677i −0.567487 0.823383i \(-0.692084\pi\)
0.567487 0.823383i \(-0.307916\pi\)
\(600\) 0 0
\(601\) −677.603 −1.12746 −0.563729 0.825960i \(-0.690634\pi\)
−0.563729 + 0.825960i \(0.690634\pi\)
\(602\) − 407.936i − 0.677635i
\(603\) 0 0
\(604\) 1098.73 1.81908
\(605\) 0 0
\(606\) 0 0
\(607\) −897.241 −1.47816 −0.739078 0.673620i \(-0.764739\pi\)
−0.739078 + 0.673620i \(0.764739\pi\)
\(608\) 136.995i 0.225320i
\(609\) 0 0
\(610\) 0 0
\(611\) − 1040.47i − 1.70290i
\(612\) 0 0
\(613\) 301.192 0.491341 0.245671 0.969353i \(-0.420992\pi\)
0.245671 + 0.969353i \(0.420992\pi\)
\(614\) − 679.607i − 1.10685i
\(615\) 0 0
\(616\) 2986.25 4.84780
\(617\) 832.739i 1.34966i 0.737974 + 0.674829i \(0.235783\pi\)
−0.737974 + 0.674829i \(0.764217\pi\)
\(618\) 0 0
\(619\) −702.912 −1.13556 −0.567781 0.823180i \(-0.692198\pi\)
−0.567781 + 0.823180i \(0.692198\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −948.373 −1.52471
\(623\) 586.714i 0.941756i
\(624\) 0 0
\(625\) 0 0
\(626\) 952.765i 1.52199i
\(627\) 0 0
\(628\) 1181.33 1.88109
\(629\) 1469.55i 2.33633i
\(630\) 0 0
\(631\) 93.9508 0.148892 0.0744459 0.997225i \(-0.476281\pi\)
0.0744459 + 0.997225i \(0.476281\pi\)
\(632\) − 1427.43i − 2.25858i
\(633\) 0 0
\(634\) 640.467 1.01020
\(635\) 0 0
\(636\) 0 0
\(637\) 737.690 1.15807
\(638\) 167.784i 0.262984i
\(639\) 0 0
\(640\) 0 0
\(641\) 400.819i 0.625303i 0.949868 + 0.312651i \(0.101217\pi\)
−0.949868 + 0.312651i \(0.898783\pi\)
\(642\) 0 0
\(643\) 529.930 0.824152 0.412076 0.911149i \(-0.364804\pi\)
0.412076 + 0.911149i \(0.364804\pi\)
\(644\) − 1715.20i − 2.66336i
\(645\) 0 0
\(646\) −193.906 −0.300165
\(647\) − 803.762i − 1.24229i −0.783695 0.621145i \(-0.786668\pi\)
0.783695 0.621145i \(-0.213332\pi\)
\(648\) 0 0
\(649\) −147.200 −0.226811
\(650\) 0 0
\(651\) 0 0
\(652\) −1940.08 −2.97558
\(653\) − 273.937i − 0.419505i −0.977755 0.209752i \(-0.932734\pi\)
0.977755 0.209752i \(-0.0672658\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) − 287.981i − 0.438996i
\(657\) 0 0
\(658\) −1718.20 −2.61125
\(659\) 988.698i 1.50030i 0.661268 + 0.750150i \(0.270019\pi\)
−0.661268 + 0.750150i \(0.729981\pi\)
\(660\) 0 0
\(661\) 7.79904 0.0117988 0.00589942 0.999983i \(-0.498122\pi\)
0.00589942 + 0.999983i \(0.498122\pi\)
\(662\) − 93.3936i − 0.141078i
\(663\) 0 0
\(664\) −813.140 −1.22461
\(665\) 0 0
\(666\) 0 0
\(667\) 56.4054 0.0845657
\(668\) 312.949i 0.468486i
\(669\) 0 0
\(670\) 0 0
\(671\) − 820.288i − 1.22249i
\(672\) 0 0
\(673\) −802.306 −1.19213 −0.596067 0.802935i \(-0.703271\pi\)
−0.596067 + 0.802935i \(0.703271\pi\)
\(674\) − 1421.43i − 2.10895i
\(675\) 0 0
\(676\) −2463.24 −3.64385
\(677\) 853.169i 1.26022i 0.776506 + 0.630110i \(0.216990\pi\)
−0.776506 + 0.630110i \(0.783010\pi\)
\(678\) 0 0
\(679\) −1715.96 −2.52718
\(680\) 0 0
\(681\) 0 0
\(682\) −1619.23 −2.37423
\(683\) 964.796i 1.41259i 0.707920 + 0.706293i \(0.249634\pi\)
−0.707920 + 0.706293i \(0.750366\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 448.722i 0.654114i
\(687\) 0 0
\(688\) 461.135 0.670255
\(689\) 1665.17i 2.41680i
\(690\) 0 0
\(691\) −386.152 −0.558831 −0.279415 0.960170i \(-0.590141\pi\)
−0.279415 + 0.960170i \(0.590141\pi\)
\(692\) − 2107.42i − 3.04540i
\(693\) 0 0
\(694\) −2007.08 −2.89204
\(695\) 0 0
\(696\) 0 0
\(697\) 168.248 0.241389
\(698\) 378.196i 0.541827i
\(699\) 0 0
\(700\) 0 0
\(701\) − 501.171i − 0.714938i −0.933925 0.357469i \(-0.883640\pi\)
0.933925 0.357469i \(-0.116360\pi\)
\(702\) 0 0
\(703\) 152.826 0.217391
\(704\) 976.042i 1.38642i
\(705\) 0 0
\(706\) 2252.79 3.19093
\(707\) 489.858i 0.692869i
\(708\) 0 0
\(709\) 711.983 1.00421 0.502104 0.864807i \(-0.332560\pi\)
0.502104 + 0.864807i \(0.332560\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −1328.65 −1.86608
\(713\) 544.349i 0.763463i
\(714\) 0 0
\(715\) 0 0
\(716\) − 2094.17i − 2.92482i
\(717\) 0 0
\(718\) 1191.76 1.65983
\(719\) 653.723i 0.909212i 0.890693 + 0.454606i \(0.150220\pi\)
−0.890693 + 0.454606i \(0.849780\pi\)
\(720\) 0 0
\(721\) −222.121 −0.308073
\(722\) − 1313.37i − 1.81907i
\(723\) 0 0
\(724\) −11.4761 −0.0158509
\(725\) 0 0
\(726\) 0 0
\(727\) 649.704 0.893678 0.446839 0.894614i \(-0.352550\pi\)
0.446839 + 0.894614i \(0.352550\pi\)
\(728\) 3956.43i 5.43465i
\(729\) 0 0
\(730\) 0 0
\(731\) 269.411i 0.368551i
\(732\) 0 0
\(733\) −54.0661 −0.0737600 −0.0368800 0.999320i \(-0.511742\pi\)
−0.0368800 + 0.999320i \(0.511742\pi\)
\(734\) − 1881.29i − 2.56306i
\(735\) 0 0
\(736\) 1132.17 1.53828
\(737\) − 1014.09i − 1.37596i
\(738\) 0 0
\(739\) 1161.91 1.57227 0.786134 0.618057i \(-0.212080\pi\)
0.786134 + 0.618057i \(0.212080\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 2749.82 3.70595
\(743\) 176.127i 0.237048i 0.992951 + 0.118524i \(0.0378163\pi\)
−0.992951 + 0.118524i \(0.962184\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 1077.42i 1.44426i
\(747\) 0 0
\(748\) −3369.52 −4.50470
\(749\) 492.036i 0.656924i
\(750\) 0 0
\(751\) −1116.91 −1.48724 −0.743618 0.668605i \(-0.766892\pi\)
−0.743618 + 0.668605i \(0.766892\pi\)
\(752\) − 1942.28i − 2.58281i
\(753\) 0 0
\(754\) −222.294 −0.294820
\(755\) 0 0
\(756\) 0 0
\(757\) 1040.37 1.37433 0.687167 0.726500i \(-0.258854\pi\)
0.687167 + 0.726500i \(0.258854\pi\)
\(758\) 488.035i 0.643846i
\(759\) 0 0
\(760\) 0 0
\(761\) 1350.15i 1.77418i 0.461592 + 0.887092i \(0.347278\pi\)
−0.461592 + 0.887092i \(0.652722\pi\)
\(762\) 0 0
\(763\) −403.633 −0.529008
\(764\) 3316.93i 4.34153i
\(765\) 0 0
\(766\) 4.55970 0.00595261
\(767\) − 195.023i − 0.254267i
\(768\) 0 0
\(769\) 560.677 0.729099 0.364550 0.931184i \(-0.381223\pi\)
0.364550 + 0.931184i \(0.381223\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −1200.12 −1.55457
\(773\) − 1271.66i − 1.64510i −0.568691 0.822551i \(-0.692550\pi\)
0.568691 0.822551i \(-0.307450\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) − 3885.88i − 5.00758i
\(777\) 0 0
\(778\) 360.611 0.463510
\(779\) − 17.4970i − 0.0224608i
\(780\) 0 0
\(781\) −14.6618 −0.0187731
\(782\) 1602.51i 2.04925i
\(783\) 0 0
\(784\) 1377.06 1.75646
\(785\) 0 0
\(786\) 0 0
\(787\) −673.581 −0.855884 −0.427942 0.903806i \(-0.640761\pi\)
−0.427942 + 0.903806i \(0.640761\pi\)
\(788\) − 3000.17i − 3.80732i
\(789\) 0 0
\(790\) 0 0
\(791\) 1121.66i 1.41803i
\(792\) 0 0
\(793\) 1086.79 1.37047
\(794\) 960.371i 1.20954i
\(795\) 0 0
\(796\) −3394.70 −4.26470
\(797\) − 441.048i − 0.553386i −0.960958 0.276693i \(-0.910762\pi\)
0.960958 0.276693i \(-0.0892385\pi\)
\(798\) 0 0
\(799\) 1134.74 1.42020
\(800\) 0 0
\(801\) 0 0
\(802\) 583.688 0.727790
\(803\) 199.757i 0.248764i
\(804\) 0 0
\(805\) 0 0
\(806\) − 2145.29i − 2.66165i
\(807\) 0 0
\(808\) −1109.31 −1.37291
\(809\) − 177.448i − 0.219342i −0.993968 0.109671i \(-0.965020\pi\)
0.993968 0.109671i \(-0.0349797\pi\)
\(810\) 0 0
\(811\) −26.5526 −0.0327406 −0.0163703 0.999866i \(-0.505211\pi\)
−0.0163703 + 0.999866i \(0.505211\pi\)
\(812\) 259.483i 0.319560i
\(813\) 0 0
\(814\) 3756.96 4.61543
\(815\) 0 0
\(816\) 0 0
\(817\) 28.0174 0.0342930
\(818\) − 1111.22i − 1.35846i
\(819\) 0 0
\(820\) 0 0
\(821\) 561.109i 0.683446i 0.939801 + 0.341723i \(0.111010\pi\)
−0.939801 + 0.341723i \(0.888990\pi\)
\(822\) 0 0
\(823\) 140.819 0.171105 0.0855523 0.996334i \(-0.472735\pi\)
0.0855523 + 0.996334i \(0.472735\pi\)
\(824\) − 503.005i − 0.610443i
\(825\) 0 0
\(826\) −322.055 −0.389897
\(827\) − 445.029i − 0.538124i −0.963123 0.269062i \(-0.913286\pi\)
0.963123 0.269062i \(-0.0867137\pi\)
\(828\) 0 0
\(829\) 1456.17 1.75653 0.878267 0.478170i \(-0.158700\pi\)
0.878267 + 0.478170i \(0.158700\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −1293.14 −1.55426
\(833\) 804.527i 0.965819i
\(834\) 0 0
\(835\) 0 0
\(836\) 350.413i 0.419154i
\(837\) 0 0
\(838\) −600.266 −0.716308
\(839\) 205.320i 0.244720i 0.992486 + 0.122360i \(0.0390462\pi\)
−0.992486 + 0.122360i \(0.960954\pi\)
\(840\) 0 0
\(841\) 832.467 0.989853
\(842\) 746.063i 0.886060i
\(843\) 0 0
\(844\) −2906.88 −3.44417
\(845\) 0 0
\(846\) 0 0
\(847\) 1112.15 1.31305
\(848\) 3108.42i 3.66559i
\(849\) 0 0
\(850\) 0 0
\(851\) − 1263.01i − 1.48415i
\(852\) 0 0
\(853\) −788.618 −0.924523 −0.462261 0.886744i \(-0.652962\pi\)
−0.462261 + 0.886744i \(0.652962\pi\)
\(854\) − 1794.68i − 2.10150i
\(855\) 0 0
\(856\) −1114.25 −1.30169
\(857\) − 309.338i − 0.360954i −0.983579 0.180477i \(-0.942236\pi\)
0.983579 0.180477i \(-0.0577641\pi\)
\(858\) 0 0
\(859\) 1129.78 1.31522 0.657611 0.753357i \(-0.271567\pi\)
0.657611 + 0.753357i \(0.271567\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −1239.35 −1.43776
\(863\) 618.421i 0.716594i 0.933608 + 0.358297i \(0.116642\pi\)
−0.933608 + 0.358297i \(0.883358\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) − 385.455i − 0.445098i
\(867\) 0 0
\(868\) −2504.18 −2.88500
\(869\) − 1064.25i − 1.22468i
\(870\) 0 0
\(871\) 1343.54 1.54253
\(872\) − 914.052i − 1.04822i
\(873\) 0 0
\(874\) 166.653 0.190679
\(875\) 0 0
\(876\) 0 0
\(877\) 751.759 0.857194 0.428597 0.903496i \(-0.359008\pi\)
0.428597 + 0.903496i \(0.359008\pi\)
\(878\) 949.089i 1.08097i
\(879\) 0 0
\(880\) 0 0
\(881\) 1465.38i 1.66332i 0.555285 + 0.831660i \(0.312609\pi\)
−0.555285 + 0.831660i \(0.687391\pi\)
\(882\) 0 0
\(883\) 658.936 0.746247 0.373124 0.927782i \(-0.378287\pi\)
0.373124 + 0.927782i \(0.378287\pi\)
\(884\) − 4464.22i − 5.05002i
\(885\) 0 0
\(886\) −2822.72 −3.18592
\(887\) − 962.298i − 1.08489i −0.840091 0.542445i \(-0.817499\pi\)
0.840091 0.542445i \(-0.182501\pi\)
\(888\) 0 0
\(889\) 233.178 0.262293
\(890\) 0 0
\(891\) 0 0
\(892\) −1404.96 −1.57507
\(893\) − 118.008i − 0.132147i
\(894\) 0 0
\(895\) 0 0
\(896\) − 24.4347i − 0.0272708i
\(897\) 0 0
\(898\) −2006.04 −2.23389
\(899\) − 82.3514i − 0.0916034i
\(900\) 0 0
\(901\) −1816.04 −2.01559
\(902\) − 430.133i − 0.476866i
\(903\) 0 0
\(904\) −2540.08 −2.80982
\(905\) 0 0
\(906\) 0 0
\(907\) 336.048 0.370505 0.185252 0.982691i \(-0.440690\pi\)
0.185252 + 0.982691i \(0.440690\pi\)
\(908\) − 2981.75i − 3.28386i
\(909\) 0 0
\(910\) 0 0
\(911\) − 1629.30i − 1.78848i −0.447589 0.894239i \(-0.647717\pi\)
0.447589 0.894239i \(-0.352283\pi\)
\(912\) 0 0
\(913\) −606.256 −0.664026
\(914\) − 1651.56i − 1.80696i
\(915\) 0 0
\(916\) 1925.82 2.10242
\(917\) 399.252i 0.435390i
\(918\) 0 0
\(919\) −396.462 −0.431406 −0.215703 0.976459i \(-0.569204\pi\)
−0.215703 + 0.976459i \(0.569204\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 819.030 0.888319
\(923\) − 19.4251i − 0.0210456i
\(924\) 0 0
\(925\) 0 0
\(926\) − 2263.30i − 2.44417i
\(927\) 0 0
\(928\) −171.280 −0.184569
\(929\) − 208.174i − 0.224084i −0.993703 0.112042i \(-0.964261\pi\)
0.993703 0.112042i \(-0.0357390\pi\)
\(930\) 0 0
\(931\) 83.6668 0.0898677
\(932\) 1800.59i 1.93197i
\(933\) 0 0
\(934\) −490.900 −0.525589
\(935\) 0 0
\(936\) 0 0
\(937\) −719.086 −0.767434 −0.383717 0.923451i \(-0.625356\pi\)
−0.383717 + 0.923451i \(0.625356\pi\)
\(938\) − 2218.69i − 2.36534i
\(939\) 0 0
\(940\) 0 0
\(941\) 1150.83i 1.22299i 0.791250 + 0.611493i \(0.209431\pi\)
−0.791250 + 0.611493i \(0.790569\pi\)
\(942\) 0 0
\(943\) −144.602 −0.153342
\(944\) − 364.054i − 0.385650i
\(945\) 0 0
\(946\) 688.758 0.728074
\(947\) 480.014i 0.506878i 0.967351 + 0.253439i \(0.0815618\pi\)
−0.967351 + 0.253439i \(0.918438\pi\)
\(948\) 0 0
\(949\) −264.655 −0.278878
\(950\) 0 0
\(951\) 0 0
\(952\) −4314.89 −4.53245
\(953\) 1356.84i 1.42375i 0.702304 + 0.711877i \(0.252155\pi\)
−0.702304 + 0.711877i \(0.747845\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 362.854i 0.379554i
\(957\) 0 0
\(958\) 1939.82 2.02486
\(959\) 888.205i 0.926178i
\(960\) 0 0
\(961\) −166.254 −0.173001
\(962\) 4977.54i 5.17416i
\(963\) 0 0
\(964\) 811.092 0.841382
\(965\) 0 0
\(966\) 0 0
\(967\) 364.891 0.377343 0.188671 0.982040i \(-0.439582\pi\)
0.188671 + 0.982040i \(0.439582\pi\)
\(968\) 2518.54i 2.60179i
\(969\) 0 0
\(970\) 0 0
\(971\) − 1095.60i − 1.12832i −0.825666 0.564160i \(-0.809200\pi\)
0.825666 0.564160i \(-0.190800\pi\)
\(972\) 0 0
\(973\) 292.019 0.300122
\(974\) − 372.400i − 0.382341i
\(975\) 0 0
\(976\) 2028.73 2.07861
\(977\) 207.952i 0.212848i 0.994321 + 0.106424i \(0.0339400\pi\)
−0.994321 + 0.106424i \(0.966060\pi\)
\(978\) 0 0
\(979\) −990.606 −1.01185
\(980\) 0 0
\(981\) 0 0
\(982\) −1187.48 −1.20925
\(983\) − 1385.34i − 1.40930i −0.709556 0.704649i \(-0.751104\pi\)
0.709556 0.704649i \(-0.248896\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) − 242.435i − 0.245877i
\(987\) 0 0
\(988\) −464.257 −0.469895
\(989\) − 231.546i − 0.234121i
\(990\) 0 0
\(991\) −1605.21 −1.61979 −0.809896 0.586573i \(-0.800477\pi\)
−0.809896 + 0.586573i \(0.800477\pi\)
\(992\) − 1652.96i − 1.66629i
\(993\) 0 0
\(994\) −32.0780 −0.0322717
\(995\) 0 0
\(996\) 0 0
\(997\) 292.605 0.293485 0.146742 0.989175i \(-0.453121\pi\)
0.146742 + 0.989175i \(0.453121\pi\)
\(998\) − 1184.98i − 1.18735i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 675.3.c.r.26.6 yes 6
3.2 odd 2 inner 675.3.c.r.26.1 6
5.2 odd 4 675.3.d.j.674.1 6
5.3 odd 4 675.3.d.k.674.6 6
5.4 even 2 675.3.c.s.26.1 yes 6
15.2 even 4 675.3.d.k.674.5 6
15.8 even 4 675.3.d.j.674.2 6
15.14 odd 2 675.3.c.s.26.6 yes 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
675.3.c.r.26.1 6 3.2 odd 2 inner
675.3.c.r.26.6 yes 6 1.1 even 1 trivial
675.3.c.s.26.1 yes 6 5.4 even 2
675.3.c.s.26.6 yes 6 15.14 odd 2
675.3.d.j.674.1 6 5.2 odd 4
675.3.d.j.674.2 6 15.8 even 4
675.3.d.k.674.5 6 15.2 even 4
675.3.d.k.674.6 6 5.3 odd 4