Properties

Label 675.3.d.j.674.1
Level $675$
Weight $3$
Character 675.674
Analytic conductor $18.392$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [675,3,Mod(674,675)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("675.674"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(675, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 675 = 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 675.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,-6,0,14,0,0,0,-42,0,0,0,0,0,0,0,46,-84,0,16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.3924178443\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.60217600.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 16x^{4} + 64x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2\cdot 5^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 674.1
Root \(-2.69399i\) of defining polynomial
Character \(\chi\) \(=\) 675.674
Dual form 675.3.d.j.674.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.69399 q^{2} +9.64560 q^{4} -9.20921i q^{7} -20.8548 q^{8} -15.5488i q^{11} -20.6004i q^{13} +34.0188i q^{14} +38.4552 q^{16} -22.4668 q^{17} -2.33644 q^{19} +57.4372i q^{22} -19.3092 q^{23} +76.0976i q^{26} -88.8283i q^{28} -2.92117i q^{29} -28.1912 q^{31} -58.6339 q^{32} +82.9923 q^{34} +65.4099i q^{37} +8.63079 q^{38} -7.48875i q^{41} -11.9915i q^{43} -149.978i q^{44} +71.3279 q^{46} +50.5075 q^{47} -35.8096 q^{49} -198.703i q^{52} +80.8323 q^{53} +192.056i q^{56} +10.7908i q^{58} +9.46697i q^{59} +52.7557 q^{61} +104.138 q^{62} +62.7728 q^{64} +65.2195i q^{67} -216.706 q^{68} -0.942951i q^{71} +12.8471i q^{73} -241.624i q^{74} -22.5363 q^{76} -143.192 q^{77} -68.4459 q^{79} +27.6634i q^{82} -38.9905 q^{83} +44.2965i q^{86} +324.267i q^{88} +63.7095i q^{89} -189.713 q^{91} -186.248 q^{92} -186.575 q^{94} +186.330i q^{97} +132.280 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 6 q^{2} + 14 q^{4} - 42 q^{8} + 46 q^{16} - 84 q^{17} + 16 q^{19} - 102 q^{23} - 56 q^{31} - 174 q^{32} + 80 q^{34} - 96 q^{38} + 234 q^{46} - 138 q^{47} - 74 q^{49} - 120 q^{53} - 46 q^{61} + 36 q^{62}+ \cdots + 318 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/675\mathbb{Z}\right)^\times\).

\(n\) \(326\) \(352\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −3.69399 −1.84700 −0.923499 0.383602i \(-0.874684\pi\)
−0.923499 + 0.383602i \(0.874684\pi\)
\(3\) 0 0
\(4\) 9.64560 2.41140
\(5\) 0 0
\(6\) 0 0
\(7\) − 9.20921i − 1.31560i −0.753192 0.657801i \(-0.771487\pi\)
0.753192 0.657801i \(-0.228513\pi\)
\(8\) −20.8548 −2.60685
\(9\) 0 0
\(10\) 0 0
\(11\) − 15.5488i − 1.41353i −0.707450 0.706764i \(-0.750154\pi\)
0.707450 0.706764i \(-0.249846\pi\)
\(12\) 0 0
\(13\) − 20.6004i − 1.58464i −0.610104 0.792321i \(-0.708872\pi\)
0.610104 0.792321i \(-0.291128\pi\)
\(14\) 34.0188i 2.42991i
\(15\) 0 0
\(16\) 38.4552 2.40345
\(17\) −22.4668 −1.32158 −0.660789 0.750572i \(-0.729778\pi\)
−0.660789 + 0.750572i \(0.729778\pi\)
\(18\) 0 0
\(19\) −2.33644 −0.122970 −0.0614852 0.998108i \(-0.519584\pi\)
−0.0614852 + 0.998108i \(0.519584\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 57.4372i 2.61078i
\(23\) −19.3092 −0.839529 −0.419764 0.907633i \(-0.637887\pi\)
−0.419764 + 0.907633i \(0.637887\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 76.0976i 2.92683i
\(27\) 0 0
\(28\) − 88.8283i − 3.17244i
\(29\) − 2.92117i − 0.100730i −0.998731 0.0503650i \(-0.983962\pi\)
0.998731 0.0503650i \(-0.0160385\pi\)
\(30\) 0 0
\(31\) −28.1912 −0.909395 −0.454698 0.890646i \(-0.650253\pi\)
−0.454698 + 0.890646i \(0.650253\pi\)
\(32\) −58.6339 −1.83231
\(33\) 0 0
\(34\) 82.9923 2.44095
\(35\) 0 0
\(36\) 0 0
\(37\) 65.4099i 1.76784i 0.467642 + 0.883918i \(0.345104\pi\)
−0.467642 + 0.883918i \(0.654896\pi\)
\(38\) 8.63079 0.227126
\(39\) 0 0
\(40\) 0 0
\(41\) − 7.48875i − 0.182652i −0.995821 0.0913262i \(-0.970889\pi\)
0.995821 0.0913262i \(-0.0291106\pi\)
\(42\) 0 0
\(43\) − 11.9915i − 0.278872i −0.990231 0.139436i \(-0.955471\pi\)
0.990231 0.139436i \(-0.0445290\pi\)
\(44\) − 149.978i − 3.40858i
\(45\) 0 0
\(46\) 71.3279 1.55061
\(47\) 50.5075 1.07463 0.537314 0.843382i \(-0.319439\pi\)
0.537314 + 0.843382i \(0.319439\pi\)
\(48\) 0 0
\(49\) −35.8096 −0.730807
\(50\) 0 0
\(51\) 0 0
\(52\) − 198.703i − 3.82121i
\(53\) 80.8323 1.52514 0.762569 0.646907i \(-0.223938\pi\)
0.762569 + 0.646907i \(0.223938\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 192.056i 3.42958i
\(57\) 0 0
\(58\) 10.7908i 0.186048i
\(59\) 9.46697i 0.160457i 0.996776 + 0.0802286i \(0.0255650\pi\)
−0.996776 + 0.0802286i \(0.974435\pi\)
\(60\) 0 0
\(61\) 52.7557 0.864847 0.432424 0.901671i \(-0.357659\pi\)
0.432424 + 0.901671i \(0.357659\pi\)
\(62\) 104.138 1.67965
\(63\) 0 0
\(64\) 62.7728 0.980825
\(65\) 0 0
\(66\) 0 0
\(67\) 65.2195i 0.973425i 0.873562 + 0.486713i \(0.161804\pi\)
−0.873562 + 0.486713i \(0.838196\pi\)
\(68\) −216.706 −3.18685
\(69\) 0 0
\(70\) 0 0
\(71\) − 0.942951i − 0.0132810i −0.999978 0.00664050i \(-0.997886\pi\)
0.999978 0.00664050i \(-0.00211375\pi\)
\(72\) 0 0
\(73\) 12.8471i 0.175988i 0.996121 + 0.0879940i \(0.0280456\pi\)
−0.996121 + 0.0879940i \(0.971954\pi\)
\(74\) − 241.624i − 3.26519i
\(75\) 0 0
\(76\) −22.5363 −0.296531
\(77\) −143.192 −1.85964
\(78\) 0 0
\(79\) −68.4459 −0.866403 −0.433202 0.901297i \(-0.642616\pi\)
−0.433202 + 0.901297i \(0.642616\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 27.6634i 0.337359i
\(83\) −38.9905 −0.469765 −0.234883 0.972024i \(-0.575471\pi\)
−0.234883 + 0.972024i \(0.575471\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 44.2965i 0.515076i
\(87\) 0 0
\(88\) 324.267i 3.68486i
\(89\) 63.7095i 0.715837i 0.933753 + 0.357918i \(0.116513\pi\)
−0.933753 + 0.357918i \(0.883487\pi\)
\(90\) 0 0
\(91\) −189.713 −2.08476
\(92\) −186.248 −2.02444
\(93\) 0 0
\(94\) −186.575 −1.98484
\(95\) 0 0
\(96\) 0 0
\(97\) 186.330i 1.92093i 0.278398 + 0.960466i \(0.410197\pi\)
−0.278398 + 0.960466i \(0.589803\pi\)
\(98\) 132.280 1.34980
\(99\) 0 0
\(100\) 0 0
\(101\) − 53.1922i − 0.526656i −0.964706 0.263328i \(-0.915180\pi\)
0.964706 0.263328i \(-0.0848201\pi\)
\(102\) 0 0
\(103\) − 24.1194i − 0.234169i −0.993122 0.117084i \(-0.962645\pi\)
0.993122 0.117084i \(-0.0373548\pi\)
\(104\) 429.616i 4.13093i
\(105\) 0 0
\(106\) −298.594 −2.81693
\(107\) 53.4287 0.499334 0.249667 0.968332i \(-0.419679\pi\)
0.249667 + 0.968332i \(0.419679\pi\)
\(108\) 0 0
\(109\) −43.8293 −0.402104 −0.201052 0.979581i \(-0.564436\pi\)
−0.201052 + 0.979581i \(0.564436\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) − 354.142i − 3.16198i
\(113\) −121.798 −1.07786 −0.538929 0.842351i \(-0.681171\pi\)
−0.538929 + 0.842351i \(0.681171\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) − 28.1764i − 0.242900i
\(117\) 0 0
\(118\) − 34.9709i − 0.296364i
\(119\) 206.902i 1.73867i
\(120\) 0 0
\(121\) −120.765 −0.998060
\(122\) −194.879 −1.59737
\(123\) 0 0
\(124\) −271.921 −2.19291
\(125\) 0 0
\(126\) 0 0
\(127\) − 25.3201i − 0.199371i −0.995019 0.0996854i \(-0.968216\pi\)
0.995019 0.0996854i \(-0.0317836\pi\)
\(128\) 2.65328 0.0207288
\(129\) 0 0
\(130\) 0 0
\(131\) − 43.3536i − 0.330943i −0.986215 0.165472i \(-0.947085\pi\)
0.986215 0.165472i \(-0.0529147\pi\)
\(132\) 0 0
\(133\) 21.5167i 0.161780i
\(134\) − 240.920i − 1.79791i
\(135\) 0 0
\(136\) 468.541 3.44516
\(137\) 96.4475 0.703996 0.351998 0.936001i \(-0.385502\pi\)
0.351998 + 0.936001i \(0.385502\pi\)
\(138\) 0 0
\(139\) 31.7095 0.228126 0.114063 0.993474i \(-0.463613\pi\)
0.114063 + 0.993474i \(0.463613\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 3.48325i 0.0245300i
\(143\) −320.311 −2.23994
\(144\) 0 0
\(145\) 0 0
\(146\) − 47.4572i − 0.325049i
\(147\) 0 0
\(148\) 630.918i 4.26296i
\(149\) 187.489i 1.25831i 0.777278 + 0.629157i \(0.216600\pi\)
−0.777278 + 0.629157i \(0.783400\pi\)
\(150\) 0 0
\(151\) −113.910 −0.754369 −0.377184 0.926138i \(-0.623108\pi\)
−0.377184 + 0.926138i \(0.623108\pi\)
\(152\) 48.7260 0.320566
\(153\) 0 0
\(154\) 528.951 3.43475
\(155\) 0 0
\(156\) 0 0
\(157\) − 122.473i − 0.780083i −0.920797 0.390041i \(-0.872461\pi\)
0.920797 0.390041i \(-0.127539\pi\)
\(158\) 252.839 1.60024
\(159\) 0 0
\(160\) 0 0
\(161\) 177.822i 1.10449i
\(162\) 0 0
\(163\) − 201.136i − 1.23396i −0.786978 0.616981i \(-0.788355\pi\)
0.786978 0.616981i \(-0.211645\pi\)
\(164\) − 72.2335i − 0.440448i
\(165\) 0 0
\(166\) 144.031 0.867656
\(167\) 32.4447 0.194280 0.0971399 0.995271i \(-0.469031\pi\)
0.0971399 + 0.995271i \(0.469031\pi\)
\(168\) 0 0
\(169\) −255.375 −1.51109
\(170\) 0 0
\(171\) 0 0
\(172\) − 115.665i − 0.672472i
\(173\) 218.485 1.26292 0.631460 0.775409i \(-0.282456\pi\)
0.631460 + 0.775409i \(0.282456\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) − 597.932i − 3.39734i
\(177\) 0 0
\(178\) − 235.342i − 1.32215i
\(179\) − 217.112i − 1.21292i −0.795116 0.606458i \(-0.792590\pi\)
0.795116 0.606458i \(-0.207410\pi\)
\(180\) 0 0
\(181\) 1.18977 0.00657333 0.00328667 0.999995i \(-0.498954\pi\)
0.00328667 + 0.999995i \(0.498954\pi\)
\(182\) 700.799 3.85054
\(183\) 0 0
\(184\) 402.689 2.18853
\(185\) 0 0
\(186\) 0 0
\(187\) 349.332i 1.86809i
\(188\) 487.175 2.59136
\(189\) 0 0
\(190\) 0 0
\(191\) − 343.880i − 1.80042i −0.435458 0.900209i \(-0.643413\pi\)
0.435458 0.900209i \(-0.356587\pi\)
\(192\) 0 0
\(193\) − 124.422i − 0.644673i −0.946625 0.322337i \(-0.895532\pi\)
0.946625 0.322337i \(-0.104468\pi\)
\(194\) − 688.303i − 3.54796i
\(195\) 0 0
\(196\) −345.405 −1.76227
\(197\) −311.040 −1.57888 −0.789442 0.613826i \(-0.789630\pi\)
−0.789442 + 0.613826i \(0.789630\pi\)
\(198\) 0 0
\(199\) −351.943 −1.76856 −0.884280 0.466958i \(-0.845350\pi\)
−0.884280 + 0.466958i \(0.845350\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 196.492i 0.972731i
\(203\) −26.9017 −0.132521
\(204\) 0 0
\(205\) 0 0
\(206\) 89.0969i 0.432509i
\(207\) 0 0
\(208\) − 792.190i − 3.80861i
\(209\) 36.3288i 0.173822i
\(210\) 0 0
\(211\) 301.368 1.42829 0.714143 0.700000i \(-0.246817\pi\)
0.714143 + 0.700000i \(0.246817\pi\)
\(212\) 779.676 3.67772
\(213\) 0 0
\(214\) −197.365 −0.922268
\(215\) 0 0
\(216\) 0 0
\(217\) 259.619i 1.19640i
\(218\) 161.905 0.742685
\(219\) 0 0
\(220\) 0 0
\(221\) 462.824i 2.09423i
\(222\) 0 0
\(223\) − 145.658i − 0.653177i −0.945167 0.326588i \(-0.894101\pi\)
0.945167 0.326588i \(-0.105899\pi\)
\(224\) 539.972i 2.41059i
\(225\) 0 0
\(226\) 449.921 1.99080
\(227\) −309.131 −1.36181 −0.680904 0.732372i \(-0.738413\pi\)
−0.680904 + 0.732372i \(0.738413\pi\)
\(228\) 0 0
\(229\) 199.658 0.871867 0.435934 0.899979i \(-0.356418\pi\)
0.435934 + 0.899979i \(0.356418\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 60.9205i 0.262588i
\(233\) −186.675 −0.801180 −0.400590 0.916257i \(-0.631195\pi\)
−0.400590 + 0.916257i \(0.631195\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 91.3146i 0.386926i
\(237\) 0 0
\(238\) − 764.294i − 3.21132i
\(239\) 37.6186i 0.157400i 0.996898 + 0.0787000i \(0.0250769\pi\)
−0.996898 + 0.0787000i \(0.974923\pi\)
\(240\) 0 0
\(241\) −84.0894 −0.348919 −0.174459 0.984664i \(-0.555818\pi\)
−0.174459 + 0.984664i \(0.555818\pi\)
\(242\) 446.106 1.84341
\(243\) 0 0
\(244\) 508.860 2.08549
\(245\) 0 0
\(246\) 0 0
\(247\) 48.1314i 0.194864i
\(248\) 587.923 2.37066
\(249\) 0 0
\(250\) 0 0
\(251\) − 389.119i − 1.55028i −0.631792 0.775138i \(-0.717680\pi\)
0.631792 0.775138i \(-0.282320\pi\)
\(252\) 0 0
\(253\) 300.234i 1.18670i
\(254\) 93.5323i 0.368237i
\(255\) 0 0
\(256\) −260.893 −1.01911
\(257\) −168.018 −0.653768 −0.326884 0.945064i \(-0.605999\pi\)
−0.326884 + 0.945064i \(0.605999\pi\)
\(258\) 0 0
\(259\) 602.374 2.32577
\(260\) 0 0
\(261\) 0 0
\(262\) 160.148i 0.611252i
\(263\) 345.794 1.31480 0.657402 0.753540i \(-0.271655\pi\)
0.657402 + 0.753540i \(0.271655\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) − 79.4827i − 0.298807i
\(267\) 0 0
\(268\) 629.081i 2.34732i
\(269\) 502.182i 1.86685i 0.358777 + 0.933423i \(0.383194\pi\)
−0.358777 + 0.933423i \(0.616806\pi\)
\(270\) 0 0
\(271\) 253.603 0.935806 0.467903 0.883780i \(-0.345010\pi\)
0.467903 + 0.883780i \(0.345010\pi\)
\(272\) −863.965 −3.17634
\(273\) 0 0
\(274\) −356.276 −1.30028
\(275\) 0 0
\(276\) 0 0
\(277\) − 415.895i − 1.50143i −0.660628 0.750714i \(-0.729710\pi\)
0.660628 0.750714i \(-0.270290\pi\)
\(278\) −117.135 −0.421347
\(279\) 0 0
\(280\) 0 0
\(281\) − 410.907i − 1.46230i −0.682215 0.731151i \(-0.738983\pi\)
0.682215 0.731151i \(-0.261017\pi\)
\(282\) 0 0
\(283\) 499.088i 1.76356i 0.471660 + 0.881780i \(0.343655\pi\)
−0.471660 + 0.881780i \(0.656345\pi\)
\(284\) − 9.09532i − 0.0320258i
\(285\) 0 0
\(286\) 1183.23 4.13716
\(287\) −68.9655 −0.240298
\(288\) 0 0
\(289\) 215.758 0.746567
\(290\) 0 0
\(291\) 0 0
\(292\) 123.918i 0.424377i
\(293\) −466.667 −1.59272 −0.796361 0.604822i \(-0.793244\pi\)
−0.796361 + 0.604822i \(0.793244\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) − 1364.11i − 4.60848i
\(297\) 0 0
\(298\) − 692.582i − 2.32410i
\(299\) 397.776i 1.33035i
\(300\) 0 0
\(301\) −110.432 −0.366885
\(302\) 420.782 1.39332
\(303\) 0 0
\(304\) −89.8481 −0.295553
\(305\) 0 0
\(306\) 0 0
\(307\) − 183.976i − 0.599271i −0.954054 0.299636i \(-0.903135\pi\)
0.954054 0.299636i \(-0.0968651\pi\)
\(308\) −1381.17 −4.48433
\(309\) 0 0
\(310\) 0 0
\(311\) 256.734i 0.825510i 0.910842 + 0.412755i \(0.135433\pi\)
−0.910842 + 0.412755i \(0.864567\pi\)
\(312\) 0 0
\(313\) − 257.923i − 0.824034i −0.911176 0.412017i \(-0.864824\pi\)
0.911176 0.412017i \(-0.135176\pi\)
\(314\) 452.415i 1.44081i
\(315\) 0 0
\(316\) −660.201 −2.08924
\(317\) 173.381 0.546942 0.273471 0.961880i \(-0.411828\pi\)
0.273471 + 0.961880i \(0.411828\pi\)
\(318\) 0 0
\(319\) −45.4207 −0.142385
\(320\) 0 0
\(321\) 0 0
\(322\) − 656.874i − 2.03998i
\(323\) 52.4923 0.162515
\(324\) 0 0
\(325\) 0 0
\(326\) 742.995i 2.27913i
\(327\) 0 0
\(328\) 156.176i 0.476148i
\(329\) − 465.134i − 1.41378i
\(330\) 0 0
\(331\) −25.2825 −0.0763823 −0.0381912 0.999270i \(-0.512160\pi\)
−0.0381912 + 0.999270i \(0.512160\pi\)
\(332\) −376.087 −1.13279
\(333\) 0 0
\(334\) −119.851 −0.358834
\(335\) 0 0
\(336\) 0 0
\(337\) − 384.796i − 1.14183i −0.821010 0.570914i \(-0.806589\pi\)
0.821010 0.570914i \(-0.193411\pi\)
\(338\) 943.353 2.79098
\(339\) 0 0
\(340\) 0 0
\(341\) 438.340i 1.28545i
\(342\) 0 0
\(343\) − 121.473i − 0.354150i
\(344\) 250.080i 0.726978i
\(345\) 0 0
\(346\) −807.083 −2.33261
\(347\) −543.336 −1.56581 −0.782904 0.622142i \(-0.786263\pi\)
−0.782904 + 0.622142i \(0.786263\pi\)
\(348\) 0 0
\(349\) −102.381 −0.293356 −0.146678 0.989184i \(-0.546858\pi\)
−0.146678 + 0.989184i \(0.546858\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 911.688i 2.59002i
\(353\) −609.853 −1.72763 −0.863814 0.503810i \(-0.831931\pi\)
−0.863814 + 0.503810i \(0.831931\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 614.516i 1.72617i
\(357\) 0 0
\(358\) 802.010i 2.24025i
\(359\) 322.621i 0.898665i 0.893364 + 0.449333i \(0.148338\pi\)
−0.893364 + 0.449333i \(0.851662\pi\)
\(360\) 0 0
\(361\) −355.541 −0.984878
\(362\) −4.39502 −0.0121409
\(363\) 0 0
\(364\) −1829.90 −5.02719
\(365\) 0 0
\(366\) 0 0
\(367\) − 509.283i − 1.38769i −0.720123 0.693846i \(-0.755915\pi\)
0.720123 0.693846i \(-0.244085\pi\)
\(368\) −742.537 −2.01776
\(369\) 0 0
\(370\) 0 0
\(371\) − 744.402i − 2.00647i
\(372\) 0 0
\(373\) − 291.668i − 0.781952i −0.920401 0.390976i \(-0.872138\pi\)
0.920401 0.390976i \(-0.127862\pi\)
\(374\) − 1290.43i − 3.45035i
\(375\) 0 0
\(376\) −1053.32 −2.80140
\(377\) −60.1772 −0.159621
\(378\) 0 0
\(379\) −132.116 −0.348591 −0.174295 0.984693i \(-0.555765\pi\)
−0.174295 + 0.984693i \(0.555765\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 1270.29i 3.32537i
\(383\) −1.23436 −0.00322286 −0.00161143 0.999999i \(-0.500513\pi\)
−0.00161143 + 0.999999i \(0.500513\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 459.614i 1.19071i
\(387\) 0 0
\(388\) 1797.27i 4.63213i
\(389\) 97.6209i 0.250953i 0.992097 + 0.125477i \(0.0400460\pi\)
−0.992097 + 0.125477i \(0.959954\pi\)
\(390\) 0 0
\(391\) 433.815 1.10950
\(392\) 746.802 1.90511
\(393\) 0 0
\(394\) 1148.98 2.91619
\(395\) 0 0
\(396\) 0 0
\(397\) 259.982i 0.654866i 0.944874 + 0.327433i \(0.106184\pi\)
−0.944874 + 0.327433i \(0.893816\pi\)
\(398\) 1300.08 3.26652
\(399\) 0 0
\(400\) 0 0
\(401\) − 158.010i − 0.394040i −0.980400 0.197020i \(-0.936874\pi\)
0.980400 0.197020i \(-0.0631263\pi\)
\(402\) 0 0
\(403\) 580.750i 1.44107i
\(404\) − 513.071i − 1.26998i
\(405\) 0 0
\(406\) 99.3747 0.244765
\(407\) 1017.05 2.49888
\(408\) 0 0
\(409\) 300.817 0.735495 0.367747 0.929926i \(-0.380129\pi\)
0.367747 + 0.929926i \(0.380129\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) − 232.646i − 0.564675i
\(413\) 87.1833 0.211098
\(414\) 0 0
\(415\) 0 0
\(416\) 1207.88i 2.90356i
\(417\) 0 0
\(418\) − 134.198i − 0.321049i
\(419\) − 162.498i − 0.387823i −0.981019 0.193911i \(-0.937883\pi\)
0.981019 0.193911i \(-0.0621175\pi\)
\(420\) 0 0
\(421\) 201.966 0.479730 0.239865 0.970806i \(-0.422897\pi\)
0.239865 + 0.970806i \(0.422897\pi\)
\(422\) −1113.25 −2.63804
\(423\) 0 0
\(424\) −1685.74 −3.97581
\(425\) 0 0
\(426\) 0 0
\(427\) − 485.838i − 1.13779i
\(428\) 515.352 1.20409
\(429\) 0 0
\(430\) 0 0
\(431\) 335.503i 0.778429i 0.921147 + 0.389215i \(0.127254\pi\)
−0.921147 + 0.389215i \(0.872746\pi\)
\(432\) 0 0
\(433\) 104.346i 0.240985i 0.992714 + 0.120492i \(0.0384473\pi\)
−0.992714 + 0.120492i \(0.961553\pi\)
\(434\) − 959.032i − 2.20975i
\(435\) 0 0
\(436\) −422.760 −0.969633
\(437\) 45.1146 0.103237
\(438\) 0 0
\(439\) −256.928 −0.585256 −0.292628 0.956226i \(-0.594530\pi\)
−0.292628 + 0.956226i \(0.594530\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) − 1709.67i − 3.86803i
\(443\) 764.139 1.72492 0.862459 0.506127i \(-0.168923\pi\)
0.862459 + 0.506127i \(0.168923\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 538.062i 1.20642i
\(447\) 0 0
\(448\) − 578.088i − 1.29038i
\(449\) − 543.053i − 1.20947i −0.796426 0.604736i \(-0.793278\pi\)
0.796426 0.604736i \(-0.206722\pi\)
\(450\) 0 0
\(451\) −116.441 −0.258184
\(452\) −1174.82 −2.59915
\(453\) 0 0
\(454\) 1141.93 2.51526
\(455\) 0 0
\(456\) 0 0
\(457\) − 447.094i − 0.978323i −0.872193 0.489161i \(-0.837303\pi\)
0.872193 0.489161i \(-0.162697\pi\)
\(458\) −737.534 −1.61034
\(459\) 0 0
\(460\) 0 0
\(461\) − 221.719i − 0.480953i −0.970655 0.240477i \(-0.922696\pi\)
0.970655 0.240477i \(-0.0773037\pi\)
\(462\) 0 0
\(463\) 612.697i 1.32332i 0.749805 + 0.661659i \(0.230147\pi\)
−0.749805 + 0.661659i \(0.769853\pi\)
\(464\) − 112.334i − 0.242099i
\(465\) 0 0
\(466\) 689.576 1.47978
\(467\) −132.891 −0.284564 −0.142282 0.989826i \(-0.545444\pi\)
−0.142282 + 0.989826i \(0.545444\pi\)
\(468\) 0 0
\(469\) 600.620 1.28064
\(470\) 0 0
\(471\) 0 0
\(472\) − 197.432i − 0.418288i
\(473\) −186.453 −0.394193
\(474\) 0 0
\(475\) 0 0
\(476\) 1995.69i 4.19263i
\(477\) 0 0
\(478\) − 138.963i − 0.290717i
\(479\) 525.127i 1.09630i 0.836381 + 0.548149i \(0.184667\pi\)
−0.836381 + 0.548149i \(0.815333\pi\)
\(480\) 0 0
\(481\) 1347.47 2.80139
\(482\) 310.626 0.644452
\(483\) 0 0
\(484\) −1164.85 −2.40672
\(485\) 0 0
\(486\) 0 0
\(487\) − 100.812i − 0.207007i −0.994629 0.103503i \(-0.966995\pi\)
0.994629 0.103503i \(-0.0330053\pi\)
\(488\) −1100.21 −2.25453
\(489\) 0 0
\(490\) 0 0
\(491\) 321.463i 0.654711i 0.944901 + 0.327356i \(0.106158\pi\)
−0.944901 + 0.327356i \(0.893842\pi\)
\(492\) 0 0
\(493\) 65.6294i 0.133123i
\(494\) − 177.797i − 0.359914i
\(495\) 0 0
\(496\) −1084.10 −2.18568
\(497\) −8.68383 −0.0174725
\(498\) 0 0
\(499\) 320.785 0.642856 0.321428 0.946934i \(-0.395837\pi\)
0.321428 + 0.946934i \(0.395837\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 1437.40i 2.86336i
\(503\) 31.7672 0.0631555 0.0315778 0.999501i \(-0.489947\pi\)
0.0315778 + 0.999501i \(0.489947\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) − 1109.06i − 2.19183i
\(507\) 0 0
\(508\) − 244.227i − 0.480763i
\(509\) 107.552i 0.211300i 0.994403 + 0.105650i \(0.0336924\pi\)
−0.994403 + 0.105650i \(0.966308\pi\)
\(510\) 0 0
\(511\) 118.312 0.231530
\(512\) 953.122 1.86157
\(513\) 0 0
\(514\) 620.659 1.20751
\(515\) 0 0
\(516\) 0 0
\(517\) − 785.332i − 1.51902i
\(518\) −2225.17 −4.29569
\(519\) 0 0
\(520\) 0 0
\(521\) 509.938i 0.978767i 0.872069 + 0.489384i \(0.162778\pi\)
−0.872069 + 0.489384i \(0.837222\pi\)
\(522\) 0 0
\(523\) − 10.6268i − 0.0203188i −0.999948 0.0101594i \(-0.996766\pi\)
0.999948 0.0101594i \(-0.00323390\pi\)
\(524\) − 418.171i − 0.798037i
\(525\) 0 0
\(526\) −1277.36 −2.42844
\(527\) 633.368 1.20184
\(528\) 0 0
\(529\) −156.156 −0.295192
\(530\) 0 0
\(531\) 0 0
\(532\) 207.542i 0.390116i
\(533\) −154.271 −0.289439
\(534\) 0 0
\(535\) 0 0
\(536\) − 1360.14i − 2.53757i
\(537\) 0 0
\(538\) − 1855.06i − 3.44806i
\(539\) 556.796i 1.03302i
\(540\) 0 0
\(541\) 407.714 0.753630 0.376815 0.926289i \(-0.377019\pi\)
0.376815 + 0.926289i \(0.377019\pi\)
\(542\) −936.810 −1.72843
\(543\) 0 0
\(544\) 1317.32 2.42154
\(545\) 0 0
\(546\) 0 0
\(547\) 690.828i 1.26294i 0.775400 + 0.631470i \(0.217548\pi\)
−0.775400 + 0.631470i \(0.782452\pi\)
\(548\) 930.294 1.69762
\(549\) 0 0
\(550\) 0 0
\(551\) 6.82513i 0.0123868i
\(552\) 0 0
\(553\) 630.332i 1.13984i
\(554\) 1536.32i 2.77313i
\(555\) 0 0
\(556\) 305.857 0.550102
\(557\) −751.961 −1.35002 −0.675010 0.737809i \(-0.735861\pi\)
−0.675010 + 0.737809i \(0.735861\pi\)
\(558\) 0 0
\(559\) −247.029 −0.441913
\(560\) 0 0
\(561\) 0 0
\(562\) 1517.89i 2.70087i
\(563\) 262.222 0.465759 0.232879 0.972506i \(-0.425185\pi\)
0.232879 + 0.972506i \(0.425185\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) − 1843.63i − 3.25729i
\(567\) 0 0
\(568\) 19.6651i 0.0346216i
\(569\) 131.216i 0.230607i 0.993330 + 0.115304i \(0.0367841\pi\)
−0.993330 + 0.115304i \(0.963216\pi\)
\(570\) 0 0
\(571\) −372.767 −0.652831 −0.326416 0.945226i \(-0.605841\pi\)
−0.326416 + 0.945226i \(0.605841\pi\)
\(572\) −3089.59 −5.40138
\(573\) 0 0
\(574\) 254.758 0.443830
\(575\) 0 0
\(576\) 0 0
\(577\) 125.906i 0.218208i 0.994030 + 0.109104i \(0.0347982\pi\)
−0.994030 + 0.109104i \(0.965202\pi\)
\(578\) −797.009 −1.37891
\(579\) 0 0
\(580\) 0 0
\(581\) 359.072i 0.618024i
\(582\) 0 0
\(583\) − 1256.85i − 2.15582i
\(584\) − 267.924i − 0.458774i
\(585\) 0 0
\(586\) 1723.87 2.94175
\(587\) 569.861 0.970802 0.485401 0.874292i \(-0.338674\pi\)
0.485401 + 0.874292i \(0.338674\pi\)
\(588\) 0 0
\(589\) 65.8671 0.111829
\(590\) 0 0
\(591\) 0 0
\(592\) 2515.35i 4.24890i
\(593\) −584.546 −0.985744 −0.492872 0.870102i \(-0.664053\pi\)
−0.492872 + 0.870102i \(0.664053\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 1808.44i 3.03430i
\(597\) 0 0
\(598\) − 1469.38i − 2.45716i
\(599\) 986.412i 1.64677i 0.567487 + 0.823383i \(0.307916\pi\)
−0.567487 + 0.823383i \(0.692084\pi\)
\(600\) 0 0
\(601\) −677.603 −1.12746 −0.563729 0.825960i \(-0.690634\pi\)
−0.563729 + 0.825960i \(0.690634\pi\)
\(602\) 407.936 0.677635
\(603\) 0 0
\(604\) −1098.73 −1.81908
\(605\) 0 0
\(606\) 0 0
\(607\) − 897.241i − 1.47816i −0.673620 0.739078i \(-0.735261\pi\)
0.673620 0.739078i \(-0.264739\pi\)
\(608\) 136.995 0.225320
\(609\) 0 0
\(610\) 0 0
\(611\) − 1040.47i − 1.70290i
\(612\) 0 0
\(613\) − 301.192i − 0.491341i −0.969353 0.245671i \(-0.920992\pi\)
0.969353 0.245671i \(-0.0790081\pi\)
\(614\) 679.607i 1.10685i
\(615\) 0 0
\(616\) 2986.25 4.84780
\(617\) −832.739 −1.34966 −0.674829 0.737974i \(-0.735783\pi\)
−0.674829 + 0.737974i \(0.735783\pi\)
\(618\) 0 0
\(619\) 702.912 1.13556 0.567781 0.823180i \(-0.307802\pi\)
0.567781 + 0.823180i \(0.307802\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) − 948.373i − 1.52471i
\(623\) 586.714 0.941756
\(624\) 0 0
\(625\) 0 0
\(626\) 952.765i 1.52199i
\(627\) 0 0
\(628\) − 1181.33i − 1.88109i
\(629\) − 1469.55i − 2.33633i
\(630\) 0 0
\(631\) 93.9508 0.148892 0.0744459 0.997225i \(-0.476281\pi\)
0.0744459 + 0.997225i \(0.476281\pi\)
\(632\) 1427.43 2.25858
\(633\) 0 0
\(634\) −640.467 −1.01020
\(635\) 0 0
\(636\) 0 0
\(637\) 737.690i 1.15807i
\(638\) 167.784 0.262984
\(639\) 0 0
\(640\) 0 0
\(641\) 400.819i 0.625303i 0.949868 + 0.312651i \(0.101217\pi\)
−0.949868 + 0.312651i \(0.898783\pi\)
\(642\) 0 0
\(643\) − 529.930i − 0.824152i −0.911149 0.412076i \(-0.864804\pi\)
0.911149 0.412076i \(-0.135196\pi\)
\(644\) 1715.20i 2.66336i
\(645\) 0 0
\(646\) −193.906 −0.300165
\(647\) 803.762 1.24229 0.621145 0.783695i \(-0.286668\pi\)
0.621145 + 0.783695i \(0.286668\pi\)
\(648\) 0 0
\(649\) 147.200 0.226811
\(650\) 0 0
\(651\) 0 0
\(652\) − 1940.08i − 2.97558i
\(653\) −273.937 −0.419505 −0.209752 0.977755i \(-0.567266\pi\)
−0.209752 + 0.977755i \(0.567266\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) − 287.981i − 0.438996i
\(657\) 0 0
\(658\) 1718.20i 2.61125i
\(659\) − 988.698i − 1.50030i −0.661268 0.750150i \(-0.729981\pi\)
0.661268 0.750150i \(-0.270019\pi\)
\(660\) 0 0
\(661\) 7.79904 0.0117988 0.00589942 0.999983i \(-0.498122\pi\)
0.00589942 + 0.999983i \(0.498122\pi\)
\(662\) 93.3936 0.141078
\(663\) 0 0
\(664\) 813.140 1.22461
\(665\) 0 0
\(666\) 0 0
\(667\) 56.4054i 0.0845657i
\(668\) 312.949 0.468486
\(669\) 0 0
\(670\) 0 0
\(671\) − 820.288i − 1.22249i
\(672\) 0 0
\(673\) 802.306i 1.19213i 0.802935 + 0.596067i \(0.203271\pi\)
−0.802935 + 0.596067i \(0.796729\pi\)
\(674\) 1421.43i 2.10895i
\(675\) 0 0
\(676\) −2463.24 −3.64385
\(677\) −853.169 −1.26022 −0.630110 0.776506i \(-0.716990\pi\)
−0.630110 + 0.776506i \(0.716990\pi\)
\(678\) 0 0
\(679\) 1715.96 2.52718
\(680\) 0 0
\(681\) 0 0
\(682\) − 1619.23i − 2.37423i
\(683\) 964.796 1.41259 0.706293 0.707920i \(-0.250366\pi\)
0.706293 + 0.707920i \(0.250366\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 448.722i 0.654114i
\(687\) 0 0
\(688\) − 461.135i − 0.670255i
\(689\) − 1665.17i − 2.41680i
\(690\) 0 0
\(691\) −386.152 −0.558831 −0.279415 0.960170i \(-0.590141\pi\)
−0.279415 + 0.960170i \(0.590141\pi\)
\(692\) 2107.42 3.04540
\(693\) 0 0
\(694\) 2007.08 2.89204
\(695\) 0 0
\(696\) 0 0
\(697\) 168.248i 0.241389i
\(698\) 378.196 0.541827
\(699\) 0 0
\(700\) 0 0
\(701\) − 501.171i − 0.714938i −0.933925 0.357469i \(-0.883640\pi\)
0.933925 0.357469i \(-0.116360\pi\)
\(702\) 0 0
\(703\) − 152.826i − 0.217391i
\(704\) − 976.042i − 1.38642i
\(705\) 0 0
\(706\) 2252.79 3.19093
\(707\) −489.858 −0.692869
\(708\) 0 0
\(709\) −711.983 −1.00421 −0.502104 0.864807i \(-0.667440\pi\)
−0.502104 + 0.864807i \(0.667440\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) − 1328.65i − 1.86608i
\(713\) 544.349 0.763463
\(714\) 0 0
\(715\) 0 0
\(716\) − 2094.17i − 2.92482i
\(717\) 0 0
\(718\) − 1191.76i − 1.65983i
\(719\) − 653.723i − 0.909212i −0.890693 0.454606i \(-0.849780\pi\)
0.890693 0.454606i \(-0.150220\pi\)
\(720\) 0 0
\(721\) −222.121 −0.308073
\(722\) 1313.37 1.81907
\(723\) 0 0
\(724\) 11.4761 0.0158509
\(725\) 0 0
\(726\) 0 0
\(727\) 649.704i 0.893678i 0.894614 + 0.446839i \(0.147450\pi\)
−0.894614 + 0.446839i \(0.852550\pi\)
\(728\) 3956.43 5.43465
\(729\) 0 0
\(730\) 0 0
\(731\) 269.411i 0.368551i
\(732\) 0 0
\(733\) 54.0661i 0.0737600i 0.999320 + 0.0368800i \(0.0117419\pi\)
−0.999320 + 0.0368800i \(0.988258\pi\)
\(734\) 1881.29i 2.56306i
\(735\) 0 0
\(736\) 1132.17 1.53828
\(737\) 1014.09 1.37596
\(738\) 0 0
\(739\) −1161.91 −1.57227 −0.786134 0.618057i \(-0.787920\pi\)
−0.786134 + 0.618057i \(0.787920\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 2749.82i 3.70595i
\(743\) 176.127 0.237048 0.118524 0.992951i \(-0.462184\pi\)
0.118524 + 0.992951i \(0.462184\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 1077.42i 1.44426i
\(747\) 0 0
\(748\) 3369.52i 4.50470i
\(749\) − 492.036i − 0.656924i
\(750\) 0 0
\(751\) −1116.91 −1.48724 −0.743618 0.668605i \(-0.766892\pi\)
−0.743618 + 0.668605i \(0.766892\pi\)
\(752\) 1942.28 2.58281
\(753\) 0 0
\(754\) 222.294 0.294820
\(755\) 0 0
\(756\) 0 0
\(757\) 1040.37i 1.37433i 0.726500 + 0.687167i \(0.241146\pi\)
−0.726500 + 0.687167i \(0.758854\pi\)
\(758\) 488.035 0.643846
\(759\) 0 0
\(760\) 0 0
\(761\) 1350.15i 1.77418i 0.461592 + 0.887092i \(0.347278\pi\)
−0.461592 + 0.887092i \(0.652722\pi\)
\(762\) 0 0
\(763\) 403.633i 0.529008i
\(764\) − 3316.93i − 4.34153i
\(765\) 0 0
\(766\) 4.55970 0.00595261
\(767\) 195.023 0.254267
\(768\) 0 0
\(769\) −560.677 −0.729099 −0.364550 0.931184i \(-0.618777\pi\)
−0.364550 + 0.931184i \(0.618777\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) − 1200.12i − 1.55457i
\(773\) −1271.66 −1.64510 −0.822551 0.568691i \(-0.807450\pi\)
−0.822551 + 0.568691i \(0.807450\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) − 3885.88i − 5.00758i
\(777\) 0 0
\(778\) − 360.611i − 0.463510i
\(779\) 17.4970i 0.0224608i
\(780\) 0 0
\(781\) −14.6618 −0.0187731
\(782\) −1602.51 −2.04925
\(783\) 0 0
\(784\) −1377.06 −1.75646
\(785\) 0 0
\(786\) 0 0
\(787\) − 673.581i − 0.855884i −0.903806 0.427942i \(-0.859239\pi\)
0.903806 0.427942i \(-0.140761\pi\)
\(788\) −3000.17 −3.80732
\(789\) 0 0
\(790\) 0 0
\(791\) 1121.66i 1.41803i
\(792\) 0 0
\(793\) − 1086.79i − 1.37047i
\(794\) − 960.371i − 1.20954i
\(795\) 0 0
\(796\) −3394.70 −4.26470
\(797\) 441.048 0.553386 0.276693 0.960958i \(-0.410762\pi\)
0.276693 + 0.960958i \(0.410762\pi\)
\(798\) 0 0
\(799\) −1134.74 −1.42020
\(800\) 0 0
\(801\) 0 0
\(802\) 583.688i 0.727790i
\(803\) 199.757 0.248764
\(804\) 0 0
\(805\) 0 0
\(806\) − 2145.29i − 2.66165i
\(807\) 0 0
\(808\) 1109.31i 1.37291i
\(809\) 177.448i 0.219342i 0.993968 + 0.109671i \(0.0349797\pi\)
−0.993968 + 0.109671i \(0.965020\pi\)
\(810\) 0 0
\(811\) −26.5526 −0.0327406 −0.0163703 0.999866i \(-0.505211\pi\)
−0.0163703 + 0.999866i \(0.505211\pi\)
\(812\) −259.483 −0.319560
\(813\) 0 0
\(814\) −3756.96 −4.61543
\(815\) 0 0
\(816\) 0 0
\(817\) 28.0174i 0.0342930i
\(818\) −1111.22 −1.35846
\(819\) 0 0
\(820\) 0 0
\(821\) 561.109i 0.683446i 0.939801 + 0.341723i \(0.111010\pi\)
−0.939801 + 0.341723i \(0.888990\pi\)
\(822\) 0 0
\(823\) − 140.819i − 0.171105i −0.996334 0.0855523i \(-0.972735\pi\)
0.996334 0.0855523i \(-0.0272655\pi\)
\(824\) 503.005i 0.610443i
\(825\) 0 0
\(826\) −322.055 −0.389897
\(827\) 445.029 0.538124 0.269062 0.963123i \(-0.413286\pi\)
0.269062 + 0.963123i \(0.413286\pi\)
\(828\) 0 0
\(829\) −1456.17 −1.75653 −0.878267 0.478170i \(-0.841300\pi\)
−0.878267 + 0.478170i \(0.841300\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) − 1293.14i − 1.55426i
\(833\) 804.527 0.965819
\(834\) 0 0
\(835\) 0 0
\(836\) 350.413i 0.419154i
\(837\) 0 0
\(838\) 600.266i 0.716308i
\(839\) − 205.320i − 0.244720i −0.992486 0.122360i \(-0.960954\pi\)
0.992486 0.122360i \(-0.0390462\pi\)
\(840\) 0 0
\(841\) 832.467 0.989853
\(842\) −746.063 −0.886060
\(843\) 0 0
\(844\) 2906.88 3.44417
\(845\) 0 0
\(846\) 0 0
\(847\) 1112.15i 1.31305i
\(848\) 3108.42 3.66559
\(849\) 0 0
\(850\) 0 0
\(851\) − 1263.01i − 1.48415i
\(852\) 0 0
\(853\) 788.618i 0.924523i 0.886744 + 0.462261i \(0.152962\pi\)
−0.886744 + 0.462261i \(0.847038\pi\)
\(854\) 1794.68i 2.10150i
\(855\) 0 0
\(856\) −1114.25 −1.30169
\(857\) 309.338 0.360954 0.180477 0.983579i \(-0.442236\pi\)
0.180477 + 0.983579i \(0.442236\pi\)
\(858\) 0 0
\(859\) −1129.78 −1.31522 −0.657611 0.753357i \(-0.728433\pi\)
−0.657611 + 0.753357i \(0.728433\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) − 1239.35i − 1.43776i
\(863\) 618.421 0.716594 0.358297 0.933608i \(-0.383358\pi\)
0.358297 + 0.933608i \(0.383358\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) − 385.455i − 0.445098i
\(867\) 0 0
\(868\) 2504.18i 2.88500i
\(869\) 1064.25i 1.22468i
\(870\) 0 0
\(871\) 1343.54 1.54253
\(872\) 914.052 1.04822
\(873\) 0 0
\(874\) −166.653 −0.190679
\(875\) 0 0
\(876\) 0 0
\(877\) 751.759i 0.857194i 0.903496 + 0.428597i \(0.140992\pi\)
−0.903496 + 0.428597i \(0.859008\pi\)
\(878\) 949.089 1.08097
\(879\) 0 0
\(880\) 0 0
\(881\) 1465.38i 1.66332i 0.555285 + 0.831660i \(0.312609\pi\)
−0.555285 + 0.831660i \(0.687391\pi\)
\(882\) 0 0
\(883\) − 658.936i − 0.746247i −0.927782 0.373124i \(-0.878287\pi\)
0.927782 0.373124i \(-0.121713\pi\)
\(884\) 4464.22i 5.05002i
\(885\) 0 0
\(886\) −2822.72 −3.18592
\(887\) 962.298 1.08489 0.542445 0.840091i \(-0.317499\pi\)
0.542445 + 0.840091i \(0.317499\pi\)
\(888\) 0 0
\(889\) −233.178 −0.262293
\(890\) 0 0
\(891\) 0 0
\(892\) − 1404.96i − 1.57507i
\(893\) −118.008 −0.132147
\(894\) 0 0
\(895\) 0 0
\(896\) − 24.4347i − 0.0272708i
\(897\) 0 0
\(898\) 2006.04i 2.23389i
\(899\) 82.3514i 0.0916034i
\(900\) 0 0
\(901\) −1816.04 −2.01559
\(902\) 430.133 0.476866
\(903\) 0 0
\(904\) 2540.08 2.80982
\(905\) 0 0
\(906\) 0 0
\(907\) 336.048i 0.370505i 0.982691 + 0.185252i \(0.0593102\pi\)
−0.982691 + 0.185252i \(0.940690\pi\)
\(908\) −2981.75 −3.28386
\(909\) 0 0
\(910\) 0 0
\(911\) − 1629.30i − 1.78848i −0.447589 0.894239i \(-0.647717\pi\)
0.447589 0.894239i \(-0.352283\pi\)
\(912\) 0 0
\(913\) 606.256i 0.664026i
\(914\) 1651.56i 1.80696i
\(915\) 0 0
\(916\) 1925.82 2.10242
\(917\) −399.252 −0.435390
\(918\) 0 0
\(919\) 396.462 0.431406 0.215703 0.976459i \(-0.430796\pi\)
0.215703 + 0.976459i \(0.430796\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 819.030i 0.888319i
\(923\) −19.4251 −0.0210456
\(924\) 0 0
\(925\) 0 0
\(926\) − 2263.30i − 2.44417i
\(927\) 0 0
\(928\) 171.280i 0.184569i
\(929\) 208.174i 0.224084i 0.993703 + 0.112042i \(0.0357390\pi\)
−0.993703 + 0.112042i \(0.964261\pi\)
\(930\) 0 0
\(931\) 83.6668 0.0898677
\(932\) −1800.59 −1.93197
\(933\) 0 0
\(934\) 490.900 0.525589
\(935\) 0 0
\(936\) 0 0
\(937\) − 719.086i − 0.767434i −0.923451 0.383717i \(-0.874644\pi\)
0.923451 0.383717i \(-0.125356\pi\)
\(938\) −2218.69 −2.36534
\(939\) 0 0
\(940\) 0 0
\(941\) 1150.83i 1.22299i 0.791250 + 0.611493i \(0.209431\pi\)
−0.791250 + 0.611493i \(0.790569\pi\)
\(942\) 0 0
\(943\) 144.602i 0.153342i
\(944\) 364.054i 0.385650i
\(945\) 0 0
\(946\) 688.758 0.728074
\(947\) −480.014 −0.506878 −0.253439 0.967351i \(-0.581562\pi\)
−0.253439 + 0.967351i \(0.581562\pi\)
\(948\) 0 0
\(949\) 264.655 0.278878
\(950\) 0 0
\(951\) 0 0
\(952\) − 4314.89i − 4.53245i
\(953\) 1356.84 1.42375 0.711877 0.702304i \(-0.247845\pi\)
0.711877 + 0.702304i \(0.247845\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 362.854i 0.379554i
\(957\) 0 0
\(958\) − 1939.82i − 2.02486i
\(959\) − 888.205i − 0.926178i
\(960\) 0 0
\(961\) −166.254 −0.173001
\(962\) −4977.54 −5.17416
\(963\) 0 0
\(964\) −811.092 −0.841382
\(965\) 0 0
\(966\) 0 0
\(967\) 364.891i 0.377343i 0.982040 + 0.188671i \(0.0604181\pi\)
−0.982040 + 0.188671i \(0.939582\pi\)
\(968\) 2518.54 2.60179
\(969\) 0 0
\(970\) 0 0
\(971\) − 1095.60i − 1.12832i −0.825666 0.564160i \(-0.809200\pi\)
0.825666 0.564160i \(-0.190800\pi\)
\(972\) 0 0
\(973\) − 292.019i − 0.300122i
\(974\) 372.400i 0.382341i
\(975\) 0 0
\(976\) 2028.73 2.07861
\(977\) −207.952 −0.212848 −0.106424 0.994321i \(-0.533940\pi\)
−0.106424 + 0.994321i \(0.533940\pi\)
\(978\) 0 0
\(979\) 990.606 1.01185
\(980\) 0 0
\(981\) 0 0
\(982\) − 1187.48i − 1.20925i
\(983\) −1385.34 −1.40930 −0.704649 0.709556i \(-0.748896\pi\)
−0.704649 + 0.709556i \(0.748896\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) − 242.435i − 0.245877i
\(987\) 0 0
\(988\) 464.257i 0.469895i
\(989\) 231.546i 0.234121i
\(990\) 0 0
\(991\) −1605.21 −1.61979 −0.809896 0.586573i \(-0.800477\pi\)
−0.809896 + 0.586573i \(0.800477\pi\)
\(992\) 1652.96 1.66629
\(993\) 0 0
\(994\) 32.0780 0.0322717
\(995\) 0 0
\(996\) 0 0
\(997\) 292.605i 0.293485i 0.989175 + 0.146742i \(0.0468789\pi\)
−0.989175 + 0.146742i \(0.953121\pi\)
\(998\) −1184.98 −1.18735
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 675.3.d.j.674.1 6
3.2 odd 2 675.3.d.k.674.5 6
5.2 odd 4 675.3.c.s.26.1 yes 6
5.3 odd 4 675.3.c.r.26.6 yes 6
5.4 even 2 675.3.d.k.674.6 6
15.2 even 4 675.3.c.s.26.6 yes 6
15.8 even 4 675.3.c.r.26.1 6
15.14 odd 2 inner 675.3.d.j.674.2 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
675.3.c.r.26.1 6 15.8 even 4
675.3.c.r.26.6 yes 6 5.3 odd 4
675.3.c.s.26.1 yes 6 5.2 odd 4
675.3.c.s.26.6 yes 6 15.2 even 4
675.3.d.j.674.1 6 1.1 even 1 trivial
675.3.d.j.674.2 6 15.14 odd 2 inner
675.3.d.k.674.5 6 3.2 odd 2
675.3.d.k.674.6 6 5.4 even 2