Properties

Label 675.3.c.l
Level $675$
Weight $3$
Character orbit 675.c
Analytic conductor $18.392$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [675,3,Mod(26,675)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(675, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("675.26"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 675 = 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 675.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,6,0,0,-12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.3924178443\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 135)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + i q^{2} + 3 q^{4} - 6 q^{7} + 7 i q^{8} + 21 i q^{11} - 15 q^{13} - 6 i q^{14} + 5 q^{16} - 23 i q^{17} - 14 q^{19} - 21 q^{22} - 7 i q^{23} - 15 i q^{26} - 18 q^{28} - 3 i q^{29} - 25 q^{31} + 33 i q^{32} + \cdots - 13 i q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 6 q^{4} - 12 q^{7} - 30 q^{13} + 10 q^{16} - 28 q^{19} - 42 q^{22} - 36 q^{28} - 50 q^{31} + 46 q^{34} - 108 q^{37} + 30 q^{43} + 14 q^{46} - 26 q^{49} - 90 q^{52} + 6 q^{58} + 88 q^{61} - 26 q^{64}+ \cdots - 156 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/675\mathbb{Z}\right)^\times\).

\(n\) \(326\) \(352\)
\(\chi(n)\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
26.1
1.00000i
1.00000i
1.00000i 0 3.00000 0 0 −6.00000 7.00000i 0 0
26.2 1.00000i 0 3.00000 0 0 −6.00000 7.00000i 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 675.3.c.l 2
3.b odd 2 1 inner 675.3.c.l 2
5.b even 2 1 675.3.c.m 2
5.c odd 4 1 135.3.d.b 2
5.c odd 4 1 135.3.d.e yes 2
15.d odd 2 1 675.3.c.m 2
15.e even 4 1 135.3.d.b 2
15.e even 4 1 135.3.d.e yes 2
20.e even 4 1 2160.3.c.b 2
20.e even 4 1 2160.3.c.e 2
45.k odd 12 2 405.3.h.d 4
45.k odd 12 2 405.3.h.g 4
45.l even 12 2 405.3.h.d 4
45.l even 12 2 405.3.h.g 4
60.l odd 4 1 2160.3.c.b 2
60.l odd 4 1 2160.3.c.e 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
135.3.d.b 2 5.c odd 4 1
135.3.d.b 2 15.e even 4 1
135.3.d.e yes 2 5.c odd 4 1
135.3.d.e yes 2 15.e even 4 1
405.3.h.d 4 45.k odd 12 2
405.3.h.d 4 45.l even 12 2
405.3.h.g 4 45.k odd 12 2
405.3.h.g 4 45.l even 12 2
675.3.c.l 2 1.a even 1 1 trivial
675.3.c.l 2 3.b odd 2 1 inner
675.3.c.m 2 5.b even 2 1
675.3.c.m 2 15.d odd 2 1
2160.3.c.b 2 20.e even 4 1
2160.3.c.b 2 60.l odd 4 1
2160.3.c.e 2 20.e even 4 1
2160.3.c.e 2 60.l odd 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{3}^{\mathrm{new}}(675, [\chi])\):

\( T_{2}^{2} + 1 \) Copy content Toggle raw display
\( T_{7} + 6 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + 1 \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( (T + 6)^{2} \) Copy content Toggle raw display
$11$ \( T^{2} + 441 \) Copy content Toggle raw display
$13$ \( (T + 15)^{2} \) Copy content Toggle raw display
$17$ \( T^{2} + 529 \) Copy content Toggle raw display
$19$ \( (T + 14)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} + 49 \) Copy content Toggle raw display
$29$ \( T^{2} + 9 \) Copy content Toggle raw display
$31$ \( (T + 25)^{2} \) Copy content Toggle raw display
$37$ \( (T + 54)^{2} \) Copy content Toggle raw display
$41$ \( T^{2} + 576 \) Copy content Toggle raw display
$43$ \( (T - 15)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} + 2401 \) Copy content Toggle raw display
$53$ \( T^{2} + 196 \) Copy content Toggle raw display
$59$ \( T^{2} + 900 \) Copy content Toggle raw display
$61$ \( (T - 44)^{2} \) Copy content Toggle raw display
$67$ \( (T + 66)^{2} \) Copy content Toggle raw display
$71$ \( T^{2} + 324 \) Copy content Toggle raw display
$73$ \( T^{2} \) Copy content Toggle raw display
$79$ \( (T - 37)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} + 13456 \) Copy content Toggle raw display
$89$ \( T^{2} + 15876 \) Copy content Toggle raw display
$97$ \( (T + 78)^{2} \) Copy content Toggle raw display
show more
show less