Properties

Label 135.3.d.b
Level $135$
Weight $3$
Character orbit 135.d
Analytic conductor $3.678$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [135,3,Mod(134,135)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(135, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("135.134");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 135 = 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 135.d (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.67848356886\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 3i\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - q^{2} - 3 q^{4} + (\beta + 4) q^{5} - 2 \beta q^{7} + 7 q^{8} + ( - \beta - 4) q^{10} + 7 \beta q^{11} + 5 \beta q^{13} + 2 \beta q^{14} + 5 q^{16} + 23 q^{17} + 14 q^{19} + ( - 3 \beta - 12) q^{20} + \cdots - 13 q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} - 6 q^{4} + 8 q^{5} + 14 q^{8} - 8 q^{10} + 10 q^{16} + 46 q^{17} + 28 q^{19} - 24 q^{20} - 14 q^{23} + 14 q^{25} - 50 q^{31} - 66 q^{32} - 46 q^{34} + 36 q^{35} - 28 q^{38} + 56 q^{40} + 14 q^{46}+ \cdots - 26 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/135\mathbb{Z}\right)^\times\).

\(n\) \(56\) \(82\)
\(\chi(n)\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
134.1
1.00000i
1.00000i
−1.00000 0 −3.00000 4.00000 3.00000i 0 6.00000i 7.00000 0 −4.00000 + 3.00000i
134.2 −1.00000 0 −3.00000 4.00000 + 3.00000i 0 6.00000i 7.00000 0 −4.00000 3.00000i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
15.d odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 135.3.d.b 2
3.b odd 2 1 135.3.d.e yes 2
4.b odd 2 1 2160.3.c.e 2
5.b even 2 1 135.3.d.e yes 2
5.c odd 4 1 675.3.c.l 2
5.c odd 4 1 675.3.c.m 2
9.c even 3 2 405.3.h.g 4
9.d odd 6 2 405.3.h.d 4
12.b even 2 1 2160.3.c.b 2
15.d odd 2 1 inner 135.3.d.b 2
15.e even 4 1 675.3.c.l 2
15.e even 4 1 675.3.c.m 2
20.d odd 2 1 2160.3.c.b 2
45.h odd 6 2 405.3.h.g 4
45.j even 6 2 405.3.h.d 4
60.h even 2 1 2160.3.c.e 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
135.3.d.b 2 1.a even 1 1 trivial
135.3.d.b 2 15.d odd 2 1 inner
135.3.d.e yes 2 3.b odd 2 1
135.3.d.e yes 2 5.b even 2 1
405.3.h.d 4 9.d odd 6 2
405.3.h.d 4 45.j even 6 2
405.3.h.g 4 9.c even 3 2
405.3.h.g 4 45.h odd 6 2
675.3.c.l 2 5.c odd 4 1
675.3.c.l 2 15.e even 4 1
675.3.c.m 2 5.c odd 4 1
675.3.c.m 2 15.e even 4 1
2160.3.c.b 2 12.b even 2 1
2160.3.c.b 2 20.d odd 2 1
2160.3.c.e 2 4.b odd 2 1
2160.3.c.e 2 60.h even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{3}^{\mathrm{new}}(135, [\chi])\):

\( T_{2} + 1 \) Copy content Toggle raw display
\( T_{7}^{2} + 36 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 1)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} - 8T + 25 \) Copy content Toggle raw display
$7$ \( T^{2} + 36 \) Copy content Toggle raw display
$11$ \( T^{2} + 441 \) Copy content Toggle raw display
$13$ \( T^{2} + 225 \) Copy content Toggle raw display
$17$ \( (T - 23)^{2} \) Copy content Toggle raw display
$19$ \( (T - 14)^{2} \) Copy content Toggle raw display
$23$ \( (T + 7)^{2} \) Copy content Toggle raw display
$29$ \( T^{2} + 9 \) Copy content Toggle raw display
$31$ \( (T + 25)^{2} \) Copy content Toggle raw display
$37$ \( T^{2} + 2916 \) Copy content Toggle raw display
$41$ \( T^{2} + 576 \) Copy content Toggle raw display
$43$ \( T^{2} + 225 \) Copy content Toggle raw display
$47$ \( (T + 49)^{2} \) Copy content Toggle raw display
$53$ \( (T - 14)^{2} \) Copy content Toggle raw display
$59$ \( T^{2} + 900 \) Copy content Toggle raw display
$61$ \( (T - 44)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} + 4356 \) Copy content Toggle raw display
$71$ \( T^{2} + 324 \) Copy content Toggle raw display
$73$ \( T^{2} \) Copy content Toggle raw display
$79$ \( (T + 37)^{2} \) Copy content Toggle raw display
$83$ \( (T - 116)^{2} \) Copy content Toggle raw display
$89$ \( T^{2} + 15876 \) Copy content Toggle raw display
$97$ \( T^{2} + 6084 \) Copy content Toggle raw display
show more
show less