Properties

Label 675.2.ba.c.443.18
Level $675$
Weight $2$
Character 675.443
Analytic conductor $5.390$
Analytic rank $0$
Dimension $288$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [675,2,Mod(32,675)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("675.32"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(675, base_ring=CyclotomicField(36)) chi = DirichletCharacter(H, H._module([10, 9])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 675 = 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 675.ba (of order \(36\), degree \(12\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [288] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.38990213644\)
Analytic rank: \(0\)
Dimension: \(288\)
Relative dimension: \(24\) over \(\Q(\zeta_{36})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{36}]$

Embedding invariants

Embedding label 443.18
Character \(\chi\) \(=\) 675.443
Dual form 675.2.ba.c.32.18

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.140766 + 1.60897i) q^{2} +(-1.63374 + 0.575232i) q^{3} +(-0.599344 + 0.105680i) q^{4} +(-1.15550 - 2.54766i) q^{6} +(-0.784107 - 1.11982i) q^{7} +(0.581640 + 2.17071i) q^{8} +(2.33822 - 1.87956i) q^{9} +(-1.36918 - 3.76179i) q^{11} +(0.918381 - 0.517416i) q^{12} +(-6.44387 - 0.563766i) q^{13} +(1.69138 - 1.41923i) q^{14} +(-4.55450 + 1.65770i) q^{16} +(1.63825 - 6.11402i) q^{17} +(3.35329 + 3.49753i) q^{18} +(-0.488800 - 0.282209i) q^{19} +(1.92518 + 1.37845i) q^{21} +(5.85987 - 2.73250i) q^{22} +(-1.38722 - 0.971342i) q^{23} +(-2.19891 - 3.21180i) q^{24} -10.4473i q^{26} +(-2.73886 + 4.41573i) q^{27} +(0.588292 + 0.588292i) q^{28} +(-5.06125 - 4.24689i) q^{29} +(0.238769 + 1.35412i) q^{31} +(-1.40882 - 3.02123i) q^{32} +(4.40079 + 5.35820i) q^{33} +(10.0679 + 1.77524i) q^{34} +(-1.20276 + 1.37361i) q^{36} +(6.49160 + 1.73942i) q^{37} +(0.385258 - 0.826189i) q^{38} +(10.8519 - 2.78567i) q^{39} +(-1.33886 - 1.59560i) q^{41} +(-1.94688 + 3.29160i) q^{42} +(-3.12602 - 1.45769i) q^{43} +(1.21816 + 2.10991i) q^{44} +(1.36758 - 2.36872i) q^{46} +(1.10135 - 0.771171i) q^{47} +(6.48731 - 5.32815i) q^{48} +(1.75497 - 4.82173i) q^{49} +(0.840508 + 10.9311i) q^{51} +(3.92167 - 0.343102i) q^{52} +(7.66637 - 7.66637i) q^{53} +(-7.49030 - 3.78515i) q^{54} +(1.97474 - 2.35340i) q^{56} +(0.960908 + 0.179883i) q^{57} +(6.12066 - 8.74120i) q^{58} +(6.76439 + 2.46204i) q^{59} +(-1.59070 + 9.02132i) q^{61} +(-2.14513 + 0.574786i) q^{62} +(-3.93818 - 1.14461i) q^{63} +(-3.73216 + 2.15476i) q^{64} +(-8.00168 + 7.83498i) q^{66} +(-0.487878 + 5.57647i) q^{67} +(-0.335740 + 3.83753i) q^{68} +(2.82510 + 0.788948i) q^{69} +(0.594251 - 0.343091i) q^{71} +(5.43998 + 3.98237i) q^{72} +(-7.02013 + 1.88104i) q^{73} +(-1.88487 + 10.6896i) q^{74} +(0.322783 + 0.117483i) q^{76} +(-3.13895 + 4.48288i) q^{77} +(6.00964 + 17.0682i) q^{78} +(-8.21845 + 9.79437i) q^{79} +(1.93452 - 8.78963i) q^{81} +(2.37879 - 2.37879i) q^{82} +(-16.5771 + 1.45031i) q^{83} +(-1.29952 - 0.622713i) q^{84} +(1.90533 - 5.23485i) q^{86} +(10.7117 + 4.02693i) q^{87} +(7.36939 - 5.16010i) q^{88} +(0.301153 - 0.521612i) q^{89} +(4.42137 + 7.65803i) q^{91} +(0.934073 + 0.435565i) q^{92} +(-1.16902 - 2.07494i) q^{93} +(1.39582 + 1.66348i) q^{94} +(4.03955 + 4.12550i) q^{96} +(6.91688 - 14.8333i) q^{97} +(8.00504 + 2.14495i) q^{98} +(-10.2720 - 6.22243i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 288 q + 24 q^{6} + 36 q^{11} + 48 q^{21} - 192 q^{36} - 180 q^{41} - 60 q^{51} - 288 q^{56} + 72 q^{61} + 144 q^{71} + 216 q^{76} + 24 q^{81} - 36 q^{91} - 168 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/675\mathbb{Z}\right)^\times\).

\(n\) \(326\) \(352\)
\(\chi(n)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.140766 + 1.60897i 0.0995368 + 1.13771i 0.867575 + 0.497307i \(0.165678\pi\)
−0.768038 + 0.640404i \(0.778767\pi\)
\(3\) −1.63374 + 0.575232i −0.943241 + 0.332110i
\(4\) −0.599344 + 0.105680i −0.299672 + 0.0528402i
\(5\) 0 0
\(6\) −1.15550 2.54766i −0.471733 1.04008i
\(7\) −0.784107 1.11982i −0.296365 0.423252i 0.643161 0.765731i \(-0.277623\pi\)
−0.939526 + 0.342478i \(0.888734\pi\)
\(8\) 0.581640 + 2.17071i 0.205641 + 0.767462i
\(9\) 2.33822 1.87956i 0.779406 0.626520i
\(10\) 0 0
\(11\) −1.36918 3.76179i −0.412823 1.13422i −0.955682 0.294399i \(-0.904880\pi\)
0.542859 0.839824i \(-0.317342\pi\)
\(12\) 0.918381 0.517416i 0.265114 0.149365i
\(13\) −6.44387 0.563766i −1.78721 0.156360i −0.855082 0.518493i \(-0.826493\pi\)
−0.932127 + 0.362133i \(0.882049\pi\)
\(14\) 1.69138 1.41923i 0.452040 0.379306i
\(15\) 0 0
\(16\) −4.55450 + 1.65770i −1.13863 + 0.414426i
\(17\) 1.63825 6.11402i 0.397333 1.48287i −0.420436 0.907322i \(-0.638123\pi\)
0.817770 0.575546i \(-0.195210\pi\)
\(18\) 3.35329 + 3.49753i 0.790378 + 0.824377i
\(19\) −0.488800 0.282209i −0.112138 0.0647432i 0.442882 0.896580i \(-0.353956\pi\)
−0.555020 + 0.831837i \(0.687289\pi\)
\(20\) 0 0
\(21\) 1.92518 + 1.37845i 0.420109 + 0.300803i
\(22\) 5.85987 2.73250i 1.24933 0.582571i
\(23\) −1.38722 0.971342i −0.289255 0.202539i 0.419938 0.907553i \(-0.362052\pi\)
−0.709193 + 0.705014i \(0.750941\pi\)
\(24\) −2.19891 3.21180i −0.448851 0.655606i
\(25\) 0 0
\(26\) 10.4473i 2.04889i
\(27\) −2.73886 + 4.41573i −0.527094 + 0.849807i
\(28\) 0.588292 + 0.588292i 0.111177 + 0.111177i
\(29\) −5.06125 4.24689i −0.939851 0.788628i 0.0377087 0.999289i \(-0.487994\pi\)
−0.977559 + 0.210660i \(0.932439\pi\)
\(30\) 0 0
\(31\) 0.238769 + 1.35412i 0.0428841 + 0.243208i 0.998713 0.0507153i \(-0.0161501\pi\)
−0.955829 + 0.293923i \(0.905039\pi\)
\(32\) −1.40882 3.02123i −0.249047 0.534082i
\(33\) 4.40079 + 5.35820i 0.766079 + 0.932742i
\(34\) 10.0679 + 1.77524i 1.72662 + 0.304451i
\(35\) 0 0
\(36\) −1.20276 + 1.37361i −0.200460 + 0.228934i
\(37\) 6.49160 + 1.73942i 1.06721 + 0.285959i 0.749348 0.662177i \(-0.230367\pi\)
0.317866 + 0.948136i \(0.397034\pi\)
\(38\) 0.385258 0.826189i 0.0624971 0.134026i
\(39\) 10.8519 2.78567i 1.73770 0.446065i
\(40\) 0 0
\(41\) −1.33886 1.59560i −0.209095 0.249190i 0.651296 0.758824i \(-0.274226\pi\)
−0.860392 + 0.509633i \(0.829781\pi\)
\(42\) −1.94688 + 3.29160i −0.300411 + 0.507904i
\(43\) −3.12602 1.45769i −0.476713 0.222295i 0.169384 0.985550i \(-0.445822\pi\)
−0.646097 + 0.763255i \(0.723600\pi\)
\(44\) 1.21816 + 2.10991i 0.183644 + 0.318081i
\(45\) 0 0
\(46\) 1.36758 2.36872i 0.201639 0.349249i
\(47\) 1.10135 0.771171i 0.160648 0.112487i −0.490488 0.871448i \(-0.663182\pi\)
0.651136 + 0.758961i \(0.274293\pi\)
\(48\) 6.48731 5.32815i 0.936362 0.769052i
\(49\) 1.75497 4.82173i 0.250709 0.688819i
\(50\) 0 0
\(51\) 0.840508 + 10.9311i 0.117695 + 1.53066i
\(52\) 3.92167 0.343102i 0.543838 0.0475797i
\(53\) 7.66637 7.66637i 1.05306 1.05306i 0.0545457 0.998511i \(-0.482629\pi\)
0.998511 0.0545457i \(-0.0173711\pi\)
\(54\) −7.49030 3.78515i −1.01930 0.515093i
\(55\) 0 0
\(56\) 1.97474 2.35340i 0.263886 0.314487i
\(57\) 0.960908 + 0.179883i 0.127275 + 0.0238261i
\(58\) 6.12066 8.74120i 0.803682 1.14778i
\(59\) 6.76439 + 2.46204i 0.880648 + 0.320530i 0.742471 0.669878i \(-0.233654\pi\)
0.138177 + 0.990408i \(0.455876\pi\)
\(60\) 0 0
\(61\) −1.59070 + 9.02132i −0.203669 + 1.15506i 0.695852 + 0.718185i \(0.255027\pi\)
−0.899521 + 0.436877i \(0.856084\pi\)
\(62\) −2.14513 + 0.574786i −0.272432 + 0.0729979i
\(63\) −3.93818 1.14461i −0.496164 0.144207i
\(64\) −3.73216 + 2.15476i −0.466520 + 0.269346i
\(65\) 0 0
\(66\) −8.00168 + 7.83498i −0.984939 + 0.964419i
\(67\) −0.487878 + 5.57647i −0.0596038 + 0.681274i 0.906345 + 0.422539i \(0.138861\pi\)
−0.965948 + 0.258735i \(0.916694\pi\)
\(68\) −0.335740 + 3.83753i −0.0407145 + 0.465369i
\(69\) 2.82510 + 0.788948i 0.340102 + 0.0949781i
\(70\) 0 0
\(71\) 0.594251 0.343091i 0.0705246 0.0407174i −0.464323 0.885666i \(-0.653702\pi\)
0.534848 + 0.844949i \(0.320369\pi\)
\(72\) 5.43998 + 3.98237i 0.641108 + 0.469326i
\(73\) −7.02013 + 1.88104i −0.821644 + 0.220159i −0.645065 0.764128i \(-0.723170\pi\)
−0.176579 + 0.984287i \(0.556503\pi\)
\(74\) −1.88487 + 10.6896i −0.219112 + 1.24264i
\(75\) 0 0
\(76\) 0.322783 + 0.117483i 0.0370258 + 0.0134763i
\(77\) −3.13895 + 4.48288i −0.357716 + 0.510872i
\(78\) 6.00964 + 17.0682i 0.680457 + 1.93260i
\(79\) −8.21845 + 9.79437i −0.924648 + 1.10195i 0.0698876 + 0.997555i \(0.477736\pi\)
−0.994536 + 0.104398i \(0.966709\pi\)
\(80\) 0 0
\(81\) 1.93452 8.78963i 0.214946 0.976626i
\(82\) 2.37879 2.37879i 0.262694 0.262694i
\(83\) −16.5771 + 1.45031i −1.81958 + 0.159192i −0.945293 0.326223i \(-0.894224\pi\)
−0.874283 + 0.485416i \(0.838668\pi\)
\(84\) −1.29952 0.622713i −0.141789 0.0679435i
\(85\) 0 0
\(86\) 1.90533 5.23485i 0.205457 0.564488i
\(87\) 10.7117 + 4.02693i 1.14842 + 0.431732i
\(88\) 7.36939 5.16010i 0.785580 0.550069i
\(89\) 0.301153 0.521612i 0.0319221 0.0552908i −0.849623 0.527391i \(-0.823170\pi\)
0.881545 + 0.472100i \(0.156504\pi\)
\(90\) 0 0
\(91\) 4.42137 + 7.65803i 0.463485 + 0.802780i
\(92\) 0.934073 + 0.435565i 0.0973838 + 0.0454108i
\(93\) −1.16902 2.07494i −0.121222 0.215161i
\(94\) 1.39582 + 1.66348i 0.143968 + 0.171574i
\(95\) 0 0
\(96\) 4.03955 + 4.12550i 0.412285 + 0.421057i
\(97\) 6.91688 14.8333i 0.702302 1.50609i −0.153146 0.988204i \(-0.548940\pi\)
0.855448 0.517888i \(-0.173282\pi\)
\(98\) 8.00504 + 2.14495i 0.808632 + 0.216672i
\(99\) −10.2720 6.22243i −1.03237 0.625378i
\(100\) 0 0
\(101\) −9.25810 1.63245i −0.921215 0.162435i −0.307124 0.951670i \(-0.599366\pi\)
−0.614092 + 0.789235i \(0.710478\pi\)
\(102\) −17.4695 + 2.89108i −1.72973 + 0.286260i
\(103\) −7.65736 16.4213i −0.754502 1.61803i −0.785767 0.618523i \(-0.787731\pi\)
0.0312651 0.999511i \(-0.490046\pi\)
\(104\) −2.52424 14.3157i −0.247522 1.40377i
\(105\) 0 0
\(106\) 13.4141 + 11.2558i 1.30289 + 1.09326i
\(107\) −1.55188 1.55188i −0.150026 0.150026i 0.628104 0.778130i \(-0.283831\pi\)
−0.778130 + 0.628104i \(0.783831\pi\)
\(108\) 1.17486 2.93598i 0.113051 0.282515i
\(109\) 2.31464i 0.221703i 0.993837 + 0.110851i \(0.0353577\pi\)
−0.993837 + 0.110851i \(0.964642\pi\)
\(110\) 0 0
\(111\) −11.6062 + 0.892415i −1.10161 + 0.0847043i
\(112\) 5.42754 + 3.80041i 0.512855 + 0.359105i
\(113\) 0.613289 0.285981i 0.0576934 0.0269029i −0.393557 0.919300i \(-0.628756\pi\)
0.451251 + 0.892397i \(0.350978\pi\)
\(114\) −0.154162 + 1.57139i −0.0144386 + 0.147174i
\(115\) 0 0
\(116\) 3.48224 + 2.01047i 0.323318 + 0.186668i
\(117\) −16.1268 + 10.7934i −1.49092 + 0.997853i
\(118\) −3.00913 + 11.2302i −0.277013 + 1.03383i
\(119\) −8.13117 + 2.95950i −0.745383 + 0.271297i
\(120\) 0 0
\(121\) −3.84994 + 3.23048i −0.349995 + 0.293680i
\(122\) −14.7389 1.28949i −1.33440 0.116745i
\(123\) 3.10519 + 1.83663i 0.279986 + 0.165604i
\(124\) −0.286209 0.786352i −0.0257023 0.0706165i
\(125\) 0 0
\(126\) 1.28727 6.49752i 0.114679 0.578845i
\(127\) 1.10450 + 4.12205i 0.0980085 + 0.365773i 0.997458 0.0712511i \(-0.0226992\pi\)
−0.899450 + 0.437024i \(0.856033\pi\)
\(128\) −7.81640 11.1630i −0.690879 0.986677i
\(129\) 5.94561 + 0.583296i 0.523481 + 0.0513564i
\(130\) 0 0
\(131\) 10.6271 1.87385i 0.928496 0.163719i 0.311105 0.950375i \(-0.399301\pi\)
0.617391 + 0.786656i \(0.288190\pi\)
\(132\) −3.20384 2.74632i −0.278859 0.239037i
\(133\) 0.0672482 + 0.768651i 0.00583116 + 0.0666505i
\(134\) −9.04103 −0.781026
\(135\) 0 0
\(136\) 14.2246 1.21975
\(137\) −1.42197 16.2532i −0.121487 1.38860i −0.775131 0.631801i \(-0.782316\pi\)
0.653643 0.756803i \(-0.273240\pi\)
\(138\) −0.871711 + 4.65655i −0.0742050 + 0.396392i
\(139\) −17.7679 + 3.13296i −1.50705 + 0.265734i −0.865330 0.501202i \(-0.832891\pi\)
−0.641723 + 0.766937i \(0.721780\pi\)
\(140\) 0 0
\(141\) −1.35571 + 1.89342i −0.114172 + 0.159455i
\(142\) 0.635672 + 0.907834i 0.0533444 + 0.0761837i
\(143\) 6.70205 + 25.0124i 0.560454 + 2.09164i
\(144\) −7.53366 + 12.4365i −0.627805 + 1.03638i
\(145\) 0 0
\(146\) −4.01472 11.0304i −0.332261 0.912879i
\(147\) −0.0935477 + 8.88697i −0.00771568 + 0.732985i
\(148\) −4.07452 0.356475i −0.334924 0.0293020i
\(149\) 7.44284 6.24528i 0.609741 0.511633i −0.284819 0.958581i \(-0.591934\pi\)
0.894560 + 0.446948i \(0.147489\pi\)
\(150\) 0 0
\(151\) 2.08611 0.759282i 0.169765 0.0617895i −0.255739 0.966746i \(-0.582319\pi\)
0.425505 + 0.904956i \(0.360097\pi\)
\(152\) 0.328288 1.22519i 0.0266277 0.0993759i
\(153\) −7.66108 17.3751i −0.619362 1.40469i
\(154\) −7.65467 4.41943i −0.616831 0.356127i
\(155\) 0 0
\(156\) −6.20963 + 2.81641i −0.497168 + 0.225493i
\(157\) −16.4399 + 7.66606i −1.31205 + 0.611818i −0.947616 0.319412i \(-0.896515\pi\)
−0.364432 + 0.931230i \(0.618737\pi\)
\(158\) −16.9157 11.8445i −1.34574 0.942298i
\(159\) −8.11492 + 16.9348i −0.643555 + 1.34302i
\(160\) 0 0
\(161\) 2.31507i 0.182453i
\(162\) 14.4145 + 1.87529i 1.13251 + 0.147337i
\(163\) 14.0631 + 14.0631i 1.10151 + 1.10151i 0.994229 + 0.107281i \(0.0342144\pi\)
0.107281 + 0.994229i \(0.465786\pi\)
\(164\) 0.971063 + 0.814818i 0.0758273 + 0.0636266i
\(165\) 0 0
\(166\) −4.66700 26.4679i −0.362230 2.05431i
\(167\) −8.17550 17.5324i −0.632639 1.35670i −0.917348 0.398086i \(-0.869675\pi\)
0.284709 0.958614i \(-0.408103\pi\)
\(168\) −1.87246 + 4.98078i −0.144463 + 0.384276i
\(169\) 28.4031 + 5.00824i 2.18486 + 0.385249i
\(170\) 0 0
\(171\) −1.67335 + 0.258863i −0.127964 + 0.0197958i
\(172\) 2.02761 + 0.543295i 0.154604 + 0.0414259i
\(173\) −6.87190 + 14.7368i −0.522461 + 1.12042i 0.451200 + 0.892423i \(0.350996\pi\)
−0.973661 + 0.227999i \(0.926782\pi\)
\(174\) −4.97135 + 17.8017i −0.376877 + 1.34954i
\(175\) 0 0
\(176\) 12.4719 + 14.8634i 0.940102 + 1.12037i
\(177\) −12.4675 0.131238i −0.937114 0.00986443i
\(178\) 0.881649 + 0.411119i 0.0660824 + 0.0308147i
\(179\) 5.29497 + 9.17116i 0.395765 + 0.685485i 0.993199 0.116433i \(-0.0371462\pi\)
−0.597434 + 0.801918i \(0.703813\pi\)
\(180\) 0 0
\(181\) 5.21970 9.04078i 0.387977 0.671996i −0.604200 0.796833i \(-0.706507\pi\)
0.992177 + 0.124836i \(0.0398406\pi\)
\(182\) −11.6991 + 8.19183i −0.867198 + 0.607219i
\(183\) −2.59056 15.6535i −0.191499 1.15714i
\(184\) 1.30164 3.57622i 0.0959581 0.263643i
\(185\) 0 0
\(186\) 3.17395 2.17300i 0.232725 0.159332i
\(187\) −25.2427 + 2.20845i −1.84593 + 0.161498i
\(188\) −0.578587 + 0.578587i −0.0421978 + 0.0421978i
\(189\) 7.09238 0.395373i 0.515895 0.0287591i
\(190\) 0 0
\(191\) −4.58915 + 5.46914i −0.332060 + 0.395733i −0.906079 0.423108i \(-0.860939\pi\)
0.574019 + 0.818842i \(0.305383\pi\)
\(192\) 4.85789 5.66718i 0.350588 0.408994i
\(193\) 6.24300 8.91592i 0.449381 0.641782i −0.528993 0.848626i \(-0.677430\pi\)
0.978374 + 0.206844i \(0.0663192\pi\)
\(194\) 24.8399 + 9.04099i 1.78340 + 0.649106i
\(195\) 0 0
\(196\) −0.542265 + 3.07534i −0.0387332 + 0.219667i
\(197\) 0.930429 0.249308i 0.0662904 0.0177624i −0.225521 0.974238i \(-0.572409\pi\)
0.291812 + 0.956476i \(0.405742\pi\)
\(198\) 8.56574 17.4031i 0.608741 1.23679i
\(199\) −13.5074 + 7.79853i −0.957517 + 0.552823i −0.895408 0.445247i \(-0.853116\pi\)
−0.0621092 + 0.998069i \(0.519783\pi\)
\(200\) 0 0
\(201\) −2.41070 9.39115i −0.170037 0.662401i
\(202\) 1.32333 15.1258i 0.0931094 1.06425i
\(203\) −0.787198 + 8.99771i −0.0552504 + 0.631515i
\(204\) −1.65896 6.46266i −0.116150 0.452476i
\(205\) 0 0
\(206\) 25.3434 14.6320i 1.76575 1.01946i
\(207\) −5.06931 + 0.336153i −0.352342 + 0.0233643i
\(208\) 30.2832 8.11435i 2.09976 0.562629i
\(209\) −0.392356 + 2.22516i −0.0271398 + 0.153918i
\(210\) 0 0
\(211\) 4.84666 + 1.76404i 0.333658 + 0.121442i 0.503416 0.864044i \(-0.332076\pi\)
−0.169758 + 0.985486i \(0.554299\pi\)
\(212\) −3.78460 + 5.40497i −0.259928 + 0.371215i
\(213\) −0.773495 + 0.902353i −0.0529990 + 0.0618282i
\(214\) 2.27847 2.71538i 0.155753 0.185619i
\(215\) 0 0
\(216\) −11.1783 3.37690i −0.760587 0.229769i
\(217\) 1.32916 1.32916i 0.0902290 0.0902290i
\(218\) −3.72418 + 0.325824i −0.252233 + 0.0220676i
\(219\) 10.3870 7.11133i 0.701891 0.480539i
\(220\) 0 0
\(221\) −14.0035 + 38.4744i −0.941979 + 2.58807i
\(222\) −3.06962 18.5483i −0.206020 1.24488i
\(223\) −19.0798 + 13.3598i −1.27768 + 0.894638i −0.997858 0.0654150i \(-0.979163\pi\)
−0.279818 + 0.960053i \(0.590274\pi\)
\(224\) −2.27857 + 3.94659i −0.152243 + 0.263693i
\(225\) 0 0
\(226\) 0.546465 + 0.946505i 0.0363503 + 0.0629606i
\(227\) 5.88846 + 2.74583i 0.390831 + 0.182247i 0.608093 0.793866i \(-0.291935\pi\)
−0.217262 + 0.976113i \(0.569713\pi\)
\(228\) −0.594924 0.00626240i −0.0393998 0.000414738i
\(229\) −12.2060 14.5465i −0.806595 0.961263i 0.193207 0.981158i \(-0.438111\pi\)
−0.999802 + 0.0198953i \(0.993667\pi\)
\(230\) 0 0
\(231\) 2.54953 9.12949i 0.167747 0.600677i
\(232\) 6.27495 13.4567i 0.411971 0.883474i
\(233\) 22.6295 + 6.06355i 1.48251 + 0.397236i 0.907199 0.420701i \(-0.138216\pi\)
0.575307 + 0.817937i \(0.304882\pi\)
\(234\) −19.6364 24.4281i −1.28367 1.59692i
\(235\) 0 0
\(236\) −4.31438 0.760742i −0.280842 0.0495201i
\(237\) 7.79279 20.7290i 0.506196 1.34649i
\(238\) −5.90634 12.6662i −0.382851 0.821026i
\(239\) −0.177210 1.00501i −0.0114627 0.0650084i 0.978540 0.206058i \(-0.0660635\pi\)
−0.990003 + 0.141049i \(0.954952\pi\)
\(240\) 0 0
\(241\) 3.23680 + 2.71599i 0.208500 + 0.174953i 0.741058 0.671441i \(-0.234324\pi\)
−0.532557 + 0.846394i \(0.678769\pi\)
\(242\) −5.73968 5.73968i −0.368961 0.368961i
\(243\) 1.89558 + 15.4728i 0.121601 + 0.992579i
\(244\) 5.57498i 0.356901i
\(245\) 0 0
\(246\) −2.51797 + 5.25469i −0.160540 + 0.335027i
\(247\) 2.99067 + 2.09409i 0.190292 + 0.133244i
\(248\) −2.80053 + 1.30591i −0.177834 + 0.0829254i
\(249\) 26.2485 11.9051i 1.66343 0.754456i
\(250\) 0 0
\(251\) −20.9072 12.0708i −1.31965 0.761900i −0.335977 0.941870i \(-0.609066\pi\)
−0.983672 + 0.179970i \(0.942400\pi\)
\(252\) 2.48129 + 0.269825i 0.156306 + 0.0169974i
\(253\) −1.75463 + 6.54837i −0.110313 + 0.411693i
\(254\) −6.47677 + 2.35735i −0.406388 + 0.147913i
\(255\) 0 0
\(256\) 10.2580 8.60748i 0.641125 0.537968i
\(257\) 20.4386 + 1.78815i 1.27493 + 0.111542i 0.704439 0.709765i \(-0.251199\pi\)
0.570487 + 0.821306i \(0.306754\pi\)
\(258\) −0.101563 + 9.64839i −0.00632302 + 0.600683i
\(259\) −3.14227 8.63332i −0.195251 0.536449i
\(260\) 0 0
\(261\) −19.8166 0.417240i −1.22662 0.0258265i
\(262\) 4.51090 + 16.8349i 0.278685 + 1.04006i
\(263\) −2.57249 3.67390i −0.158627 0.226542i 0.731969 0.681337i \(-0.238601\pi\)
−0.890596 + 0.454795i \(0.849712\pi\)
\(264\) −9.07142 + 12.6694i −0.558307 + 0.779747i
\(265\) 0 0
\(266\) −1.22727 + 0.216400i −0.0752486 + 0.0132684i
\(267\) −0.191958 + 1.02541i −0.0117476 + 0.0627542i
\(268\) −0.296917 3.39378i −0.0181371 0.207308i
\(269\) 7.32723 0.446749 0.223374 0.974733i \(-0.428293\pi\)
0.223374 + 0.974733i \(0.428293\pi\)
\(270\) 0 0
\(271\) 19.5478 1.18745 0.593723 0.804669i \(-0.297657\pi\)
0.593723 + 0.804669i \(0.297657\pi\)
\(272\) 2.67383 + 30.5620i 0.162125 + 1.85310i
\(273\) −11.6285 9.96793i −0.703789 0.603286i
\(274\) 25.9507 4.57580i 1.56774 0.276434i
\(275\) 0 0
\(276\) −1.77658 0.174292i −0.106938 0.0104912i
\(277\) 11.9695 + 17.0942i 0.719177 + 1.02709i 0.997774 + 0.0666833i \(0.0212417\pi\)
−0.278597 + 0.960408i \(0.589869\pi\)
\(278\) −7.54195 28.1469i −0.452336 1.68814i
\(279\) 3.10345 + 2.71746i 0.185799 + 0.162690i
\(280\) 0 0
\(281\) −1.84144 5.05932i −0.109851 0.301814i 0.872571 0.488488i \(-0.162451\pi\)
−0.982422 + 0.186674i \(0.940229\pi\)
\(282\) −3.23730 1.91477i −0.192778 0.114023i
\(283\) 8.09174 + 0.707935i 0.481004 + 0.0420824i 0.325080 0.945687i \(-0.394609\pi\)
0.155924 + 0.987769i \(0.450164\pi\)
\(284\) −0.319902 + 0.268430i −0.0189827 + 0.0159284i
\(285\) 0 0
\(286\) −39.3007 + 14.3043i −2.32390 + 0.845830i
\(287\) −0.736969 + 2.75040i −0.0435019 + 0.162351i
\(288\) −8.97270 4.41632i −0.528722 0.260234i
\(289\) −19.9750 11.5325i −1.17500 0.678385i
\(290\) 0 0
\(291\) −2.76780 + 28.2125i −0.162252 + 1.65385i
\(292\) 4.00868 1.86928i 0.234590 0.109391i
\(293\) −4.72431 3.30800i −0.275997 0.193255i 0.427380 0.904072i \(-0.359437\pi\)
−0.703377 + 0.710817i \(0.748326\pi\)
\(294\) −14.3120 + 1.10047i −0.834693 + 0.0641808i
\(295\) 0 0
\(296\) 15.1031i 0.877851i
\(297\) 20.3610 + 4.25709i 1.18147 + 0.247021i
\(298\) 11.0961 + 11.0961i 0.642783 + 0.642783i
\(299\) 8.39145 + 7.04127i 0.485290 + 0.407207i
\(300\) 0 0
\(301\) 0.818784 + 4.64356i 0.0471940 + 0.267650i
\(302\) 1.51531 + 3.24960i 0.0871966 + 0.186994i
\(303\) 16.0644 2.65855i 0.922874 0.152730i
\(304\) 2.69406 + 0.475035i 0.154515 + 0.0272451i
\(305\) 0 0
\(306\) 26.8775 14.7723i 1.53649 0.844474i
\(307\) 9.73795 + 2.60928i 0.555774 + 0.148919i 0.525764 0.850630i \(-0.323779\pi\)
0.0300101 + 0.999550i \(0.490446\pi\)
\(308\) 1.40756 3.01851i 0.0802029 0.171996i
\(309\) 21.9562 + 22.4233i 1.24904 + 1.27562i
\(310\) 0 0
\(311\) 13.2713 + 15.8161i 0.752548 + 0.896851i 0.997352 0.0727212i \(-0.0231683\pi\)
−0.244805 + 0.969572i \(0.578724\pi\)
\(312\) 12.3588 + 21.9361i 0.699679 + 1.24189i
\(313\) 13.1567 + 6.13505i 0.743658 + 0.346773i 0.757242 0.653134i \(-0.226546\pi\)
−0.0135841 + 0.999908i \(0.504324\pi\)
\(314\) −14.6486 25.3722i −0.826670 1.43183i
\(315\) 0 0
\(316\) 3.89060 6.73872i 0.218863 0.379083i
\(317\) 24.5968 17.2229i 1.38150 0.967334i 0.382437 0.923982i \(-0.375085\pi\)
0.999060 0.0433528i \(-0.0138039\pi\)
\(318\) −28.3898 10.6728i −1.59202 0.598500i
\(319\) −9.04617 + 24.8541i −0.506488 + 1.39156i
\(320\) 0 0
\(321\) 3.42806 + 1.64268i 0.191336 + 0.0916854i
\(322\) −3.72487 + 0.325884i −0.207579 + 0.0181608i
\(323\) −2.52621 + 2.52621i −0.140562 + 0.140562i
\(324\) −0.230548 + 5.47245i −0.0128082 + 0.304025i
\(325\) 0 0
\(326\) −20.6475 + 24.6067i −1.14356 + 1.36284i
\(327\) −1.33146 3.78153i −0.0736297 0.209119i
\(328\) 2.68484 3.83435i 0.148245 0.211717i
\(329\) −1.72715 0.628630i −0.0952207 0.0346575i
\(330\) 0 0
\(331\) 5.01737 28.4549i 0.275779 1.56402i −0.460695 0.887558i \(-0.652400\pi\)
0.736475 0.676465i \(-0.236489\pi\)
\(332\) 9.78212 2.62111i 0.536864 0.143852i
\(333\) 18.4481 8.13421i 1.01095 0.445752i
\(334\) 27.0582 15.6221i 1.48056 0.854803i
\(335\) 0 0
\(336\) −11.0533 3.08678i −0.603008 0.168398i
\(337\) −1.50984 + 17.2575i −0.0822462 + 0.940078i 0.837209 + 0.546883i \(0.184186\pi\)
−0.919455 + 0.393195i \(0.871370\pi\)
\(338\) −4.05989 + 46.4047i −0.220829 + 2.52408i
\(339\) −0.837450 + 0.820003i −0.0454840 + 0.0445364i
\(340\) 0 0
\(341\) 4.76702 2.75224i 0.258148 0.149042i
\(342\) −0.652053 2.65592i −0.0352590 0.143616i
\(343\) −16.0188 + 4.29223i −0.864935 + 0.231759i
\(344\) 1.34600 7.63352i 0.0725713 0.411572i
\(345\) 0 0
\(346\) −24.6784 8.98221i −1.32672 0.482887i
\(347\) −7.07573 + 10.1052i −0.379845 + 0.542475i −0.962865 0.269983i \(-0.912982\pi\)
0.583020 + 0.812458i \(0.301871\pi\)
\(348\) −6.84557 1.28150i −0.366961 0.0686954i
\(349\) −8.50408 + 10.1348i −0.455213 + 0.542502i −0.944019 0.329891i \(-0.892988\pi\)
0.488806 + 0.872392i \(0.337433\pi\)
\(350\) 0 0
\(351\) 20.1383 26.9103i 1.07490 1.43637i
\(352\) −9.43630 + 9.43630i −0.502956 + 0.502956i
\(353\) 21.7758 1.90514i 1.15901 0.101400i 0.508613 0.860995i \(-0.330159\pi\)
0.650396 + 0.759595i \(0.274603\pi\)
\(354\) −1.54385 20.0783i −0.0820545 1.06715i
\(355\) 0 0
\(356\) −0.125370 + 0.344451i −0.00664459 + 0.0182559i
\(357\) 11.5818 9.51236i 0.612975 0.503448i
\(358\) −14.0107 + 9.81043i −0.740491 + 0.518497i
\(359\) −2.83192 + 4.90502i −0.149463 + 0.258877i −0.931029 0.364945i \(-0.881088\pi\)
0.781566 + 0.623822i \(0.214421\pi\)
\(360\) 0 0
\(361\) −9.34072 16.1786i −0.491617 0.851505i
\(362\) 15.2811 + 7.12568i 0.803156 + 0.374518i
\(363\) 4.43153 7.49238i 0.232595 0.393248i
\(364\) −3.45922 4.12254i −0.181312 0.216080i
\(365\) 0 0
\(366\) 24.8213 6.37161i 1.29743 0.333049i
\(367\) −0.650455 + 1.39490i −0.0339535 + 0.0728134i −0.922553 0.385870i \(-0.873901\pi\)
0.888600 + 0.458684i \(0.151679\pi\)
\(368\) 7.92829 + 2.12438i 0.413290 + 0.110741i
\(369\) −6.12957 1.21438i −0.319093 0.0632179i
\(370\) 0 0
\(371\) −14.5962 2.57371i −0.757798 0.133620i
\(372\) 0.919926 + 1.12006i 0.0476959 + 0.0580724i
\(373\) 7.18493 + 15.4081i 0.372021 + 0.797802i 0.999811 + 0.0194197i \(0.00618187\pi\)
−0.627790 + 0.778383i \(0.716040\pi\)
\(374\) −7.10666 40.3038i −0.367476 2.08406i
\(375\) 0 0
\(376\) 2.31458 + 1.94216i 0.119365 + 0.100159i
\(377\) 30.2198 + 30.2198i 1.55640 + 1.55640i
\(378\) 1.63451 + 11.3557i 0.0840701 + 0.584077i
\(379\) 37.4048i 1.92136i −0.277663 0.960679i \(-0.589560\pi\)
0.277663 0.960679i \(-0.410440\pi\)
\(380\) 0 0
\(381\) −4.17560 6.09902i −0.213922 0.312462i
\(382\) −9.44567 6.61393i −0.483282 0.338398i
\(383\) 21.8049 10.1678i 1.11418 0.519550i 0.223738 0.974649i \(-0.428174\pi\)
0.890441 + 0.455099i \(0.150396\pi\)
\(384\) 19.1913 + 13.7412i 0.979351 + 0.701226i
\(385\) 0 0
\(386\) 15.2242 + 8.78971i 0.774893 + 0.447385i
\(387\) −10.0491 + 2.46715i −0.510825 + 0.125412i
\(388\) −2.57800 + 9.62121i −0.130878 + 0.488443i
\(389\) 5.94474 2.16371i 0.301410 0.109704i −0.186888 0.982381i \(-0.559840\pi\)
0.488298 + 0.872677i \(0.337618\pi\)
\(390\) 0 0
\(391\) −8.21141 + 6.89019i −0.415269 + 0.348452i
\(392\) 11.4873 + 1.00501i 0.580198 + 0.0507608i
\(393\) −16.2841 + 9.17444i −0.821423 + 0.462789i
\(394\) 0.532101 + 1.46194i 0.0268069 + 0.0736513i
\(395\) 0 0
\(396\) 6.81402 + 2.64383i 0.342417 + 0.132857i
\(397\) −7.91207 29.5283i −0.397095 1.48198i −0.818182 0.574960i \(-0.805018\pi\)
0.421086 0.907021i \(-0.361649\pi\)
\(398\) −14.4490 20.6353i −0.724261 1.03435i
\(399\) −0.552018 1.21709i −0.0276355 0.0609308i
\(400\) 0 0
\(401\) −2.27324 + 0.400833i −0.113520 + 0.0200167i −0.230120 0.973162i \(-0.573912\pi\)
0.116599 + 0.993179i \(0.462801\pi\)
\(402\) 14.7707 5.20069i 0.736696 0.259387i
\(403\) −0.775186 8.86041i −0.0386147 0.441369i
\(404\) 5.72130 0.284645
\(405\) 0 0
\(406\) −14.5878 −0.723982
\(407\) −2.34484 26.8017i −0.116229 1.32851i
\(408\) −23.2394 + 8.18246i −1.15052 + 0.405092i
\(409\) −13.8912 + 2.44939i −0.686874 + 0.121114i −0.506184 0.862426i \(-0.668944\pi\)
−0.180690 + 0.983540i \(0.557833\pi\)
\(410\) 0 0
\(411\) 11.6725 + 25.7355i 0.575761 + 1.26944i
\(412\) 6.32479 + 9.03274i 0.311600 + 0.445011i
\(413\) −2.54696 9.50540i −0.125328 0.467730i
\(414\) −1.25445 8.10904i −0.0616528 0.398537i
\(415\) 0 0
\(416\) 7.37500 + 20.2626i 0.361589 + 0.993458i
\(417\) 27.2260 15.3391i 1.33326 0.751159i
\(418\) −3.63544 0.318060i −0.177815 0.0155568i
\(419\) −22.4508 + 18.8385i −1.09679 + 0.920320i −0.997205 0.0747090i \(-0.976197\pi\)
−0.0995889 + 0.995029i \(0.531753\pi\)
\(420\) 0 0
\(421\) −19.6404 + 7.14853i −0.957216 + 0.348398i −0.772942 0.634477i \(-0.781216\pi\)
−0.184274 + 0.982875i \(0.558993\pi\)
\(422\) −2.15604 + 8.04644i −0.104954 + 0.391694i
\(423\) 1.12573 3.87321i 0.0547347 0.188322i
\(424\) 21.1005 + 12.1824i 1.02473 + 0.591630i
\(425\) 0 0
\(426\) −1.56074 1.11751i −0.0756180 0.0541434i
\(427\) 11.3495 5.29238i 0.549243 0.256116i
\(428\) 1.09411 + 0.766106i 0.0528859 + 0.0370311i
\(429\) −25.3373 37.0085i −1.22330 1.78679i
\(430\) 0 0
\(431\) 22.4642i 1.08206i −0.841003 0.541030i \(-0.818034\pi\)
0.841003 0.541030i \(-0.181966\pi\)
\(432\) 5.15417 24.6516i 0.247980 1.18605i
\(433\) −7.75200 7.75200i −0.372537 0.372537i 0.495863 0.868401i \(-0.334852\pi\)
−0.868401 + 0.495863i \(0.834852\pi\)
\(434\) 2.32567 + 1.95147i 0.111636 + 0.0936734i
\(435\) 0 0
\(436\) −0.244612 1.38727i −0.0117148 0.0664380i
\(437\) 0.403952 + 0.866278i 0.0193236 + 0.0414397i
\(438\) 12.9040 + 15.7114i 0.616579 + 0.750718i
\(439\) 26.6574 + 4.70041i 1.27229 + 0.224338i 0.768702 0.639608i \(-0.220903\pi\)
0.503585 + 0.863946i \(0.332014\pi\)
\(440\) 0 0
\(441\) −4.95923 14.5728i −0.236154 0.693944i
\(442\) −63.8752 17.1153i −3.03823 0.814092i
\(443\) 17.4674 37.4589i 0.829901 1.77973i 0.243090 0.970004i \(-0.421839\pi\)
0.586810 0.809724i \(-0.300383\pi\)
\(444\) 6.86177 1.76141i 0.325645 0.0835927i
\(445\) 0 0
\(446\) −24.1813 28.8181i −1.14502 1.36458i
\(447\) −8.56718 + 14.4845i −0.405214 + 0.685094i
\(448\) 5.33936 + 2.48979i 0.252261 + 0.117631i
\(449\) −5.23440 9.06624i −0.247027 0.427862i 0.715673 0.698436i \(-0.246120\pi\)
−0.962699 + 0.270573i \(0.912787\pi\)
\(450\) 0 0
\(451\) −4.16915 + 7.22119i −0.196318 + 0.340032i
\(452\) −0.337348 + 0.236214i −0.0158675 + 0.0111106i
\(453\) −2.97140 + 2.44047i −0.139609 + 0.114663i
\(454\) −3.58906 + 9.86086i −0.168443 + 0.462793i
\(455\) 0 0
\(456\) 0.168429 + 2.19048i 0.00788743 + 0.102579i
\(457\) −34.6748 + 3.03365i −1.62202 + 0.141908i −0.861622 0.507550i \(-0.830551\pi\)
−0.760397 + 0.649458i \(0.774996\pi\)
\(458\) 21.6867 21.6867i 1.01335 1.01335i
\(459\) 22.5109 + 23.9795i 1.05072 + 1.11927i
\(460\) 0 0
\(461\) 20.9800 25.0030i 0.977135 1.16450i −0.00923458 0.999957i \(-0.502939\pi\)
0.986369 0.164546i \(-0.0526161\pi\)
\(462\) 15.0479 + 2.81699i 0.700093 + 0.131058i
\(463\) −3.37708 + 4.82297i −0.156946 + 0.224143i −0.889923 0.456112i \(-0.849242\pi\)
0.732976 + 0.680254i \(0.238131\pi\)
\(464\) 30.0916 + 10.9524i 1.39697 + 0.508454i
\(465\) 0 0
\(466\) −6.57058 + 37.2636i −0.304376 + 1.72620i
\(467\) −19.7683 + 5.29691i −0.914769 + 0.245112i −0.685348 0.728216i \(-0.740350\pi\)
−0.229421 + 0.973327i \(0.573683\pi\)
\(468\) 8.52484 8.17326i 0.394061 0.377809i
\(469\) 6.62720 3.82621i 0.306015 0.176678i
\(470\) 0 0
\(471\) 22.4488 21.9811i 1.03439 1.01284i
\(472\) −1.40993 + 16.1155i −0.0648972 + 0.741778i
\(473\) −1.20343 + 13.7553i −0.0553337 + 0.632467i
\(474\) 34.4492 + 9.62039i 1.58230 + 0.441879i
\(475\) 0 0
\(476\) 4.56060 2.63306i 0.209035 0.120686i
\(477\) 3.51624 32.3350i 0.160998 1.48052i
\(478\) 1.59208 0.426596i 0.0728199 0.0195120i
\(479\) −1.10017 + 6.23936i −0.0502679 + 0.285083i −0.999571 0.0292779i \(-0.990679\pi\)
0.949303 + 0.314361i \(0.101790\pi\)
\(480\) 0 0
\(481\) −40.8504 14.8683i −1.86262 0.677938i
\(482\) −3.91431 + 5.59022i −0.178292 + 0.254627i
\(483\) −1.33170 3.78223i −0.0605946 0.172097i
\(484\) 1.96604 2.34303i 0.0893654 0.106501i
\(485\) 0 0
\(486\) −24.6283 + 5.22796i −1.11716 + 0.237145i
\(487\) 4.69365 4.69365i 0.212690 0.212690i −0.592719 0.805409i \(-0.701946\pi\)
0.805409 + 0.592719i \(0.201946\pi\)
\(488\) −20.5079 + 1.79421i −0.928349 + 0.0812200i
\(489\) −31.0651 14.8860i −1.40481 0.673166i
\(490\) 0 0
\(491\) 2.14176 5.88443i 0.0966562 0.265561i −0.881936 0.471369i \(-0.843760\pi\)
0.978592 + 0.205808i \(0.0659823\pi\)
\(492\) −2.05517 0.772616i −0.0926544 0.0348322i
\(493\) −34.2572 + 23.9871i −1.54287 + 1.08033i
\(494\) −2.94833 + 5.10666i −0.132652 + 0.229759i
\(495\) 0 0
\(496\) −3.33221 5.77155i −0.149620 0.259150i
\(497\) −0.850156 0.396434i −0.0381347 0.0177825i
\(498\) 22.8498 + 40.5571i 1.02393 + 1.81741i
\(499\) 15.3830 + 18.3328i 0.688638 + 0.820687i 0.991190 0.132446i \(-0.0422831\pi\)
−0.302552 + 0.953133i \(0.597839\pi\)
\(500\) 0 0
\(501\) 23.4419 + 23.9406i 1.04730 + 1.06959i
\(502\) 16.4784 35.3381i 0.735468 1.57722i
\(503\) 7.23333 + 1.93816i 0.322518 + 0.0864185i 0.416446 0.909161i \(-0.363276\pi\)
−0.0939277 + 0.995579i \(0.529942\pi\)
\(504\) 0.194010 9.21440i 0.00864190 0.410442i
\(505\) 0 0
\(506\) −10.7831 1.90135i −0.479368 0.0845255i
\(507\) −49.2843 + 8.15622i −2.18879 + 0.362231i
\(508\) −1.09759 2.35380i −0.0486979 0.104433i
\(509\) 1.85342 + 10.5113i 0.0821515 + 0.465904i 0.997935 + 0.0642321i \(0.0204598\pi\)
−0.915783 + 0.401672i \(0.868429\pi\)
\(510\) 0 0
\(511\) 7.61095 + 6.38635i 0.336689 + 0.282515i
\(512\) −3.97904 3.97904i −0.175850 0.175850i
\(513\) 2.58491 1.38548i 0.114127 0.0611704i
\(514\) 33.1368i 1.46160i
\(515\) 0 0
\(516\) −3.62510 + 0.278739i −0.159586 + 0.0122708i
\(517\) −4.40893 3.08717i −0.193905 0.135773i
\(518\) 13.4484 6.27109i 0.590889 0.275536i
\(519\) 2.74981 28.0291i 0.120703 1.23034i
\(520\) 0 0
\(521\) 12.8647 + 7.42744i 0.563613 + 0.325402i 0.754594 0.656192i \(-0.227834\pi\)
−0.190982 + 0.981594i \(0.561167\pi\)
\(522\) −2.11818 31.9430i −0.0927103 1.39811i
\(523\) 5.65314 21.0978i 0.247194 0.922542i −0.725073 0.688672i \(-0.758194\pi\)
0.972268 0.233870i \(-0.0751391\pi\)
\(524\) −6.17127 + 2.24616i −0.269593 + 0.0981239i
\(525\) 0 0
\(526\) 5.54906 4.65621i 0.241951 0.203021i
\(527\) 8.67030 + 0.758553i 0.377684 + 0.0330431i
\(528\) −28.9257 17.1087i −1.25883 0.744561i
\(529\) −6.88559 18.9180i −0.299373 0.822522i
\(530\) 0 0
\(531\) 20.4441 6.95729i 0.887200 0.301921i
\(532\) −0.121536 0.453579i −0.00526926 0.0196651i
\(533\) 7.72792 + 11.0366i 0.334734 + 0.478049i
\(534\) −1.67687 0.164510i −0.0725654 0.00711906i
\(535\) 0 0
\(536\) −12.3887 + 2.18446i −0.535109 + 0.0943542i
\(537\) −13.9262 11.9375i −0.600958 0.515140i
\(538\) 1.03143 + 11.7893i 0.0444680 + 0.508271i
\(539\) −20.5412 −0.884773
\(540\) 0 0
\(541\) −4.75367 −0.204376 −0.102188 0.994765i \(-0.532584\pi\)
−0.102188 + 0.994765i \(0.532584\pi\)
\(542\) 2.75168 + 31.4518i 0.118195 + 1.35097i
\(543\) −3.32709 + 17.7728i −0.142779 + 0.762705i
\(544\) −20.7798 + 3.66405i −0.890928 + 0.157095i
\(545\) 0 0
\(546\) 14.4012 20.1130i 0.616313 0.860758i
\(547\) 10.4741 + 14.9586i 0.447840 + 0.639582i 0.978071 0.208271i \(-0.0667837\pi\)
−0.530231 + 0.847853i \(0.677895\pi\)
\(548\) 2.56989 + 9.59097i 0.109780 + 0.409706i
\(549\) 13.2367 + 24.0836i 0.564929 + 1.02786i
\(550\) 0 0
\(551\) 1.27543 + 3.50421i 0.0543351 + 0.149284i
\(552\) −0.0693833 + 6.59137i −0.00295315 + 0.280547i
\(553\) 17.4121 + 1.52336i 0.740437 + 0.0647798i
\(554\) −25.8191 + 21.6648i −1.09695 + 0.920449i
\(555\) 0 0
\(556\) 10.3180 3.75544i 0.437580 0.159266i
\(557\) −4.50326 + 16.8064i −0.190809 + 0.712110i 0.802503 + 0.596649i \(0.203501\pi\)
−0.993312 + 0.115461i \(0.963165\pi\)
\(558\) −3.93544 + 5.37587i −0.166600 + 0.227579i
\(559\) 19.3219 + 11.1555i 0.817227 + 0.471826i
\(560\) 0 0
\(561\) 39.9697 18.1285i 1.68752 0.765384i
\(562\) 7.88106 3.67500i 0.332442 0.155020i
\(563\) −6.97840 4.88633i −0.294104 0.205934i 0.417206 0.908812i \(-0.363009\pi\)
−0.711311 + 0.702878i \(0.751898\pi\)
\(564\) 0.612440 1.27808i 0.0257884 0.0538170i
\(565\) 0 0
\(566\) 13.1190i 0.551432i
\(567\) −11.3597 + 4.72570i −0.477062 + 0.198461i
\(568\) 1.09039 + 1.09039i 0.0457518 + 0.0457518i
\(569\) −1.30840 1.09788i −0.0548512 0.0460256i 0.614950 0.788566i \(-0.289176\pi\)
−0.669801 + 0.742541i \(0.733621\pi\)
\(570\) 0 0
\(571\) −2.38472 13.5244i −0.0997975 0.565980i −0.993171 0.116665i \(-0.962779\pi\)
0.893374 0.449314i \(-0.148332\pi\)
\(572\) −6.66015 14.2827i −0.278475 0.597192i
\(573\) 4.35147 11.5750i 0.181785 0.483552i
\(574\) −4.52905 0.798594i −0.189039 0.0333327i
\(575\) 0 0
\(576\) −4.67660 + 12.0531i −0.194858 + 0.502213i
\(577\) 28.7885 + 7.71384i 1.19848 + 0.321131i 0.802232 0.597013i \(-0.203646\pi\)
0.396247 + 0.918144i \(0.370312\pi\)
\(578\) 15.7437 33.7624i 0.654851 1.40433i
\(579\) −5.07072 + 18.1575i −0.210732 + 0.754599i
\(580\) 0 0
\(581\) 14.6223 + 17.4262i 0.606636 + 0.722961i
\(582\) −45.7827 0.481926i −1.89775 0.0199765i
\(583\) −39.3359 18.3427i −1.62913 0.759675i
\(584\) −8.16638 14.1446i −0.337927 0.585307i
\(585\) 0 0
\(586\) 4.65744 8.06692i 0.192397 0.333241i
\(587\) −14.0836 + 9.86144i −0.581292 + 0.407025i −0.826904 0.562343i \(-0.809900\pi\)
0.245612 + 0.969368i \(0.421011\pi\)
\(588\) −0.883112 5.33623i −0.0364189 0.220063i
\(589\) 0.265436 0.729279i 0.0109371 0.0300494i
\(590\) 0 0
\(591\) −1.37667 + 0.942517i −0.0566287 + 0.0387700i
\(592\) −32.4495 + 2.83896i −1.33366 + 0.116681i
\(593\) 3.89096 3.89096i 0.159783 0.159783i −0.622688 0.782470i \(-0.713959\pi\)
0.782470 + 0.622688i \(0.213959\pi\)
\(594\) −3.98336 + 33.3595i −0.163439 + 1.36876i
\(595\) 0 0
\(596\) −3.80081 + 4.52963i −0.155687 + 0.185541i
\(597\) 17.5817 20.5107i 0.719571 0.839446i
\(598\) −10.1479 + 14.4927i −0.414980 + 0.592652i
\(599\) −8.34437 3.03710i −0.340942 0.124093i 0.165874 0.986147i \(-0.446955\pi\)
−0.506816 + 0.862054i \(0.669178\pi\)
\(600\) 0 0
\(601\) 6.49256 36.8211i 0.264837 1.50197i −0.504661 0.863317i \(-0.668383\pi\)
0.769499 0.638649i \(-0.220506\pi\)
\(602\) −7.35607 + 1.97105i −0.299811 + 0.0803341i
\(603\) 9.34054 + 13.9560i 0.380376 + 0.568332i
\(604\) −1.17006 + 0.675532i −0.0476089 + 0.0274870i
\(605\) 0 0
\(606\) 6.53884 + 25.4728i 0.265622 + 1.03476i
\(607\) 2.18141 24.9336i 0.0885406 1.01202i −0.813841 0.581087i \(-0.802628\pi\)
0.902382 0.430937i \(-0.141817\pi\)
\(608\) −0.163985 + 1.87436i −0.00665047 + 0.0760153i
\(609\) −3.88969 15.1527i −0.157618 0.614020i
\(610\) 0 0
\(611\) −7.53170 + 4.34843i −0.304700 + 0.175919i
\(612\) 6.42783 + 9.60402i 0.259830 + 0.388219i
\(613\) 5.98971 1.60494i 0.241922 0.0648229i −0.135820 0.990733i \(-0.543367\pi\)
0.377743 + 0.925911i \(0.376700\pi\)
\(614\) −2.82746 + 16.0353i −0.114107 + 0.647134i
\(615\) 0 0
\(616\) −11.5568 4.20633i −0.465636 0.169478i
\(617\) −4.90794 + 7.00927i −0.197586 + 0.282182i −0.905703 0.423913i \(-0.860656\pi\)
0.708117 + 0.706096i \(0.249545\pi\)
\(618\) −32.9877 + 38.4832i −1.32696 + 1.54802i
\(619\) −7.05535 + 8.40824i −0.283579 + 0.337956i −0.888964 0.457976i \(-0.848574\pi\)
0.605386 + 0.795932i \(0.293019\pi\)
\(620\) 0 0
\(621\) 8.08858 3.46522i 0.324583 0.139054i
\(622\) −23.5795 + 23.5795i −0.945452 + 0.945452i
\(623\) −0.820248 + 0.0717624i −0.0328625 + 0.00287510i
\(624\) −44.8072 + 30.6766i −1.79372 + 1.22805i
\(625\) 0 0
\(626\) −8.01907 + 22.0322i −0.320507 + 0.880585i
\(627\) −0.638975 3.86103i −0.0255182 0.154195i
\(628\) 9.04301 6.33198i 0.360855 0.252674i
\(629\) 21.2697 36.8402i 0.848079 1.46892i
\(630\) 0 0
\(631\) 17.7048 + 30.6656i 0.704816 + 1.22078i 0.966758 + 0.255694i \(0.0823038\pi\)
−0.261942 + 0.965084i \(0.584363\pi\)
\(632\) −26.0409 12.1431i −1.03585 0.483026i
\(633\) −8.93292 0.0940314i −0.355052 0.00373741i
\(634\) 31.1735 + 37.1511i 1.23806 + 1.47546i
\(635\) 0 0
\(636\) 3.07395 11.0074i 0.121890 0.436470i
\(637\) −14.0271 + 30.0812i −0.555774 + 1.19186i
\(638\) −41.2629 11.0564i −1.63361 0.437725i
\(639\) 0.744628 1.91915i 0.0294570 0.0759204i
\(640\) 0 0
\(641\) −14.4883 2.55468i −0.572254 0.100904i −0.119970 0.992778i \(-0.538280\pi\)
−0.452285 + 0.891874i \(0.649391\pi\)
\(642\) −2.16046 + 5.74687i −0.0852666 + 0.226811i
\(643\) −4.29031 9.20060i −0.169193 0.362836i 0.803368 0.595483i \(-0.203039\pi\)
−0.972561 + 0.232647i \(0.925261\pi\)
\(644\) −0.244658 1.38752i −0.00964087 0.0546761i
\(645\) 0 0
\(646\) −4.42019 3.70898i −0.173910 0.145928i
\(647\) −2.41506 2.41506i −0.0949459 0.0949459i 0.658038 0.752984i \(-0.271386\pi\)
−0.752984 + 0.658038i \(0.771386\pi\)
\(648\) 20.2049 0.913126i 0.793725 0.0358710i
\(649\) 28.8172i 1.13117i
\(650\) 0 0
\(651\) −1.40692 + 2.93607i −0.0551417 + 0.115074i
\(652\) −9.91484 6.94245i −0.388295 0.271887i
\(653\) 29.0939 13.5667i 1.13853 0.530907i 0.240419 0.970669i \(-0.422715\pi\)
0.898114 + 0.439763i \(0.144937\pi\)
\(654\) 5.89692 2.67458i 0.230588 0.104584i
\(655\) 0 0
\(656\) 8.74288 + 5.04770i 0.341352 + 0.197080i
\(657\) −12.8791 + 17.5930i −0.502460 + 0.686369i
\(658\) 0.768321 2.86741i 0.0299523 0.111783i
\(659\) −1.04455 + 0.380185i −0.0406898 + 0.0148099i −0.362285 0.932067i \(-0.618003\pi\)
0.321595 + 0.946877i \(0.395781\pi\)
\(660\) 0 0
\(661\) −2.09875 + 1.76106i −0.0816318 + 0.0684972i −0.682690 0.730708i \(-0.739190\pi\)
0.601059 + 0.799205i \(0.294746\pi\)
\(662\) 46.4893 + 4.06728i 1.80686 + 0.158080i
\(663\) 0.746452 70.9124i 0.0289898 2.75401i
\(664\) −12.7901 35.1406i −0.496353 1.36372i
\(665\) 0 0
\(666\) 15.6846 + 28.5374i 0.607764 + 1.10580i
\(667\) 2.89588 + 10.8076i 0.112129 + 0.418471i
\(668\) 6.75277 + 9.64395i 0.261272 + 0.373136i
\(669\) 23.4864 32.8017i 0.908037 1.26819i
\(670\) 0 0
\(671\) 36.1143 6.36793i 1.39418 0.245831i
\(672\) 1.45238 7.75841i 0.0560268 0.299287i
\(673\) 1.79638 + 20.5328i 0.0692455 + 0.791479i 0.948840 + 0.315756i \(0.102258\pi\)
−0.879595 + 0.475723i \(0.842186\pi\)
\(674\) −27.9793 −1.07772
\(675\) 0 0
\(676\) −17.5525 −0.675097
\(677\) −0.452063 5.16710i −0.0173742 0.198588i −0.999921 0.0125721i \(-0.995998\pi\)
0.982547 0.186016i \(-0.0595575\pi\)
\(678\) −1.43724 1.23200i −0.0551970 0.0473147i
\(679\) −22.0342 + 3.88522i −0.845595 + 0.149101i
\(680\) 0 0
\(681\) −11.1997 1.09875i −0.429174 0.0421043i
\(682\) 5.09930 + 7.28255i 0.195262 + 0.278863i
\(683\) 1.09208 + 4.07571i 0.0417874 + 0.155953i 0.983667 0.179998i \(-0.0576091\pi\)
−0.941880 + 0.335951i \(0.890942\pi\)
\(684\) 0.975554 0.331988i 0.0373013 0.0126939i
\(685\) 0 0
\(686\) −9.16097 25.1696i −0.349767 0.960978i
\(687\) 28.3091 + 16.7440i 1.08006 + 0.638824i
\(688\) 16.6538 + 1.45702i 0.634922 + 0.0555485i
\(689\) −53.7231 + 45.0791i −2.04669 + 1.71738i
\(690\) 0 0
\(691\) −5.69285 + 2.07203i −0.216566 + 0.0788236i −0.448025 0.894021i \(-0.647872\pi\)
0.231459 + 0.972845i \(0.425650\pi\)
\(692\) 2.56124 9.55866i 0.0973636 0.363366i
\(693\) 1.08630 + 16.3818i 0.0412651 + 0.622293i
\(694\) −17.2549 9.96215i −0.654989 0.378158i
\(695\) 0 0
\(696\) −2.51094 + 25.5943i −0.0951768 + 0.970148i
\(697\) −11.9489 + 5.57186i −0.452597 + 0.211049i
\(698\) −17.5036 12.2562i −0.662521 0.463902i
\(699\) −40.4587 + 3.11092i −1.53029 + 0.117666i
\(700\) 0 0
\(701\) 31.6966i 1.19716i −0.801062 0.598581i \(-0.795731\pi\)
0.801062 0.598581i \(-0.204269\pi\)
\(702\) 46.1326 + 28.6138i 1.74116 + 1.07996i
\(703\) −2.68222 2.68222i −0.101162 0.101162i
\(704\) 13.2158 + 11.0894i 0.498088 + 0.417946i
\(705\) 0 0
\(706\) 6.13060 + 34.7684i 0.230728 + 1.30852i
\(707\) 5.43129 + 11.6474i 0.204265 + 0.438047i
\(708\) 7.48618 1.23891i 0.281348 0.0465612i
\(709\) −20.0118 3.52862i −0.751559 0.132520i −0.215270 0.976555i \(-0.569063\pi\)
−0.536289 + 0.844035i \(0.680174\pi\)
\(710\) 0 0
\(711\) −0.807430 + 38.3484i −0.0302810 + 1.43818i
\(712\) 1.30743 + 0.350325i 0.0489981 + 0.0131290i
\(713\) 0.984093 2.11039i 0.0368546 0.0790348i
\(714\) 16.9354 + 17.2957i 0.633792 + 0.647277i
\(715\) 0 0
\(716\) −4.14272 4.93710i −0.154821 0.184508i
\(717\) 0.867626 + 1.53998i 0.0324021 + 0.0575117i
\(718\) −8.29065 3.86600i −0.309404 0.144278i
\(719\) 5.78147 + 10.0138i 0.215612 + 0.373452i 0.953462 0.301514i \(-0.0974919\pi\)
−0.737849 + 0.674965i \(0.764159\pi\)
\(720\) 0 0
\(721\) −12.3847 + 21.4509i −0.461229 + 0.798872i
\(722\) 24.7160 17.3063i 0.919833 0.644074i
\(723\) −6.85041 2.57532i −0.254770 0.0957773i
\(724\) −2.17296 + 5.97016i −0.0807574 + 0.221879i
\(725\) 0 0
\(726\) 12.6788 + 6.07551i 0.470554 + 0.225483i
\(727\) 19.4967 1.70574i 0.723094 0.0632625i 0.280334 0.959903i \(-0.409555\pi\)
0.442760 + 0.896640i \(0.353999\pi\)
\(728\) −14.0517 + 14.0517i −0.520792 + 0.520792i
\(729\) −11.9973 24.1881i −0.444345 0.895856i
\(730\) 0 0
\(731\) −14.0335 + 16.7245i −0.519048 + 0.618577i
\(732\) 3.20690 + 9.10807i 0.118531 + 0.336644i
\(733\) −14.0049 + 20.0010i −0.517282 + 0.738755i −0.989784 0.142575i \(-0.954462\pi\)
0.472502 + 0.881329i \(0.343351\pi\)
\(734\) −2.33592 0.850204i −0.0862203 0.0313816i
\(735\) 0 0
\(736\) −0.980299 + 5.55955i −0.0361343 + 0.204928i
\(737\) 21.6455 5.79990i 0.797323 0.213642i
\(738\) 1.09105 10.0332i 0.0401622 0.369328i
\(739\) 3.92364 2.26531i 0.144333 0.0833310i −0.426094 0.904679i \(-0.640111\pi\)
0.570428 + 0.821348i \(0.306777\pi\)
\(740\) 0 0
\(741\) −6.09056 1.70087i −0.223742 0.0624830i
\(742\) 2.08635 23.8471i 0.0765924 0.875455i
\(743\) −3.85745 + 44.0909i −0.141516 + 1.61754i 0.510875 + 0.859655i \(0.329321\pi\)
−0.652391 + 0.757882i \(0.726234\pi\)
\(744\) 3.82415 3.74448i 0.140200 0.137279i
\(745\) 0 0
\(746\) −23.7798 + 13.7293i −0.870639 + 0.502664i
\(747\) −36.0350 + 34.5488i −1.31845 + 1.26408i
\(748\) 14.8957 3.99128i 0.544640 0.145936i
\(749\) −0.520987 + 2.95467i −0.0190365 + 0.107961i
\(750\) 0 0
\(751\) 21.6380 + 7.87559i 0.789582 + 0.287384i 0.705162 0.709046i \(-0.250874\pi\)
0.0844197 + 0.996430i \(0.473096\pi\)
\(752\) −3.73771 + 5.33801i −0.136300 + 0.194657i
\(753\) 41.1004 + 7.69403i 1.49778 + 0.280386i
\(754\) −44.3687 + 52.8766i −1.61581 + 1.92565i
\(755\) 0 0
\(756\) −4.20899 + 0.986490i −0.153079 + 0.0358783i
\(757\) −7.64204 + 7.64204i −0.277755 + 0.277755i −0.832212 0.554457i \(-0.812926\pi\)
0.554457 + 0.832212i \(0.312926\pi\)
\(758\) 60.1831 5.26534i 2.18595 0.191246i
\(759\) −0.900219 11.7077i −0.0326759 0.424961i
\(760\) 0 0
\(761\) 7.73791 21.2597i 0.280499 0.770664i −0.716804 0.697274i \(-0.754396\pi\)
0.997303 0.0733901i \(-0.0233818\pi\)
\(762\) 9.22533 7.57694i 0.334199 0.274484i
\(763\) 2.59198 1.81493i 0.0938361 0.0657048i
\(764\) 2.17250 3.76288i 0.0785983 0.136136i
\(765\) 0 0
\(766\) 19.4291 + 33.6521i 0.702000 + 1.21590i
\(767\) −42.2008 19.6786i −1.52378 0.710552i
\(768\) −11.8076 + 19.9631i −0.426071 + 0.720357i
\(769\) −19.5257 23.2698i −0.704115 0.839132i 0.288870 0.957368i \(-0.406720\pi\)
−0.992985 + 0.118236i \(0.962276\pi\)
\(770\) 0 0
\(771\) −34.4200 + 8.83557i −1.23961 + 0.318205i
\(772\) −2.79946 + 6.00346i −0.100755 + 0.216069i
\(773\) −44.6289 11.9583i −1.60519 0.430109i −0.658585 0.752506i \(-0.728845\pi\)
−0.946604 + 0.322397i \(0.895511\pi\)
\(774\) −5.38413 15.8214i −0.193529 0.568688i
\(775\) 0 0
\(776\) 36.2219 + 6.38690i 1.30029 + 0.229276i
\(777\) 10.0998 + 12.2971i 0.362329 + 0.441155i
\(778\) 4.31816 + 9.26032i 0.154813 + 0.331999i
\(779\) 0.204146 + 1.15777i 0.00731427 + 0.0414813i
\(780\) 0 0
\(781\) −2.10427 1.76569i −0.0752968 0.0631815i
\(782\) −12.2420 12.2420i −0.437772 0.437772i
\(783\) 32.6152 10.7175i 1.16557 0.383011i
\(784\) 24.8698i 0.888207i
\(785\) 0 0
\(786\) −17.0536 24.9091i −0.608283 0.888477i
\(787\) −2.49588 1.74764i −0.0889687 0.0622965i 0.528246 0.849092i \(-0.322850\pi\)
−0.617214 + 0.786795i \(0.711739\pi\)
\(788\) −0.531300 + 0.247749i −0.0189268 + 0.00882570i
\(789\) 6.31613 + 4.52242i 0.224860 + 0.161002i
\(790\) 0 0
\(791\) −0.801132 0.462534i −0.0284850 0.0164458i
\(792\) 7.53252 25.9167i 0.267656 0.920908i
\(793\) 15.3362 57.2355i 0.544604 2.03249i
\(794\) 46.3962 16.8868i 1.64654 0.599292i
\(795\) 0 0
\(796\) 7.27145 6.10147i 0.257730 0.216261i
\(797\) 28.8623 + 2.52513i 1.02236 + 0.0894446i 0.585985 0.810322i \(-0.300708\pi\)
0.436372 + 0.899767i \(0.356263\pi\)
\(798\) 1.88056 1.05950i 0.0665709 0.0375061i
\(799\) −2.91068 7.99703i −0.102972 0.282914i
\(800\) 0 0
\(801\) −0.276240 1.78568i −0.00976045 0.0630938i
\(802\) −0.964923 3.60114i −0.0340726 0.127161i
\(803\) 16.6879 + 23.8328i 0.588903 + 0.841041i
\(804\) 2.43730 + 5.37376i 0.0859568 + 0.189518i
\(805\) 0 0
\(806\) 14.1470 2.49450i 0.498306 0.0878649i
\(807\) −11.9708 + 4.21485i −0.421392 + 0.148370i
\(808\) −1.84130 21.0462i −0.0647767 0.740401i
\(809\) 7.83479 0.275456 0.137728 0.990470i \(-0.456020\pi\)
0.137728 + 0.990470i \(0.456020\pi\)
\(810\) 0 0
\(811\) 33.4667 1.17517 0.587587 0.809161i \(-0.300078\pi\)
0.587587 + 0.809161i \(0.300078\pi\)
\(812\) −0.479080 5.47591i −0.0168124 0.192167i
\(813\) −31.9361 + 11.2445i −1.12005 + 0.394363i
\(814\) 42.7929 7.54554i 1.49989 0.264471i
\(815\) 0 0
\(816\) −21.9486 48.3924i −0.768355 1.69407i
\(817\) 1.11663 + 1.59471i 0.0390658 + 0.0557917i
\(818\) −5.89639 22.0056i −0.206163 0.769409i
\(819\) 24.7318 + 9.59592i 0.864200 + 0.335309i
\(820\) 0 0
\(821\) 15.4155 + 42.3537i 0.538004 + 1.47815i 0.849336 + 0.527853i \(0.177003\pi\)
−0.311332 + 0.950301i \(0.600775\pi\)
\(822\) −39.7645 + 22.4033i −1.38695 + 0.781406i
\(823\) 27.4152 + 2.39852i 0.955633 + 0.0836071i 0.554293 0.832322i \(-0.312989\pi\)
0.401341 + 0.915929i \(0.368544\pi\)
\(824\) 31.1920 26.1732i 1.08662 0.911785i
\(825\) 0 0
\(826\) 14.9353 5.43602i 0.519667 0.189143i
\(827\) −14.6669 + 54.7376i −0.510018 + 1.90341i −0.0898754 + 0.995953i \(0.528647\pi\)
−0.420142 + 0.907458i \(0.638020\pi\)
\(828\) 3.00274 0.737199i 0.104352 0.0256194i
\(829\) 12.0181 + 6.93865i 0.417405 + 0.240989i 0.693967 0.720007i \(-0.255862\pi\)
−0.276561 + 0.960996i \(0.589195\pi\)
\(830\) 0 0
\(831\) −29.3882 21.0423i −1.01946 0.729948i
\(832\) 25.2643 11.7810i 0.875884 0.408431i
\(833\) −26.6051 18.6291i −0.921812 0.645460i
\(834\) 28.5126 + 41.6464i 0.987310 + 1.44210i
\(835\) 0 0
\(836\) 1.37510i 0.0475588i
\(837\) −6.63340 2.65442i −0.229284 0.0917501i
\(838\) −33.4708 33.4708i −1.15623 1.15623i
\(839\) 16.4142 + 13.7731i 0.566679 + 0.475501i 0.880542 0.473968i \(-0.157179\pi\)
−0.313863 + 0.949468i \(0.601623\pi\)
\(840\) 0 0
\(841\) 2.54436 + 14.4298i 0.0877364 + 0.497578i
\(842\) −14.2665 30.5945i −0.491655 1.05436i
\(843\) 5.91872 + 7.20636i 0.203851 + 0.248200i
\(844\) −3.09124 0.545069i −0.106405 0.0187620i
\(845\) 0 0
\(846\) 6.39034 + 1.26604i 0.219704 + 0.0435273i
\(847\) 6.63633 + 1.77820i 0.228027 + 0.0610996i
\(848\) −22.2079 + 47.6250i −0.762623 + 1.63545i
\(849\) −13.6270 + 3.49804i −0.467678 + 0.120052i
\(850\) 0 0
\(851\) −7.31571 8.71852i −0.250779 0.298867i
\(852\) 0.368228 0.622563i 0.0126153 0.0213287i
\(853\) 1.81138 + 0.844662i 0.0620206 + 0.0289207i 0.453381 0.891317i \(-0.350218\pi\)
−0.391361 + 0.920237i \(0.627995\pi\)
\(854\) 10.1129 + 17.5161i 0.346056 + 0.599387i
\(855\) 0 0
\(856\) 2.46605 4.27132i 0.0842877 0.145991i
\(857\) −18.9321 + 13.2564i −0.646709 + 0.452830i −0.850352 0.526215i \(-0.823611\pi\)
0.203643 + 0.979045i \(0.434722\pi\)
\(858\) 55.9789 45.9765i 1.91109 1.56961i
\(859\) 7.86080 21.5974i 0.268207 0.736893i −0.730344 0.683079i \(-0.760640\pi\)
0.998551 0.0538131i \(-0.0171375\pi\)
\(860\) 0 0
\(861\) −0.378104 4.91738i −0.0128858 0.167584i
\(862\) 36.1441 3.16220i 1.23107 0.107705i
\(863\) 2.45592 2.45592i 0.0836006 0.0836006i −0.664070 0.747671i \(-0.731172\pi\)
0.747671 + 0.664070i \(0.231172\pi\)
\(864\) 17.1995 + 2.05374i 0.585138 + 0.0698697i
\(865\) 0 0
\(866\) 11.3815 13.5639i 0.386759 0.460921i
\(867\) 39.2678 + 7.35096i 1.33360 + 0.249652i
\(868\) −0.656155 + 0.937087i −0.0222714 + 0.0318068i
\(869\) 48.0969 + 17.5059i 1.63158 + 0.593845i
\(870\) 0 0
\(871\) 6.28765 35.6590i 0.213049 1.20826i
\(872\) −5.02442 + 1.34629i −0.170148 + 0.0455911i
\(873\) −11.7069 47.6841i −0.396218 1.61386i
\(874\) −1.33695 + 0.771888i −0.0452230 + 0.0261095i
\(875\) 0 0
\(876\) −5.47387 + 5.35983i −0.184945 + 0.181092i
\(877\) −1.07474 + 12.2844i −0.0362915 + 0.414814i 0.956219 + 0.292653i \(0.0945381\pi\)
−0.992510 + 0.122161i \(0.961017\pi\)
\(878\) −3.81035 + 43.5525i −0.128593 + 1.46982i
\(879\) 9.62117 + 2.68684i 0.324514 + 0.0906248i
\(880\) 0 0
\(881\) −26.2526 + 15.1569i −0.884473 + 0.510651i −0.872131 0.489273i \(-0.837262\pi\)
−0.0123422 + 0.999924i \(0.503929\pi\)
\(882\) 22.7491 10.0306i 0.766001 0.337748i
\(883\) 5.54478 1.48572i 0.186597 0.0499984i −0.164311 0.986409i \(-0.552540\pi\)
0.350907 + 0.936410i \(0.385873\pi\)
\(884\) 4.32693 24.5393i 0.145531 0.825345i
\(885\) 0 0
\(886\) 62.7290 + 22.8315i 2.10742 + 0.767039i
\(887\) 0.819982 1.17106i 0.0275323 0.0393202i −0.805150 0.593071i \(-0.797915\pi\)
0.832682 + 0.553751i \(0.186804\pi\)
\(888\) −8.68779 24.6746i −0.291543 0.828024i
\(889\) 3.74991 4.46897i 0.125768 0.149884i
\(890\) 0 0
\(891\) −35.7135 + 4.75734i −1.19645 + 0.159377i
\(892\) 10.0235 10.0235i 0.335610 0.335610i
\(893\) −0.755970 + 0.0661388i −0.0252976 + 0.00221325i
\(894\) −24.5111 11.7454i −0.819773 0.392824i
\(895\) 0 0
\(896\) −6.37164 + 17.5059i −0.212862 + 0.584832i
\(897\) −17.7598 6.67657i −0.592983 0.222924i
\(898\) 13.8505 9.69819i 0.462196 0.323633i
\(899\) 4.54235 7.86759i 0.151496 0.262399i
\(900\) 0 0
\(901\) −34.3129 59.4318i −1.14313 1.97996i
\(902\) −12.2055 5.69153i −0.406400 0.189507i
\(903\) −4.00880 7.11538i −0.133405 0.236785i
\(904\) 0.977497 + 1.16494i 0.0325111 + 0.0387452i
\(905\) 0 0
\(906\) −4.34491 4.43735i −0.144350 0.147421i
\(907\) 7.83856 16.8099i 0.260275 0.558162i −0.732131 0.681164i \(-0.761474\pi\)
0.992406 + 0.123002i \(0.0392520\pi\)
\(908\) −3.81939 1.02340i −0.126751 0.0339628i
\(909\) −24.7157 + 13.5841i −0.819769 + 0.450557i
\(910\) 0 0
\(911\) 19.9191 + 3.51228i 0.659950 + 0.116367i 0.493585 0.869697i \(-0.335686\pi\)
0.166364 + 0.986064i \(0.446797\pi\)
\(912\) −4.67465 + 0.773624i −0.154793 + 0.0256172i
\(913\) 28.1528 + 60.3740i 0.931723 + 1.99809i
\(914\) −9.76209 55.3636i −0.322901 1.83126i
\(915\) 0 0
\(916\) 8.85287 + 7.42844i 0.292507 + 0.245443i
\(917\) −10.4312 10.4312i −0.344468 0.344468i
\(918\) −35.4134 + 39.5948i −1.16882 + 1.30682i
\(919\) 5.56015i 0.183412i −0.995786 0.0917062i \(-0.970768\pi\)
0.995786 0.0917062i \(-0.0292320\pi\)
\(920\) 0 0
\(921\) −17.4102 + 1.33870i −0.573687 + 0.0441116i
\(922\) 43.1822 + 30.2365i 1.42213 + 0.995786i
\(923\) −4.02270 + 1.87581i −0.132409 + 0.0617432i
\(924\) −0.563237 + 5.74114i −0.0185291 + 0.188870i
\(925\) 0 0
\(926\) −8.23538 4.75470i −0.270631 0.156249i
\(927\) −48.7693 24.0040i −1.60179 0.788395i
\(928\) −5.70043 + 21.2743i −0.187126 + 0.698363i
\(929\) −10.4908 + 3.81834i −0.344192 + 0.125276i −0.508331 0.861162i \(-0.669737\pi\)
0.164140 + 0.986437i \(0.447515\pi\)
\(930\) 0 0
\(931\) −2.21856 + 1.86160i −0.0727105 + 0.0610113i
\(932\) −14.2036 1.24266i −0.465255 0.0407046i
\(933\) −30.7798 18.2054i −1.00769 0.596018i
\(934\) −11.3053 31.0610i −0.369920 1.01635i
\(935\) 0 0
\(936\) −32.8094 28.7287i −1.07241 0.939028i
\(937\) 0.849536 + 3.17051i 0.0277531 + 0.103576i 0.978413 0.206659i \(-0.0662590\pi\)
−0.950660 + 0.310235i \(0.899592\pi\)
\(938\) 7.08914 + 10.1243i 0.231469 + 0.330571i
\(939\) −25.0236 2.45495i −0.816615 0.0801144i
\(940\) 0 0
\(941\) −35.8375 + 6.31912i −1.16827 + 0.205997i −0.723938 0.689865i \(-0.757670\pi\)
−0.444331 + 0.895863i \(0.646559\pi\)
\(942\) 38.5269 + 33.0252i 1.25527 + 1.07602i
\(943\) 0.307430 + 3.51394i 0.0100113 + 0.114429i
\(944\) −34.8897 −1.13556
\(945\) 0 0
\(946\) −22.3012 −0.725073
\(947\) −4.48539 51.2682i −0.145756 1.66599i −0.619248 0.785196i \(-0.712562\pi\)
0.473492 0.880798i \(-0.342993\pi\)
\(948\) −2.47991 + 13.2473i −0.0805437 + 0.430253i
\(949\) 46.2973 8.16346i 1.50287 0.264997i
\(950\) 0 0
\(951\) −30.2777 + 42.2866i −0.981822 + 1.37124i
\(952\) −11.1536 15.9290i −0.361491 0.516263i
\(953\) 5.10731 + 19.0607i 0.165442 + 0.617438i 0.997983 + 0.0634751i \(0.0202183\pi\)
−0.832541 + 0.553963i \(0.813115\pi\)
\(954\) 52.5210 + 1.10583i 1.70043 + 0.0358027i
\(955\) 0 0
\(956\) 0.212419 + 0.583616i 0.00687012 + 0.0188755i
\(957\) 0.482202 45.8089i 0.0155874 1.48079i
\(958\) −10.1938 0.891840i −0.329346 0.0288141i
\(959\) −17.0857 + 14.3366i −0.551725 + 0.462953i
\(960\) 0 0
\(961\) 27.3538 9.95598i 0.882382 0.321161i
\(962\) 18.1723 67.8200i 0.585899 2.18660i
\(963\) −6.54548 0.711782i −0.210925 0.0229369i
\(964\) −2.22698 1.28575i −0.0717262 0.0414111i
\(965\) 0 0
\(966\) 5.89802 2.67508i 0.189766 0.0860692i
\(967\) −7.39431 + 3.44802i −0.237785 + 0.110881i −0.537859 0.843035i \(-0.680767\pi\)
0.300074 + 0.953916i \(0.402989\pi\)
\(968\) −9.25173 6.47813i −0.297362 0.208215i
\(969\) 2.67401 5.58032i 0.0859017 0.179266i
\(970\) 0 0
\(971\) 0.500263i 0.0160542i −0.999968 0.00802710i \(-0.997445\pi\)
0.999968 0.00802710i \(-0.00255513\pi\)
\(972\) −2.77127 9.07318i −0.0888885 0.291022i
\(973\) 17.4403 + 17.4403i 0.559110 + 0.559110i
\(974\) 8.21264 + 6.89122i 0.263150 + 0.220809i
\(975\) 0 0
\(976\) −7.70982 43.7245i −0.246785 1.39959i
\(977\) −5.65025 12.1170i −0.180767 0.387657i 0.794955 0.606669i \(-0.207494\pi\)
−0.975722 + 0.219012i \(0.929717\pi\)
\(978\) 19.5781 52.0781i 0.626038 1.66527i
\(979\) −2.37453 0.418693i −0.0758903 0.0133815i
\(980\) 0 0
\(981\) 4.35051 + 5.41214i 0.138901 + 0.172796i
\(982\) 9.76934 + 2.61769i 0.311752 + 0.0835337i
\(983\) −9.10955 + 19.5355i −0.290549 + 0.623085i −0.996353 0.0853218i \(-0.972808\pi\)
0.705804 + 0.708407i \(0.250586\pi\)
\(984\) −2.18069 + 7.80874i −0.0695180 + 0.248933i
\(985\) 0 0
\(986\) −43.4168 51.7421i −1.38267 1.64780i
\(987\) 3.18332 + 0.0335089i 0.101326 + 0.00106660i
\(988\) −2.01374 0.939023i −0.0640656 0.0298743i
\(989\) 2.92056 + 5.05856i 0.0928684 + 0.160853i
\(990\) 0 0
\(991\) 12.2325 21.1872i 0.388577 0.673035i −0.603681 0.797226i \(-0.706300\pi\)
0.992258 + 0.124191i \(0.0396334\pi\)
\(992\) 3.75473 2.62909i 0.119213 0.0834738i
\(993\) 8.17109 + 49.3741i 0.259302 + 1.56684i
\(994\) 0.518176 1.42368i 0.0164356 0.0451563i
\(995\) 0 0
\(996\) −14.4737 + 9.90921i −0.458617 + 0.313985i
\(997\) 45.1132 3.94689i 1.42875 0.124999i 0.653629 0.756815i \(-0.273246\pi\)
0.775119 + 0.631816i \(0.217690\pi\)
\(998\) −27.3314 + 27.3314i −0.865160 + 0.865160i
\(999\) −25.4604 + 23.9011i −0.805531 + 0.756198i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 675.2.ba.c.443.18 yes 288
5.2 odd 4 inner 675.2.ba.c.632.7 yes 288
5.3 odd 4 inner 675.2.ba.c.632.18 yes 288
5.4 even 2 inner 675.2.ba.c.443.7 yes 288
27.5 odd 18 inner 675.2.ba.c.518.7 yes 288
135.32 even 36 inner 675.2.ba.c.32.18 yes 288
135.59 odd 18 inner 675.2.ba.c.518.18 yes 288
135.113 even 36 inner 675.2.ba.c.32.7 288
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
675.2.ba.c.32.7 288 135.113 even 36 inner
675.2.ba.c.32.18 yes 288 135.32 even 36 inner
675.2.ba.c.443.7 yes 288 5.4 even 2 inner
675.2.ba.c.443.18 yes 288 1.1 even 1 trivial
675.2.ba.c.518.7 yes 288 27.5 odd 18 inner
675.2.ba.c.518.18 yes 288 135.59 odd 18 inner
675.2.ba.c.632.7 yes 288 5.2 odd 4 inner
675.2.ba.c.632.18 yes 288 5.3 odd 4 inner