Properties

Label 675.2.ba.c.518.7
Level $675$
Weight $2$
Character 675.518
Analytic conductor $5.390$
Analytic rank $0$
Dimension $288$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [675,2,Mod(32,675)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("675.32"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(675, base_ring=CyclotomicField(36)) chi = DirichletCharacter(H, H._module([10, 9])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 675 = 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 675.ba (of order \(36\), degree \(12\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [288] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.38990213644\)
Analytic rank: \(0\)
Dimension: \(288\)
Relative dimension: \(24\) over \(\Q(\zeta_{36})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{36}]$

Embedding invariants

Embedding label 518.7
Character \(\chi\) \(=\) 675.518
Dual form 675.2.ba.c.632.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.60897 - 0.140766i) q^{2} +(0.575232 - 1.63374i) q^{3} +(0.599344 + 0.105680i) q^{4} +(-1.15550 + 2.54766i) q^{6} +(1.11982 + 0.784107i) q^{7} +(2.17071 + 0.581640i) q^{8} +(-2.33822 - 1.87956i) q^{9} +(-1.36918 + 3.76179i) q^{11} +(0.517416 - 0.918381i) q^{12} +(-0.563766 - 6.44387i) q^{13} +(-1.69138 - 1.41923i) q^{14} +(-4.55450 - 1.65770i) q^{16} +(6.11402 - 1.63825i) q^{17} +(3.49753 + 3.35329i) q^{18} +(0.488800 - 0.282209i) q^{19} +(1.92518 - 1.37845i) q^{21} +(2.73250 - 5.85987i) q^{22} +(-0.971342 - 1.38722i) q^{23} +(2.19891 - 3.21180i) q^{24} +10.4473i q^{26} +(-4.41573 + 2.73886i) q^{27} +(0.588292 + 0.588292i) q^{28} +(5.06125 - 4.24689i) q^{29} +(0.238769 - 1.35412i) q^{31} +(3.02123 + 1.40882i) q^{32} +(5.35820 + 4.40079i) q^{33} +(-10.0679 + 1.77524i) q^{34} +(-1.20276 - 1.37361i) q^{36} +(-1.73942 - 6.49160i) q^{37} +(-0.826189 + 0.385258i) q^{38} +(-10.8519 - 2.78567i) q^{39} +(-1.33886 + 1.59560i) q^{41} +(-3.29160 + 1.94688i) q^{42} +(-1.45769 - 3.12602i) q^{43} +(-1.21816 + 2.10991i) q^{44} +(1.36758 + 2.36872i) q^{46} +(0.771171 - 1.10135i) q^{47} +(-5.32815 + 6.48731i) q^{48} +(-1.75497 - 4.82173i) q^{49} +(0.840508 - 10.9311i) q^{51} +(0.343102 - 3.92167i) q^{52} +(-7.66637 + 7.66637i) q^{53} +(7.49030 - 3.78515i) q^{54} +(1.97474 + 2.35340i) q^{56} +(-0.179883 - 0.960908i) q^{57} +(-8.74120 + 6.12066i) q^{58} +(-6.76439 + 2.46204i) q^{59} +(-1.59070 - 9.02132i) q^{61} +(-0.574786 + 2.14513i) q^{62} +(-1.14461 - 3.93818i) q^{63} +(3.73216 + 2.15476i) q^{64} +(-8.00168 - 7.83498i) q^{66} +(-5.57647 + 0.487878i) q^{67} +(3.83753 - 0.335740i) q^{68} +(-2.82510 + 0.788948i) q^{69} +(0.594251 + 0.343091i) q^{71} +(-3.98237 - 5.43998i) q^{72} +(1.88104 - 7.02013i) q^{73} +(1.88487 + 10.6896i) q^{74} +(0.322783 - 0.117483i) q^{76} +(-4.48288 + 3.13895i) q^{77} +(17.0682 + 6.00964i) q^{78} +(8.21845 + 9.79437i) q^{79} +(1.93452 + 8.78963i) q^{81} +(2.37879 - 2.37879i) q^{82} +(1.45031 - 16.5771i) q^{83} +(1.29952 - 0.622713i) q^{84} +(1.90533 + 5.23485i) q^{86} +(-4.02693 - 10.7117i) q^{87} +(-5.16010 + 7.36939i) q^{88} +(-0.301153 - 0.521612i) q^{89} +(4.42137 - 7.65803i) q^{91} +(-0.435565 - 0.934073i) q^{92} +(-2.07494 - 1.16902i) q^{93} +(-1.39582 + 1.66348i) q^{94} +(4.03955 - 4.12550i) q^{96} +(14.8333 - 6.91688i) q^{97} +(2.14495 + 8.00504i) q^{98} +(10.2720 - 6.22243i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 288 q + 24 q^{6} + 36 q^{11} + 48 q^{21} - 192 q^{36} - 180 q^{41} - 60 q^{51} - 288 q^{56} + 72 q^{61} + 144 q^{71} + 216 q^{76} + 24 q^{81} - 36 q^{91} - 168 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/675\mathbb{Z}\right)^\times\).

\(n\) \(326\) \(352\)
\(\chi(n)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.60897 0.140766i −1.13771 0.0995368i −0.497307 0.867575i \(-0.665678\pi\)
−0.640404 + 0.768038i \(0.721233\pi\)
\(3\) 0.575232 1.63374i 0.332110 0.943241i
\(4\) 0.599344 + 0.105680i 0.299672 + 0.0528402i
\(5\) 0 0
\(6\) −1.15550 + 2.54766i −0.471733 + 1.04008i
\(7\) 1.11982 + 0.784107i 0.423252 + 0.296365i 0.765731 0.643161i \(-0.222377\pi\)
−0.342478 + 0.939526i \(0.611266\pi\)
\(8\) 2.17071 + 0.581640i 0.767462 + 0.205641i
\(9\) −2.33822 1.87956i −0.779406 0.626520i
\(10\) 0 0
\(11\) −1.36918 + 3.76179i −0.412823 + 1.13422i 0.542859 + 0.839824i \(0.317342\pi\)
−0.955682 + 0.294399i \(0.904880\pi\)
\(12\) 0.517416 0.918381i 0.149365 0.265114i
\(13\) −0.563766 6.44387i −0.156360 1.78721i −0.518493 0.855082i \(-0.673507\pi\)
0.362133 0.932127i \(-0.382049\pi\)
\(14\) −1.69138 1.41923i −0.452040 0.379306i
\(15\) 0 0
\(16\) −4.55450 1.65770i −1.13863 0.414426i
\(17\) 6.11402 1.63825i 1.48287 0.397333i 0.575546 0.817770i \(-0.304790\pi\)
0.907322 + 0.420436i \(0.138123\pi\)
\(18\) 3.49753 + 3.35329i 0.824377 + 0.790378i
\(19\) 0.488800 0.282209i 0.112138 0.0647432i −0.442882 0.896580i \(-0.646044\pi\)
0.555020 + 0.831837i \(0.312711\pi\)
\(20\) 0 0
\(21\) 1.92518 1.37845i 0.420109 0.300803i
\(22\) 2.73250 5.85987i 0.582571 1.24933i
\(23\) −0.971342 1.38722i −0.202539 0.289255i 0.705014 0.709193i \(-0.250941\pi\)
−0.907553 + 0.419938i \(0.862052\pi\)
\(24\) 2.19891 3.21180i 0.448851 0.655606i
\(25\) 0 0
\(26\) 10.4473i 2.04889i
\(27\) −4.41573 + 2.73886i −0.849807 + 0.527094i
\(28\) 0.588292 + 0.588292i 0.111177 + 0.111177i
\(29\) 5.06125 4.24689i 0.939851 0.788628i −0.0377087 0.999289i \(-0.512006\pi\)
0.977559 + 0.210660i \(0.0675614\pi\)
\(30\) 0 0
\(31\) 0.238769 1.35412i 0.0428841 0.243208i −0.955829 0.293923i \(-0.905039\pi\)
0.998713 + 0.0507153i \(0.0161501\pi\)
\(32\) 3.02123 + 1.40882i 0.534082 + 0.249047i
\(33\) 5.35820 + 4.40079i 0.932742 + 0.766079i
\(34\) −10.0679 + 1.77524i −1.72662 + 0.304451i
\(35\) 0 0
\(36\) −1.20276 1.37361i −0.200460 0.228934i
\(37\) −1.73942 6.49160i −0.285959 1.06721i −0.948136 0.317866i \(-0.897034\pi\)
0.662177 0.749348i \(-0.269633\pi\)
\(38\) −0.826189 + 0.385258i −0.134026 + 0.0624971i
\(39\) −10.8519 2.78567i −1.73770 0.446065i
\(40\) 0 0
\(41\) −1.33886 + 1.59560i −0.209095 + 0.249190i −0.860392 0.509633i \(-0.829781\pi\)
0.651296 + 0.758824i \(0.274226\pi\)
\(42\) −3.29160 + 1.94688i −0.507904 + 0.300411i
\(43\) −1.45769 3.12602i −0.222295 0.476713i 0.763255 0.646097i \(-0.223600\pi\)
−0.985550 + 0.169384i \(0.945822\pi\)
\(44\) −1.21816 + 2.10991i −0.183644 + 0.318081i
\(45\) 0 0
\(46\) 1.36758 + 2.36872i 0.201639 + 0.349249i
\(47\) 0.771171 1.10135i 0.112487 0.160648i −0.758961 0.651136i \(-0.774293\pi\)
0.871448 + 0.490488i \(0.163182\pi\)
\(48\) −5.32815 + 6.48731i −0.769052 + 0.936362i
\(49\) −1.75497 4.82173i −0.250709 0.688819i
\(50\) 0 0
\(51\) 0.840508 10.9311i 0.117695 1.53066i
\(52\) 0.343102 3.92167i 0.0475797 0.543838i
\(53\) −7.66637 + 7.66637i −1.05306 + 1.05306i −0.0545457 + 0.998511i \(0.517371\pi\)
−0.998511 + 0.0545457i \(0.982629\pi\)
\(54\) 7.49030 3.78515i 1.01930 0.515093i
\(55\) 0 0
\(56\) 1.97474 + 2.35340i 0.263886 + 0.314487i
\(57\) −0.179883 0.960908i −0.0238261 0.127275i
\(58\) −8.74120 + 6.12066i −1.14778 + 0.803682i
\(59\) −6.76439 + 2.46204i −0.880648 + 0.320530i −0.742471 0.669878i \(-0.766346\pi\)
−0.138177 + 0.990408i \(0.544124\pi\)
\(60\) 0 0
\(61\) −1.59070 9.02132i −0.203669 1.15506i −0.899521 0.436877i \(-0.856084\pi\)
0.695852 0.718185i \(-0.255027\pi\)
\(62\) −0.574786 + 2.14513i −0.0729979 + 0.272432i
\(63\) −1.14461 3.93818i −0.144207 0.496164i
\(64\) 3.73216 + 2.15476i 0.466520 + 0.269346i
\(65\) 0 0
\(66\) −8.00168 7.83498i −0.984939 0.964419i
\(67\) −5.57647 + 0.487878i −0.681274 + 0.0596038i −0.422539 0.906345i \(-0.638861\pi\)
−0.258735 + 0.965948i \(0.583306\pi\)
\(68\) 3.83753 0.335740i 0.465369 0.0407145i
\(69\) −2.82510 + 0.788948i −0.340102 + 0.0949781i
\(70\) 0 0
\(71\) 0.594251 + 0.343091i 0.0705246 + 0.0407174i 0.534848 0.844949i \(-0.320369\pi\)
−0.464323 + 0.885666i \(0.653702\pi\)
\(72\) −3.98237 5.43998i −0.469326 0.641108i
\(73\) 1.88104 7.02013i 0.220159 0.821644i −0.764128 0.645065i \(-0.776830\pi\)
0.984287 0.176579i \(-0.0565030\pi\)
\(74\) 1.88487 + 10.6896i 0.219112 + 1.24264i
\(75\) 0 0
\(76\) 0.322783 0.117483i 0.0370258 0.0134763i
\(77\) −4.48288 + 3.13895i −0.510872 + 0.357716i
\(78\) 17.0682 + 6.00964i 1.93260 + 0.680457i
\(79\) 8.21845 + 9.79437i 0.924648 + 1.10195i 0.994536 + 0.104398i \(0.0332915\pi\)
−0.0698876 + 0.997555i \(0.522264\pi\)
\(80\) 0 0
\(81\) 1.93452 + 8.78963i 0.214946 + 0.976626i
\(82\) 2.37879 2.37879i 0.262694 0.262694i
\(83\) 1.45031 16.5771i 0.159192 1.81958i −0.326223 0.945293i \(-0.605776\pi\)
0.485416 0.874283i \(-0.338668\pi\)
\(84\) 1.29952 0.622713i 0.141789 0.0679435i
\(85\) 0 0
\(86\) 1.90533 + 5.23485i 0.205457 + 0.564488i
\(87\) −4.02693 10.7117i −0.431732 1.14842i
\(88\) −5.16010 + 7.36939i −0.550069 + 0.785580i
\(89\) −0.301153 0.521612i −0.0319221 0.0552908i 0.849623 0.527391i \(-0.176830\pi\)
−0.881545 + 0.472100i \(0.843496\pi\)
\(90\) 0 0
\(91\) 4.42137 7.65803i 0.463485 0.802780i
\(92\) −0.435565 0.934073i −0.0454108 0.0973838i
\(93\) −2.07494 1.16902i −0.215161 0.121222i
\(94\) −1.39582 + 1.66348i −0.143968 + 0.171574i
\(95\) 0 0
\(96\) 4.03955 4.12550i 0.412285 0.421057i
\(97\) 14.8333 6.91688i 1.50609 0.702302i 0.517888 0.855448i \(-0.326718\pi\)
0.988204 + 0.153146i \(0.0489404\pi\)
\(98\) 2.14495 + 8.00504i 0.216672 + 0.808632i
\(99\) 10.2720 6.22243i 1.03237 0.625378i
\(100\) 0 0
\(101\) −9.25810 + 1.63245i −0.921215 + 0.162435i −0.614092 0.789235i \(-0.710478\pi\)
−0.307124 + 0.951670i \(0.599366\pi\)
\(102\) −2.89108 + 17.4695i −0.286260 + 1.72973i
\(103\) −16.4213 7.65736i −1.61803 0.754502i −0.618523 0.785767i \(-0.712269\pi\)
−0.999511 + 0.0312651i \(0.990046\pi\)
\(104\) 2.52424 14.3157i 0.247522 1.40377i
\(105\) 0 0
\(106\) 13.4141 11.2558i 1.30289 1.09326i
\(107\) 1.55188 + 1.55188i 0.150026 + 0.150026i 0.778130 0.628104i \(-0.216169\pi\)
−0.628104 + 0.778130i \(0.716169\pi\)
\(108\) −2.93598 + 1.17486i −0.282515 + 0.113051i
\(109\) 2.31464i 0.221703i 0.993837 + 0.110851i \(0.0353577\pi\)
−0.993837 + 0.110851i \(0.964642\pi\)
\(110\) 0 0
\(111\) −11.6062 0.892415i −1.10161 0.0847043i
\(112\) −3.80041 5.42754i −0.359105 0.512855i
\(113\) −0.285981 + 0.613289i −0.0269029 + 0.0576934i −0.919300 0.393557i \(-0.871244\pi\)
0.892397 + 0.451251i \(0.149022\pi\)
\(114\) 0.154162 + 1.57139i 0.0144386 + 0.147174i
\(115\) 0 0
\(116\) 3.48224 2.01047i 0.323318 0.186668i
\(117\) −10.7934 + 16.1268i −0.997853 + 1.49092i
\(118\) 11.2302 3.00913i 1.03383 0.277013i
\(119\) 8.13117 + 2.95950i 0.745383 + 0.271297i
\(120\) 0 0
\(121\) −3.84994 3.23048i −0.349995 0.293680i
\(122\) 1.28949 + 14.7389i 0.116745 + 1.33440i
\(123\) 1.83663 + 3.10519i 0.165604 + 0.279986i
\(124\) 0.286209 0.786352i 0.0257023 0.0706165i
\(125\) 0 0
\(126\) 1.28727 + 6.49752i 0.114679 + 0.578845i
\(127\) −4.12205 1.10450i −0.365773 0.0980085i 0.0712511 0.997458i \(-0.477301\pi\)
−0.437024 + 0.899450i \(0.643967\pi\)
\(128\) −11.1630 7.81640i −0.986677 0.690879i
\(129\) −5.94561 + 0.583296i −0.523481 + 0.0513564i
\(130\) 0 0
\(131\) 10.6271 + 1.87385i 0.928496 + 0.163719i 0.617391 0.786656i \(-0.288190\pi\)
0.311105 + 0.950375i \(0.399301\pi\)
\(132\) 2.74632 + 3.20384i 0.239037 + 0.278859i
\(133\) 0.768651 + 0.0672482i 0.0666505 + 0.00583116i
\(134\) 9.04103 0.781026
\(135\) 0 0
\(136\) 14.2246 1.21975
\(137\) 16.2532 + 1.42197i 1.38860 + 0.121487i 0.756803 0.653643i \(-0.226760\pi\)
0.631801 + 0.775131i \(0.282316\pi\)
\(138\) 4.65655 0.871711i 0.396392 0.0742050i
\(139\) 17.7679 + 3.13296i 1.50705 + 0.265734i 0.865330 0.501202i \(-0.167109\pi\)
0.641723 + 0.766937i \(0.278220\pi\)
\(140\) 0 0
\(141\) −1.35571 1.89342i −0.114172 0.159455i
\(142\) −0.907834 0.635672i −0.0761837 0.0533444i
\(143\) 25.0124 + 6.70205i 2.09164 + 0.560454i
\(144\) 7.53366 + 12.4365i 0.627805 + 1.03638i
\(145\) 0 0
\(146\) −4.01472 + 11.0304i −0.332261 + 0.912879i
\(147\) −8.88697 + 0.0935477i −0.732985 + 0.00771568i
\(148\) −0.356475 4.07452i −0.0293020 0.334924i
\(149\) −7.44284 6.24528i −0.609741 0.511633i 0.284819 0.958581i \(-0.408066\pi\)
−0.894560 + 0.446948i \(0.852511\pi\)
\(150\) 0 0
\(151\) 2.08611 + 0.759282i 0.169765 + 0.0617895i 0.425505 0.904956i \(-0.360097\pi\)
−0.255739 + 0.966746i \(0.582319\pi\)
\(152\) 1.22519 0.328288i 0.0993759 0.0266277i
\(153\) −17.3751 7.66108i −1.40469 0.619362i
\(154\) 7.65467 4.41943i 0.616831 0.356127i
\(155\) 0 0
\(156\) −6.20963 2.81641i −0.497168 0.225493i
\(157\) −7.66606 + 16.4399i −0.611818 + 1.31205i 0.319412 + 0.947616i \(0.396515\pi\)
−0.931230 + 0.364432i \(0.881263\pi\)
\(158\) −11.8445 16.9157i −0.942298 1.34574i
\(159\) 8.11492 + 16.9348i 0.643555 + 1.34302i
\(160\) 0 0
\(161\) 2.31507i 0.182453i
\(162\) −1.87529 14.4145i −0.147337 1.13251i
\(163\) 14.0631 + 14.0631i 1.10151 + 1.10151i 0.994229 + 0.107281i \(0.0342144\pi\)
0.107281 + 0.994229i \(0.465786\pi\)
\(164\) −0.971063 + 0.814818i −0.0758273 + 0.0636266i
\(165\) 0 0
\(166\) −4.66700 + 26.4679i −0.362230 + 2.05431i
\(167\) 17.5324 + 8.17550i 1.35670 + 0.632639i 0.958614 0.284709i \(-0.0918969\pi\)
0.398086 + 0.917348i \(0.369675\pi\)
\(168\) 4.98078 1.87246i 0.384276 0.144463i
\(169\) −28.4031 + 5.00824i −2.18486 + 0.385249i
\(170\) 0 0
\(171\) −1.67335 0.258863i −0.127964 0.0197958i
\(172\) −0.543295 2.02761i −0.0414259 0.154604i
\(173\) 14.7368 6.87190i 1.12042 0.522461i 0.227999 0.973661i \(-0.426782\pi\)
0.892423 + 0.451200i \(0.149004\pi\)
\(174\) 4.97135 + 17.8017i 0.376877 + 1.34954i
\(175\) 0 0
\(176\) 12.4719 14.8634i 0.940102 1.12037i
\(177\) 0.131238 + 12.4675i 0.00986443 + 0.937114i
\(178\) 0.411119 + 0.881649i 0.0308147 + 0.0660824i
\(179\) −5.29497 + 9.17116i −0.395765 + 0.685485i −0.993199 0.116433i \(-0.962854\pi\)
0.597434 + 0.801918i \(0.296187\pi\)
\(180\) 0 0
\(181\) 5.21970 + 9.04078i 0.387977 + 0.671996i 0.992177 0.124836i \(-0.0398406\pi\)
−0.604200 + 0.796833i \(0.706507\pi\)
\(182\) −8.19183 + 11.6991i −0.607219 + 0.867198i
\(183\) −15.6535 2.59056i −1.15714 0.191499i
\(184\) −1.30164 3.57622i −0.0959581 0.263643i
\(185\) 0 0
\(186\) 3.17395 + 2.17300i 0.232725 + 0.159332i
\(187\) −2.20845 + 25.2427i −0.161498 + 1.84593i
\(188\) 0.578587 0.578587i 0.0421978 0.0421978i
\(189\) −7.09238 0.395373i −0.515895 0.0287591i
\(190\) 0 0
\(191\) −4.58915 5.46914i −0.332060 0.395733i 0.574019 0.818842i \(-0.305383\pi\)
−0.906079 + 0.423108i \(0.860939\pi\)
\(192\) 5.66718 4.85789i 0.408994 0.350588i
\(193\) −8.91592 + 6.24300i −0.641782 + 0.449381i −0.848626 0.528993i \(-0.822570\pi\)
0.206844 + 0.978374i \(0.433681\pi\)
\(194\) −24.8399 + 9.04099i −1.78340 + 0.649106i
\(195\) 0 0
\(196\) −0.542265 3.07534i −0.0387332 0.219667i
\(197\) 0.249308 0.930429i 0.0177624 0.0662904i −0.956476 0.291812i \(-0.905742\pi\)
0.974238 + 0.225521i \(0.0724086\pi\)
\(198\) −17.4031 + 8.56574i −1.23679 + 0.608741i
\(199\) 13.5074 + 7.79853i 0.957517 + 0.552823i 0.895408 0.445247i \(-0.146884\pi\)
0.0621092 + 0.998069i \(0.480217\pi\)
\(200\) 0 0
\(201\) −2.41070 + 9.39115i −0.170037 + 0.662401i
\(202\) 15.1258 1.32333i 1.06425 0.0931094i
\(203\) 8.99771 0.787198i 0.631515 0.0552504i
\(204\) 1.65896 6.46266i 0.116150 0.452476i
\(205\) 0 0
\(206\) 25.3434 + 14.6320i 1.76575 + 1.01946i
\(207\) −0.336153 + 5.06931i −0.0233643 + 0.352342i
\(208\) −8.11435 + 30.2832i −0.562629 + 2.09976i
\(209\) 0.392356 + 2.22516i 0.0271398 + 0.153918i
\(210\) 0 0
\(211\) 4.84666 1.76404i 0.333658 0.121442i −0.169758 0.985486i \(-0.554299\pi\)
0.503416 + 0.864044i \(0.332076\pi\)
\(212\) −5.40497 + 3.78460i −0.371215 + 0.259928i
\(213\) 0.902353 0.773495i 0.0618282 0.0529990i
\(214\) −2.27847 2.71538i −0.155753 0.185619i
\(215\) 0 0
\(216\) −11.1783 + 3.37690i −0.760587 + 0.229769i
\(217\) 1.32916 1.32916i 0.0902290 0.0902290i
\(218\) 0.325824 3.72418i 0.0220676 0.252233i
\(219\) −10.3870 7.11133i −0.701891 0.480539i
\(220\) 0 0
\(221\) −14.0035 38.4744i −0.941979 2.58807i
\(222\) 18.5483 + 3.06962i 1.24488 + 0.206020i
\(223\) 13.3598 19.0798i 0.894638 1.27768i −0.0654150 0.997858i \(-0.520837\pi\)
0.960053 0.279818i \(-0.0902740\pi\)
\(224\) 2.27857 + 3.94659i 0.152243 + 0.263693i
\(225\) 0 0
\(226\) 0.546465 0.946505i 0.0363503 0.0629606i
\(227\) −2.74583 5.88846i −0.182247 0.390831i 0.793866 0.608093i \(-0.208065\pi\)
−0.976113 + 0.217262i \(0.930287\pi\)
\(228\) −0.00626240 0.594924i −0.000414738 0.0393998i
\(229\) 12.2060 14.5465i 0.806595 0.961263i −0.193207 0.981158i \(-0.561889\pi\)
0.999802 + 0.0198953i \(0.00633329\pi\)
\(230\) 0 0
\(231\) 2.54953 + 9.12949i 0.167747 + 0.600677i
\(232\) 13.4567 6.27495i 0.883474 0.411971i
\(233\) 6.06355 + 22.6295i 0.397236 + 1.48251i 0.817937 + 0.575307i \(0.195118\pi\)
−0.420701 + 0.907199i \(0.638216\pi\)
\(234\) 19.6364 24.4281i 1.28367 1.59692i
\(235\) 0 0
\(236\) −4.31438 + 0.760742i −0.280842 + 0.0495201i
\(237\) 20.7290 7.79279i 1.34649 0.506196i
\(238\) −12.6662 5.90634i −0.821026 0.382851i
\(239\) 0.177210 1.00501i 0.0114627 0.0650084i −0.978540 0.206058i \(-0.933937\pi\)
0.990003 + 0.141049i \(0.0450476\pi\)
\(240\) 0 0
\(241\) 3.23680 2.71599i 0.208500 0.174953i −0.532557 0.846394i \(-0.678769\pi\)
0.741058 + 0.671441i \(0.234324\pi\)
\(242\) 5.73968 + 5.73968i 0.368961 + 0.368961i
\(243\) 15.4728 + 1.89558i 0.992579 + 0.121601i
\(244\) 5.57498i 0.356901i
\(245\) 0 0
\(246\) −2.51797 5.25469i −0.160540 0.335027i
\(247\) −2.09409 2.99067i −0.133244 0.190292i
\(248\) 1.30591 2.80053i 0.0829254 0.177834i
\(249\) −26.2485 11.9051i −1.66343 0.754456i
\(250\) 0 0
\(251\) −20.9072 + 12.0708i −1.31965 + 0.761900i −0.983672 0.179970i \(-0.942400\pi\)
−0.335977 + 0.941870i \(0.609066\pi\)
\(252\) −0.269825 2.48129i −0.0169974 0.156306i
\(253\) 6.54837 1.75463i 0.411693 0.110313i
\(254\) 6.47677 + 2.35735i 0.406388 + 0.147913i
\(255\) 0 0
\(256\) 10.2580 + 8.60748i 0.641125 + 0.537968i
\(257\) −1.78815 20.4386i −0.111542 1.27493i −0.821306 0.570487i \(-0.806754\pi\)
0.709765 0.704439i \(-0.248801\pi\)
\(258\) 9.64839 0.101563i 0.600683 0.00632302i
\(259\) 3.14227 8.63332i 0.195251 0.536449i
\(260\) 0 0
\(261\) −19.8166 + 0.417240i −1.22662 + 0.0258265i
\(262\) −16.8349 4.51090i −1.04006 0.278685i
\(263\) −3.67390 2.57249i −0.226542 0.158627i 0.454795 0.890596i \(-0.349712\pi\)
−0.681337 + 0.731969i \(0.738601\pi\)
\(264\) 9.07142 + 12.6694i 0.558307 + 0.779747i
\(265\) 0 0
\(266\) −1.22727 0.216400i −0.0752486 0.0132684i
\(267\) −1.02541 + 0.191958i −0.0627542 + 0.0117476i
\(268\) −3.39378 0.296917i −0.207308 0.0181371i
\(269\) −7.32723 −0.446749 −0.223374 0.974733i \(-0.571707\pi\)
−0.223374 + 0.974733i \(0.571707\pi\)
\(270\) 0 0
\(271\) 19.5478 1.18745 0.593723 0.804669i \(-0.297657\pi\)
0.593723 + 0.804669i \(0.297657\pi\)
\(272\) −30.5620 2.67383i −1.85310 0.162125i
\(273\) −9.96793 11.6285i −0.603286 0.703789i
\(274\) −25.9507 4.57580i −1.56774 0.276434i
\(275\) 0 0
\(276\) −1.77658 + 0.174292i −0.106938 + 0.0104912i
\(277\) −17.0942 11.9695i −1.02709 0.719177i −0.0666833 0.997774i \(-0.521242\pi\)
−0.960408 + 0.278597i \(0.910131\pi\)
\(278\) −28.1469 7.54195i −1.68814 0.452336i
\(279\) −3.10345 + 2.71746i −0.185799 + 0.162690i
\(280\) 0 0
\(281\) −1.84144 + 5.05932i −0.109851 + 0.301814i −0.982422 0.186674i \(-0.940229\pi\)
0.872571 + 0.488488i \(0.162451\pi\)
\(282\) 1.91477 + 3.23730i 0.114023 + 0.192778i
\(283\) 0.707935 + 8.09174i 0.0420824 + 0.481004i 0.987769 + 0.155924i \(0.0498355\pi\)
−0.945687 + 0.325080i \(0.894609\pi\)
\(284\) 0.319902 + 0.268430i 0.0189827 + 0.0159284i
\(285\) 0 0
\(286\) −39.3007 14.3043i −2.32390 0.845830i
\(287\) −2.75040 + 0.736969i −0.162351 + 0.0435019i
\(288\) −4.41632 8.97270i −0.260234 0.528722i
\(289\) 19.9750 11.5325i 1.17500 0.678385i
\(290\) 0 0
\(291\) −2.76780 28.2125i −0.162252 1.65385i
\(292\) 1.86928 4.00868i 0.109391 0.234590i
\(293\) −3.30800 4.72431i −0.193255 0.275997i 0.710817 0.703377i \(-0.248326\pi\)
−0.904072 + 0.427380i \(0.859437\pi\)
\(294\) 14.3120 + 1.10047i 0.834693 + 0.0641808i
\(295\) 0 0
\(296\) 15.1031i 0.877851i
\(297\) −4.25709 20.3610i −0.247021 1.18147i
\(298\) 11.0961 + 11.0961i 0.642783 + 0.642783i
\(299\) −8.39145 + 7.04127i −0.485290 + 0.407207i
\(300\) 0 0
\(301\) 0.818784 4.64356i 0.0471940 0.267650i
\(302\) −3.24960 1.51531i −0.186994 0.0871966i
\(303\) −2.65855 + 16.0644i −0.152730 + 0.922874i
\(304\) −2.69406 + 0.475035i −0.154515 + 0.0272451i
\(305\) 0 0
\(306\) 26.8775 + 14.7723i 1.53649 + 0.844474i
\(307\) −2.60928 9.73795i −0.148919 0.555774i −0.999550 0.0300101i \(-0.990446\pi\)
0.850630 0.525764i \(-0.176221\pi\)
\(308\) −3.01851 + 1.40756i −0.171996 + 0.0802029i
\(309\) −21.9562 + 22.4233i −1.24904 + 1.27562i
\(310\) 0 0
\(311\) 13.2713 15.8161i 0.752548 0.896851i −0.244805 0.969572i \(-0.578724\pi\)
0.997352 + 0.0727212i \(0.0231683\pi\)
\(312\) −21.9361 12.3588i −1.24189 0.699679i
\(313\) 6.13505 + 13.1567i 0.346773 + 0.743658i 0.999908 0.0135841i \(-0.00432408\pi\)
−0.653134 + 0.757242i \(0.726546\pi\)
\(314\) 14.6486 25.3722i 0.826670 1.43183i
\(315\) 0 0
\(316\) 3.89060 + 6.73872i 0.218863 + 0.379083i
\(317\) 17.2229 24.5968i 0.967334 1.38150i 0.0433528 0.999060i \(-0.486196\pi\)
0.923982 0.382437i \(-0.124915\pi\)
\(318\) −10.6728 28.3898i −0.598500 1.59202i
\(319\) 9.04617 + 24.8541i 0.506488 + 1.39156i
\(320\) 0 0
\(321\) 3.42806 1.64268i 0.191336 0.0916854i
\(322\) −0.325884 + 3.72487i −0.0181608 + 0.207579i
\(323\) 2.52621 2.52621i 0.140562 0.140562i
\(324\) 0.230548 + 5.47245i 0.0128082 + 0.304025i
\(325\) 0 0
\(326\) −20.6475 24.6067i −1.14356 1.36284i
\(327\) 3.78153 + 1.33146i 0.209119 + 0.0736297i
\(328\) −3.83435 + 2.68484i −0.211717 + 0.148245i
\(329\) 1.72715 0.628630i 0.0952207 0.0346575i
\(330\) 0 0
\(331\) 5.01737 + 28.4549i 0.275779 + 1.56402i 0.736475 + 0.676465i \(0.236489\pi\)
−0.460695 + 0.887558i \(0.652400\pi\)
\(332\) 2.62111 9.78212i 0.143852 0.536864i
\(333\) −8.13421 + 18.4481i −0.445752 + 1.01095i
\(334\) −27.0582 15.6221i −1.48056 0.854803i
\(335\) 0 0
\(336\) −11.0533 + 3.08678i −0.603008 + 0.168398i
\(337\) −17.2575 + 1.50984i −0.940078 + 0.0822462i −0.546883 0.837209i \(-0.684186\pi\)
−0.393195 + 0.919455i \(0.628630\pi\)
\(338\) 46.4047 4.05989i 2.52408 0.220829i
\(339\) 0.837450 + 0.820003i 0.0454840 + 0.0445364i
\(340\) 0 0
\(341\) 4.76702 + 2.75224i 0.258148 + 0.149042i
\(342\) 2.65592 + 0.652053i 0.143616 + 0.0352590i
\(343\) 4.29223 16.0188i 0.231759 0.864935i
\(344\) −1.34600 7.63352i −0.0725713 0.411572i
\(345\) 0 0
\(346\) −24.6784 + 8.98221i −1.32672 + 0.482887i
\(347\) −10.1052 + 7.07573i −0.542475 + 0.379845i −0.812458 0.583020i \(-0.801871\pi\)
0.269983 + 0.962865i \(0.412982\pi\)
\(348\) −1.28150 6.84557i −0.0686954 0.366961i
\(349\) 8.50408 + 10.1348i 0.455213 + 0.542502i 0.944019 0.329891i \(-0.107012\pi\)
−0.488806 + 0.872392i \(0.662567\pi\)
\(350\) 0 0
\(351\) 20.1383 + 26.9103i 1.07490 + 1.43637i
\(352\) −9.43630 + 9.43630i −0.502956 + 0.502956i
\(353\) −1.90514 + 21.7758i −0.101400 + 1.15901i 0.759595 + 0.650396i \(0.225397\pi\)
−0.860995 + 0.508613i \(0.830159\pi\)
\(354\) 1.54385 20.0783i 0.0820545 1.06715i
\(355\) 0 0
\(356\) −0.125370 0.344451i −0.00664459 0.0182559i
\(357\) 9.51236 11.5818i 0.503448 0.612975i
\(358\) 9.81043 14.0107i 0.518497 0.740491i
\(359\) 2.83192 + 4.90502i 0.149463 + 0.258877i 0.931029 0.364945i \(-0.118912\pi\)
−0.781566 + 0.623822i \(0.785579\pi\)
\(360\) 0 0
\(361\) −9.34072 + 16.1786i −0.491617 + 0.851505i
\(362\) −7.12568 15.2811i −0.374518 0.803156i
\(363\) −7.49238 + 4.43153i −0.393248 + 0.232595i
\(364\) 3.45922 4.12254i 0.181312 0.216080i
\(365\) 0 0
\(366\) 24.8213 + 6.37161i 1.29743 + 0.333049i
\(367\) −1.39490 + 0.650455i −0.0728134 + 0.0339535i −0.458684 0.888600i \(-0.651679\pi\)
0.385870 + 0.922553i \(0.373901\pi\)
\(368\) 2.12438 + 7.92829i 0.110741 + 0.413290i
\(369\) 6.12957 1.21438i 0.319093 0.0632179i
\(370\) 0 0
\(371\) −14.5962 + 2.57371i −0.757798 + 0.133620i
\(372\) −1.12006 0.919926i −0.0580724 0.0476959i
\(373\) 15.4081 + 7.18493i 0.797802 + 0.372021i 0.778383 0.627790i \(-0.216040\pi\)
0.0194197 + 0.999811i \(0.493818\pi\)
\(374\) 7.10666 40.3038i 0.367476 2.08406i
\(375\) 0 0
\(376\) 2.31458 1.94216i 0.119365 0.100159i
\(377\) −30.2198 30.2198i −1.55640 1.55640i
\(378\) 11.3557 + 1.63451i 0.584077 + 0.0840701i
\(379\) 37.4048i 1.92136i −0.277663 0.960679i \(-0.589560\pi\)
0.277663 0.960679i \(-0.410440\pi\)
\(380\) 0 0
\(381\) −4.17560 + 6.09902i −0.213922 + 0.312462i
\(382\) 6.61393 + 9.44567i 0.338398 + 0.483282i
\(383\) −10.1678 + 21.8049i −0.519550 + 1.11418i 0.455099 + 0.890441i \(0.349604\pi\)
−0.974649 + 0.223738i \(0.928174\pi\)
\(384\) −19.1913 + 13.7412i −0.979351 + 0.701226i
\(385\) 0 0
\(386\) 15.2242 8.78971i 0.774893 0.447385i
\(387\) −2.46715 + 10.0491i −0.125412 + 0.510825i
\(388\) 9.62121 2.57800i 0.488443 0.130878i
\(389\) −5.94474 2.16371i −0.301410 0.109704i 0.186888 0.982381i \(-0.440160\pi\)
−0.488298 + 0.872677i \(0.662382\pi\)
\(390\) 0 0
\(391\) −8.21141 6.89019i −0.415269 0.348452i
\(392\) −1.00501 11.4873i −0.0507608 0.580198i
\(393\) 9.17444 16.2841i 0.462789 0.821423i
\(394\) −0.532101 + 1.46194i −0.0268069 + 0.0736513i
\(395\) 0 0
\(396\) 6.81402 2.64383i 0.342417 0.132857i
\(397\) 29.5283 + 7.91207i 1.48198 + 0.397095i 0.907021 0.421086i \(-0.138351\pi\)
0.574960 + 0.818182i \(0.305018\pi\)
\(398\) −20.6353 14.4490i −1.03435 0.724261i
\(399\) 0.552018 1.21709i 0.0276355 0.0609308i
\(400\) 0 0
\(401\) −2.27324 0.400833i −0.113520 0.0200167i 0.116599 0.993179i \(-0.462801\pi\)
−0.230120 + 0.973162i \(0.573912\pi\)
\(402\) 5.20069 14.7707i 0.259387 0.736696i
\(403\) −8.86041 0.775186i −0.441369 0.0386147i
\(404\) −5.72130 −0.284645
\(405\) 0 0
\(406\) −14.5878 −0.723982
\(407\) 26.8017 + 2.34484i 1.32851 + 0.116229i
\(408\) 8.18246 23.2394i 0.405092 1.15052i
\(409\) 13.8912 + 2.44939i 0.686874 + 0.121114i 0.506184 0.862426i \(-0.331056\pi\)
0.180690 + 0.983540i \(0.442167\pi\)
\(410\) 0 0
\(411\) 11.6725 25.7355i 0.575761 1.26944i
\(412\) −9.03274 6.32479i −0.445011 0.311600i
\(413\) −9.50540 2.54696i −0.467730 0.125328i
\(414\) 1.25445 8.10904i 0.0616528 0.398537i
\(415\) 0 0
\(416\) 7.37500 20.2626i 0.361589 0.993458i
\(417\) 15.3391 27.2260i 0.751159 1.33326i
\(418\) −0.318060 3.63544i −0.0155568 0.177815i
\(419\) 22.4508 + 18.8385i 1.09679 + 0.920320i 0.997205 0.0747090i \(-0.0238028\pi\)
0.0995889 + 0.995029i \(0.468247\pi\)
\(420\) 0 0
\(421\) −19.6404 7.14853i −0.957216 0.348398i −0.184274 0.982875i \(-0.558993\pi\)
−0.772942 + 0.634477i \(0.781216\pi\)
\(422\) −8.04644 + 2.15604i −0.391694 + 0.104954i
\(423\) −3.87321 + 1.12573i −0.188322 + 0.0547347i
\(424\) −21.1005 + 12.1824i −1.02473 + 0.591630i
\(425\) 0 0
\(426\) −1.56074 + 1.11751i −0.0756180 + 0.0541434i
\(427\) 5.29238 11.3495i 0.256116 0.549243i
\(428\) 0.766106 + 1.09411i 0.0370311 + 0.0528859i
\(429\) 25.3373 37.0085i 1.22330 1.78679i
\(430\) 0 0
\(431\) 22.4642i 1.08206i 0.841003 + 0.541030i \(0.181966\pi\)
−0.841003 + 0.541030i \(0.818034\pi\)
\(432\) 24.6516 5.15417i 1.18605 0.247980i
\(433\) −7.75200 7.75200i −0.372537 0.372537i 0.495863 0.868401i \(-0.334852\pi\)
−0.868401 + 0.495863i \(0.834852\pi\)
\(434\) −2.32567 + 1.95147i −0.111636 + 0.0936734i
\(435\) 0 0
\(436\) −0.244612 + 1.38727i −0.0117148 + 0.0664380i
\(437\) −0.866278 0.403952i −0.0414397 0.0193236i
\(438\) 15.7114 + 12.9040i 0.750718 + 0.616579i
\(439\) −26.6574 + 4.70041i −1.27229 + 0.224338i −0.768702 0.639608i \(-0.779097\pi\)
−0.503585 + 0.863946i \(0.667986\pi\)
\(440\) 0 0
\(441\) −4.95923 + 14.5728i −0.236154 + 0.693944i
\(442\) 17.1153 + 63.8752i 0.814092 + 3.03823i
\(443\) −37.4589 + 17.4674i −1.77973 + 0.829901i −0.809724 + 0.586810i \(0.800383\pi\)
−0.970004 + 0.243090i \(0.921839\pi\)
\(444\) −6.86177 1.76141i −0.325645 0.0835927i
\(445\) 0 0
\(446\) −24.1813 + 28.8181i −1.14502 + 1.36458i
\(447\) −14.4845 + 8.56718i −0.685094 + 0.405214i
\(448\) 2.48979 + 5.33936i 0.117631 + 0.252261i
\(449\) 5.23440 9.06624i 0.247027 0.427862i −0.715673 0.698436i \(-0.753880\pi\)
0.962699 + 0.270573i \(0.0872132\pi\)
\(450\) 0 0
\(451\) −4.16915 7.22119i −0.196318 0.340032i
\(452\) −0.236214 + 0.337348i −0.0111106 + 0.0158675i
\(453\) 2.44047 2.97140i 0.114663 0.139609i
\(454\) 3.58906 + 9.86086i 0.168443 + 0.462793i
\(455\) 0 0
\(456\) 0.168429 2.19048i 0.00788743 0.102579i
\(457\) −3.03365 + 34.6748i −0.141908 + 1.62202i 0.507550 + 0.861622i \(0.330551\pi\)
−0.649458 + 0.760397i \(0.725004\pi\)
\(458\) −21.6867 + 21.6867i −1.01335 + 1.01335i
\(459\) −22.5109 + 23.9795i −1.05072 + 1.11927i
\(460\) 0 0
\(461\) 20.9800 + 25.0030i 0.977135 + 1.16450i 0.986369 + 0.164546i \(0.0526161\pi\)
−0.00923458 + 0.999957i \(0.502939\pi\)
\(462\) −2.81699 15.0479i −0.131058 0.700093i
\(463\) 4.82297 3.37708i 0.224143 0.156946i −0.456112 0.889923i \(-0.650758\pi\)
0.680254 + 0.732976i \(0.261869\pi\)
\(464\) −30.0916 + 10.9524i −1.39697 + 0.508454i
\(465\) 0 0
\(466\) −6.57058 37.2636i −0.304376 1.72620i
\(467\) −5.29691 + 19.7683i −0.245112 + 0.914769i 0.728216 + 0.685348i \(0.240350\pi\)
−0.973327 + 0.229421i \(0.926317\pi\)
\(468\) −8.17326 + 8.52484i −0.377809 + 0.394061i
\(469\) −6.62720 3.82621i −0.306015 0.176678i
\(470\) 0 0
\(471\) 22.4488 + 21.9811i 1.03439 + 1.01284i
\(472\) −16.1155 + 1.40993i −0.741778 + 0.0648972i
\(473\) 13.7553 1.20343i 0.632467 0.0553337i
\(474\) −34.4492 + 9.62039i −1.58230 + 0.441879i
\(475\) 0 0
\(476\) 4.56060 + 2.63306i 0.209035 + 0.120686i
\(477\) 32.3350 3.51624i 1.48052 0.160998i
\(478\) −0.426596 + 1.59208i −0.0195120 + 0.0728199i
\(479\) 1.10017 + 6.23936i 0.0502679 + 0.285083i 0.999571 0.0292779i \(-0.00932077\pi\)
−0.949303 + 0.314361i \(0.898210\pi\)
\(480\) 0 0
\(481\) −40.8504 + 14.8683i −1.86262 + 0.677938i
\(482\) −5.59022 + 3.91431i −0.254627 + 0.178292i
\(483\) −3.78223 1.33170i −0.172097 0.0605946i
\(484\) −1.96604 2.34303i −0.0893654 0.106501i
\(485\) 0 0
\(486\) −24.6283 5.22796i −1.11716 0.237145i
\(487\) 4.69365 4.69365i 0.212690 0.212690i −0.592719 0.805409i \(-0.701946\pi\)
0.805409 + 0.592719i \(0.201946\pi\)
\(488\) 1.79421 20.5079i 0.0812200 0.928349i
\(489\) 31.0651 14.8860i 1.40481 0.673166i
\(490\) 0 0
\(491\) 2.14176 + 5.88443i 0.0966562 + 0.265561i 0.978592 0.205808i \(-0.0659823\pi\)
−0.881936 + 0.471369i \(0.843760\pi\)
\(492\) 0.772616 + 2.05517i 0.0348322 + 0.0926544i
\(493\) 23.9871 34.2572i 1.08033 1.54287i
\(494\) 2.94833 + 5.10666i 0.132652 + 0.229759i
\(495\) 0 0
\(496\) −3.33221 + 5.77155i −0.149620 + 0.259150i
\(497\) 0.396434 + 0.850156i 0.0177825 + 0.0381347i
\(498\) 40.5571 + 22.8498i 1.81741 + 1.02393i
\(499\) −15.3830 + 18.3328i −0.688638 + 0.820687i −0.991190 0.132446i \(-0.957717\pi\)
0.302552 + 0.953133i \(0.402161\pi\)
\(500\) 0 0
\(501\) 23.4419 23.9406i 1.04730 1.06959i
\(502\) 35.3381 16.4784i 1.57722 0.735468i
\(503\) 1.93816 + 7.23333i 0.0864185 + 0.322518i 0.995579 0.0939277i \(-0.0299423\pi\)
−0.909161 + 0.416446i \(0.863276\pi\)
\(504\) −0.194010 9.21440i −0.00864190 0.410442i
\(505\) 0 0
\(506\) −10.7831 + 1.90135i −0.479368 + 0.0845255i
\(507\) −8.15622 + 49.2843i −0.362231 + 2.18879i
\(508\) −2.35380 1.09759i −0.104433 0.0486979i
\(509\) −1.85342 + 10.5113i −0.0821515 + 0.465904i 0.915783 + 0.401672i \(0.131571\pi\)
−0.997935 + 0.0642321i \(0.979540\pi\)
\(510\) 0 0
\(511\) 7.61095 6.38635i 0.336689 0.282515i
\(512\) 3.97904 + 3.97904i 0.175850 + 0.175850i
\(513\) −1.38548 + 2.58491i −0.0611704 + 0.114127i
\(514\) 33.1368i 1.46160i
\(515\) 0 0
\(516\) −3.62510 0.278739i −0.159586 0.0122708i
\(517\) 3.08717 + 4.40893i 0.135773 + 0.193905i
\(518\) −6.27109 + 13.4484i −0.275536 + 0.590889i
\(519\) −2.74981 28.0291i −0.120703 1.23034i
\(520\) 0 0
\(521\) 12.8647 7.42744i 0.563613 0.325402i −0.190982 0.981594i \(-0.561167\pi\)
0.754594 + 0.656192i \(0.227834\pi\)
\(522\) 31.9430 + 2.11818i 1.39811 + 0.0927103i
\(523\) −21.0978 + 5.65314i −0.922542 + 0.247194i −0.688672 0.725073i \(-0.741806\pi\)
−0.233870 + 0.972268i \(0.575139\pi\)
\(524\) 6.17127 + 2.24616i 0.269593 + 0.0981239i
\(525\) 0 0
\(526\) 5.54906 + 4.65621i 0.241951 + 0.203021i
\(527\) −0.758553 8.67030i −0.0330431 0.377684i
\(528\) −17.1087 28.9257i −0.744561 1.25883i
\(529\) 6.88559 18.9180i 0.299373 0.822522i
\(530\) 0 0
\(531\) 20.4441 + 6.95729i 0.887200 + 0.301921i
\(532\) 0.453579 + 0.121536i 0.0196651 + 0.00526926i
\(533\) 11.0366 + 7.72792i 0.478049 + 0.334734i
\(534\) 1.67687 0.164510i 0.0725654 0.00711906i
\(535\) 0 0
\(536\) −12.3887 2.18446i −0.535109 0.0943542i
\(537\) 11.9375 + 13.9262i 0.515140 + 0.600958i
\(538\) 11.7893 + 1.03143i 0.508271 + 0.0444680i
\(539\) 20.5412 0.884773
\(540\) 0 0
\(541\) −4.75367 −0.204376 −0.102188 0.994765i \(-0.532584\pi\)
−0.102188 + 0.994765i \(0.532584\pi\)
\(542\) −31.4518 2.75168i −1.35097 0.118195i
\(543\) 17.7728 3.32709i 0.762705 0.142779i
\(544\) 20.7798 + 3.66405i 0.890928 + 0.157095i
\(545\) 0 0
\(546\) 14.4012 + 20.1130i 0.616313 + 0.860758i
\(547\) −14.9586 10.4741i −0.639582 0.447840i 0.208271 0.978071i \(-0.433216\pi\)
−0.847853 + 0.530231i \(0.822105\pi\)
\(548\) 9.59097 + 2.56989i 0.409706 + 0.109780i
\(549\) −13.2367 + 24.0836i −0.564929 + 1.02786i
\(550\) 0 0
\(551\) 1.27543 3.50421i 0.0543351 0.149284i
\(552\) −6.59137 + 0.0693833i −0.280547 + 0.00295315i
\(553\) 1.52336 + 17.4121i 0.0647798 + 0.740437i
\(554\) 25.8191 + 21.6648i 1.09695 + 0.920449i
\(555\) 0 0
\(556\) 10.3180 + 3.75544i 0.437580 + 0.159266i
\(557\) −16.8064 + 4.50326i −0.712110 + 0.190809i −0.596649 0.802503i \(-0.703501\pi\)
−0.115461 + 0.993312i \(0.536835\pi\)
\(558\) 5.37587 3.93544i 0.227579 0.166600i
\(559\) −19.3219 + 11.1555i −0.817227 + 0.471826i
\(560\) 0 0
\(561\) 39.9697 + 18.1285i 1.68752 + 0.765384i
\(562\) 3.67500 7.88106i 0.155020 0.332442i
\(563\) −4.88633 6.97840i −0.205934 0.294104i 0.702878 0.711311i \(-0.251898\pi\)
−0.908812 + 0.417206i \(0.863009\pi\)
\(564\) −0.612440 1.27808i −0.0257884 0.0538170i
\(565\) 0 0
\(566\) 13.1190i 0.551432i
\(567\) −4.72570 + 11.3597i −0.198461 + 0.477062i
\(568\) 1.09039 + 1.09039i 0.0457518 + 0.0457518i
\(569\) 1.30840 1.09788i 0.0548512 0.0460256i −0.614950 0.788566i \(-0.710824\pi\)
0.669801 + 0.742541i \(0.266379\pi\)
\(570\) 0 0
\(571\) −2.38472 + 13.5244i −0.0997975 + 0.565980i 0.893374 + 0.449314i \(0.148332\pi\)
−0.993171 + 0.116665i \(0.962779\pi\)
\(572\) 14.2827 + 6.66015i 0.597192 + 0.278475i
\(573\) −11.5750 + 4.35147i −0.483552 + 0.181785i
\(574\) 4.52905 0.798594i 0.189039 0.0333327i
\(575\) 0 0
\(576\) −4.67660 12.0531i −0.194858 0.502213i
\(577\) −7.71384 28.7885i −0.321131 1.19848i −0.918144 0.396247i \(-0.870312\pi\)
0.597013 0.802232i \(-0.296354\pi\)
\(578\) −33.7624 + 15.7437i −1.40433 + 0.654851i
\(579\) 5.07072 + 18.1575i 0.210732 + 0.754599i
\(580\) 0 0
\(581\) 14.6223 17.4262i 0.606636 0.722961i
\(582\) 0.481926 + 45.7827i 0.0199765 + 1.89775i
\(583\) −18.3427 39.3359i −0.759675 1.62913i
\(584\) 8.16638 14.1446i 0.337927 0.585307i
\(585\) 0 0
\(586\) 4.65744 + 8.06692i 0.192397 + 0.333241i
\(587\) −9.86144 + 14.0836i −0.407025 + 0.581292i −0.969368 0.245612i \(-0.921011\pi\)
0.562343 + 0.826904i \(0.309900\pi\)
\(588\) −5.33623 0.883112i −0.220063 0.0364189i
\(589\) −0.265436 0.729279i −0.0109371 0.0300494i
\(590\) 0 0
\(591\) −1.37667 0.942517i −0.0566287 0.0387700i
\(592\) −2.83896 + 32.4495i −0.116681 + 1.33366i
\(593\) −3.89096 + 3.89096i −0.159783 + 0.159783i −0.782470 0.622688i \(-0.786041\pi\)
0.622688 + 0.782470i \(0.286041\pi\)
\(594\) 3.98336 + 33.3595i 0.163439 + 1.36876i
\(595\) 0 0
\(596\) −3.80081 4.52963i −0.155687 0.185541i
\(597\) 20.5107 17.5817i 0.839446 0.719571i
\(598\) 14.4927 10.1479i 0.592652 0.414980i
\(599\) 8.34437 3.03710i 0.340942 0.124093i −0.165874 0.986147i \(-0.553045\pi\)
0.506816 + 0.862054i \(0.330822\pi\)
\(600\) 0 0
\(601\) 6.49256 + 36.8211i 0.264837 + 1.50197i 0.769499 + 0.638649i \(0.220506\pi\)
−0.504661 + 0.863317i \(0.668383\pi\)
\(602\) −1.97105 + 7.35607i −0.0803341 + 0.299811i
\(603\) 13.9560 + 9.34054i 0.568332 + 0.380376i
\(604\) 1.17006 + 0.675532i 0.0476089 + 0.0274870i
\(605\) 0 0
\(606\) 6.53884 25.4728i 0.265622 1.03476i
\(607\) 24.9336 2.18141i 1.01202 0.0885406i 0.430937 0.902382i \(-0.358183\pi\)
0.581087 + 0.813841i \(0.302628\pi\)
\(608\) 1.87436 0.163985i 0.0760153 0.00665047i
\(609\) 3.88969 15.1527i 0.157618 0.614020i
\(610\) 0 0
\(611\) −7.53170 4.34843i −0.304700 0.175919i
\(612\) −9.60402 6.42783i −0.388219 0.259830i
\(613\) −1.60494 + 5.98971i −0.0648229 + 0.241922i −0.990733 0.135820i \(-0.956633\pi\)
0.925911 + 0.377743i \(0.123300\pi\)
\(614\) 2.82746 + 16.0353i 0.114107 + 0.647134i
\(615\) 0 0
\(616\) −11.5568 + 4.20633i −0.465636 + 0.169478i
\(617\) −7.00927 + 4.90794i −0.282182 + 0.197586i −0.706096 0.708117i \(-0.749545\pi\)
0.423913 + 0.905703i \(0.360656\pi\)
\(618\) 38.4832 32.9877i 1.54802 1.32696i
\(619\) 7.05535 + 8.40824i 0.283579 + 0.337956i 0.888964 0.457976i \(-0.151426\pi\)
−0.605386 + 0.795932i \(0.706981\pi\)
\(620\) 0 0
\(621\) 8.08858 + 3.46522i 0.324583 + 0.139054i
\(622\) −23.5795 + 23.5795i −0.945452 + 0.945452i
\(623\) 0.0717624 0.820248i 0.00287510 0.0328625i
\(624\) 44.8072 + 30.6766i 1.79372 + 1.22805i
\(625\) 0 0
\(626\) −8.01907 22.0322i −0.320507 0.880585i
\(627\) 3.86103 + 0.638975i 0.154195 + 0.0255182i
\(628\) −6.33198 + 9.04301i −0.252674 + 0.360855i
\(629\) −21.2697 36.8402i −0.848079 1.46892i
\(630\) 0 0
\(631\) 17.7048 30.6656i 0.704816 1.22078i −0.261942 0.965084i \(-0.584363\pi\)
0.966758 0.255694i \(-0.0823038\pi\)
\(632\) 12.1431 + 26.0409i 0.483026 + 1.03585i
\(633\) −0.0940314 8.93292i −0.00373741 0.355052i
\(634\) −31.1735 + 37.1511i −1.23806 + 1.47546i
\(635\) 0 0
\(636\) 3.07395 + 11.0074i 0.121890 + 0.436470i
\(637\) −30.0812 + 14.0271i −1.19186 + 0.555774i
\(638\) −11.0564 41.2629i −0.437725 1.63361i
\(639\) −0.744628 1.91915i −0.0294570 0.0759204i
\(640\) 0 0
\(641\) −14.4883 + 2.55468i −0.572254 + 0.100904i −0.452285 0.891874i \(-0.649391\pi\)
−0.119970 + 0.992778i \(0.538280\pi\)
\(642\) −5.74687 + 2.16046i −0.226811 + 0.0852666i
\(643\) −9.20060 4.29031i −0.362836 0.169193i 0.232647 0.972561i \(-0.425261\pi\)
−0.595483 + 0.803368i \(0.703039\pi\)
\(644\) 0.244658 1.38752i 0.00964087 0.0546761i
\(645\) 0 0
\(646\) −4.42019 + 3.70898i −0.173910 + 0.145928i
\(647\) 2.41506 + 2.41506i 0.0949459 + 0.0949459i 0.752984 0.658038i \(-0.228614\pi\)
−0.658038 + 0.752984i \(0.728614\pi\)
\(648\) −0.913126 + 20.2049i −0.0358710 + 0.793725i
\(649\) 28.8172i 1.13117i
\(650\) 0 0
\(651\) −1.40692 2.93607i −0.0551417 0.115074i
\(652\) 6.94245 + 9.91484i 0.271887 + 0.388295i
\(653\) −13.5667 + 29.0939i −0.530907 + 1.13853i 0.439763 + 0.898114i \(0.355063\pi\)
−0.970669 + 0.240419i \(0.922715\pi\)
\(654\) −5.89692 2.67458i −0.230588 0.104584i
\(655\) 0 0
\(656\) 8.74288 5.04770i 0.341352 0.197080i
\(657\) −17.5930 + 12.8791i −0.686369 + 0.502460i
\(658\) −2.86741 + 0.768321i −0.111783 + 0.0299523i
\(659\) 1.04455 + 0.380185i 0.0406898 + 0.0148099i 0.362285 0.932067i \(-0.381997\pi\)
−0.321595 + 0.946877i \(0.604219\pi\)
\(660\) 0 0
\(661\) −2.09875 1.76106i −0.0816318 0.0684972i 0.601059 0.799205i \(-0.294746\pi\)
−0.682690 + 0.730708i \(0.739190\pi\)
\(662\) −4.06728 46.4893i −0.158080 1.80686i
\(663\) −70.9124 + 0.746452i −2.75401 + 0.0289898i
\(664\) 12.7901 35.1406i 0.496353 1.36372i
\(665\) 0 0
\(666\) 15.6846 28.5374i 0.607764 1.10580i
\(667\) −10.8076 2.89588i −0.418471 0.112129i
\(668\) 9.64395 + 6.75277i 0.373136 + 0.261272i
\(669\) −23.4864 32.8017i −0.908037 1.26819i
\(670\) 0 0
\(671\) 36.1143 + 6.36793i 1.39418 + 0.245831i
\(672\) 7.75841 1.45238i 0.299287 0.0560268i
\(673\) 20.5328 + 1.79638i 0.791479 + 0.0692455i 0.475723 0.879595i \(-0.342186\pi\)
0.315756 + 0.948840i \(0.397742\pi\)
\(674\) 27.9793 1.07772
\(675\) 0 0
\(676\) −17.5525 −0.675097
\(677\) 5.16710 + 0.452063i 0.198588 + 0.0173742i 0.186016 0.982547i \(-0.440443\pi\)
0.0125721 + 0.999921i \(0.495998\pi\)
\(678\) −1.23200 1.43724i −0.0473147 0.0551970i
\(679\) 22.0342 + 3.88522i 0.845595 + 0.149101i
\(680\) 0 0
\(681\) −11.1997 + 1.09875i −0.429174 + 0.0421043i
\(682\) −7.28255 5.09930i −0.278863 0.195262i
\(683\) 4.07571 + 1.09208i 0.155953 + 0.0417874i 0.335951 0.941880i \(-0.390942\pi\)
−0.179998 + 0.983667i \(0.557609\pi\)
\(684\) −0.975554 0.331988i −0.0373013 0.0126939i
\(685\) 0 0
\(686\) −9.16097 + 25.1696i −0.349767 + 0.960978i
\(687\) −16.7440 28.3091i −0.638824 1.08006i
\(688\) 1.45702 + 16.6538i 0.0555485 + 0.634922i
\(689\) 53.7231 + 45.0791i 2.04669 + 1.71738i
\(690\) 0 0
\(691\) −5.69285 2.07203i −0.216566 0.0788236i 0.231459 0.972845i \(-0.425650\pi\)
−0.448025 + 0.894021i \(0.647872\pi\)
\(692\) 9.55866 2.56124i 0.363366 0.0973636i
\(693\) 16.3818 + 1.08630i 0.622293 + 0.0412651i
\(694\) 17.2549 9.96215i 0.654989 0.378158i
\(695\) 0 0
\(696\) −2.51094 25.5943i −0.0951768 0.970148i
\(697\) −5.57186 + 11.9489i −0.211049 + 0.452597i
\(698\) −12.2562 17.5036i −0.463902 0.662521i
\(699\) 40.4587 + 3.11092i 1.53029 + 0.117666i
\(700\) 0 0
\(701\) 31.6966i 1.19716i 0.801062 + 0.598581i \(0.204269\pi\)
−0.801062 + 0.598581i \(0.795731\pi\)
\(702\) −28.6138 46.1326i −1.07996 1.74116i
\(703\) −2.68222 2.68222i −0.101162 0.101162i
\(704\) −13.2158 + 11.0894i −0.498088 + 0.417946i
\(705\) 0 0
\(706\) 6.13060 34.7684i 0.230728 1.30852i
\(707\) −11.6474 5.43129i −0.438047 0.204265i
\(708\) −1.23891 + 7.48618i −0.0465612 + 0.281348i
\(709\) 20.0118 3.52862i 0.751559 0.132520i 0.215270 0.976555i \(-0.430937\pi\)
0.536289 + 0.844035i \(0.319826\pi\)
\(710\) 0 0
\(711\) −0.807430 38.3484i −0.0302810 1.43818i
\(712\) −0.350325 1.30743i −0.0131290 0.0489981i
\(713\) −2.11039 + 0.984093i −0.0790348 + 0.0368546i
\(714\) −16.9354 + 17.2957i −0.633792 + 0.647277i
\(715\) 0 0
\(716\) −4.14272 + 4.93710i −0.154821 + 0.184508i
\(717\) −1.53998 0.867626i −0.0575117 0.0324021i
\(718\) −3.86600 8.29065i −0.144278 0.309404i
\(719\) −5.78147 + 10.0138i −0.215612 + 0.373452i −0.953462 0.301514i \(-0.902508\pi\)
0.737849 + 0.674965i \(0.235841\pi\)
\(720\) 0 0
\(721\) −12.3847 21.4509i −0.461229 0.798872i
\(722\) 17.3063 24.7160i 0.644074 0.919833i
\(723\) −2.57532 6.85041i −0.0957773 0.254770i
\(724\) 2.17296 + 5.97016i 0.0807574 + 0.221879i
\(725\) 0 0
\(726\) 12.6788 6.07551i 0.470554 0.225483i
\(727\) 1.70574 19.4967i 0.0632625 0.723094i −0.896640 0.442760i \(-0.853999\pi\)
0.959903 0.280334i \(-0.0904451\pi\)
\(728\) 14.0517 14.0517i 0.520792 0.520792i
\(729\) 11.9973 24.1881i 0.444345 0.895856i
\(730\) 0 0
\(731\) −14.0335 16.7245i −0.519048 0.618577i
\(732\) −9.10807 3.20690i −0.336644 0.118531i
\(733\) 20.0010 14.0049i 0.738755 0.517282i −0.142575 0.989784i \(-0.545538\pi\)
0.881329 + 0.472502i \(0.156649\pi\)
\(734\) 2.33592 0.850204i 0.0862203 0.0313816i
\(735\) 0 0
\(736\) −0.980299 5.55955i −0.0361343 0.204928i
\(737\) 5.79990 21.6455i 0.213642 0.797323i
\(738\) −10.0332 + 1.09105i −0.369328 + 0.0401622i
\(739\) −3.92364 2.26531i −0.144333 0.0833310i 0.426094 0.904679i \(-0.359889\pi\)
−0.570428 + 0.821348i \(0.693223\pi\)
\(740\) 0 0
\(741\) −6.09056 + 1.70087i −0.223742 + 0.0624830i
\(742\) 23.8471 2.08635i 0.875455 0.0765924i
\(743\) 44.0909 3.85745i 1.61754 0.141516i 0.757882 0.652391i \(-0.226234\pi\)
0.859655 + 0.510875i \(0.170679\pi\)
\(744\) −3.82415 3.74448i −0.140200 0.137279i
\(745\) 0 0
\(746\) −23.7798 13.7293i −0.870639 0.502664i
\(747\) −34.5488 + 36.0350i −1.26408 + 1.31845i
\(748\) −3.99128 + 14.8957i −0.145936 + 0.544640i
\(749\) 0.520987 + 2.95467i 0.0190365 + 0.107961i
\(750\) 0 0
\(751\) 21.6380 7.87559i 0.789582 0.287384i 0.0844197 0.996430i \(-0.473096\pi\)
0.705162 + 0.709046i \(0.250874\pi\)
\(752\) −5.33801 + 3.73771i −0.194657 + 0.136300i
\(753\) 7.69403 + 41.1004i 0.280386 + 1.49778i
\(754\) 44.3687 + 52.8766i 1.61581 + 1.92565i
\(755\) 0 0
\(756\) −4.20899 0.986490i −0.153079 0.0358783i
\(757\) −7.64204 + 7.64204i −0.277755 + 0.277755i −0.832212 0.554457i \(-0.812926\pi\)
0.554457 + 0.832212i \(0.312926\pi\)
\(758\) −5.26534 + 60.1831i −0.191246 + 2.18595i
\(759\) 0.900219 11.7077i 0.0326759 0.424961i
\(760\) 0 0
\(761\) 7.73791 + 21.2597i 0.280499 + 0.770664i 0.997303 + 0.0733901i \(0.0233818\pi\)
−0.716804 + 0.697274i \(0.754396\pi\)
\(762\) 7.57694 9.22533i 0.274484 0.334199i
\(763\) −1.81493 + 2.59198i −0.0657048 + 0.0938361i
\(764\) −2.17250 3.76288i −0.0785983 0.136136i
\(765\) 0 0
\(766\) 19.4291 33.6521i 0.702000 1.21590i
\(767\) 19.6786 + 42.2008i 0.710552 + 1.52378i
\(768\) 19.9631 11.8076i 0.720357 0.426071i
\(769\) 19.5257 23.2698i 0.704115 0.839132i −0.288870 0.957368i \(-0.593280\pi\)
0.992985 + 0.118236i \(0.0377240\pi\)
\(770\) 0 0
\(771\) −34.4200 8.83557i −1.23961 0.318205i
\(772\) −6.00346 + 2.79946i −0.216069 + 0.100755i
\(773\) −11.9583 44.6289i −0.430109 1.60519i −0.752506 0.658585i \(-0.771155\pi\)
0.322397 0.946604i \(-0.395511\pi\)
\(774\) 5.38413 15.8214i 0.193529 0.568688i
\(775\) 0 0
\(776\) 36.2219 6.38690i 1.30029 0.229276i
\(777\) −12.2971 10.0998i −0.441155 0.362329i
\(778\) 9.26032 + 4.31816i 0.331999 + 0.154813i
\(779\) −0.204146 + 1.15777i −0.00731427 + 0.0414813i
\(780\) 0 0
\(781\) −2.10427 + 1.76569i −0.0752968 + 0.0631815i
\(782\) 12.2420 + 12.2420i 0.437772 + 0.437772i
\(783\) −10.7175 + 32.6152i −0.383011 + 1.16557i
\(784\) 24.8698i 0.888207i
\(785\) 0 0
\(786\) −17.0536 + 24.9091i −0.608283 + 0.888477i
\(787\) 1.74764 + 2.49588i 0.0622965 + 0.0889687i 0.849092 0.528246i \(-0.177150\pi\)
−0.786795 + 0.617214i \(0.788261\pi\)
\(788\) 0.247749 0.531300i 0.00882570 0.0189268i
\(789\) −6.31613 + 4.52242i −0.224860 + 0.161002i
\(790\) 0 0
\(791\) −0.801132 + 0.462534i −0.0284850 + 0.0164458i
\(792\) 25.9167 7.53252i 0.920908 0.267656i
\(793\) −57.2355 + 15.3362i −2.03249 + 0.544604i
\(794\) −46.3962 16.8868i −1.64654 0.599292i
\(795\) 0 0
\(796\) 7.27145 + 6.10147i 0.257730 + 0.216261i
\(797\) −2.52513 28.8623i −0.0894446 1.02236i −0.899767 0.436372i \(-0.856263\pi\)
0.810322 0.585985i \(-0.199292\pi\)
\(798\) −1.05950 + 1.88056i −0.0375061 + 0.0665709i
\(799\) 2.91068 7.99703i 0.102972 0.282914i
\(800\) 0 0
\(801\) −0.276240 + 1.78568i −0.00976045 + 0.0630938i
\(802\) 3.60114 + 0.964923i 0.127161 + 0.0340726i
\(803\) 23.8328 + 16.6879i 0.841041 + 0.588903i
\(804\) −2.43730 + 5.37376i −0.0859568 + 0.189518i
\(805\) 0 0
\(806\) 14.1470 + 2.49450i 0.498306 + 0.0878649i
\(807\) −4.21485 + 11.9708i −0.148370 + 0.421392i
\(808\) −21.0462 1.84130i −0.740401 0.0647767i
\(809\) −7.83479 −0.275456 −0.137728 0.990470i \(-0.543980\pi\)
−0.137728 + 0.990470i \(0.543980\pi\)
\(810\) 0 0
\(811\) 33.4667 1.17517 0.587587 0.809161i \(-0.300078\pi\)
0.587587 + 0.809161i \(0.300078\pi\)
\(812\) 5.47591 + 0.479080i 0.192167 + 0.0168124i
\(813\) 11.2445 31.9361i 0.394363 1.12005i
\(814\) −42.7929 7.54554i −1.49989 0.264471i
\(815\) 0 0
\(816\) −21.9486 + 48.3924i −0.768355 + 1.69407i
\(817\) −1.59471 1.11663i −0.0557917 0.0390658i
\(818\) −22.0056 5.89639i −0.769409 0.206163i
\(819\) −24.7318 + 9.59592i −0.864200 + 0.335309i
\(820\) 0 0
\(821\) 15.4155 42.3537i 0.538004 1.47815i −0.311332 0.950301i \(-0.600775\pi\)
0.849336 0.527853i \(-0.177003\pi\)
\(822\) −22.4033 + 39.7645i −0.781406 + 1.38695i
\(823\) 2.39852 + 27.4152i 0.0836071 + 0.955633i 0.915929 + 0.401341i \(0.131456\pi\)
−0.832322 + 0.554293i \(0.812989\pi\)
\(824\) −31.1920 26.1732i −1.08662 0.911785i
\(825\) 0 0
\(826\) 14.9353 + 5.43602i 0.519667 + 0.189143i
\(827\) −54.7376 + 14.6669i −1.90341 + 0.510018i −0.907458 + 0.420142i \(0.861980\pi\)
−0.995953 + 0.0898754i \(0.971353\pi\)
\(828\) −0.737199 + 3.00274i −0.0256194 + 0.104352i
\(829\) −12.0181 + 6.93865i −0.417405 + 0.240989i −0.693967 0.720007i \(-0.744138\pi\)
0.276561 + 0.960996i \(0.410805\pi\)
\(830\) 0 0
\(831\) −29.3882 + 21.0423i −1.01946 + 0.729948i
\(832\) 11.7810 25.2643i 0.408431 0.875884i
\(833\) −18.6291 26.6051i −0.645460 0.921812i
\(834\) −28.5126 + 41.6464i −0.987310 + 1.44210i
\(835\) 0 0
\(836\) 1.37510i 0.0475588i
\(837\) 2.65442 + 6.63340i 0.0917501 + 0.229284i
\(838\) −33.4708 33.4708i −1.15623 1.15623i
\(839\) −16.4142 + 13.7731i −0.566679 + 0.475501i −0.880542 0.473968i \(-0.842821\pi\)
0.313863 + 0.949468i \(0.398377\pi\)
\(840\) 0 0
\(841\) 2.54436 14.4298i 0.0877364 0.497578i
\(842\) 30.5945 + 14.2665i 1.05436 + 0.491655i
\(843\) 7.20636 + 5.91872i 0.248200 + 0.203851i
\(844\) 3.09124 0.545069i 0.106405 0.0187620i
\(845\) 0 0
\(846\) 6.39034 1.26604i 0.219704 0.0435273i
\(847\) −1.77820 6.63633i −0.0610996 0.228027i
\(848\) 47.6250 22.2079i 1.63545 0.762623i
\(849\) 13.6270 + 3.49804i 0.467678 + 0.120052i
\(850\) 0 0
\(851\) −7.31571 + 8.71852i −0.250779 + 0.298867i
\(852\) 0.622563 0.368228i 0.0213287 0.0126153i
\(853\) 0.844662 + 1.81138i 0.0289207 + 0.0620206i 0.920237 0.391361i \(-0.127995\pi\)
−0.891317 + 0.453381i \(0.850218\pi\)
\(854\) −10.1129 + 17.5161i −0.346056 + 0.599387i
\(855\) 0 0
\(856\) 2.46605 + 4.27132i 0.0842877 + 0.145991i
\(857\) −13.2564 + 18.9321i −0.452830 + 0.646709i −0.979045 0.203643i \(-0.934722\pi\)
0.526215 + 0.850352i \(0.323611\pi\)
\(858\) −45.9765 + 55.9789i −1.56961 + 1.91109i
\(859\) −7.86080 21.5974i −0.268207 0.736893i −0.998551 0.0538131i \(-0.982862\pi\)
0.730344 0.683079i \(-0.239360\pi\)
\(860\) 0 0
\(861\) −0.378104 + 4.91738i −0.0128858 + 0.167584i
\(862\) 3.16220 36.1441i 0.107705 1.23107i
\(863\) −2.45592 + 2.45592i −0.0836006 + 0.0836006i −0.747671 0.664070i \(-0.768828\pi\)
0.664070 + 0.747671i \(0.268828\pi\)
\(864\) −17.1995 + 2.05374i −0.585138 + 0.0698697i
\(865\) 0 0
\(866\) 11.3815 + 13.5639i 0.386759 + 0.460921i
\(867\) −7.35096 39.2678i −0.249652 1.33360i
\(868\) 0.937087 0.656155i 0.0318068 0.0222714i
\(869\) −48.0969 + 17.5059i −1.63158 + 0.593845i
\(870\) 0 0
\(871\) 6.28765 + 35.6590i 0.213049 + 1.20826i
\(872\) −1.34629 + 5.02442i −0.0455911 + 0.170148i
\(873\) −47.6841 11.7069i −1.61386 0.396218i
\(874\) 1.33695 + 0.771888i 0.0452230 + 0.0261095i
\(875\) 0 0
\(876\) −5.47387 5.35983i −0.184945 0.181092i
\(877\) −12.2844 + 1.07474i −0.414814 + 0.0362915i −0.292653 0.956219i \(-0.594538\pi\)
−0.122161 + 0.992510i \(0.538983\pi\)
\(878\) 43.5525 3.81035i 1.46982 0.128593i
\(879\) −9.62117 + 2.68684i −0.324514 + 0.0906248i
\(880\) 0 0
\(881\) −26.2526 15.1569i −0.884473 0.510651i −0.0123422 0.999924i \(-0.503929\pi\)
−0.872131 + 0.489273i \(0.837262\pi\)
\(882\) 10.0306 22.7491i 0.337748 0.766001i
\(883\) −1.48572 + 5.54478i −0.0499984 + 0.186597i −0.986409 0.164311i \(-0.947460\pi\)
0.936410 + 0.350907i \(0.114127\pi\)
\(884\) −4.32693 24.5393i −0.145531 0.825345i
\(885\) 0 0
\(886\) 62.7290 22.8315i 2.10742 0.767039i
\(887\) 1.17106 0.819982i 0.0393202 0.0275323i −0.553751 0.832682i \(-0.686804\pi\)
0.593071 + 0.805150i \(0.297915\pi\)
\(888\) −24.6746 8.68779i −0.828024 0.291543i
\(889\) −3.74991 4.46897i −0.125768 0.149884i
\(890\) 0 0
\(891\) −35.7135 4.75734i −1.19645 0.159377i
\(892\) 10.0235 10.0235i 0.335610 0.335610i
\(893\) 0.0661388 0.755970i 0.00221325 0.0252976i
\(894\) 24.5111 11.7454i 0.819773 0.392824i
\(895\) 0 0
\(896\) −6.37164 17.5059i −0.212862 0.584832i
\(897\) 6.67657 + 17.7598i 0.222924 + 0.592983i
\(898\) −9.69819 + 13.8505i −0.323633 + 0.462196i
\(899\) −4.54235 7.86759i −0.151496 0.262399i
\(900\) 0 0
\(901\) −34.3129 + 59.4318i −1.14313 + 1.97996i
\(902\) 5.69153 + 12.2055i 0.189507 + 0.406400i
\(903\) −7.11538 4.00880i −0.236785 0.133405i
\(904\) −0.977497 + 1.16494i −0.0325111 + 0.0387452i
\(905\) 0 0
\(906\) −4.34491 + 4.43735i −0.144350 + 0.147421i
\(907\) 16.8099 7.83856i 0.558162 0.260275i −0.123002 0.992406i \(-0.539252\pi\)
0.681164 + 0.732131i \(0.261474\pi\)
\(908\) −1.02340 3.81939i −0.0339628 0.126751i
\(909\) 24.7157 + 13.5841i 0.819769 + 0.450557i
\(910\) 0 0
\(911\) 19.9191 3.51228i 0.659950 0.116367i 0.166364 0.986064i \(-0.446797\pi\)
0.493585 + 0.869697i \(0.335686\pi\)
\(912\) −0.773624 + 4.67465i −0.0256172 + 0.154793i
\(913\) 60.3740 + 28.1528i 1.99809 + 0.931723i
\(914\) 9.76209 55.3636i 0.322901 1.83126i
\(915\) 0 0
\(916\) 8.85287 7.42844i 0.292507 0.245443i
\(917\) 10.4312 + 10.4312i 0.344468 + 0.344468i
\(918\) 39.5948 35.4134i 1.30682 1.16882i
\(919\) 5.56015i 0.183412i −0.995786 0.0917062i \(-0.970768\pi\)
0.995786 0.0917062i \(-0.0292320\pi\)
\(920\) 0 0
\(921\) −17.4102 1.33870i −0.573687 0.0441116i
\(922\) −30.2365 43.1822i −0.995786 1.42213i
\(923\) 1.87581 4.02270i 0.0617432 0.132409i
\(924\) 0.563237 + 5.74114i 0.0185291 + 0.188870i
\(925\) 0 0
\(926\) −8.23538 + 4.75470i −0.270631 + 0.156249i
\(927\) 24.0040 + 48.7693i 0.788395 + 1.60179i
\(928\) 21.2743 5.70043i 0.698363 0.187126i
\(929\) 10.4908 + 3.81834i 0.344192 + 0.125276i 0.508331 0.861162i \(-0.330263\pi\)
−0.164140 + 0.986437i \(0.552485\pi\)
\(930\) 0 0
\(931\) −2.21856 1.86160i −0.0727105 0.0610113i
\(932\) 1.24266 + 14.2036i 0.0407046 + 0.465255i
\(933\) −18.2054 30.7798i −0.596018 1.00769i
\(934\) 11.3053 31.0610i 0.369920 1.01635i
\(935\) 0 0
\(936\) −32.8094 + 28.7287i −1.07241 + 0.939028i
\(937\) −3.17051 0.849536i −0.103576 0.0277531i 0.206659 0.978413i \(-0.433741\pi\)
−0.310235 + 0.950660i \(0.600408\pi\)
\(938\) 10.1243 + 7.08914i 0.330571 + 0.231469i
\(939\) 25.0236 2.45495i 0.816615 0.0801144i
\(940\) 0 0
\(941\) −35.8375 6.31912i −1.16827 0.205997i −0.444331 0.895863i \(-0.646559\pi\)
−0.723938 + 0.689865i \(0.757670\pi\)
\(942\) −33.0252 38.5269i −1.07602 1.25527i
\(943\) 3.51394 + 0.307430i 0.114429 + 0.0100113i
\(944\) 34.8897 1.13556
\(945\) 0 0
\(946\) −22.3012 −0.725073
\(947\) 51.2682 + 4.48539i 1.66599 + 0.145756i 0.880798 0.473492i \(-0.157007\pi\)
0.785196 + 0.619248i \(0.212562\pi\)
\(948\) 13.2473 2.47991i 0.430253 0.0805437i
\(949\) −46.2973 8.16346i −1.50287 0.264997i
\(950\) 0 0
\(951\) −30.2777 42.2866i −0.981822 1.37124i
\(952\) 15.9290 + 11.1536i 0.516263 + 0.361491i
\(953\) 19.0607 + 5.10731i 0.617438 + 0.165442i 0.553963 0.832541i \(-0.313115\pi\)
0.0634751 + 0.997983i \(0.479782\pi\)
\(954\) −52.5210 + 1.10583i −1.70043 + 0.0358027i
\(955\) 0 0
\(956\) 0.212419 0.583616i 0.00687012 0.0188755i
\(957\) 45.8089 0.482202i 1.48079 0.0155874i
\(958\) −0.891840 10.1938i −0.0288141 0.329346i
\(959\) 17.0857 + 14.3366i 0.551725 + 0.462953i
\(960\) 0 0
\(961\) 27.3538 + 9.95598i 0.882382 + 0.321161i
\(962\) 67.8200 18.1723i 2.18660 0.585899i
\(963\) −0.711782 6.54548i −0.0229369 0.210925i
\(964\) 2.22698 1.28575i 0.0717262 0.0414111i
\(965\) 0 0
\(966\) 5.89802 + 2.67508i 0.189766 + 0.0860692i
\(967\) −3.44802 + 7.39431i −0.110881 + 0.237785i −0.953916 0.300074i \(-0.902989\pi\)
0.843035 + 0.537859i \(0.180767\pi\)
\(968\) −6.47813 9.25173i −0.208215 0.297362i
\(969\) −2.67401 5.58032i −0.0859017 0.179266i
\(970\) 0 0
\(971\) 0.500263i 0.0160542i 0.999968 + 0.00802710i \(0.00255513\pi\)
−0.999968 + 0.00802710i \(0.997445\pi\)
\(972\) 9.07318 + 2.77127i 0.291022 + 0.0888885i
\(973\) 17.4403 + 17.4403i 0.559110 + 0.559110i
\(974\) −8.21264 + 6.89122i −0.263150 + 0.220809i
\(975\) 0 0
\(976\) −7.70982 + 43.7245i −0.246785 + 1.39959i
\(977\) 12.1170 + 5.65025i 0.387657 + 0.180767i 0.606669 0.794955i \(-0.292506\pi\)
−0.219012 + 0.975722i \(0.570283\pi\)
\(978\) −52.0781 + 19.5781i −1.66527 + 0.626038i
\(979\) 2.37453 0.418693i 0.0758903 0.0133815i
\(980\) 0 0
\(981\) 4.35051 5.41214i 0.138901 0.172796i
\(982\) −2.61769 9.76934i −0.0835337 0.311752i
\(983\) 19.5355 9.10955i 0.623085 0.290549i −0.0853218 0.996353i \(-0.527192\pi\)
0.708407 + 0.705804i \(0.249414\pi\)
\(984\) 2.18069 + 7.80874i 0.0695180 + 0.248933i
\(985\) 0 0
\(986\) −43.4168 + 51.7421i −1.38267 + 1.64780i
\(987\) −0.0335089 3.18332i −0.00106660 0.101326i
\(988\) −0.939023 2.01374i −0.0298743 0.0640656i
\(989\) −2.92056 + 5.05856i −0.0928684 + 0.160853i
\(990\) 0 0
\(991\) 12.2325 + 21.1872i 0.388577 + 0.673035i 0.992258 0.124191i \(-0.0396334\pi\)
−0.603681 + 0.797226i \(0.706300\pi\)
\(992\) 2.62909 3.75473i 0.0834738 0.119213i
\(993\) 49.3741 + 8.17109i 1.56684 + 0.259302i
\(994\) −0.518176 1.42368i −0.0164356 0.0451563i
\(995\) 0 0
\(996\) −14.4737 9.90921i −0.458617 0.313985i
\(997\) 3.94689 45.1132i 0.124999 1.42875i −0.631816 0.775119i \(-0.717690\pi\)
0.756815 0.653629i \(-0.226754\pi\)
\(998\) 27.3314 27.3314i 0.865160 0.865160i
\(999\) 25.4604 + 23.9011i 0.805531 + 0.756198i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 675.2.ba.c.518.7 yes 288
5.2 odd 4 inner 675.2.ba.c.32.18 yes 288
5.3 odd 4 inner 675.2.ba.c.32.7 288
5.4 even 2 inner 675.2.ba.c.518.18 yes 288
27.11 odd 18 inner 675.2.ba.c.443.18 yes 288
135.38 even 36 inner 675.2.ba.c.632.18 yes 288
135.92 even 36 inner 675.2.ba.c.632.7 yes 288
135.119 odd 18 inner 675.2.ba.c.443.7 yes 288
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
675.2.ba.c.32.7 288 5.3 odd 4 inner
675.2.ba.c.32.18 yes 288 5.2 odd 4 inner
675.2.ba.c.443.7 yes 288 135.119 odd 18 inner
675.2.ba.c.443.18 yes 288 27.11 odd 18 inner
675.2.ba.c.518.7 yes 288 1.1 even 1 trivial
675.2.ba.c.518.18 yes 288 5.4 even 2 inner
675.2.ba.c.632.7 yes 288 135.92 even 36 inner
675.2.ba.c.632.18 yes 288 135.38 even 36 inner