gp: [N,k,chi] = [675,2,Mod(32,675)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(675, base_ring=CyclotomicField(36))
chi = DirichletCharacter(H, H._module([10, 9]))
N = Newforms(chi, 2, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("675.32");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: traces = [288]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion .
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{288} + 468 T_{2}^{280} - 286956 T_{2}^{276} + 200934 T_{2}^{272} - 160478280 T_{2}^{268} + \cdots + 17\!\cdots\!41 \)
T2^288 + 468*T2^280 - 286956*T2^276 + 200934*T2^272 - 160478280*T2^268 + 60450329646*T2^264 - 371411828577*T2^260 + 8603348372073*T2^256 - 5157229056700500*T2^252 + 2653304474384208*T2^248 + 1528774138214704125*T2^244 + 304757316165521131479*T2^240 - 981209696795291524068*T2^236 - 125055573384729857050413*T2^232 - 9674858305595559593268756*T2^228 + 44719248245060953869378318*T2^224 + 4174673285720857414489983288*T2^220 + 221893566663959998473700080657*T2^216 - 1044933190672447735697640703554*T2^212 - 75327788390879147597985448278945*T2^208 - 2789980253350298221443257100827016*T2^204 + 15555978252984297924578975299871373*T2^200 + 650323347997569056099107499744648631*T2^196 + 24975529931301040625721480677716505145*T2^192 - 25354608941990843801080616367775167588*T2^188 - 1476020685216054232389609869537002777290*T2^184 - 86187847224465580400740090681102081532466*T2^180 + 547014386337515072449298509042317347579340*T2^176 - 1892998757261187508159448870099480582849739*T2^172 + 166837888129275458598775170534142012793333181*T2^168 - 589473969738210250712354955394780279650702531*T2^164 - 1558057893110029336380728722159181375902997700*T2^160 - 80300072383775347485666409048062579856196992446*T2^156 + 208478713983427702463966887225326533521149472587*T2^152 + 1555454498548116833430736224632625633731423512743*T2^148 + 31289807108078707837049521660192869734704501599765*T2^144 - 29812519976467226824035273157839572258760988355091*T2^140 - 442752742332357875363004471009389924255637333967869*T2^136 - 5601187379870577949456089195876132838455512137142376*T2^132 - 410356842676969762518595111453784829249142886888223*T2^128 + 50255187638927768218411435128958512943514758250246523*T2^124 + 817374165635976854504107114221197176273284082117080990*T2^120 + 2582758382427450528062959571446072760230093655583619812*T2^116 + 8816438330244189737855077069707251857604782280724241566*T2^112 + 9367043772234954426260566037004043496002098045700412445*T2^108 + 4585327358018488039855809596901737563227246738321204813*T2^104 - 29091725299201722545136303486960471875079842070149469351*T2^100 + 3358133915831060583122704075463707381516589102742499020*T2^96 - 33861429739436800739108672388041258810969537018579336832*T2^92 + 68116604382084281408309547611073354006450337510149190407*T2^88 + 2872549517900912880479113729491620041198678750483804566*T2^84 - 9339312318647955132522838769484419346812493813050546484*T2^80 - 13732160989036719952105955333417654349358222744620870789*T2^76 + 10126342470763277311239868687809089297450812735232488122*T2^72 - 1928257511205493214644737366422638515880947677265513561*T2^68 + 32024988362916287109853139016784622555507334335917806*T2^64 - 2702749807275468174060745175816590390216509757637460*T2^60 + 5019891216070280554285340574629636396251640110898010*T2^56 + 35113025188392494603105551195732975272901150821171*T2^52 + 15966082115394789368091568805547960005554044767031*T2^48 - 6985709748049829693998197288705390000917127719685*T2^44 - 35175383141410752566336003266312961548051964334*T2^40 + 17410293181578210781982928396800954941982053647*T2^36 + 3116999190199952560502905529014433122499504439*T2^32 - 12700787004694682735112896464728009568339776*T2^28 + 3446491174021073052703320040439244477148257*T2^24 - 117478103981662609048953105923519911763847*T2^20 + 1017459100853979225223914037858802121000*T2^16 + 434505042143136066650865195362072796*T2^12 + 2275201857570289234344248514858009*T2^8 + 305502953339615277379932500247*T2^4 + 17583975504331247446360641
acting on \(S_{2}^{\mathrm{new}}(675, [\chi])\).