Properties

Label 675.2.ba.c.443.15
Level $675$
Weight $2$
Character 675.443
Analytic conductor $5.390$
Analytic rank $0$
Dimension $288$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [675,2,Mod(32,675)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(675, base_ring=CyclotomicField(36)) chi = DirichletCharacter(H, H._module([10, 9])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("675.32"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 675 = 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 675.ba (of order \(36\), degree \(12\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [288] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.38990213644\)
Analytic rank: \(0\)
Dimension: \(288\)
Relative dimension: \(24\) over \(\Q(\zeta_{36})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{36}]$

Embedding invariants

Embedding label 443.15
Character \(\chi\) \(=\) 675.443
Dual form 675.2.ba.c.32.15

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.0632765 + 0.723253i) q^{2} +(1.46710 + 0.920668i) q^{3} +(1.45052 - 0.255767i) q^{4} +(-0.573043 + 1.11934i) q^{6} +(2.68947 + 3.84096i) q^{7} +(0.652582 + 2.43547i) q^{8} +(1.30474 + 2.70142i) q^{9} +(-0.808938 - 2.22254i) q^{11} +(2.36353 + 0.960217i) q^{12} +(-1.61947 - 0.141685i) q^{13} +(-2.60780 + 2.18821i) q^{14} +(1.04798 - 0.381434i) q^{16} +(1.54346 - 5.76028i) q^{17} +(-1.87125 + 1.11459i) q^{18} +(-5.87988 - 3.39475i) q^{19} +(0.409461 + 8.11116i) q^{21} +(1.55627 - 0.725702i) q^{22} +(-6.23184 - 4.36358i) q^{23} +(-1.28486 + 4.17388i) q^{24} -1.18025i q^{26} +(-0.572926 + 5.16447i) q^{27} +(4.88352 + 4.88352i) q^{28} +(-5.33663 - 4.47797i) q^{29} +(-0.379220 - 2.15066i) q^{31} +(2.47335 + 5.30412i) q^{32} +(0.859430 - 4.00544i) q^{33} +(4.26381 + 0.751824i) q^{34} +(2.58349 + 3.58476i) q^{36} +(4.82802 + 1.29366i) q^{37} +(2.08321 - 4.46745i) q^{38} +(-2.24547 - 1.69886i) q^{39} +(3.01626 + 3.59464i) q^{41} +(-5.84051 + 0.809389i) q^{42} +(2.94459 + 1.37309i) q^{43} +(-1.74184 - 3.01695i) q^{44} +(2.76165 - 4.78331i) q^{46} +(8.00447 - 5.60479i) q^{47} +(1.88866 + 0.405242i) q^{48} +(-5.12557 + 14.0824i) q^{49} +(7.56772 - 7.02987i) q^{51} +(-2.38532 + 0.208688i) q^{52} +(-1.85094 + 1.85094i) q^{53} +(-3.77147 - 0.0875810i) q^{54} +(-7.59943 + 9.05665i) q^{56} +(-5.50091 - 10.3938i) q^{57} +(2.90102 - 4.14309i) q^{58} +(4.22316 + 1.53710i) q^{59} +(0.391593 - 2.22083i) q^{61} +(1.53148 - 0.410358i) q^{62} +(-6.86696 + 12.2768i) q^{63} +(-1.74806 + 1.00925i) q^{64} +(2.95133 + 0.368136i) q^{66} +(-0.696469 + 7.96068i) q^{67} +(0.765543 - 8.75020i) q^{68} +(-5.12530 - 12.1393i) q^{69} +(-0.899200 + 0.519153i) q^{71} +(-5.72776 + 4.94055i) q^{72} +(-3.70095 + 0.991667i) q^{73} +(-0.630146 + 3.57374i) q^{74} +(-9.39718 - 3.42029i) q^{76} +(6.36106 - 9.08454i) q^{77} +(1.08662 - 1.73154i) q^{78} +(4.12821 - 4.91981i) q^{79} +(-5.59530 + 7.04930i) q^{81} +(-2.40897 + 2.40897i) q^{82} +(0.731354 - 0.0639852i) q^{83} +(2.66850 + 11.6607i) q^{84} +(-0.806766 + 2.21657i) q^{86} +(-3.70663 - 11.4829i) q^{87} +(4.88502 - 3.42053i) q^{88} +(0.0118115 - 0.0204581i) q^{89} +(-3.81130 - 6.60136i) q^{91} +(-10.1555 - 4.73559i) q^{92} +(1.42369 - 3.50436i) q^{93} +(4.56018 + 5.43461i) q^{94} +(-1.25469 + 10.0588i) q^{96} +(-1.30593 + 2.80057i) q^{97} +(-10.5095 - 2.81600i) q^{98} +(4.94855 - 5.08512i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 288 q + 24 q^{6} + 36 q^{11} + 48 q^{21} - 192 q^{36} - 180 q^{41} - 60 q^{51} - 288 q^{56} + 72 q^{61} + 144 q^{71} + 216 q^{76} + 24 q^{81} - 36 q^{91} - 168 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/675\mathbb{Z}\right)^\times\).

\(n\) \(326\) \(352\)
\(\chi(n)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.0632765 + 0.723253i 0.0447432 + 0.511417i 0.985189 + 0.171473i \(0.0548526\pi\)
−0.940446 + 0.339944i \(0.889592\pi\)
\(3\) 1.46710 + 0.920668i 0.847028 + 0.531548i
\(4\) 1.45052 0.255767i 0.725262 0.127883i
\(5\) 0 0
\(6\) −0.573043 + 1.11934i −0.233944 + 0.456968i
\(7\) 2.68947 + 3.84096i 1.01652 + 1.45175i 0.887892 + 0.460053i \(0.152169\pi\)
0.128631 + 0.991693i \(0.458942\pi\)
\(8\) 0.652582 + 2.43547i 0.230722 + 0.861068i
\(9\) 1.30474 + 2.70142i 0.434914 + 0.900472i
\(10\) 0 0
\(11\) −0.808938 2.22254i −0.243904 0.670121i −0.999880 0.0155209i \(-0.995059\pi\)
0.755976 0.654600i \(-0.227163\pi\)
\(12\) 2.36353 + 0.960217i 0.682294 + 0.277191i
\(13\) −1.61947 0.141685i −0.449160 0.0392964i −0.139668 0.990198i \(-0.544603\pi\)
−0.309492 + 0.950902i \(0.600159\pi\)
\(14\) −2.60780 + 2.18821i −0.696965 + 0.584823i
\(15\) 0 0
\(16\) 1.04798 0.381434i 0.261995 0.0953585i
\(17\) 1.54346 5.76028i 0.374345 1.39707i −0.479955 0.877293i \(-0.659347\pi\)
0.854300 0.519781i \(-0.173986\pi\)
\(18\) −1.87125 + 1.11459i −0.441058 + 0.262712i
\(19\) −5.87988 3.39475i −1.34894 0.778810i −0.360839 0.932628i \(-0.617510\pi\)
−0.988099 + 0.153819i \(0.950843\pi\)
\(20\) 0 0
\(21\) 0.409461 + 8.11116i 0.0893517 + 1.77000i
\(22\) 1.55627 0.725702i 0.331798 0.154720i
\(23\) −6.23184 4.36358i −1.29943 0.909870i −0.300395 0.953815i \(-0.597119\pi\)
−0.999034 + 0.0439446i \(0.986007\pi\)
\(24\) −1.28486 + 4.17388i −0.262270 + 0.851989i
\(25\) 0 0
\(26\) 1.18025i 0.231466i
\(27\) −0.572926 + 5.16447i −0.110260 + 0.993903i
\(28\) 4.88352 + 4.88352i 0.922899 + 0.922899i
\(29\) −5.33663 4.47797i −0.990988 0.831538i −0.00527757 0.999986i \(-0.501680\pi\)
−0.985710 + 0.168448i \(0.946124\pi\)
\(30\) 0 0
\(31\) −0.379220 2.15066i −0.0681099 0.386270i −0.999739 0.0228591i \(-0.992723\pi\)
0.931629 0.363411i \(-0.118388\pi\)
\(32\) 2.47335 + 5.30412i 0.437231 + 0.937644i
\(33\) 0.859430 4.00544i 0.149608 0.697258i
\(34\) 4.26381 + 0.751824i 0.731237 + 0.128937i
\(35\) 0 0
\(36\) 2.58349 + 3.58476i 0.430582 + 0.597460i
\(37\) 4.82802 + 1.29366i 0.793721 + 0.212677i 0.632825 0.774294i \(-0.281895\pi\)
0.160896 + 0.986971i \(0.448562\pi\)
\(38\) 2.08321 4.46745i 0.337941 0.724717i
\(39\) −2.24547 1.69886i −0.359563 0.272035i
\(40\) 0 0
\(41\) 3.01626 + 3.59464i 0.471060 + 0.561388i 0.948296 0.317388i \(-0.102806\pi\)
−0.477236 + 0.878775i \(0.658361\pi\)
\(42\) −5.84051 + 0.809389i −0.901211 + 0.124891i
\(43\) 2.94459 + 1.37309i 0.449047 + 0.209394i 0.633968 0.773360i \(-0.281425\pi\)
−0.184921 + 0.982753i \(0.559203\pi\)
\(44\) −1.74184 3.01695i −0.262592 0.454822i
\(45\) 0 0
\(46\) 2.76165 4.78331i 0.407183 0.705261i
\(47\) 8.00447 5.60479i 1.16757 0.817543i 0.181423 0.983405i \(-0.441930\pi\)
0.986149 + 0.165862i \(0.0530407\pi\)
\(48\) 1.88866 + 0.405242i 0.272605 + 0.0584917i
\(49\) −5.12557 + 14.0824i −0.732225 + 2.01177i
\(50\) 0 0
\(51\) 7.56772 7.02987i 1.05969 0.984379i
\(52\) −2.38532 + 0.208688i −0.330784 + 0.0289398i
\(53\) −1.85094 + 1.85094i −0.254246 + 0.254246i −0.822709 0.568463i \(-0.807538\pi\)
0.568463 + 0.822709i \(0.307538\pi\)
\(54\) −3.77147 0.0875810i −0.513232 0.0119183i
\(55\) 0 0
\(56\) −7.59943 + 9.05665i −1.01552 + 1.21025i
\(57\) −5.50091 10.3938i −0.728614 1.37670i
\(58\) 2.90102 4.14309i 0.380923 0.544014i
\(59\) 4.22316 + 1.53710i 0.549808 + 0.200114i 0.601961 0.798525i \(-0.294386\pi\)
−0.0521532 + 0.998639i \(0.516608\pi\)
\(60\) 0 0
\(61\) 0.391593 2.22083i 0.0501383 0.284348i −0.949422 0.314003i \(-0.898330\pi\)
0.999560 + 0.0296548i \(0.00944081\pi\)
\(62\) 1.53148 0.410358i 0.194498 0.0521156i
\(63\) −6.86696 + 12.2768i −0.865156 + 1.54673i
\(64\) −1.74806 + 1.00925i −0.218508 + 0.126156i
\(65\) 0 0
\(66\) 2.95133 + 0.368136i 0.363284 + 0.0453144i
\(67\) −0.696469 + 7.96068i −0.0850873 + 0.972552i 0.826904 + 0.562343i \(0.190100\pi\)
−0.911992 + 0.410209i \(0.865456\pi\)
\(68\) 0.765543 8.75020i 0.0928357 1.06112i
\(69\) −5.12530 12.1393i −0.617014 1.46139i
\(70\) 0 0
\(71\) −0.899200 + 0.519153i −0.106715 + 0.0616121i −0.552408 0.833574i \(-0.686291\pi\)
0.445692 + 0.895186i \(0.352958\pi\)
\(72\) −5.72776 + 4.94055i −0.675023 + 0.582249i
\(73\) −3.70095 + 0.991667i −0.433163 + 0.116066i −0.468811 0.883299i \(-0.655317\pi\)
0.0356473 + 0.999364i \(0.488651\pi\)
\(74\) −0.630146 + 3.57374i −0.0732530 + 0.415439i
\(75\) 0 0
\(76\) −9.39718 3.42029i −1.07793 0.392334i
\(77\) 6.36106 9.08454i 0.724911 1.03528i
\(78\) 1.08662 1.73154i 0.123035 0.196058i
\(79\) 4.12821 4.91981i 0.464460 0.553522i −0.482072 0.876132i \(-0.660116\pi\)
0.946532 + 0.322610i \(0.104560\pi\)
\(80\) 0 0
\(81\) −5.59530 + 7.04930i −0.621700 + 0.783256i
\(82\) −2.40897 + 2.40897i −0.266027 + 0.266027i
\(83\) 0.731354 0.0639852i 0.0802766 0.00702329i −0.0469467 0.998897i \(-0.514949\pi\)
0.127223 + 0.991874i \(0.459394\pi\)
\(84\) 2.66850 + 11.6607i 0.291157 + 1.27229i
\(85\) 0 0
\(86\) −0.806766 + 2.21657i −0.0869958 + 0.239019i
\(87\) −3.70663 11.4829i −0.397393 1.23109i
\(88\) 4.88502 3.42053i 0.520745 0.364630i
\(89\) 0.0118115 0.0204581i 0.00125201 0.00216855i −0.865399 0.501084i \(-0.832935\pi\)
0.866651 + 0.498915i \(0.166268\pi\)
\(90\) 0 0
\(91\) −3.81130 6.60136i −0.399533 0.692011i
\(92\) −10.1555 4.73559i −1.05878 0.493719i
\(93\) 1.42369 3.50436i 0.147630 0.363386i
\(94\) 4.56018 + 5.43461i 0.470346 + 0.560537i
\(95\) 0 0
\(96\) −1.25469 + 10.0588i −0.128056 + 1.02662i
\(97\) −1.30593 + 2.80057i −0.132597 + 0.284355i −0.961385 0.275208i \(-0.911253\pi\)
0.828788 + 0.559563i \(0.189031\pi\)
\(98\) −10.5095 2.81600i −1.06162 0.284459i
\(99\) 4.94855 5.08512i 0.497348 0.511074i
\(100\) 0 0
\(101\) −7.06992 1.24662i −0.703484 0.124043i −0.189547 0.981872i \(-0.560702\pi\)
−0.513936 + 0.857828i \(0.671813\pi\)
\(102\) 5.56324 + 5.02855i 0.550842 + 0.497901i
\(103\) 5.43656 + 11.6587i 0.535680 + 1.14877i 0.968893 + 0.247478i \(0.0796019\pi\)
−0.433213 + 0.901291i \(0.642620\pi\)
\(104\) −0.711765 4.03662i −0.0697943 0.395823i
\(105\) 0 0
\(106\) −1.45582 1.22158i −0.141401 0.118650i
\(107\) −1.53529 1.53529i −0.148422 0.148422i 0.628991 0.777413i \(-0.283468\pi\)
−0.777413 + 0.628991i \(0.783468\pi\)
\(108\) 0.489856 + 7.63772i 0.0471364 + 0.734940i
\(109\) 8.51427i 0.815519i −0.913089 0.407760i \(-0.866310\pi\)
0.913089 0.407760i \(-0.133690\pi\)
\(110\) 0 0
\(111\) 5.89213 + 6.34293i 0.559256 + 0.602044i
\(112\) 4.28358 + 2.99940i 0.404761 + 0.283416i
\(113\) −15.2119 + 7.09341i −1.43101 + 0.667292i −0.974902 0.222632i \(-0.928535\pi\)
−0.456109 + 0.889924i \(0.650757\pi\)
\(114\) 7.16931 4.63624i 0.671467 0.434224i
\(115\) 0 0
\(116\) −8.88623 5.13047i −0.825066 0.476352i
\(117\) −1.73024 4.55972i −0.159960 0.421546i
\(118\) −0.844488 + 3.15167i −0.0777415 + 0.290135i
\(119\) 26.2761 9.56371i 2.40873 0.876704i
\(120\) 0 0
\(121\) 4.14119 3.47487i 0.376472 0.315897i
\(122\) 1.63100 + 0.142694i 0.147664 + 0.0129189i
\(123\) 1.11567 + 8.05065i 0.100597 + 0.725902i
\(124\) −1.10014 3.02260i −0.0987951 0.271437i
\(125\) 0 0
\(126\) −9.31377 4.18972i −0.829737 0.373250i
\(127\) 1.01322 + 3.78140i 0.0899090 + 0.335545i 0.996198 0.0871125i \(-0.0277640\pi\)
−0.906289 + 0.422658i \(0.861097\pi\)
\(128\) 5.87310 + 8.38765i 0.519113 + 0.741371i
\(129\) 3.05585 + 4.72544i 0.269052 + 0.416052i
\(130\) 0 0
\(131\) 1.77050 0.312187i 0.154689 0.0272759i −0.0957672 0.995404i \(-0.530530\pi\)
0.250456 + 0.968128i \(0.419419\pi\)
\(132\) 0.222167 6.02980i 0.0193371 0.524827i
\(133\) −2.77465 31.7145i −0.240593 2.74999i
\(134\) −5.80166 −0.501187
\(135\) 0 0
\(136\) 15.0362 1.28935
\(137\) 1.55119 + 17.7302i 0.132527 + 1.51479i 0.713376 + 0.700781i \(0.247165\pi\)
−0.580849 + 0.814011i \(0.697279\pi\)
\(138\) 8.45544 4.47502i 0.719775 0.380939i
\(139\) 10.7147 1.88930i 0.908812 0.160248i 0.300348 0.953830i \(-0.402897\pi\)
0.608464 + 0.793581i \(0.291786\pi\)
\(140\) 0 0
\(141\) 16.9035 0.853308i 1.42353 0.0718615i
\(142\) −0.432377 0.617499i −0.0362843 0.0518194i
\(143\) 0.995148 + 3.71394i 0.0832185 + 0.310576i
\(144\) 2.39776 + 2.33336i 0.199813 + 0.194447i
\(145\) 0 0
\(146\) −0.951409 2.61398i −0.0787392 0.216334i
\(147\) −20.4849 + 15.9413i −1.68957 + 1.31481i
\(148\) 7.33403 + 0.641645i 0.602854 + 0.0527429i
\(149\) 2.11066 1.77106i 0.172912 0.145091i −0.552225 0.833695i \(-0.686221\pi\)
0.725137 + 0.688605i \(0.241776\pi\)
\(150\) 0 0
\(151\) 11.9995 4.36746i 0.976505 0.355419i 0.196025 0.980599i \(-0.437197\pi\)
0.780480 + 0.625180i \(0.214975\pi\)
\(152\) 4.43071 16.5356i 0.359378 1.34122i
\(153\) 17.5747 3.34614i 1.42083 0.270520i
\(154\) 6.97293 + 4.02582i 0.561895 + 0.324410i
\(155\) 0 0
\(156\) −3.69162 1.88992i −0.295566 0.151315i
\(157\) −8.54167 + 3.98305i −0.681700 + 0.317882i −0.732441 0.680830i \(-0.761619\pi\)
0.0507417 + 0.998712i \(0.483841\pi\)
\(158\) 3.81949 + 2.67443i 0.303862 + 0.212767i
\(159\) −4.41960 + 1.01140i −0.350497 + 0.0802095i
\(160\) 0 0
\(161\) 35.6720i 2.81134i
\(162\) −5.45248 3.60076i −0.428387 0.282903i
\(163\) −14.5355 14.5355i −1.13851 1.13851i −0.988718 0.149787i \(-0.952141\pi\)
−0.149787 0.988718i \(-0.547859\pi\)
\(164\) 5.29454 + 4.44265i 0.413434 + 0.346913i
\(165\) 0 0
\(166\) 0.0925550 + 0.524906i 0.00718366 + 0.0407406i
\(167\) −4.53222 9.71939i −0.350714 0.752109i 0.649250 0.760575i \(-0.275083\pi\)
−0.999964 + 0.00846620i \(0.997305\pi\)
\(168\) −19.4873 + 6.29042i −1.50347 + 0.485316i
\(169\) −10.1999 1.79852i −0.784608 0.138348i
\(170\) 0 0
\(171\) 1.49891 20.3133i 0.114625 1.55340i
\(172\) 4.62240 + 1.23857i 0.352454 + 0.0944399i
\(173\) −5.26315 + 11.2869i −0.400150 + 0.858125i 0.598235 + 0.801321i \(0.295869\pi\)
−0.998385 + 0.0568042i \(0.981909\pi\)
\(174\) 8.07048 3.40743i 0.611822 0.258317i
\(175\) 0 0
\(176\) −1.69550 2.02062i −0.127803 0.152310i
\(177\) 4.78061 + 6.14320i 0.359333 + 0.461751i
\(178\) 0.0155437 + 0.00724817i 0.00116505 + 0.000543273i
\(179\) −1.92319 3.33107i −0.143746 0.248976i 0.785158 0.619295i \(-0.212582\pi\)
−0.928904 + 0.370319i \(0.879248\pi\)
\(180\) 0 0
\(181\) 7.10764 12.3108i 0.528307 0.915054i −0.471149 0.882054i \(-0.656161\pi\)
0.999455 0.0330001i \(-0.0105062\pi\)
\(182\) 4.53329 3.17424i 0.336030 0.235291i
\(183\) 2.61915 2.89765i 0.193613 0.214200i
\(184\) 6.56058 18.0250i 0.483652 1.32882i
\(185\) 0 0
\(186\) 2.62463 + 0.807948i 0.192447 + 0.0592416i
\(187\) −14.0510 + 1.22931i −1.02751 + 0.0898957i
\(188\) 10.1772 10.1772i 0.742246 0.742246i
\(189\) −21.3774 + 11.6891i −1.55497 + 0.850256i
\(190\) 0 0
\(191\) −16.4099 + 19.5565i −1.18738 + 1.41506i −0.300046 + 0.953925i \(0.597002\pi\)
−0.887330 + 0.461135i \(0.847443\pi\)
\(192\) −3.49376 0.128727i −0.252140 0.00929004i
\(193\) −3.79769 + 5.42367i −0.273364 + 0.390404i −0.932236 0.361851i \(-0.882145\pi\)
0.658872 + 0.752255i \(0.271034\pi\)
\(194\) −2.10816 0.767306i −0.151357 0.0550894i
\(195\) 0 0
\(196\) −3.83296 + 21.7378i −0.273783 + 1.55270i
\(197\) −19.1258 + 5.12475i −1.36266 + 0.365123i −0.864792 0.502131i \(-0.832550\pi\)
−0.497866 + 0.867254i \(0.665883\pi\)
\(198\) 3.99095 + 3.25729i 0.283625 + 0.231485i
\(199\) 1.14239 0.659562i 0.0809822 0.0467551i −0.458962 0.888456i \(-0.651779\pi\)
0.539944 + 0.841701i \(0.318445\pi\)
\(200\) 0 0
\(201\) −8.35093 + 11.0379i −0.589029 + 0.778551i
\(202\) 0.454261 5.19223i 0.0319617 0.365324i
\(203\) 2.84698 32.5411i 0.199819 2.28394i
\(204\) 9.17915 12.1326i 0.642669 0.849450i
\(205\) 0 0
\(206\) −8.08822 + 4.66973i −0.563533 + 0.325356i
\(207\) 3.65691 22.5282i 0.254173 1.56581i
\(208\) −1.75122 + 0.469237i −0.121425 + 0.0325357i
\(209\) −2.78851 + 15.8144i −0.192885 + 1.09391i
\(210\) 0 0
\(211\) −10.2026 3.71343i −0.702374 0.255643i −0.0339496 0.999424i \(-0.510809\pi\)
−0.668424 + 0.743780i \(0.733031\pi\)
\(212\) −2.21142 + 3.15824i −0.151881 + 0.216909i
\(213\) −1.79718 0.0662166i −0.123141 0.00453709i
\(214\) 1.01326 1.20755i 0.0692647 0.0825465i
\(215\) 0 0
\(216\) −12.9518 + 1.97490i −0.881257 + 0.134375i
\(217\) 7.24070 7.24070i 0.491531 0.491531i
\(218\) 6.15797 0.538753i 0.417071 0.0364890i
\(219\) −6.34264 1.95248i −0.428596 0.131936i
\(220\) 0 0
\(221\) −3.31573 + 9.10991i −0.223040 + 0.612799i
\(222\) −4.21471 + 4.66286i −0.282873 + 0.312951i
\(223\) 18.7870 13.1548i 1.25807 0.880911i 0.261627 0.965169i \(-0.415741\pi\)
0.996444 + 0.0842578i \(0.0268519\pi\)
\(224\) −13.7209 + 23.7653i −0.916765 + 1.58788i
\(225\) 0 0
\(226\) −6.09288 10.5532i −0.405292 0.701987i
\(227\) 9.72553 + 4.53509i 0.645506 + 0.301005i 0.717665 0.696389i \(-0.245211\pi\)
−0.0721585 + 0.997393i \(0.522989\pi\)
\(228\) −10.6376 13.6696i −0.704493 0.905290i
\(229\) 7.42656 + 8.85063i 0.490761 + 0.584866i 0.953411 0.301675i \(-0.0975458\pi\)
−0.462650 + 0.886541i \(0.653101\pi\)
\(230\) 0 0
\(231\) 17.6961 7.47147i 1.16432 0.491586i
\(232\) 7.42336 15.9194i 0.487367 1.04516i
\(233\) 7.20963 + 1.93182i 0.472319 + 0.126557i 0.487124 0.873333i \(-0.338046\pi\)
−0.0148049 + 0.999890i \(0.504713\pi\)
\(234\) 3.18835 1.53992i 0.208429 0.100668i
\(235\) 0 0
\(236\) 6.51893 + 1.14946i 0.424346 + 0.0748237i
\(237\) 10.5860 3.41712i 0.687634 0.221966i
\(238\) 8.57965 + 18.3991i 0.556136 + 1.19264i
\(239\) −5.16690 29.3030i −0.334219 1.89545i −0.434809 0.900523i \(-0.643184\pi\)
0.100590 0.994928i \(-0.467927\pi\)
\(240\) 0 0
\(241\) 13.1119 + 11.0022i 0.844614 + 0.708715i 0.958597 0.284768i \(-0.0919165\pi\)
−0.113983 + 0.993483i \(0.536361\pi\)
\(242\) 2.77525 + 2.77525i 0.178400 + 0.178400i
\(243\) −14.6989 + 5.19059i −0.942935 + 0.332976i
\(244\) 3.32153i 0.212639i
\(245\) 0 0
\(246\) −5.75206 + 1.31633i −0.366738 + 0.0839262i
\(247\) 9.04130 + 6.33078i 0.575284 + 0.402818i
\(248\) 4.99040 2.32706i 0.316891 0.147768i
\(249\) 1.13188 + 0.579462i 0.0717297 + 0.0367219i
\(250\) 0 0
\(251\) 8.52101 + 4.91961i 0.537841 + 0.310523i 0.744204 0.667953i \(-0.232829\pi\)
−0.206362 + 0.978476i \(0.566163\pi\)
\(252\) −6.82069 + 19.5642i −0.429663 + 1.23243i
\(253\) −4.65706 + 17.3804i −0.292787 + 1.09270i
\(254\) −2.67080 + 0.972091i −0.167581 + 0.0609944i
\(255\) 0 0
\(256\) −8.78727 + 7.37340i −0.549205 + 0.460837i
\(257\) −0.0761136 0.00665907i −0.00474783 0.000415382i 0.0847816 0.996400i \(-0.472981\pi\)
−0.0895294 + 0.995984i \(0.528536\pi\)
\(258\) −3.22433 + 2.50916i −0.200738 + 0.156213i
\(259\) 8.01589 + 22.0235i 0.498083 + 1.36847i
\(260\) 0 0
\(261\) 5.13393 20.2591i 0.317782 1.25400i
\(262\) 0.337821 + 1.26076i 0.0208706 + 0.0778903i
\(263\) 7.71569 + 11.0192i 0.475770 + 0.679470i 0.983264 0.182185i \(-0.0583170\pi\)
−0.507494 + 0.861655i \(0.669428\pi\)
\(264\) 10.3160 0.520762i 0.634904 0.0320507i
\(265\) 0 0
\(266\) 22.7620 4.01356i 1.39563 0.246087i
\(267\) 0.0361636 0.0191395i 0.00221318 0.00117132i
\(268\) 1.02583 + 11.7253i 0.0626625 + 0.716236i
\(269\) −19.0909 −1.16399 −0.581996 0.813191i \(-0.697728\pi\)
−0.581996 + 0.813191i \(0.697728\pi\)
\(270\) 0 0
\(271\) −16.1076 −0.978468 −0.489234 0.872153i \(-0.662724\pi\)
−0.489234 + 0.872153i \(0.662724\pi\)
\(272\) −0.579647 6.62540i −0.0351463 0.401724i
\(273\) 0.486121 13.1938i 0.0294214 0.798523i
\(274\) −12.7253 + 2.24381i −0.768761 + 0.135553i
\(275\) 0 0
\(276\) −10.5392 16.2974i −0.634385 0.980988i
\(277\) 4.21082 + 6.01367i 0.253004 + 0.361327i 0.925483 0.378789i \(-0.123659\pi\)
−0.672479 + 0.740116i \(0.734771\pi\)
\(278\) 2.04443 + 7.62992i 0.122617 + 0.457612i
\(279\) 5.31505 3.83049i 0.318204 0.229325i
\(280\) 0 0
\(281\) 5.52636 + 15.1836i 0.329675 + 0.905775i 0.988194 + 0.153210i \(0.0489612\pi\)
−0.658518 + 0.752565i \(0.728817\pi\)
\(282\) 1.68675 + 12.1715i 0.100444 + 0.724802i
\(283\) 10.5273 + 0.921022i 0.625785 + 0.0547491i 0.395638 0.918407i \(-0.370524\pi\)
0.230147 + 0.973156i \(0.426079\pi\)
\(284\) −1.17153 + 0.983029i −0.0695174 + 0.0583321i
\(285\) 0 0
\(286\) −2.62315 + 0.954750i −0.155110 + 0.0564555i
\(287\) −5.69471 + 21.2530i −0.336148 + 1.25452i
\(288\) −11.1015 + 13.6020i −0.654165 + 0.801508i
\(289\) −16.0762 9.28157i −0.945656 0.545975i
\(290\) 0 0
\(291\) −4.49432 + 2.90638i −0.263462 + 0.170375i
\(292\) −5.11468 + 2.38502i −0.299314 + 0.139572i
\(293\) 7.71819 + 5.40433i 0.450901 + 0.315725i 0.776876 0.629654i \(-0.216803\pi\)
−0.325974 + 0.945379i \(0.605692\pi\)
\(294\) −12.8258 13.8071i −0.748016 0.805245i
\(295\) 0 0
\(296\) 12.6027i 0.732517i
\(297\) 11.9417 2.90439i 0.692928 0.168530i
\(298\) 1.41448 + 1.41448i 0.0819386 + 0.0819386i
\(299\) 9.47401 + 7.94964i 0.547896 + 0.459740i
\(300\) 0 0
\(301\) 2.64542 + 15.0029i 0.152480 + 0.864755i
\(302\) 3.91806 + 8.40232i 0.225459 + 0.483499i
\(303\) −9.22453 8.33796i −0.529936 0.479003i
\(304\) −7.45688 1.31485i −0.427682 0.0754118i
\(305\) 0 0
\(306\) 3.53218 + 12.4993i 0.201921 + 0.714535i
\(307\) −26.0955 6.99226i −1.48935 0.399069i −0.579830 0.814737i \(-0.696881\pi\)
−0.909516 + 0.415668i \(0.863548\pi\)
\(308\) 6.90336 14.8043i 0.393355 0.843553i
\(309\) −2.75787 + 22.1098i −0.156890 + 1.25778i
\(310\) 0 0
\(311\) 5.82215 + 6.93856i 0.330144 + 0.393450i 0.905425 0.424505i \(-0.139552\pi\)
−0.575282 + 0.817955i \(0.695108\pi\)
\(312\) 2.67216 6.57741i 0.151281 0.372373i
\(313\) −9.19503 4.28771i −0.519734 0.242356i 0.145006 0.989431i \(-0.453680\pi\)
−0.664740 + 0.747075i \(0.731458\pi\)
\(314\) −3.42124 5.92576i −0.193072 0.334410i
\(315\) 0 0
\(316\) 4.72975 8.19217i 0.266069 0.460845i
\(317\) −5.65260 + 3.95799i −0.317481 + 0.222303i −0.721444 0.692473i \(-0.756521\pi\)
0.403963 + 0.914775i \(0.367632\pi\)
\(318\) −1.01116 3.13249i −0.0567029 0.175661i
\(319\) −5.63545 + 15.4833i −0.315525 + 0.866897i
\(320\) 0 0
\(321\) −0.838926 3.66591i −0.0468243 0.204611i
\(322\) 25.7999 2.25720i 1.43777 0.125789i
\(323\) −28.6301 + 28.6301i −1.59302 + 1.59302i
\(324\) −6.31314 + 11.6563i −0.350730 + 0.647571i
\(325\) 0 0
\(326\) 9.59307 11.4326i 0.531311 0.633192i
\(327\) 7.83882 12.4913i 0.433487 0.690768i
\(328\) −6.78626 + 9.69179i −0.374709 + 0.535140i
\(329\) 43.0555 + 15.6709i 2.37373 + 0.863966i
\(330\) 0 0
\(331\) −2.02614 + 11.4908i −0.111367 + 0.631591i 0.877119 + 0.480274i \(0.159463\pi\)
−0.988485 + 0.151318i \(0.951648\pi\)
\(332\) 1.04448 0.279868i 0.0573234 0.0153598i
\(333\) 2.80459 + 14.7304i 0.153691 + 0.807220i
\(334\) 6.74280 3.89295i 0.368949 0.213013i
\(335\) 0 0
\(336\) 3.52298 + 8.34416i 0.192194 + 0.455211i
\(337\) 0.207325 2.36973i 0.0112937 0.129087i −0.988455 0.151516i \(-0.951584\pi\)
0.999748 + 0.0224289i \(0.00713994\pi\)
\(338\) 0.655370 7.49091i 0.0356474 0.407452i
\(339\) −28.8479 3.59836i −1.56680 0.195436i
\(340\) 0 0
\(341\) −4.47317 + 2.58258i −0.242236 + 0.139855i
\(342\) 14.7865 0.201261i 0.799562 0.0108829i
\(343\) −36.1708 + 9.69193i −1.95304 + 0.523315i
\(344\) −1.42252 + 8.06752i −0.0766972 + 0.434971i
\(345\) 0 0
\(346\) −8.49630 3.09240i −0.456764 0.166248i
\(347\) 6.70944 9.58207i 0.360181 0.514392i −0.597637 0.801767i \(-0.703894\pi\)
0.957818 + 0.287375i \(0.0927824\pi\)
\(348\) −8.31350 15.7082i −0.445650 0.842046i
\(349\) 15.6352 18.6334i 0.836935 0.997421i −0.163007 0.986625i \(-0.552119\pi\)
0.999942 0.0107955i \(-0.00343640\pi\)
\(350\) 0 0
\(351\) 1.65956 8.28252i 0.0885809 0.442088i
\(352\) 9.78782 9.78782i 0.521692 0.521692i
\(353\) 31.5344 2.75891i 1.67841 0.146842i 0.792241 0.610208i \(-0.208914\pi\)
0.886167 + 0.463366i \(0.153359\pi\)
\(354\) −4.14059 + 3.84631i −0.220070 + 0.204429i
\(355\) 0 0
\(356\) 0.0119003 0.0326959i 0.000630716 0.00173288i
\(357\) 47.3546 + 10.1607i 2.50627 + 0.537759i
\(358\) 2.28751 1.60173i 0.120899 0.0846543i
\(359\) 10.9060 18.8897i 0.575596 0.996962i −0.420381 0.907348i \(-0.638103\pi\)
0.995977 0.0896137i \(-0.0285632\pi\)
\(360\) 0 0
\(361\) 13.5487 + 23.4670i 0.713089 + 1.23511i
\(362\) 9.35357 + 4.36164i 0.491612 + 0.229243i
\(363\) 9.27472 1.28531i 0.486797 0.0674612i
\(364\) −7.21679 8.60063i −0.378262 0.450796i
\(365\) 0 0
\(366\) 2.26146 + 1.71096i 0.118209 + 0.0894332i
\(367\) 3.57482 7.66622i 0.186604 0.400173i −0.790643 0.612277i \(-0.790254\pi\)
0.977247 + 0.212104i \(0.0680315\pi\)
\(368\) −8.19528 2.19592i −0.427208 0.114470i
\(369\) −5.77517 + 12.8382i −0.300643 + 0.668332i
\(370\) 0 0
\(371\) −12.0874 2.13133i −0.627546 0.110653i
\(372\) 1.16880 5.44730i 0.0605996 0.282429i
\(373\) −14.2517 30.5630i −0.737927 1.58249i −0.810920 0.585158i \(-0.801033\pi\)
0.0729923 0.997333i \(-0.476745\pi\)
\(374\) −1.77820 10.0847i −0.0919484 0.521465i
\(375\) 0 0
\(376\) 18.8739 + 15.8370i 0.973345 + 0.816733i
\(377\) 8.00804 + 8.00804i 0.412435 + 0.412435i
\(378\) −9.80686 14.7216i −0.504410 0.757198i
\(379\) 4.83051i 0.248126i 0.992274 + 0.124063i \(0.0395926\pi\)
−0.992274 + 0.124063i \(0.960407\pi\)
\(380\) 0 0
\(381\) −1.99492 + 6.48052i −0.102203 + 0.332007i
\(382\) −15.1827 10.6310i −0.776813 0.543930i
\(383\) −22.4867 + 10.4857i −1.14902 + 0.535795i −0.901368 0.433055i \(-0.857436\pi\)
−0.247649 + 0.968850i \(0.579658\pi\)
\(384\) 0.894156 + 17.7127i 0.0456297 + 0.903895i
\(385\) 0 0
\(386\) −4.16299 2.40350i −0.211891 0.122335i
\(387\) 0.132655 + 9.74610i 0.00674325 + 0.495422i
\(388\) −1.17799 + 4.39631i −0.0598033 + 0.223189i
\(389\) −35.9511 + 13.0851i −1.82279 + 0.663443i −0.828099 + 0.560583i \(0.810577\pi\)
−0.994696 + 0.102860i \(0.967201\pi\)
\(390\) 0 0
\(391\) −34.7541 + 29.1622i −1.75759 + 1.47479i
\(392\) −37.6421 3.29326i −1.90121 0.166335i
\(393\) 2.88491 + 1.17203i 0.145525 + 0.0591212i
\(394\) −4.91670 13.5085i −0.247700 0.680550i
\(395\) 0 0
\(396\) 5.87739 8.64176i 0.295350 0.434265i
\(397\) −5.54075 20.6784i −0.278082 1.03782i −0.953747 0.300609i \(-0.902810\pi\)
0.675665 0.737209i \(-0.263857\pi\)
\(398\) 0.549317 + 0.784506i 0.0275348 + 0.0393237i
\(399\) 25.1278 49.0827i 1.25796 2.45721i
\(400\) 0 0
\(401\) 34.5128 6.08555i 1.72349 0.303898i 0.777690 0.628648i \(-0.216392\pi\)
0.945800 + 0.324751i \(0.105280\pi\)
\(402\) −8.51159 5.34140i −0.424519 0.266405i
\(403\) 0.309418 + 3.53666i 0.0154132 + 0.176174i
\(404\) −10.5739 −0.526073
\(405\) 0 0
\(406\) 23.7156 1.17699
\(407\) −1.03035 11.7770i −0.0510725 0.583762i
\(408\) 22.0596 + 13.8434i 1.09211 + 0.685349i
\(409\) −31.2192 + 5.50478i −1.54369 + 0.272194i −0.879693 0.475542i \(-0.842252\pi\)
−0.663996 + 0.747736i \(0.731141\pi\)
\(410\) 0 0
\(411\) −14.0479 + 27.4400i −0.692930 + 1.35352i
\(412\) 10.8678 + 15.5208i 0.535417 + 0.764655i
\(413\) 5.45409 + 20.3549i 0.268378 + 1.00160i
\(414\) 16.5250 + 1.21937i 0.812157 + 0.0599288i
\(415\) 0 0
\(416\) −3.25400 8.94028i −0.159540 0.438333i
\(417\) 17.4590 + 7.09294i 0.854969 + 0.347343i
\(418\) −11.6143 1.01612i −0.568073 0.0496999i
\(419\) −21.7068 + 18.2142i −1.06045 + 0.889821i −0.994153 0.107979i \(-0.965562\pi\)
−0.0662941 + 0.997800i \(0.521118\pi\)
\(420\) 0 0
\(421\) −7.16992 + 2.60964i −0.349441 + 0.127186i −0.510776 0.859714i \(-0.670642\pi\)
0.161336 + 0.986900i \(0.448420\pi\)
\(422\) 2.04017 7.61401i 0.0993138 0.370644i
\(423\) 25.5846 + 14.3106i 1.24397 + 0.695805i
\(424\) −5.71578 3.30001i −0.277583 0.160263i
\(425\) 0 0
\(426\) −0.0658278 1.30401i −0.00318937 0.0631793i
\(427\) 9.58330 4.46876i 0.463768 0.216259i
\(428\) −2.61965 1.83430i −0.126626 0.0886642i
\(429\) −1.95933 + 6.36491i −0.0945974 + 0.307301i
\(430\) 0 0
\(431\) 20.7923i 1.00153i −0.865583 0.500765i \(-0.833052\pi\)
0.865583 0.500765i \(-0.166948\pi\)
\(432\) 1.36949 + 5.63080i 0.0658896 + 0.270912i
\(433\) 7.85031 + 7.85031i 0.377262 + 0.377262i 0.870113 0.492852i \(-0.164045\pi\)
−0.492852 + 0.870113i \(0.664045\pi\)
\(434\) 5.69503 + 4.77870i 0.273370 + 0.229385i
\(435\) 0 0
\(436\) −2.17767 12.3502i −0.104291 0.591465i
\(437\) 21.8292 + 46.8129i 1.04423 + 2.23937i
\(438\) 1.01079 4.71088i 0.0482976 0.225095i
\(439\) 9.06380 + 1.59819i 0.432591 + 0.0762775i 0.385704 0.922623i \(-0.373959\pi\)
0.0468875 + 0.998900i \(0.485070\pi\)
\(440\) 0 0
\(441\) −44.7300 + 4.52758i −2.13000 + 0.215599i
\(442\) −6.79858 1.82167i −0.323375 0.0866482i
\(443\) 0.656035 1.40687i 0.0311692 0.0668425i −0.890107 0.455752i \(-0.849370\pi\)
0.921276 + 0.388910i \(0.127148\pi\)
\(444\) 10.1690 + 7.69356i 0.482599 + 0.365120i
\(445\) 0 0
\(446\) 10.7030 + 12.7554i 0.506803 + 0.603985i
\(447\) 4.72710 0.655091i 0.223584 0.0309847i
\(448\) −8.57783 3.99991i −0.405264 0.188978i
\(449\) 1.66148 + 2.87776i 0.0784099 + 0.135810i 0.902564 0.430556i \(-0.141682\pi\)
−0.824154 + 0.566366i \(0.808349\pi\)
\(450\) 0 0
\(451\) 5.54925 9.61159i 0.261304 0.452592i
\(452\) −20.2509 + 14.1798i −0.952523 + 0.666964i
\(453\) 21.6254 + 4.64007i 1.01605 + 0.218009i
\(454\) −2.66462 + 7.32099i −0.125057 + 0.343591i
\(455\) 0 0
\(456\) 21.7241 20.1801i 1.01732 0.945021i
\(457\) −17.1702 + 1.50219i −0.803186 + 0.0702697i −0.481353 0.876527i \(-0.659855\pi\)
−0.321833 + 0.946796i \(0.604299\pi\)
\(458\) −5.93132 + 5.93132i −0.277152 + 0.277152i
\(459\) 28.8645 + 11.2714i 1.34728 + 0.526103i
\(460\) 0 0
\(461\) 8.39687 10.0070i 0.391081 0.466072i −0.534198 0.845359i \(-0.679386\pi\)
0.925279 + 0.379287i \(0.123831\pi\)
\(462\) 6.52351 + 12.3260i 0.303501 + 0.573458i
\(463\) 0.780347 1.11445i 0.0362658 0.0517929i −0.800610 0.599186i \(-0.795491\pi\)
0.836876 + 0.547393i \(0.184380\pi\)
\(464\) −7.30074 2.65725i −0.338928 0.123360i
\(465\) 0 0
\(466\) −0.940992 + 5.33663i −0.0435906 + 0.247215i
\(467\) −0.117944 + 0.0316030i −0.00545780 + 0.00146241i −0.261547 0.965191i \(-0.584233\pi\)
0.256089 + 0.966653i \(0.417566\pi\)
\(468\) −3.67597 6.17145i −0.169922 0.285275i
\(469\) −32.4498 + 18.7349i −1.49839 + 0.865096i
\(470\) 0 0
\(471\) −16.1985 2.02053i −0.746388 0.0931011i
\(472\) −0.987611 + 11.2884i −0.0454585 + 0.519593i
\(473\) 0.669745 7.65522i 0.0307949 0.351987i
\(474\) 3.14129 + 7.44013i 0.144284 + 0.341737i
\(475\) 0 0
\(476\) 35.6680 20.5929i 1.63484 0.943876i
\(477\) −7.41514 2.58516i −0.339516 0.118366i
\(478\) 20.8665 5.59117i 0.954412 0.255734i
\(479\) 4.54350 25.7675i 0.207598 1.17735i −0.685701 0.727883i \(-0.740504\pi\)
0.893299 0.449463i \(-0.148385\pi\)
\(480\) 0 0
\(481\) −7.63553 2.77910i −0.348150 0.126716i
\(482\) −7.12771 + 10.1794i −0.324658 + 0.463660i
\(483\) 32.8420 52.3342i 1.49436 2.38129i
\(484\) 5.11814 6.09956i 0.232643 0.277253i
\(485\) 0 0
\(486\) −4.68420 10.3026i −0.212480 0.467335i
\(487\) −9.16515 + 9.16515i −0.415313 + 0.415313i −0.883584 0.468272i \(-0.844877\pi\)
0.468272 + 0.883584i \(0.344877\pi\)
\(488\) 5.66431 0.495563i 0.256411 0.0224331i
\(489\) −7.94259 34.7073i −0.359176 1.56952i
\(490\) 0 0
\(491\) 8.42964 23.1603i 0.380424 1.04521i −0.590753 0.806852i \(-0.701169\pi\)
0.971178 0.238356i \(-0.0766084\pi\)
\(492\) 3.67740 + 11.3923i 0.165790 + 0.513605i
\(493\) −34.0313 + 23.8289i −1.53269 + 1.07320i
\(494\) −4.00666 + 6.93974i −0.180268 + 0.312233i
\(495\) 0 0
\(496\) −1.21775 2.10921i −0.0546787 0.0947062i
\(497\) −4.41241 2.05754i −0.197924 0.0922933i
\(498\) −0.347477 + 0.855299i −0.0155708 + 0.0383269i
\(499\) 4.55089 + 5.42354i 0.203726 + 0.242791i 0.858227 0.513270i \(-0.171566\pi\)
−0.654502 + 0.756061i \(0.727122\pi\)
\(500\) 0 0
\(501\) 2.29912 18.4319i 0.102717 0.823479i
\(502\) −3.01894 + 6.47414i −0.134742 + 0.288955i
\(503\) 3.54336 + 0.949440i 0.157990 + 0.0423334i 0.336947 0.941524i \(-0.390606\pi\)
−0.178957 + 0.983857i \(0.557272\pi\)
\(504\) −34.3811 8.71264i −1.53145 0.388092i
\(505\) 0 0
\(506\) −12.8651 2.26846i −0.571924 0.100846i
\(507\) −13.3084 12.0293i −0.591047 0.534241i
\(508\) 2.43686 + 5.22586i 0.108118 + 0.231860i
\(509\) 0.686733 + 3.89466i 0.0304389 + 0.172628i 0.996237 0.0866661i \(-0.0276213\pi\)
−0.965799 + 0.259294i \(0.916510\pi\)
\(510\) 0 0
\(511\) −13.7625 11.5481i −0.608819 0.510859i
\(512\) 8.59188 + 8.59188i 0.379711 + 0.379711i
\(513\) 20.9008 28.4215i 0.922794 1.25484i
\(514\) 0.0554707i 0.00244671i
\(515\) 0 0
\(516\) 5.64119 + 6.07279i 0.248340 + 0.267340i
\(517\) −18.9320 13.2563i −0.832628 0.583012i
\(518\) −15.4213 + 7.19108i −0.677574 + 0.315958i
\(519\) −18.1130 + 11.7133i −0.795073 + 0.514157i
\(520\) 0 0
\(521\) 16.1589 + 9.32937i 0.707936 + 0.408727i 0.810296 0.586020i \(-0.199306\pi\)
−0.102360 + 0.994747i \(0.532639\pi\)
\(522\) 14.9773 + 2.43121i 0.655538 + 0.106411i
\(523\) 9.40272 35.0914i 0.411152 1.53444i −0.381268 0.924465i \(-0.624512\pi\)
0.792420 0.609976i \(-0.208821\pi\)
\(524\) 2.48830 0.905668i 0.108702 0.0395643i
\(525\) 0 0
\(526\) −7.48142 + 6.27765i −0.326205 + 0.273719i
\(527\) −12.9737 1.13506i −0.565145 0.0494438i
\(528\) −0.627145 4.52544i −0.0272930 0.196945i
\(529\) 11.9285 + 32.7734i 0.518633 + 1.42493i
\(530\) 0 0
\(531\) 1.35777 + 13.4140i 0.0589223 + 0.582119i
\(532\) −12.1362 45.2929i −0.526171 1.96370i
\(533\) −4.37542 6.24875i −0.189521 0.270664i
\(534\) 0.0161310 + 0.0249444i 0.000698057 + 0.00107945i
\(535\) 0 0
\(536\) −19.8425 + 3.49876i −0.857065 + 0.151124i
\(537\) 0.245298 6.65762i 0.0105854 0.287297i
\(538\) −1.20800 13.8076i −0.0520808 0.595286i
\(539\) 35.4450 1.52672
\(540\) 0 0
\(541\) −22.9374 −0.986154 −0.493077 0.869986i \(-0.664128\pi\)
−0.493077 + 0.869986i \(0.664128\pi\)
\(542\) −1.01923 11.6499i −0.0437798 0.500406i
\(543\) 21.7617 11.5173i 0.933885 0.494256i
\(544\) 34.3707 6.06049i 1.47363 0.259841i
\(545\) 0 0
\(546\) 9.57320 0.483266i 0.409695 0.0206819i
\(547\) −8.76004 12.5106i −0.374552 0.534916i 0.586982 0.809600i \(-0.300316\pi\)
−0.961535 + 0.274684i \(0.911427\pi\)
\(548\) 6.78483 + 25.3213i 0.289834 + 1.08167i
\(549\) 6.51032 1.83976i 0.277854 0.0785189i
\(550\) 0 0
\(551\) 16.1772 + 44.4465i 0.689172 + 1.89348i
\(552\) 26.2201 20.4044i 1.11600 0.868467i
\(553\) 29.9995 + 2.62461i 1.27571 + 0.111610i
\(554\) −4.08296 + 3.42601i −0.173469 + 0.145557i
\(555\) 0 0
\(556\) 15.0588 5.48094i 0.638634 0.232444i
\(557\) −1.82503 + 6.81110i −0.0773290 + 0.288596i −0.993751 0.111617i \(-0.964397\pi\)
0.916422 + 0.400213i \(0.131064\pi\)
\(558\) 3.10673 + 3.60175i 0.131518 + 0.152474i
\(559\) −4.57413 2.64088i −0.193465 0.111697i
\(560\) 0 0
\(561\) −21.7460 11.1328i −0.918116 0.470028i
\(562\) −10.6319 + 4.95772i −0.448478 + 0.209129i
\(563\) 25.5845 + 17.9144i 1.07826 + 0.755004i 0.970965 0.239224i \(-0.0768929\pi\)
0.107293 + 0.994227i \(0.465782\pi\)
\(564\) 24.3007 5.56109i 1.02324 0.234164i
\(565\) 0 0
\(566\) 7.67220i 0.322487i
\(567\) −42.1244 2.53244i −1.76906 0.106353i
\(568\) −1.85118 1.85118i −0.0776739 0.0776739i
\(569\) 24.7601 + 20.7762i 1.03800 + 0.870984i 0.991781 0.127948i \(-0.0408389\pi\)
0.0462172 + 0.998931i \(0.485283\pi\)
\(570\) 0 0
\(571\) −7.28419 41.3107i −0.304834 1.72880i −0.624286 0.781196i \(-0.714610\pi\)
0.319453 0.947602i \(-0.396501\pi\)
\(572\) 2.39339 + 5.13264i 0.100073 + 0.214606i
\(573\) −42.0799 + 13.5832i −1.75791 + 0.567448i
\(574\) −15.7316 2.77391i −0.656625 0.115781i
\(575\) 0 0
\(576\) −5.00716 3.40544i −0.208632 0.141894i
\(577\) 15.0234 + 4.02551i 0.625433 + 0.167584i 0.557596 0.830112i \(-0.311724\pi\)
0.0678366 + 0.997696i \(0.478390\pi\)
\(578\) 5.69568 12.2144i 0.236909 0.508054i
\(579\) −10.5650 + 4.46063i −0.439065 + 0.185377i
\(580\) 0 0
\(581\) 2.21272 + 2.63701i 0.0917990 + 0.109402i
\(582\) −2.38643 3.06662i −0.0989209 0.127116i
\(583\) 5.61107 + 2.61649i 0.232387 + 0.108364i
\(584\) −4.83034 8.36640i −0.199881 0.346204i
\(585\) 0 0
\(586\) −3.42032 + 5.92417i −0.141292 + 0.244725i
\(587\) −21.6287 + 15.1446i −0.892712 + 0.625084i −0.927300 0.374318i \(-0.877877\pi\)
0.0345884 + 0.999402i \(0.488988\pi\)
\(588\) −25.6366 + 28.3626i −1.05724 + 1.16965i
\(589\) −5.07120 + 13.9330i −0.208955 + 0.574099i
\(590\) 0 0
\(591\) −32.7776 10.0900i −1.34829 0.415048i
\(592\) 5.55312 0.485835i 0.228232 0.0199677i
\(593\) 2.61058 2.61058i 0.107204 0.107204i −0.651470 0.758674i \(-0.725847\pi\)
0.758674 + 0.651470i \(0.225847\pi\)
\(594\) 2.85624 + 8.45309i 0.117193 + 0.346835i
\(595\) 0 0
\(596\) 2.60859 3.10880i 0.106852 0.127341i
\(597\) 2.28324 + 0.0841254i 0.0934468 + 0.00344302i
\(598\) −5.15012 + 7.35514i −0.210604 + 0.300774i
\(599\) 24.1321 + 8.78335i 0.986010 + 0.358878i 0.784174 0.620541i \(-0.213087\pi\)
0.201836 + 0.979419i \(0.435309\pi\)
\(600\) 0 0
\(601\) −7.14602 + 40.5271i −0.291492 + 1.65313i 0.389636 + 0.920969i \(0.372601\pi\)
−0.681128 + 0.732165i \(0.738510\pi\)
\(602\) −10.6835 + 2.86264i −0.435428 + 0.116673i
\(603\) −22.4138 + 8.50518i −0.912761 + 0.346358i
\(604\) 16.2885 9.40418i 0.662770 0.382650i
\(605\) 0 0
\(606\) 5.44676 7.19927i 0.221259 0.292450i
\(607\) 0.744689 8.51183i 0.0302260 0.345485i −0.965990 0.258578i \(-0.916746\pi\)
0.996216 0.0869069i \(-0.0276983\pi\)
\(608\) 3.46315 39.5840i 0.140449 1.60534i
\(609\) 34.1364 45.1198i 1.38328 1.82835i
\(610\) 0 0
\(611\) −13.7571 + 7.94266i −0.556553 + 0.321326i
\(612\) 24.6368 9.34869i 0.995882 0.377899i
\(613\) −9.00556 + 2.41303i −0.363731 + 0.0974614i −0.436056 0.899920i \(-0.643625\pi\)
0.0723246 + 0.997381i \(0.476958\pi\)
\(614\) 3.40594 19.3161i 0.137453 0.779533i
\(615\) 0 0
\(616\) 26.2762 + 9.56376i 1.05870 + 0.385335i
\(617\) 26.0142 37.1521i 1.04729 1.49569i 0.189372 0.981905i \(-0.439355\pi\)
0.857920 0.513783i \(-0.171756\pi\)
\(618\) −16.1655 0.595612i −0.650270 0.0239590i
\(619\) 15.0061 17.8836i 0.603147 0.718803i −0.374928 0.927054i \(-0.622333\pi\)
0.978075 + 0.208251i \(0.0667770\pi\)
\(620\) 0 0
\(621\) 26.1060 29.6842i 1.04760 1.19118i
\(622\) −4.64993 + 4.64993i −0.186445 + 0.186445i
\(623\) 0.110345 0.00965394i 0.00442088 0.000386777i
\(624\) −3.00121 0.923872i −0.120145 0.0369845i
\(625\) 0 0
\(626\) 2.51927 6.92165i 0.100690 0.276645i
\(627\) −18.6508 + 20.6340i −0.744843 + 0.824042i
\(628\) −11.3712 + 7.96218i −0.453759 + 0.317726i
\(629\) 14.9037 25.8140i 0.594251 1.02927i
\(630\) 0 0
\(631\) −15.4086 26.6885i −0.613407 1.06245i −0.990662 0.136343i \(-0.956465\pi\)
0.377255 0.926110i \(-0.376868\pi\)
\(632\) 14.6760 + 6.84355i 0.583781 + 0.272222i
\(633\) −11.5493 14.8411i −0.459044 0.589882i
\(634\) −3.22031 3.83781i −0.127895 0.152419i
\(635\) 0 0
\(636\) −6.15205 + 2.59745i −0.243945 + 0.102996i
\(637\) 10.2960 22.0798i 0.407941 0.874833i
\(638\) −11.5549 3.09613i −0.457464 0.122577i
\(639\) −2.57567 1.75175i −0.101892 0.0692982i
\(640\) 0 0
\(641\) 12.3888 + 2.18449i 0.489330 + 0.0862820i 0.412869 0.910791i \(-0.364527\pi\)
0.0764610 + 0.997073i \(0.475638\pi\)
\(642\) 2.59830 0.838722i 0.102547 0.0331017i
\(643\) 16.1067 + 34.5408i 0.635185 + 1.36216i 0.915526 + 0.402258i \(0.131774\pi\)
−0.280342 + 0.959900i \(0.590448\pi\)
\(644\) −9.12369 51.7430i −0.359524 2.03896i
\(645\) 0 0
\(646\) −22.5184 18.8952i −0.885976 0.743422i
\(647\) −16.5718 16.5718i −0.651504 0.651504i 0.301851 0.953355i \(-0.402396\pi\)
−0.953355 + 0.301851i \(0.902396\pi\)
\(648\) −20.8197 9.02693i −0.817876 0.354611i
\(649\) 10.6295i 0.417246i
\(650\) 0 0
\(651\) 17.2891 3.95652i 0.677613 0.155068i
\(652\) −24.8017 17.3664i −0.971311 0.680119i
\(653\) −5.39065 + 2.51370i −0.210952 + 0.0983687i −0.525223 0.850965i \(-0.676018\pi\)
0.314270 + 0.949334i \(0.398240\pi\)
\(654\) 9.53035 + 4.87905i 0.372666 + 0.190786i
\(655\) 0 0
\(656\) 4.53210 + 2.61661i 0.176949 + 0.102161i
\(657\) −7.50769 8.70394i −0.292903 0.339573i
\(658\) −8.60965 + 32.1316i −0.335639 + 1.25262i
\(659\) −34.7751 + 12.6571i −1.35465 + 0.493051i −0.914395 0.404824i \(-0.867333\pi\)
−0.440251 + 0.897875i \(0.645111\pi\)
\(660\) 0 0
\(661\) 13.5431 11.3640i 0.526766 0.442009i −0.340217 0.940347i \(-0.610500\pi\)
0.866983 + 0.498338i \(0.166056\pi\)
\(662\) −8.43896 0.738314i −0.327990 0.0286954i
\(663\) −13.2517 + 10.3124i −0.514653 + 0.400501i
\(664\) 0.633102 + 1.73943i 0.0245691 + 0.0675031i
\(665\) 0 0
\(666\) −10.4763 + 2.96052i −0.405950 + 0.114718i
\(667\) 13.7171 + 51.1928i 0.531128 + 1.98219i
\(668\) −9.06000 12.9390i −0.350542 0.500626i
\(669\) 39.6736 2.00277i 1.53387 0.0774315i
\(670\) 0 0
\(671\) −5.25266 + 0.926186i −0.202777 + 0.0357550i
\(672\) −42.0098 + 22.2336i −1.62056 + 0.857678i
\(673\) 3.10515 + 35.4920i 0.119695 + 1.36812i 0.784049 + 0.620699i \(0.213151\pi\)
−0.664354 + 0.747418i \(0.731293\pi\)
\(674\) 1.72703 0.0665229
\(675\) 0 0
\(676\) −15.2552 −0.586739
\(677\) 1.24538 + 14.2347i 0.0478637 + 0.547084i 0.981835 + 0.189737i \(0.0607634\pi\)
−0.933971 + 0.357348i \(0.883681\pi\)
\(678\) 0.777131 21.0921i 0.0298455 0.810035i
\(679\) −14.2691 + 2.51603i −0.547599 + 0.0965564i
\(680\) 0 0
\(681\) 10.0930 + 15.6074i 0.386764 + 0.598077i
\(682\) −2.15091 3.07182i −0.0823625 0.117626i
\(683\) −12.9972 48.5064i −0.497326 1.85604i −0.516594 0.856230i \(-0.672800\pi\)
0.0192684 0.999814i \(-0.493866\pi\)
\(684\) −3.02125 29.8483i −0.115521 1.14128i
\(685\) 0 0
\(686\) −9.29847 25.5473i −0.355017 0.975402i
\(687\) 2.74699 + 19.8221i 0.104804 + 0.756261i
\(688\) 3.60962 + 0.315801i 0.137616 + 0.0120398i
\(689\) 3.25978 2.73528i 0.124188 0.104206i
\(690\) 0 0
\(691\) −0.280238 + 0.101998i −0.0106608 + 0.00388020i −0.347345 0.937737i \(-0.612917\pi\)
0.336684 + 0.941618i \(0.390695\pi\)
\(692\) −4.74753 + 17.7180i −0.180474 + 0.673538i
\(693\) 32.8407 + 5.33090i 1.24751 + 0.202504i
\(694\) 7.35481 + 4.24630i 0.279185 + 0.161187i
\(695\) 0 0
\(696\) 25.5473 16.5209i 0.968367 0.626223i
\(697\) 25.3616 11.8263i 0.960639 0.447953i
\(698\) 14.4660 + 10.1292i 0.547545 + 0.383395i
\(699\) 8.79867 + 9.47184i 0.332796 + 0.358258i
\(700\) 0 0
\(701\) 1.73681i 0.0655983i 0.999462 + 0.0327991i \(0.0104422\pi\)
−0.999462 + 0.0327991i \(0.989558\pi\)
\(702\) 6.09537 + 0.676196i 0.230055 + 0.0255214i
\(703\) −23.9965 23.9965i −0.905046 0.905046i
\(704\) 3.65716 + 3.06872i 0.137835 + 0.115657i
\(705\) 0 0
\(706\) 3.99077 + 22.6328i 0.150195 + 0.851797i
\(707\) −14.2261 30.5080i −0.535028 1.14737i
\(708\) 8.50562 + 7.68814i 0.319661 + 0.288938i
\(709\) 28.4425 + 5.01519i 1.06818 + 0.188349i 0.679984 0.733227i \(-0.261987\pi\)
0.388198 + 0.921576i \(0.373098\pi\)
\(710\) 0 0
\(711\) 18.6767 + 4.73294i 0.700431 + 0.177499i
\(712\) 0.0575329 + 0.0154159i 0.00215614 + 0.000577735i
\(713\) −7.02136 + 15.0574i −0.262952 + 0.563902i
\(714\) −4.35230 + 34.8923i −0.162881 + 1.30581i
\(715\) 0 0
\(716\) −3.64161 4.33991i −0.136094 0.162190i
\(717\) 19.3979 47.7473i 0.724430 1.78315i
\(718\) 14.3521 + 6.69252i 0.535617 + 0.249762i
\(719\) 21.8672 + 37.8751i 0.815509 + 1.41250i 0.908962 + 0.416880i \(0.136876\pi\)
−0.0934526 + 0.995624i \(0.529790\pi\)
\(720\) 0 0
\(721\) −30.1593 + 52.2374i −1.12319 + 1.94542i
\(722\) −16.1153 + 11.2840i −0.599749 + 0.419949i
\(723\) 9.10707 + 28.2130i 0.338696 + 1.04925i
\(724\) 7.16111 19.6750i 0.266141 0.731215i
\(725\) 0 0
\(726\) 1.51648 + 6.62664i 0.0562817 + 0.245938i
\(727\) −36.4355 + 3.18769i −1.35132 + 0.118225i −0.739704 0.672932i \(-0.765035\pi\)
−0.611613 + 0.791157i \(0.709479\pi\)
\(728\) 13.5902 13.5902i 0.503687 0.503687i
\(729\) −26.3435 5.91772i −0.975686 0.219175i
\(730\) 0 0
\(731\) 12.4542 14.8424i 0.460637 0.548966i
\(732\) 3.05802 4.87300i 0.113028 0.180111i
\(733\) 3.41756 4.88078i 0.126231 0.180276i −0.751062 0.660231i \(-0.770458\pi\)
0.877293 + 0.479955i \(0.159347\pi\)
\(734\) 5.77082 + 2.10041i 0.213005 + 0.0775274i
\(735\) 0 0
\(736\) 7.73142 43.8471i 0.284984 1.61623i
\(737\) 18.2563 4.89177i 0.672480 0.180191i
\(738\) −9.65073 3.36455i −0.355248 0.123851i
\(739\) 12.8145 7.39844i 0.471388 0.272156i −0.245433 0.969414i \(-0.578930\pi\)
0.716821 + 0.697258i \(0.245597\pi\)
\(740\) 0 0
\(741\) 7.43590 + 17.6119i 0.273165 + 0.646989i
\(742\) 0.776647 8.87711i 0.0285116 0.325889i
\(743\) −0.372968 + 4.26304i −0.0136829 + 0.156396i −0.999962 0.00868886i \(-0.997234\pi\)
0.986279 + 0.165085i \(0.0527898\pi\)
\(744\) 9.46384 + 1.18048i 0.346961 + 0.0432784i
\(745\) 0 0
\(746\) 21.2030 12.2415i 0.776296 0.448194i
\(747\) 1.12708 + 1.89221i 0.0412377 + 0.0692323i
\(748\) −20.0669 + 5.37692i −0.733720 + 0.196600i
\(749\) 1.76787 10.0261i 0.0645966 0.366346i
\(750\) 0 0
\(751\) 19.0790 + 6.94420i 0.696204 + 0.253397i 0.665789 0.746140i \(-0.268095\pi\)
0.0304146 + 0.999537i \(0.490317\pi\)
\(752\) 6.25068 8.92689i 0.227939 0.325530i
\(753\) 7.97182 + 15.0626i 0.290509 + 0.548910i
\(754\) −5.28512 + 6.29857i −0.192473 + 0.229380i
\(755\) 0 0
\(756\) −28.0187 + 22.4229i −1.01903 + 0.815514i
\(757\) −25.0622 + 25.0622i −0.910900 + 0.910900i −0.996343 0.0854434i \(-0.972769\pi\)
0.0854434 + 0.996343i \(0.472769\pi\)
\(758\) −3.49368 + 0.305657i −0.126896 + 0.0111020i
\(759\) −22.8339 + 21.2111i −0.828819 + 0.769914i
\(760\) 0 0
\(761\) −11.5003 + 31.5969i −0.416887 + 1.14539i 0.536570 + 0.843856i \(0.319720\pi\)
−0.953456 + 0.301531i \(0.902502\pi\)
\(762\) −4.81329 1.03277i −0.174367 0.0374132i
\(763\) 32.7029 22.8988i 1.18393 0.828994i
\(764\) −18.8010 + 32.5643i −0.680196 + 1.17813i
\(765\) 0 0
\(766\) −9.00671 15.6001i −0.325426 0.563654i
\(767\) −6.62148 3.08765i −0.239088 0.111488i
\(768\) −19.6802 + 2.72732i −0.710149 + 0.0984138i
\(769\) −0.789841 0.941295i −0.0284824 0.0339440i 0.751615 0.659602i \(-0.229275\pi\)
−0.780098 + 0.625658i \(0.784831\pi\)
\(770\) 0 0
\(771\) −0.105535 0.0798448i −0.00380075 0.00287554i
\(772\) −4.12145 + 8.83848i −0.148334 + 0.318104i
\(773\) 2.83607 + 0.759923i 0.102006 + 0.0273325i 0.309461 0.950912i \(-0.399851\pi\)
−0.207455 + 0.978245i \(0.566518\pi\)
\(774\) −7.04050 + 0.712642i −0.253066 + 0.0256154i
\(775\) 0 0
\(776\) −7.67293 1.35294i −0.275442 0.0485679i
\(777\) −8.51622 + 39.6905i −0.305518 + 1.42389i
\(778\) −11.7387 25.1738i −0.420854 0.902524i
\(779\) −5.53234 31.3755i −0.198217 1.12414i
\(780\) 0 0
\(781\) 1.88123 + 1.57854i 0.0673159 + 0.0564847i
\(782\) −23.2907 23.2907i −0.832875 0.832875i
\(783\) 26.1838 24.9953i 0.935734 0.893261i
\(784\) 16.7132i 0.596899i
\(785\) 0 0
\(786\) −0.665130 + 2.16068i −0.0237244 + 0.0770690i
\(787\) 37.4623 + 26.2314i 1.33539 + 0.935048i 0.999975 0.00702395i \(-0.00223581\pi\)
0.335411 + 0.942072i \(0.391125\pi\)
\(788\) −26.4317 + 12.3253i −0.941591 + 0.439071i
\(789\) 1.17468 + 23.2697i 0.0418199 + 0.828425i
\(790\) 0 0
\(791\) −68.1573 39.3506i −2.42339 1.39915i
\(792\) 15.6140 + 8.73357i 0.554818 + 0.310334i
\(793\) −0.948830 + 3.54108i −0.0336940 + 0.125748i
\(794\) 14.6051 5.31582i 0.518316 0.188651i
\(795\) 0 0
\(796\) 1.48838 1.24890i 0.0527541 0.0442660i
\(797\) 23.9126 + 2.09208i 0.847027 + 0.0741053i 0.502401 0.864635i \(-0.332450\pi\)
0.344626 + 0.938740i \(0.388006\pi\)
\(798\) 37.0892 + 15.0680i 1.31294 + 0.533401i
\(799\) −19.9306 54.7588i −0.705093 1.93723i
\(800\) 0 0
\(801\) 0.0706766 + 0.00521520i 0.00249724 + 0.000184270i
\(802\) 6.58524 + 24.5765i 0.232533 + 0.867825i
\(803\) 5.19786 + 7.42331i 0.183428 + 0.261963i
\(804\) −9.29011 + 18.1466i −0.327637 + 0.639980i
\(805\) 0 0
\(806\) −2.53832 + 0.447574i −0.0894085 + 0.0157651i
\(807\) −28.0082 17.5764i −0.985935 0.618718i
\(808\) −1.57760 18.0321i −0.0554999 0.634367i
\(809\) 6.88614 0.242104 0.121052 0.992646i \(-0.461373\pi\)
0.121052 + 0.992646i \(0.461373\pi\)
\(810\) 0 0
\(811\) 51.9012 1.82250 0.911248 0.411858i \(-0.135120\pi\)
0.911248 + 0.411858i \(0.135120\pi\)
\(812\) −4.19332 47.9298i −0.147157 1.68201i
\(813\) −23.6314 14.8298i −0.828790 0.520103i
\(814\) 8.45252 1.49041i 0.296261 0.0522388i
\(815\) 0 0
\(816\) 5.24939 10.2538i 0.183766 0.358953i
\(817\) −12.6526 18.0698i −0.442658 0.632181i
\(818\) −5.95679 22.2310i −0.208274 0.777290i
\(819\) 12.8603 18.9090i 0.449374 0.660733i
\(820\) 0 0
\(821\) 1.56336 + 4.29529i 0.0545616 + 0.149907i 0.963979 0.265977i \(-0.0856946\pi\)
−0.909418 + 0.415884i \(0.863472\pi\)
\(822\) −20.7350 8.42386i −0.723216 0.293816i
\(823\) −8.86506 0.775592i −0.309016 0.0270354i −0.0684071 0.997657i \(-0.521792\pi\)
−0.240609 + 0.970622i \(0.577347\pi\)
\(824\) −24.8467 + 20.8488i −0.865575 + 0.726304i
\(825\) 0 0
\(826\) −14.3767 + 5.23268i −0.500228 + 0.182068i
\(827\) −1.00408 + 3.74729i −0.0349154 + 0.130306i −0.981184 0.193077i \(-0.938153\pi\)
0.946268 + 0.323383i \(0.104820\pi\)
\(828\) −0.457510 33.6129i −0.0158996 1.16813i
\(829\) 23.2961 + 13.4500i 0.809106 + 0.467138i 0.846645 0.532157i \(-0.178619\pi\)
−0.0375391 + 0.999295i \(0.511952\pi\)
\(830\) 0 0
\(831\) 0.641081 + 12.6994i 0.0222389 + 0.440537i
\(832\) 2.97393 1.38677i 0.103102 0.0480774i
\(833\) 73.2075 + 51.2604i 2.53649 + 1.77607i
\(834\) −4.02525 + 13.0761i −0.139383 + 0.452787i
\(835\) 0 0
\(836\) 23.6524i 0.818035i
\(837\) 11.3243 0.726300i 0.391425 0.0251046i
\(838\) −14.5470 14.5470i −0.502518 0.502518i
\(839\) −19.6667 16.5023i −0.678970 0.569724i 0.236735 0.971574i \(-0.423923\pi\)
−0.915705 + 0.401850i \(0.868367\pi\)
\(840\) 0 0
\(841\) 3.39167 + 19.2351i 0.116954 + 0.663280i
\(842\) −2.34112 5.02054i −0.0806802 0.173019i
\(843\) −5.87131 + 27.3637i −0.202219 + 0.942455i
\(844\) −15.7488 2.77695i −0.542097 0.0955864i
\(845\) 0 0
\(846\) −8.73129 + 19.4097i −0.300188 + 0.667319i
\(847\) 24.4844 + 6.56058i 0.841295 + 0.225424i
\(848\) −1.23374 + 2.64576i −0.0423667 + 0.0908557i
\(849\) 14.5966 + 11.0434i 0.500956 + 0.379009i
\(850\) 0 0
\(851\) −24.4424 29.1294i −0.837876 0.998542i
\(852\) −2.62379 + 0.363610i −0.0898895 + 0.0124571i
\(853\) 4.64633 + 2.16662i 0.159087 + 0.0741837i 0.500531 0.865719i \(-0.333138\pi\)
−0.341444 + 0.939902i \(0.610916\pi\)
\(854\) 3.83845 + 6.64838i 0.131349 + 0.227503i
\(855\) 0 0
\(856\) 2.73725 4.74105i 0.0935572 0.162046i
\(857\) −0.315828 + 0.221145i −0.0107885 + 0.00755418i −0.578958 0.815357i \(-0.696541\pi\)
0.568170 + 0.822911i \(0.307652\pi\)
\(858\) −4.72742 1.01434i −0.161392 0.0346291i
\(859\) 14.9871 41.1768i 0.511354 1.40493i −0.368472 0.929639i \(-0.620119\pi\)
0.879826 0.475295i \(-0.157659\pi\)
\(860\) 0 0
\(861\) −27.9216 + 25.9372i −0.951566 + 0.883937i
\(862\) 15.0381 1.31566i 0.512200 0.0448117i
\(863\) 1.22824 1.22824i 0.0418098 0.0418098i −0.685893 0.727703i \(-0.740588\pi\)
0.727703 + 0.685893i \(0.240588\pi\)
\(864\) −28.8100 + 9.73468i −0.980136 + 0.331180i
\(865\) 0 0
\(866\) −5.18102 + 6.17450i −0.176058 + 0.209818i
\(867\) −15.0400 28.4178i −0.510786 0.965118i
\(868\) 8.65089 12.3547i 0.293630 0.419347i
\(869\) −14.2739 5.19529i −0.484210 0.176238i
\(870\) 0 0
\(871\) 2.25582 12.7934i 0.0764355 0.433487i
\(872\) 20.7362 5.55626i 0.702217 0.188159i
\(873\) −9.26941 + 0.126167i −0.313722 + 0.00427011i
\(874\) −32.4763 + 18.7502i −1.09853 + 0.634236i
\(875\) 0 0
\(876\) −9.69954 1.20988i −0.327717 0.0408779i
\(877\) 2.25649 25.7918i 0.0761961 0.870926i −0.857880 0.513851i \(-0.828218\pi\)
0.934076 0.357075i \(-0.116226\pi\)
\(878\) −0.582372 + 6.65655i −0.0196541 + 0.224648i
\(879\) 6.34773 + 15.0346i 0.214104 + 0.507103i
\(880\) 0 0
\(881\) −9.98167 + 5.76292i −0.336291 + 0.194158i −0.658631 0.752466i \(-0.728864\pi\)
0.322340 + 0.946624i \(0.395531\pi\)
\(882\) −6.10494 32.0646i −0.205564 1.07967i
\(883\) 35.3038 9.45962i 1.18807 0.318342i 0.389945 0.920838i \(-0.372494\pi\)
0.798122 + 0.602496i \(0.205827\pi\)
\(884\) −2.47954 + 14.0622i −0.0833961 + 0.472963i
\(885\) 0 0
\(886\) 1.05904 + 0.385458i 0.0355790 + 0.0129497i
\(887\) 14.4052 20.5727i 0.483678 0.690763i −0.500941 0.865482i \(-0.667013\pi\)
0.984618 + 0.174718i \(0.0559014\pi\)
\(888\) −11.6029 + 18.4894i −0.389368 + 0.620463i
\(889\) −11.7992 + 14.0617i −0.395731 + 0.471614i
\(890\) 0 0
\(891\) 20.1936 + 6.73332i 0.676511 + 0.225575i
\(892\) 23.8865 23.8865i 0.799778 0.799778i
\(893\) −66.0922 + 5.78232i −2.21169 + 0.193498i
\(894\) 0.772911 + 3.37744i 0.0258500 + 0.112959i
\(895\) 0 0
\(896\) −16.4211 + 45.1166i −0.548591 + 1.50724i
\(897\) 6.58031 + 20.3853i 0.219710 + 0.680646i
\(898\) −1.97622 + 1.38376i −0.0659473 + 0.0461768i
\(899\) −7.60684 + 13.1754i −0.253702 + 0.439425i
\(900\) 0 0
\(901\) 7.80507 + 13.5188i 0.260024 + 0.450376i
\(902\) 7.30275 + 3.40533i 0.243155 + 0.113385i
\(903\) −9.93163 + 24.4463i −0.330504 + 0.813522i
\(904\) −27.2027 32.4190i −0.904750 1.07824i
\(905\) 0 0
\(906\) −1.98757 + 15.9342i −0.0660324 + 0.529380i
\(907\) −0.996748 + 2.13753i −0.0330965 + 0.0709756i −0.922161 0.386806i \(-0.873578\pi\)
0.889064 + 0.457782i \(0.151356\pi\)
\(908\) 15.2670 + 4.09079i 0.506655 + 0.135758i
\(909\) −5.85679 20.7253i −0.194257 0.687415i
\(910\) 0 0
\(911\) −28.9448 5.10374i −0.958983 0.169095i −0.327816 0.944742i \(-0.606313\pi\)
−0.631167 + 0.775647i \(0.717424\pi\)
\(912\) −9.72942 8.79432i −0.322173 0.291209i
\(913\) −0.733830 1.57370i −0.0242862 0.0520820i
\(914\) −2.17293 12.3233i −0.0718743 0.407619i
\(915\) 0 0
\(916\) 13.0361 + 10.9386i 0.430725 + 0.361421i
\(917\) 5.96079 + 5.96079i 0.196843 + 0.196843i
\(918\) −6.32562 + 21.5896i −0.208777 + 0.712562i
\(919\) 44.6781i 1.47380i 0.676004 + 0.736898i \(0.263710\pi\)
−0.676004 + 0.736898i \(0.736290\pi\)
\(920\) 0 0
\(921\) −31.8470 34.2836i −1.04939 1.12968i
\(922\) 7.76892 + 5.43986i 0.255856 + 0.179152i
\(923\) 1.52978 0.713349i 0.0503533 0.0234802i
\(924\) 23.7577 15.3636i 0.781572 0.505426i
\(925\) 0 0
\(926\) 0.855408 + 0.493870i 0.0281105 + 0.0162296i
\(927\) −24.4018 + 29.8981i −0.801460 + 0.981981i
\(928\) 10.5523 39.3817i 0.346396 1.29277i
\(929\) −12.8079 + 4.66169i −0.420213 + 0.152945i −0.543468 0.839430i \(-0.682889\pi\)
0.123255 + 0.992375i \(0.460667\pi\)
\(930\) 0 0
\(931\) 77.9440 65.4028i 2.55451 2.14349i
\(932\) 10.9518 + 0.958162i 0.358740 + 0.0313856i
\(933\) 2.15354 + 15.5398i 0.0705036 + 0.508750i
\(934\) −0.0303201 0.0833037i −0.000992103 0.00272578i
\(935\) 0 0
\(936\) 9.97593 7.18952i 0.326073 0.234997i
\(937\) 3.40972 + 12.7253i 0.111391 + 0.415716i 0.998992 0.0448974i \(-0.0142961\pi\)
−0.887601 + 0.460613i \(0.847629\pi\)
\(938\) −15.6034 22.2839i −0.509468 0.727596i
\(939\) −9.54243 14.7561i −0.311406 0.481546i
\(940\) 0 0
\(941\) 28.4137 5.01010i 0.926260 0.163325i 0.309882 0.950775i \(-0.399710\pi\)
0.616378 + 0.787450i \(0.288599\pi\)
\(942\) 0.436370 11.8435i 0.0142177 0.385882i
\(943\) −3.11135 35.5629i −0.101320 1.15809i
\(944\) 5.01209 0.163130
\(945\) 0 0
\(946\) 5.57904 0.181390
\(947\) 3.99548 + 45.6685i 0.129835 + 1.48403i 0.729613 + 0.683860i \(0.239700\pi\)
−0.599778 + 0.800167i \(0.704744\pi\)
\(948\) 14.4813 7.66417i 0.470329 0.248921i
\(949\) 6.13407 1.08160i 0.199120 0.0351103i
\(950\) 0 0
\(951\) −11.9369 + 0.602589i −0.387080 + 0.0195403i
\(952\) 40.4394 + 57.7535i 1.31065 + 1.87180i
\(953\) −4.08629 15.2502i −0.132368 0.494003i 0.867627 0.497216i \(-0.165644\pi\)
−0.999995 + 0.00321227i \(0.998978\pi\)
\(954\) 1.40052 5.52661i 0.0453435 0.178930i
\(955\) 0 0
\(956\) −14.9894 41.1831i −0.484793 1.33196i
\(957\) −22.5227 + 17.5271i −0.728056 + 0.566570i
\(958\) 18.9239 + 1.65563i 0.611404 + 0.0534909i
\(959\) −63.9290 + 53.6428i −2.06438 + 1.73222i
\(960\) 0 0
\(961\) 24.6489 8.97148i 0.795127 0.289402i
\(962\) 1.52685 5.69827i 0.0492275 0.183720i
\(963\) 2.14430 6.15061i 0.0690991 0.198201i
\(964\) 21.8332 + 12.6054i 0.703199 + 0.405992i
\(965\) 0 0
\(966\) 39.9290 + 20.4416i 1.28469 + 0.657697i
\(967\) 8.41873 3.92572i 0.270728 0.126243i −0.282514 0.959263i \(-0.591168\pi\)
0.553242 + 0.833021i \(0.313391\pi\)
\(968\) 11.1654 + 7.81810i 0.358869 + 0.251283i
\(969\) −68.3620 + 15.6443i −2.19610 + 0.502567i
\(970\) 0 0
\(971\) 46.4051i 1.48921i 0.667506 + 0.744605i \(0.267362\pi\)
−0.667506 + 0.744605i \(0.732638\pi\)
\(972\) −19.9935 + 11.2886i −0.641293 + 0.362081i
\(973\) 36.0737 + 36.0737i 1.15647 + 1.15647i
\(974\) −7.20866 6.04879i −0.230981 0.193816i
\(975\) 0 0
\(976\) −0.436719 2.47676i −0.0139790 0.0792791i
\(977\) 18.6354 + 39.9638i 0.596201 + 1.27856i 0.940531 + 0.339708i \(0.110328\pi\)
−0.344330 + 0.938849i \(0.611894\pi\)
\(978\) 24.5996 7.94066i 0.786607 0.253914i
\(979\) −0.0550236 0.00970214i −0.00175856 0.000310082i
\(980\) 0 0
\(981\) 23.0006 11.1089i 0.734352 0.354681i
\(982\) 17.2841 + 4.63127i 0.551559 + 0.147790i
\(983\) −7.78065 + 16.6857i −0.248164 + 0.532190i −0.990447 0.137897i \(-0.955966\pi\)
0.742282 + 0.670087i \(0.233743\pi\)
\(984\) −18.8790 + 7.97089i −0.601841 + 0.254103i
\(985\) 0 0
\(986\) −19.3877 23.1054i −0.617431 0.735826i
\(987\) 48.7389 + 62.6306i 1.55137 + 1.99355i
\(988\) 14.7338 + 6.87049i 0.468745 + 0.218580i
\(989\) −12.3587 21.4059i −0.392983 0.680667i
\(990\) 0 0
\(991\) 15.5919 27.0059i 0.495292 0.857871i −0.504693 0.863299i \(-0.668394\pi\)
0.999985 + 0.00542792i \(0.00172777\pi\)
\(992\) 10.4694 7.33077i 0.332404 0.232752i
\(993\) −13.5517 + 14.9927i −0.430052 + 0.475779i
\(994\) 1.20892 3.32149i 0.0383447 0.105351i
\(995\) 0 0
\(996\) 1.79002 + 0.551028i 0.0567190 + 0.0174600i
\(997\) −32.7231 + 2.86290i −1.03635 + 0.0906689i −0.592612 0.805488i \(-0.701903\pi\)
−0.443738 + 0.896157i \(0.646348\pi\)
\(998\) −3.63463 + 3.63463i −0.115052 + 0.115052i
\(999\) −9.44718 + 24.1930i −0.298896 + 0.765432i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 675.2.ba.c.443.15 yes 288
5.2 odd 4 inner 675.2.ba.c.632.10 yes 288
5.3 odd 4 inner 675.2.ba.c.632.15 yes 288
5.4 even 2 inner 675.2.ba.c.443.10 yes 288
27.5 odd 18 inner 675.2.ba.c.518.10 yes 288
135.32 even 36 inner 675.2.ba.c.32.15 yes 288
135.59 odd 18 inner 675.2.ba.c.518.15 yes 288
135.113 even 36 inner 675.2.ba.c.32.10 288
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
675.2.ba.c.32.10 288 135.113 even 36 inner
675.2.ba.c.32.15 yes 288 135.32 even 36 inner
675.2.ba.c.443.10 yes 288 5.4 even 2 inner
675.2.ba.c.443.15 yes 288 1.1 even 1 trivial
675.2.ba.c.518.10 yes 288 27.5 odd 18 inner
675.2.ba.c.518.15 yes 288 135.59 odd 18 inner
675.2.ba.c.632.10 yes 288 5.2 odd 4 inner
675.2.ba.c.632.15 yes 288 5.3 odd 4 inner