Properties

Label 675.2.ba.c.518.10
Level $675$
Weight $2$
Character 675.518
Analytic conductor $5.390$
Analytic rank $0$
Dimension $288$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [675,2,Mod(32,675)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(675, base_ring=CyclotomicField(36)) chi = DirichletCharacter(H, H._module([10, 9])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("675.32"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 675 = 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 675.ba (of order \(36\), degree \(12\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [288] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.38990213644\)
Analytic rank: \(0\)
Dimension: \(288\)
Relative dimension: \(24\) over \(\Q(\zeta_{36})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{36}]$

Embedding invariants

Embedding label 518.10
Character \(\chi\) \(=\) 675.518
Dual form 675.2.ba.c.632.10

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.723253 - 0.0632765i) q^{2} +(0.920668 + 1.46710i) q^{3} +(-1.45052 - 0.255767i) q^{4} +(-0.573043 - 1.11934i) q^{6} +(-3.84096 - 2.68947i) q^{7} +(2.43547 + 0.652582i) q^{8} +(-1.30474 + 2.70142i) q^{9} +(-0.808938 + 2.22254i) q^{11} +(-0.960217 - 2.36353i) q^{12} +(-0.141685 - 1.61947i) q^{13} +(2.60780 + 2.18821i) q^{14} +(1.04798 + 0.381434i) q^{16} +(5.76028 - 1.54346i) q^{17} +(1.11459 - 1.87125i) q^{18} +(5.87988 - 3.39475i) q^{19} +(0.409461 - 8.11116i) q^{21} +(0.725702 - 1.55627i) q^{22} +(-4.36358 - 6.23184i) q^{23} +(1.28486 + 4.17388i) q^{24} +1.18025i q^{26} +(-5.16447 + 0.572926i) q^{27} +(4.88352 + 4.88352i) q^{28} +(5.33663 - 4.47797i) q^{29} +(-0.379220 + 2.15066i) q^{31} +(-5.30412 - 2.47335i) q^{32} +(-4.00544 + 0.859430i) q^{33} +(-4.26381 + 0.751824i) q^{34} +(2.58349 - 3.58476i) q^{36} +(-1.29366 - 4.82802i) q^{37} +(-4.46745 + 2.08321i) q^{38} +(2.24547 - 1.69886i) q^{39} +(3.01626 - 3.59464i) q^{41} +(-0.809389 + 5.84051i) q^{42} +(1.37309 + 2.94459i) q^{43} +(1.74184 - 3.01695i) q^{44} +(2.76165 + 4.78331i) q^{46} +(5.60479 - 8.00447i) q^{47} +(0.405242 + 1.88866i) q^{48} +(5.12557 + 14.0824i) q^{49} +(7.56772 + 7.02987i) q^{51} +(-0.208688 + 2.38532i) q^{52} +(1.85094 - 1.85094i) q^{53} +(3.77147 - 0.0875810i) q^{54} +(-7.59943 - 9.05665i) q^{56} +(10.3938 + 5.50091i) q^{57} +(-4.14309 + 2.90102i) q^{58} +(-4.22316 + 1.53710i) q^{59} +(0.391593 + 2.22083i) q^{61} +(0.410358 - 1.53148i) q^{62} +(12.2768 - 6.86696i) q^{63} +(1.74806 + 1.00925i) q^{64} +(2.95133 - 0.368136i) q^{66} +(-7.96068 + 0.696469i) q^{67} +(-8.75020 + 0.765543i) q^{68} +(5.12530 - 12.1393i) q^{69} +(-0.899200 - 0.519153i) q^{71} +(-4.94055 + 5.72776i) q^{72} +(0.991667 - 3.70095i) q^{73} +(0.630146 + 3.57374i) q^{74} +(-9.39718 + 3.42029i) q^{76} +(9.08454 - 6.36106i) q^{77} +(-1.73154 + 1.08662i) q^{78} +(-4.12821 - 4.91981i) q^{79} +(-5.59530 - 7.04930i) q^{81} +(-2.40897 + 2.40897i) q^{82} +(-0.0639852 + 0.731354i) q^{83} +(-2.66850 + 11.6607i) q^{84} +(-0.806766 - 2.21657i) q^{86} +(11.4829 + 3.70663i) q^{87} +(-3.42053 + 4.88502i) q^{88} +(-0.0118115 - 0.0204581i) q^{89} +(-3.81130 + 6.60136i) q^{91} +(4.73559 + 10.1555i) q^{92} +(-3.50436 + 1.42369i) q^{93} +(-4.56018 + 5.43461i) q^{94} +(-1.25469 - 10.0588i) q^{96} +(-2.80057 + 1.30593i) q^{97} +(-2.81600 - 10.5095i) q^{98} +(-4.94855 - 5.08512i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 288 q + 24 q^{6} + 36 q^{11} + 48 q^{21} - 192 q^{36} - 180 q^{41} - 60 q^{51} - 288 q^{56} + 72 q^{61} + 144 q^{71} + 216 q^{76} + 24 q^{81} - 36 q^{91} - 168 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/675\mathbb{Z}\right)^\times\).

\(n\) \(326\) \(352\)
\(\chi(n)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.723253 0.0632765i −0.511417 0.0447432i −0.171473 0.985189i \(-0.554853\pi\)
−0.339944 + 0.940446i \(0.610408\pi\)
\(3\) 0.920668 + 1.46710i 0.531548 + 0.847028i
\(4\) −1.45052 0.255767i −0.725262 0.127883i
\(5\) 0 0
\(6\) −0.573043 1.11934i −0.233944 0.456968i
\(7\) −3.84096 2.68947i −1.45175 1.01652i −0.991693 0.128631i \(-0.958942\pi\)
−0.460053 0.887892i \(-0.652169\pi\)
\(8\) 2.43547 + 0.652582i 0.861068 + 0.230722i
\(9\) −1.30474 + 2.70142i −0.434914 + 0.900472i
\(10\) 0 0
\(11\) −0.808938 + 2.22254i −0.243904 + 0.670121i 0.755976 + 0.654600i \(0.227163\pi\)
−0.999880 + 0.0155209i \(0.995059\pi\)
\(12\) −0.960217 2.36353i −0.277191 0.682294i
\(13\) −0.141685 1.61947i −0.0392964 0.449160i −0.990198 0.139668i \(-0.955397\pi\)
0.950902 0.309492i \(-0.100159\pi\)
\(14\) 2.60780 + 2.18821i 0.696965 + 0.584823i
\(15\) 0 0
\(16\) 1.04798 + 0.381434i 0.261995 + 0.0953585i
\(17\) 5.76028 1.54346i 1.39707 0.374345i 0.519781 0.854300i \(-0.326014\pi\)
0.877293 + 0.479955i \(0.159347\pi\)
\(18\) 1.11459 1.87125i 0.262712 0.441058i
\(19\) 5.87988 3.39475i 1.34894 0.778810i 0.360839 0.932628i \(-0.382490\pi\)
0.988099 + 0.153819i \(0.0491571\pi\)
\(20\) 0 0
\(21\) 0.409461 8.11116i 0.0893517 1.77000i
\(22\) 0.725702 1.55627i 0.154720 0.331798i
\(23\) −4.36358 6.23184i −0.909870 1.29943i −0.953815 0.300395i \(-0.902881\pi\)
0.0439446 0.999034i \(-0.486007\pi\)
\(24\) 1.28486 + 4.17388i 0.262270 + 0.851989i
\(25\) 0 0
\(26\) 1.18025i 0.231466i
\(27\) −5.16447 + 0.572926i −0.993903 + 0.110260i
\(28\) 4.88352 + 4.88352i 0.922899 + 0.922899i
\(29\) 5.33663 4.47797i 0.990988 0.831538i 0.00527757 0.999986i \(-0.498320\pi\)
0.985710 + 0.168448i \(0.0538756\pi\)
\(30\) 0 0
\(31\) −0.379220 + 2.15066i −0.0681099 + 0.386270i 0.931629 + 0.363411i \(0.118388\pi\)
−0.999739 + 0.0228591i \(0.992723\pi\)
\(32\) −5.30412 2.47335i −0.937644 0.437231i
\(33\) −4.00544 + 0.859430i −0.697258 + 0.149608i
\(34\) −4.26381 + 0.751824i −0.731237 + 0.128937i
\(35\) 0 0
\(36\) 2.58349 3.58476i 0.430582 0.597460i
\(37\) −1.29366 4.82802i −0.212677 0.793721i −0.986971 0.160896i \(-0.948562\pi\)
0.774294 0.632825i \(-0.218105\pi\)
\(38\) −4.46745 + 2.08321i −0.724717 + 0.337941i
\(39\) 2.24547 1.69886i 0.359563 0.272035i
\(40\) 0 0
\(41\) 3.01626 3.59464i 0.471060 0.561388i −0.477236 0.878775i \(-0.658361\pi\)
0.948296 + 0.317388i \(0.102806\pi\)
\(42\) −0.809389 + 5.84051i −0.124891 + 0.901211i
\(43\) 1.37309 + 2.94459i 0.209394 + 0.449047i 0.982753 0.184921i \(-0.0592030\pi\)
−0.773360 + 0.633968i \(0.781425\pi\)
\(44\) 1.74184 3.01695i 0.262592 0.454822i
\(45\) 0 0
\(46\) 2.76165 + 4.78331i 0.407183 + 0.705261i
\(47\) 5.60479 8.00447i 0.817543 1.16757i −0.165862 0.986149i \(-0.553041\pi\)
0.983405 0.181423i \(-0.0580704\pi\)
\(48\) 0.405242 + 1.88866i 0.0584917 + 0.272605i
\(49\) 5.12557 + 14.0824i 0.732225 + 2.01177i
\(50\) 0 0
\(51\) 7.56772 + 7.02987i 1.05969 + 0.984379i
\(52\) −0.208688 + 2.38532i −0.0289398 + 0.330784i
\(53\) 1.85094 1.85094i 0.254246 0.254246i −0.568463 0.822709i \(-0.692462\pi\)
0.822709 + 0.568463i \(0.192462\pi\)
\(54\) 3.77147 0.0875810i 0.513232 0.0119183i
\(55\) 0 0
\(56\) −7.59943 9.05665i −1.01552 1.21025i
\(57\) 10.3938 + 5.50091i 1.37670 + 0.728614i
\(58\) −4.14309 + 2.90102i −0.544014 + 0.380923i
\(59\) −4.22316 + 1.53710i −0.549808 + 0.200114i −0.601961 0.798525i \(-0.705614\pi\)
0.0521532 + 0.998639i \(0.483392\pi\)
\(60\) 0 0
\(61\) 0.391593 + 2.22083i 0.0501383 + 0.284348i 0.999560 0.0296548i \(-0.00944081\pi\)
−0.949422 + 0.314003i \(0.898330\pi\)
\(62\) 0.410358 1.53148i 0.0521156 0.194498i
\(63\) 12.2768 6.86696i 1.54673 0.865156i
\(64\) 1.74806 + 1.00925i 0.218508 + 0.126156i
\(65\) 0 0
\(66\) 2.95133 0.368136i 0.363284 0.0453144i
\(67\) −7.96068 + 0.696469i −0.972552 + 0.0850873i −0.562343 0.826904i \(-0.690100\pi\)
−0.410209 + 0.911992i \(0.634544\pi\)
\(68\) −8.75020 + 0.765543i −1.06112 + 0.0928357i
\(69\) 5.12530 12.1393i 0.617014 1.46139i
\(70\) 0 0
\(71\) −0.899200 0.519153i −0.106715 0.0616121i 0.445692 0.895186i \(-0.352958\pi\)
−0.552408 + 0.833574i \(0.686291\pi\)
\(72\) −4.94055 + 5.72776i −0.582249 + 0.675023i
\(73\) 0.991667 3.70095i 0.116066 0.433163i −0.883299 0.468811i \(-0.844683\pi\)
0.999364 + 0.0356473i \(0.0113493\pi\)
\(74\) 0.630146 + 3.57374i 0.0732530 + 0.415439i
\(75\) 0 0
\(76\) −9.39718 + 3.42029i −1.07793 + 0.392334i
\(77\) 9.08454 6.36106i 1.03528 0.724911i
\(78\) −1.73154 + 1.08662i −0.196058 + 0.123035i
\(79\) −4.12821 4.91981i −0.464460 0.553522i 0.482072 0.876132i \(-0.339884\pi\)
−0.946532 + 0.322610i \(0.895440\pi\)
\(80\) 0 0
\(81\) −5.59530 7.04930i −0.621700 0.783256i
\(82\) −2.40897 + 2.40897i −0.266027 + 0.266027i
\(83\) −0.0639852 + 0.731354i −0.00702329 + 0.0802766i −0.998897 0.0469467i \(-0.985051\pi\)
0.991874 + 0.127223i \(0.0406065\pi\)
\(84\) −2.66850 + 11.6607i −0.291157 + 1.27229i
\(85\) 0 0
\(86\) −0.806766 2.21657i −0.0869958 0.239019i
\(87\) 11.4829 + 3.70663i 1.23109 + 0.397393i
\(88\) −3.42053 + 4.88502i −0.364630 + 0.520745i
\(89\) −0.0118115 0.0204581i −0.00125201 0.00216855i 0.865399 0.501084i \(-0.167065\pi\)
−0.866651 + 0.498915i \(0.833732\pi\)
\(90\) 0 0
\(91\) −3.81130 + 6.60136i −0.399533 + 0.692011i
\(92\) 4.73559 + 10.1555i 0.493719 + 1.05878i
\(93\) −3.50436 + 1.42369i −0.363386 + 0.147630i
\(94\) −4.56018 + 5.43461i −0.470346 + 0.560537i
\(95\) 0 0
\(96\) −1.25469 10.0588i −0.128056 1.02662i
\(97\) −2.80057 + 1.30593i −0.284355 + 0.132597i −0.559563 0.828788i \(-0.689031\pi\)
0.275208 + 0.961385i \(0.411253\pi\)
\(98\) −2.81600 10.5095i −0.284459 1.06162i
\(99\) −4.94855 5.08512i −0.497348 0.511074i
\(100\) 0 0
\(101\) −7.06992 + 1.24662i −0.703484 + 0.124043i −0.513936 0.857828i \(-0.671813\pi\)
−0.189547 + 0.981872i \(0.560702\pi\)
\(102\) −5.02855 5.56324i −0.497901 0.550842i
\(103\) 11.6587 + 5.43656i 1.14877 + 0.535680i 0.901291 0.433213i \(-0.142620\pi\)
0.247478 + 0.968893i \(0.420398\pi\)
\(104\) 0.711765 4.03662i 0.0697943 0.395823i
\(105\) 0 0
\(106\) −1.45582 + 1.22158i −0.141401 + 0.118650i
\(107\) 1.53529 + 1.53529i 0.148422 + 0.148422i 0.777413 0.628991i \(-0.216532\pi\)
−0.628991 + 0.777413i \(0.716532\pi\)
\(108\) 7.63772 + 0.489856i 0.734940 + 0.0471364i
\(109\) 8.51427i 0.815519i −0.913089 0.407760i \(-0.866310\pi\)
0.913089 0.407760i \(-0.133690\pi\)
\(110\) 0 0
\(111\) 5.89213 6.34293i 0.559256 0.602044i
\(112\) −2.99940 4.28358i −0.283416 0.404761i
\(113\) 7.09341 15.2119i 0.667292 1.43101i −0.222632 0.974902i \(-0.571465\pi\)
0.889924 0.456109i \(-0.150757\pi\)
\(114\) −7.16931 4.63624i −0.671467 0.434224i
\(115\) 0 0
\(116\) −8.88623 + 5.13047i −0.825066 + 0.476352i
\(117\) 4.55972 + 1.73024i 0.421546 + 0.159960i
\(118\) 3.15167 0.844488i 0.290135 0.0777415i
\(119\) −26.2761 9.56371i −2.40873 0.876704i
\(120\) 0 0
\(121\) 4.14119 + 3.47487i 0.376472 + 0.315897i
\(122\) −0.142694 1.63100i −0.0129189 0.147664i
\(123\) 8.05065 + 1.11567i 0.725902 + 0.100597i
\(124\) 1.10014 3.02260i 0.0987951 0.271437i
\(125\) 0 0
\(126\) −9.31377 + 4.18972i −0.829737 + 0.373250i
\(127\) −3.78140 1.01322i −0.335545 0.0899090i 0.0871125 0.996198i \(-0.472236\pi\)
−0.422658 + 0.906289i \(0.638903\pi\)
\(128\) 8.38765 + 5.87310i 0.741371 + 0.519113i
\(129\) −3.05585 + 4.72544i −0.269052 + 0.416052i
\(130\) 0 0
\(131\) 1.77050 + 0.312187i 0.154689 + 0.0272759i 0.250456 0.968128i \(-0.419419\pi\)
−0.0957672 + 0.995404i \(0.530530\pi\)
\(132\) 6.02980 0.222167i 0.524827 0.0193371i
\(133\) −31.7145 2.77465i −2.74999 0.240593i
\(134\) 5.80166 0.501187
\(135\) 0 0
\(136\) 15.0362 1.28935
\(137\) −17.7302 1.55119i −1.51479 0.132527i −0.700781 0.713376i \(-0.747165\pi\)
−0.814011 + 0.580849i \(0.802721\pi\)
\(138\) −4.47502 + 8.45544i −0.380939 + 0.719775i
\(139\) −10.7147 1.88930i −0.908812 0.160248i −0.300348 0.953830i \(-0.597103\pi\)
−0.608464 + 0.793581i \(0.708214\pi\)
\(140\) 0 0
\(141\) 16.9035 + 0.853308i 1.42353 + 0.0718615i
\(142\) 0.617499 + 0.432377i 0.0518194 + 0.0362843i
\(143\) 3.71394 + 0.995148i 0.310576 + 0.0832185i
\(144\) −2.39776 + 2.33336i −0.199813 + 0.194447i
\(145\) 0 0
\(146\) −0.951409 + 2.61398i −0.0787392 + 0.216334i
\(147\) −15.9413 + 20.4849i −1.31481 + 1.68957i
\(148\) 0.641645 + 7.33403i 0.0527429 + 0.602854i
\(149\) −2.11066 1.77106i −0.172912 0.145091i 0.552225 0.833695i \(-0.313779\pi\)
−0.725137 + 0.688605i \(0.758224\pi\)
\(150\) 0 0
\(151\) 11.9995 + 4.36746i 0.976505 + 0.355419i 0.780480 0.625180i \(-0.214975\pi\)
0.196025 + 0.980599i \(0.437197\pi\)
\(152\) 16.5356 4.43071i 1.34122 0.359378i
\(153\) −3.34614 + 17.5747i −0.270520 + 1.42083i
\(154\) −6.97293 + 4.02582i −0.561895 + 0.324410i
\(155\) 0 0
\(156\) −3.69162 + 1.88992i −0.295566 + 0.151315i
\(157\) −3.98305 + 8.54167i −0.317882 + 0.681700i −0.998712 0.0507417i \(-0.983841\pi\)
0.680830 + 0.732441i \(0.261619\pi\)
\(158\) 2.67443 + 3.81949i 0.212767 + 0.303862i
\(159\) 4.41960 + 1.01140i 0.350497 + 0.0802095i
\(160\) 0 0
\(161\) 35.6720i 2.81134i
\(162\) 3.60076 + 5.45248i 0.282903 + 0.428387i
\(163\) −14.5355 14.5355i −1.13851 1.13851i −0.988718 0.149787i \(-0.952141\pi\)
−0.149787 0.988718i \(-0.547859\pi\)
\(164\) −5.29454 + 4.44265i −0.413434 + 0.346913i
\(165\) 0 0
\(166\) 0.0925550 0.524906i 0.00718366 0.0407406i
\(167\) 9.71939 + 4.53222i 0.752109 + 0.350714i 0.760575 0.649250i \(-0.224917\pi\)
−0.00846620 + 0.999964i \(0.502695\pi\)
\(168\) 6.29042 19.4873i 0.485316 1.50347i
\(169\) 10.1999 1.79852i 0.784608 0.138348i
\(170\) 0 0
\(171\) 1.49891 + 20.3133i 0.114625 + 1.55340i
\(172\) −1.23857 4.62240i −0.0944399 0.352454i
\(173\) 11.2869 5.26315i 0.858125 0.400150i 0.0568042 0.998385i \(-0.481909\pi\)
0.801321 + 0.598235i \(0.204131\pi\)
\(174\) −8.07048 3.40743i −0.611822 0.258317i
\(175\) 0 0
\(176\) −1.69550 + 2.02062i −0.127803 + 0.152310i
\(177\) −6.14320 4.78061i −0.461751 0.359333i
\(178\) 0.00724817 + 0.0155437i 0.000543273 + 0.00116505i
\(179\) 1.92319 3.33107i 0.143746 0.248976i −0.785158 0.619295i \(-0.787418\pi\)
0.928904 + 0.370319i \(0.120752\pi\)
\(180\) 0 0
\(181\) 7.10764 + 12.3108i 0.528307 + 0.915054i 0.999455 + 0.0330001i \(0.0105062\pi\)
−0.471149 + 0.882054i \(0.656161\pi\)
\(182\) 3.17424 4.53329i 0.235291 0.336030i
\(183\) −2.89765 + 2.61915i −0.214200 + 0.193613i
\(184\) −6.56058 18.0250i −0.483652 1.32882i
\(185\) 0 0
\(186\) 2.62463 0.807948i 0.192447 0.0592416i
\(187\) −1.22931 + 14.0510i −0.0898957 + 1.02751i
\(188\) −10.1772 + 10.1772i −0.742246 + 0.742246i
\(189\) 21.3774 + 11.6891i 1.55497 + 0.850256i
\(190\) 0 0
\(191\) −16.4099 19.5565i −1.18738 1.41506i −0.887330 0.461135i \(-0.847443\pi\)
−0.300046 0.953925i \(-0.597002\pi\)
\(192\) 0.128727 + 3.49376i 0.00929004 + 0.252140i
\(193\) 5.42367 3.79769i 0.390404 0.273364i −0.361851 0.932236i \(-0.617855\pi\)
0.752255 + 0.658872i \(0.228966\pi\)
\(194\) 2.10816 0.767306i 0.151357 0.0550894i
\(195\) 0 0
\(196\) −3.83296 21.7378i −0.273783 1.55270i
\(197\) −5.12475 + 19.1258i −0.365123 + 1.36266i 0.502131 + 0.864792i \(0.332550\pi\)
−0.867254 + 0.497866i \(0.834117\pi\)
\(198\) 3.25729 + 3.99095i 0.231485 + 0.283625i
\(199\) −1.14239 0.659562i −0.0809822 0.0467551i 0.458962 0.888456i \(-0.348221\pi\)
−0.539944 + 0.841701i \(0.681555\pi\)
\(200\) 0 0
\(201\) −8.35093 11.0379i −0.589029 0.778551i
\(202\) 5.19223 0.454261i 0.365324 0.0319617i
\(203\) −32.5411 + 2.84698i −2.28394 + 0.199819i
\(204\) −9.17915 12.1326i −0.642669 0.849450i
\(205\) 0 0
\(206\) −8.08822 4.66973i −0.563533 0.325356i
\(207\) 22.5282 3.65691i 1.56581 0.254173i
\(208\) 0.469237 1.75122i 0.0325357 0.121425i
\(209\) 2.78851 + 15.8144i 0.192885 + 1.09391i
\(210\) 0 0
\(211\) −10.2026 + 3.71343i −0.702374 + 0.255643i −0.668424 0.743780i \(-0.733031\pi\)
−0.0339496 + 0.999424i \(0.510809\pi\)
\(212\) −3.15824 + 2.21142i −0.216909 + 0.151881i
\(213\) −0.0662166 1.79718i −0.00453709 0.123141i
\(214\) −1.01326 1.20755i −0.0692647 0.0825465i
\(215\) 0 0
\(216\) −12.9518 1.97490i −0.881257 0.134375i
\(217\) 7.24070 7.24070i 0.491531 0.491531i
\(218\) −0.538753 + 6.15797i −0.0364890 + 0.417071i
\(219\) 6.34264 1.95248i 0.428596 0.131936i
\(220\) 0 0
\(221\) −3.31573 9.10991i −0.223040 0.612799i
\(222\) −4.66286 + 4.21471i −0.312951 + 0.282873i
\(223\) −13.1548 + 18.7870i −0.880911 + 1.25807i 0.0842578 + 0.996444i \(0.473148\pi\)
−0.965169 + 0.261627i \(0.915741\pi\)
\(224\) 13.7209 + 23.7653i 0.916765 + 1.58788i
\(225\) 0 0
\(226\) −6.09288 + 10.5532i −0.405292 + 0.701987i
\(227\) −4.53509 9.72553i −0.301005 0.645506i 0.696389 0.717665i \(-0.254789\pi\)
−0.997393 + 0.0721585i \(0.977011\pi\)
\(228\) −13.6696 10.6376i −0.905290 0.704493i
\(229\) −7.42656 + 8.85063i −0.490761 + 0.584866i −0.953411 0.301675i \(-0.902454\pi\)
0.462650 + 0.886541i \(0.346899\pi\)
\(230\) 0 0
\(231\) 17.6961 + 7.47147i 1.16432 + 0.491586i
\(232\) 15.9194 7.42336i 1.04516 0.487367i
\(233\) 1.93182 + 7.20963i 0.126557 + 0.472319i 0.999890 0.0148049i \(-0.00471272\pi\)
−0.873333 + 0.487124i \(0.838046\pi\)
\(234\) −3.18835 1.53992i −0.208429 0.100668i
\(235\) 0 0
\(236\) 6.51893 1.14946i 0.424346 0.0748237i
\(237\) 3.41712 10.5860i 0.221966 0.687634i
\(238\) 18.3991 + 8.57965i 1.19264 + 0.556136i
\(239\) 5.16690 29.3030i 0.334219 1.89545i −0.100590 0.994928i \(-0.532073\pi\)
0.434809 0.900523i \(-0.356816\pi\)
\(240\) 0 0
\(241\) 13.1119 11.0022i 0.844614 0.708715i −0.113983 0.993483i \(-0.536361\pi\)
0.958597 + 0.284768i \(0.0919165\pi\)
\(242\) −2.77525 2.77525i −0.178400 0.178400i
\(243\) 5.19059 14.6989i 0.332976 0.942935i
\(244\) 3.32153i 0.212639i
\(245\) 0 0
\(246\) −5.75206 1.31633i −0.366738 0.0839262i
\(247\) −6.33078 9.04130i −0.402818 0.575284i
\(248\) −2.32706 + 4.99040i −0.147768 + 0.316891i
\(249\) −1.13188 + 0.579462i −0.0717297 + 0.0367219i
\(250\) 0 0
\(251\) 8.52101 4.91961i 0.537841 0.310523i −0.206362 0.978476i \(-0.566163\pi\)
0.744204 + 0.667953i \(0.232829\pi\)
\(252\) −19.5642 + 6.82069i −1.23243 + 0.429663i
\(253\) 17.3804 4.65706i 1.09270 0.292787i
\(254\) 2.67080 + 0.972091i 0.167581 + 0.0609944i
\(255\) 0 0
\(256\) −8.78727 7.37340i −0.549205 0.460837i
\(257\) 0.00665907 + 0.0761136i 0.000415382 + 0.00474783i 0.996400 0.0847816i \(-0.0270192\pi\)
−0.995984 + 0.0895294i \(0.971464\pi\)
\(258\) 2.50916 3.22433i 0.156213 0.200738i
\(259\) −8.01589 + 22.0235i −0.498083 + 1.36847i
\(260\) 0 0
\(261\) 5.13393 + 20.2591i 0.317782 + 1.25400i
\(262\) −1.26076 0.337821i −0.0778903 0.0208706i
\(263\) 11.0192 + 7.71569i 0.679470 + 0.475770i 0.861655 0.507494i \(-0.169428\pi\)
−0.182185 + 0.983264i \(0.558317\pi\)
\(264\) −10.3160 0.520762i −0.634904 0.0320507i
\(265\) 0 0
\(266\) 22.7620 + 4.01356i 1.39563 + 0.246087i
\(267\) 0.0191395 0.0361636i 0.00117132 0.00221318i
\(268\) 11.7253 + 1.02583i 0.716236 + 0.0626625i
\(269\) 19.0909 1.16399 0.581996 0.813191i \(-0.302272\pi\)
0.581996 + 0.813191i \(0.302272\pi\)
\(270\) 0 0
\(271\) −16.1076 −0.978468 −0.489234 0.872153i \(-0.662724\pi\)
−0.489234 + 0.872153i \(0.662724\pi\)
\(272\) 6.62540 + 0.579647i 0.401724 + 0.0351463i
\(273\) −13.1938 + 0.486121i −0.798523 + 0.0294214i
\(274\) 12.7253 + 2.24381i 0.768761 + 0.135553i
\(275\) 0 0
\(276\) −10.5392 + 16.2974i −0.634385 + 0.980988i
\(277\) −6.01367 4.21082i −0.361327 0.253004i 0.378789 0.925483i \(-0.376341\pi\)
−0.740116 + 0.672479i \(0.765229\pi\)
\(278\) 7.62992 + 2.04443i 0.457612 + 0.122617i
\(279\) −5.31505 3.83049i −0.318204 0.229325i
\(280\) 0 0
\(281\) 5.52636 15.1836i 0.329675 0.905775i −0.658518 0.752565i \(-0.728817\pi\)
0.988194 0.153210i \(-0.0489612\pi\)
\(282\) −12.1715 1.68675i −0.724802 0.100444i
\(283\) 0.921022 + 10.5273i 0.0547491 + 0.625785i 0.973156 + 0.230147i \(0.0739208\pi\)
−0.918407 + 0.395638i \(0.870524\pi\)
\(284\) 1.17153 + 0.983029i 0.0695174 + 0.0583321i
\(285\) 0 0
\(286\) −2.62315 0.954750i −0.155110 0.0564555i
\(287\) −21.2530 + 5.69471i −1.25452 + 0.336148i
\(288\) 13.6020 11.1015i 0.801508 0.654165i
\(289\) 16.0762 9.28157i 0.945656 0.545975i
\(290\) 0 0
\(291\) −4.49432 2.90638i −0.263462 0.170375i
\(292\) −2.38502 + 5.11468i −0.139572 + 0.299314i
\(293\) 5.40433 + 7.71819i 0.315725 + 0.450901i 0.945379 0.325974i \(-0.105692\pi\)
−0.629654 + 0.776876i \(0.716803\pi\)
\(294\) 12.8258 13.8071i 0.748016 0.805245i
\(295\) 0 0
\(296\) 12.6027i 0.732517i
\(297\) 2.90439 11.9417i 0.168530 0.692928i
\(298\) 1.41448 + 1.41448i 0.0819386 + 0.0819386i
\(299\) −9.47401 + 7.94964i −0.547896 + 0.459740i
\(300\) 0 0
\(301\) 2.64542 15.0029i 0.152480 0.864755i
\(302\) −8.40232 3.91806i −0.483499 0.225459i
\(303\) −8.33796 9.22453i −0.479003 0.529936i
\(304\) 7.45688 1.31485i 0.427682 0.0754118i
\(305\) 0 0
\(306\) 3.53218 12.4993i 0.201921 0.714535i
\(307\) 6.99226 + 26.0955i 0.399069 + 1.48935i 0.814737 + 0.579830i \(0.196881\pi\)
−0.415668 + 0.909516i \(0.636452\pi\)
\(308\) −14.8043 + 6.90336i −0.843553 + 0.393355i
\(309\) 2.75787 + 22.1098i 0.156890 + 1.25778i
\(310\) 0 0
\(311\) 5.82215 6.93856i 0.330144 0.393450i −0.575282 0.817955i \(-0.695108\pi\)
0.905425 + 0.424505i \(0.139552\pi\)
\(312\) 6.57741 2.67216i 0.372373 0.151281i
\(313\) −4.28771 9.19503i −0.242356 0.519734i 0.747075 0.664740i \(-0.231458\pi\)
−0.989431 + 0.145006i \(0.953680\pi\)
\(314\) 3.42124 5.92576i 0.193072 0.334410i
\(315\) 0 0
\(316\) 4.72975 + 8.19217i 0.266069 + 0.460845i
\(317\) −3.95799 + 5.65260i −0.222303 + 0.317481i −0.914775 0.403963i \(-0.867632\pi\)
0.692473 + 0.721444i \(0.256521\pi\)
\(318\) −3.13249 1.01116i −0.175661 0.0567029i
\(319\) 5.63545 + 15.4833i 0.315525 + 0.866897i
\(320\) 0 0
\(321\) −0.838926 + 3.66591i −0.0468243 + 0.204611i
\(322\) 2.25720 25.7999i 0.125789 1.43777i
\(323\) 28.6301 28.6301i 1.59302 1.59302i
\(324\) 6.31314 + 11.6563i 0.350730 + 0.647571i
\(325\) 0 0
\(326\) 9.59307 + 11.4326i 0.531311 + 0.633192i
\(327\) 12.4913 7.83882i 0.690768 0.433487i
\(328\) 9.69179 6.78626i 0.535140 0.374709i
\(329\) −43.0555 + 15.6709i −2.37373 + 0.863966i
\(330\) 0 0
\(331\) −2.02614 11.4908i −0.111367 0.631591i −0.988485 0.151318i \(-0.951648\pi\)
0.877119 0.480274i \(-0.159463\pi\)
\(332\) 0.279868 1.04448i 0.0153598 0.0573234i
\(333\) 14.7304 + 2.80459i 0.807220 + 0.153691i
\(334\) −6.74280 3.89295i −0.368949 0.213013i
\(335\) 0 0
\(336\) 3.52298 8.34416i 0.192194 0.455211i
\(337\) 2.36973 0.207325i 0.129087 0.0112937i −0.0224289 0.999748i \(-0.507140\pi\)
0.151516 + 0.988455i \(0.451584\pi\)
\(338\) −7.49091 + 0.655370i −0.407452 + 0.0356474i
\(339\) 28.8479 3.59836i 1.56680 0.195436i
\(340\) 0 0
\(341\) −4.47317 2.58258i −0.242236 0.139855i
\(342\) 0.201261 14.7865i 0.0108829 0.799562i
\(343\) 9.69193 36.1708i 0.523315 1.95304i
\(344\) 1.42252 + 8.06752i 0.0766972 + 0.434971i
\(345\) 0 0
\(346\) −8.49630 + 3.09240i −0.456764 + 0.166248i
\(347\) 9.58207 6.70944i 0.514392 0.360181i −0.287375 0.957818i \(-0.592782\pi\)
0.801767 + 0.597637i \(0.203894\pi\)
\(348\) −15.7082 8.31350i −0.842046 0.445650i
\(349\) −15.6352 18.6334i −0.836935 0.997421i −0.999942 0.0107955i \(-0.996564\pi\)
0.163007 0.986625i \(-0.447881\pi\)
\(350\) 0 0
\(351\) 1.65956 + 8.28252i 0.0885809 + 0.442088i
\(352\) 9.78782 9.78782i 0.521692 0.521692i
\(353\) −2.75891 + 31.5344i −0.146842 + 1.67841i 0.463366 + 0.886167i \(0.346641\pi\)
−0.610208 + 0.792241i \(0.708914\pi\)
\(354\) 4.14059 + 3.84631i 0.220070 + 0.204429i
\(355\) 0 0
\(356\) 0.0119003 + 0.0326959i 0.000630716 + 0.00173288i
\(357\) −10.1607 47.3546i −0.537759 2.50627i
\(358\) −1.60173 + 2.28751i −0.0846543 + 0.120899i
\(359\) −10.9060 18.8897i −0.575596 0.996962i −0.995977 0.0896137i \(-0.971437\pi\)
0.420381 0.907348i \(-0.361897\pi\)
\(360\) 0 0
\(361\) 13.5487 23.4670i 0.713089 1.23511i
\(362\) −4.36164 9.35357i −0.229243 0.491612i
\(363\) −1.28531 + 9.27472i −0.0674612 + 0.486797i
\(364\) 7.21679 8.60063i 0.378262 0.450796i
\(365\) 0 0
\(366\) 2.26146 1.71096i 0.118209 0.0894332i
\(367\) 7.66622 3.57482i 0.400173 0.186604i −0.212104 0.977247i \(-0.568031\pi\)
0.612277 + 0.790643i \(0.290254\pi\)
\(368\) −2.19592 8.19528i −0.114470 0.427208i
\(369\) 5.77517 + 12.8382i 0.300643 + 0.668332i
\(370\) 0 0
\(371\) −12.0874 + 2.13133i −0.627546 + 0.110653i
\(372\) 5.44730 1.16880i 0.282429 0.0605996i
\(373\) −30.5630 14.2517i −1.58249 0.737927i −0.585158 0.810920i \(-0.698967\pi\)
−0.997333 + 0.0729923i \(0.976745\pi\)
\(374\) 1.77820 10.0847i 0.0919484 0.521465i
\(375\) 0 0
\(376\) 18.8739 15.8370i 0.973345 0.816733i
\(377\) −8.00804 8.00804i −0.412435 0.412435i
\(378\) −14.7216 9.80686i −0.757198 0.504410i
\(379\) 4.83051i 0.248126i 0.992274 + 0.124063i \(0.0395926\pi\)
−0.992274 + 0.124063i \(0.960407\pi\)
\(380\) 0 0
\(381\) −1.99492 6.48052i −0.102203 0.332007i
\(382\) 10.6310 + 15.1827i 0.543930 + 0.776813i
\(383\) 10.4857 22.4867i 0.535795 1.14902i −0.433055 0.901368i \(-0.642564\pi\)
0.968850 0.247649i \(-0.0796579\pi\)
\(384\) −0.894156 + 17.7127i −0.0456297 + 0.903895i
\(385\) 0 0
\(386\) −4.16299 + 2.40350i −0.211891 + 0.122335i
\(387\) −9.74610 0.132655i −0.495422 0.00674325i
\(388\) 4.39631 1.17799i 0.223189 0.0598033i
\(389\) 35.9511 + 13.0851i 1.82279 + 0.663443i 0.994696 + 0.102860i \(0.0327995\pi\)
0.828099 + 0.560583i \(0.189423\pi\)
\(390\) 0 0
\(391\) −34.7541 29.1622i −1.75759 1.47479i
\(392\) 3.29326 + 37.6421i 0.166335 + 1.90121i
\(393\) 1.17203 + 2.88491i 0.0591212 + 0.145525i
\(394\) 4.91670 13.5085i 0.247700 0.680550i
\(395\) 0 0
\(396\) 5.87739 + 8.64176i 0.295350 + 0.434265i
\(397\) 20.6784 + 5.54075i 1.03782 + 0.278082i 0.737209 0.675665i \(-0.236143\pi\)
0.300609 + 0.953747i \(0.402810\pi\)
\(398\) 0.784506 + 0.549317i 0.0393237 + 0.0275348i
\(399\) −25.1278 49.0827i −1.25796 2.45721i
\(400\) 0 0
\(401\) 34.5128 + 6.08555i 1.72349 + 0.303898i 0.945800 0.324751i \(-0.105280\pi\)
0.777690 + 0.628648i \(0.216392\pi\)
\(402\) 5.34140 + 8.51159i 0.266405 + 0.424519i
\(403\) 3.53666 + 0.309418i 0.176174 + 0.0154132i
\(404\) 10.5739 0.526073
\(405\) 0 0
\(406\) 23.7156 1.17699
\(407\) 11.7770 + 1.03035i 0.583762 + 0.0510725i
\(408\) 13.8434 + 22.0596i 0.685349 + 1.09211i
\(409\) 31.2192 + 5.50478i 1.54369 + 0.272194i 0.879693 0.475542i \(-0.157748\pi\)
0.663996 + 0.747736i \(0.268859\pi\)
\(410\) 0 0
\(411\) −14.0479 27.4400i −0.692930 1.35352i
\(412\) −15.5208 10.8678i −0.764655 0.535417i
\(413\) 20.3549 + 5.45409i 1.00160 + 0.268378i
\(414\) −16.5250 + 1.21937i −0.812157 + 0.0599288i
\(415\) 0 0
\(416\) −3.25400 + 8.94028i −0.159540 + 0.438333i
\(417\) −7.09294 17.4590i −0.347343 0.854969i
\(418\) −1.01612 11.6143i −0.0496999 0.568073i
\(419\) 21.7068 + 18.2142i 1.06045 + 0.889821i 0.994153 0.107979i \(-0.0344380\pi\)
0.0662941 + 0.997800i \(0.478882\pi\)
\(420\) 0 0
\(421\) −7.16992 2.60964i −0.349441 0.127186i 0.161336 0.986900i \(-0.448420\pi\)
−0.510776 + 0.859714i \(0.670642\pi\)
\(422\) 7.61401 2.04017i 0.370644 0.0993138i
\(423\) 14.3106 + 25.5846i 0.695805 + 1.24397i
\(424\) 5.71578 3.30001i 0.277583 0.160263i
\(425\) 0 0
\(426\) −0.0658278 + 1.30401i −0.00318937 + 0.0631793i
\(427\) 4.46876 9.58330i 0.216259 0.463768i
\(428\) −1.83430 2.61965i −0.0886642 0.126626i
\(429\) 1.95933 + 6.36491i 0.0945974 + 0.307301i
\(430\) 0 0
\(431\) 20.7923i 1.00153i 0.865583 + 0.500765i \(0.166948\pi\)
−0.865583 + 0.500765i \(0.833052\pi\)
\(432\) −5.63080 1.36949i −0.270912 0.0658896i
\(433\) 7.85031 + 7.85031i 0.377262 + 0.377262i 0.870113 0.492852i \(-0.164045\pi\)
−0.492852 + 0.870113i \(0.664045\pi\)
\(434\) −5.69503 + 4.77870i −0.273370 + 0.229385i
\(435\) 0 0
\(436\) −2.17767 + 12.3502i −0.104291 + 0.591465i
\(437\) −46.8129 21.8292i −2.23937 1.04423i
\(438\) −4.71088 + 1.01079i −0.225095 + 0.0482976i
\(439\) −9.06380 + 1.59819i −0.432591 + 0.0762775i −0.385704 0.922623i \(-0.626041\pi\)
−0.0468875 + 0.998900i \(0.514930\pi\)
\(440\) 0 0
\(441\) −44.7300 4.52758i −2.13000 0.215599i
\(442\) 1.82167 + 6.79858i 0.0866482 + 0.323375i
\(443\) −1.40687 + 0.656035i −0.0668425 + 0.0311692i −0.455752 0.890107i \(-0.650630\pi\)
0.388910 + 0.921276i \(0.372852\pi\)
\(444\) −10.1690 + 7.69356i −0.482599 + 0.365120i
\(445\) 0 0
\(446\) 10.7030 12.7554i 0.506803 0.603985i
\(447\) 0.655091 4.72710i 0.0309847 0.223584i
\(448\) −3.99991 8.57783i −0.188978 0.405264i
\(449\) −1.66148 + 2.87776i −0.0784099 + 0.135810i −0.902564 0.430556i \(-0.858318\pi\)
0.824154 + 0.566366i \(0.191651\pi\)
\(450\) 0 0
\(451\) 5.54925 + 9.61159i 0.261304 + 0.452592i
\(452\) −14.1798 + 20.2509i −0.666964 + 0.952523i
\(453\) 4.64007 + 21.6254i 0.218009 + 1.01605i
\(454\) 2.66462 + 7.32099i 0.125057 + 0.343591i
\(455\) 0 0
\(456\) 21.7241 + 20.1801i 1.01732 + 0.945021i
\(457\) −1.50219 + 17.1702i −0.0702697 + 0.803186i 0.876527 + 0.481353i \(0.159855\pi\)
−0.946796 + 0.321833i \(0.895701\pi\)
\(458\) 5.93132 5.93132i 0.277152 0.277152i
\(459\) −28.8645 + 11.2714i −1.34728 + 0.526103i
\(460\) 0 0
\(461\) 8.39687 + 10.0070i 0.391081 + 0.466072i 0.925279 0.379287i \(-0.123831\pi\)
−0.534198 + 0.845359i \(0.679386\pi\)
\(462\) −12.3260 6.52351i −0.573458 0.303501i
\(463\) −1.11445 + 0.780347i −0.0517929 + 0.0362658i −0.599186 0.800610i \(-0.704509\pi\)
0.547393 + 0.836876i \(0.315620\pi\)
\(464\) 7.30074 2.65725i 0.338928 0.123360i
\(465\) 0 0
\(466\) −0.940992 5.33663i −0.0435906 0.247215i
\(467\) −0.0316030 + 0.117944i −0.00146241 + 0.00545780i −0.966653 0.256089i \(-0.917566\pi\)
0.965191 + 0.261547i \(0.0842326\pi\)
\(468\) −6.17145 3.67597i −0.285275 0.169922i
\(469\) 32.4498 + 18.7349i 1.49839 + 0.865096i
\(470\) 0 0
\(471\) −16.1985 + 2.02053i −0.746388 + 0.0931011i
\(472\) −11.2884 + 0.987611i −0.519593 + 0.0454585i
\(473\) −7.65522 + 0.669745i −0.351987 + 0.0307949i
\(474\) −3.14129 + 7.44013i −0.144284 + 0.341737i
\(475\) 0 0
\(476\) 35.6680 + 20.5929i 1.63484 + 0.943876i
\(477\) 2.58516 + 7.41514i 0.118366 + 0.339516i
\(478\) −5.59117 + 20.8665i −0.255734 + 0.954412i
\(479\) −4.54350 25.7675i −0.207598 1.17735i −0.893299 0.449463i \(-0.851615\pi\)
0.685701 0.727883i \(-0.259496\pi\)
\(480\) 0 0
\(481\) −7.63553 + 2.77910i −0.348150 + 0.126716i
\(482\) −10.1794 + 7.12771i −0.463660 + 0.324658i
\(483\) −52.3342 + 32.8420i −2.38129 + 1.49436i
\(484\) −5.11814 6.09956i −0.232643 0.277253i
\(485\) 0 0
\(486\) −4.68420 + 10.3026i −0.212480 + 0.467335i
\(487\) −9.16515 + 9.16515i −0.415313 + 0.415313i −0.883584 0.468272i \(-0.844877\pi\)
0.468272 + 0.883584i \(0.344877\pi\)
\(488\) −0.495563 + 5.66431i −0.0224331 + 0.256411i
\(489\) 7.94259 34.7073i 0.359176 1.56952i
\(490\) 0 0
\(491\) 8.42964 + 23.1603i 0.380424 + 1.04521i 0.971178 + 0.238356i \(0.0766084\pi\)
−0.590753 + 0.806852i \(0.701169\pi\)
\(492\) −11.3923 3.67740i −0.513605 0.165790i
\(493\) 23.8289 34.0313i 1.07320 1.53269i
\(494\) 4.00666 + 6.93974i 0.180268 + 0.312233i
\(495\) 0 0
\(496\) −1.21775 + 2.10921i −0.0546787 + 0.0947062i
\(497\) 2.05754 + 4.41241i 0.0922933 + 0.197924i
\(498\) 0.855299 0.347477i 0.0383269 0.0155708i
\(499\) −4.55089 + 5.42354i −0.203726 + 0.242791i −0.858227 0.513270i \(-0.828434\pi\)
0.654502 + 0.756061i \(0.272878\pi\)
\(500\) 0 0
\(501\) 2.29912 + 18.4319i 0.102717 + 0.823479i
\(502\) −6.47414 + 3.01894i −0.288955 + 0.134742i
\(503\) 0.949440 + 3.54336i 0.0423334 + 0.157990i 0.983857 0.178957i \(-0.0572722\pi\)
−0.941524 + 0.336947i \(0.890606\pi\)
\(504\) 34.3811 8.71264i 1.53145 0.388092i
\(505\) 0 0
\(506\) −12.8651 + 2.26846i −0.571924 + 0.100846i
\(507\) 12.0293 + 13.3084i 0.534241 + 0.591047i
\(508\) 5.22586 + 2.43686i 0.231860 + 0.108118i
\(509\) −0.686733 + 3.89466i −0.0304389 + 0.172628i −0.996237 0.0866661i \(-0.972379\pi\)
0.965799 + 0.259294i \(0.0834898\pi\)
\(510\) 0 0
\(511\) −13.7625 + 11.5481i −0.608819 + 0.510859i
\(512\) −8.59188 8.59188i −0.379711 0.379711i
\(513\) −28.4215 + 20.9008i −1.25484 + 0.922794i
\(514\) 0.0554707i 0.00244671i
\(515\) 0 0
\(516\) 5.64119 6.07279i 0.248340 0.267340i
\(517\) 13.2563 + 18.9320i 0.583012 + 0.832628i
\(518\) 7.19108 15.4213i 0.315958 0.677574i
\(519\) 18.1130 + 11.7133i 0.795073 + 0.514157i
\(520\) 0 0
\(521\) 16.1589 9.32937i 0.707936 0.408727i −0.102360 0.994747i \(-0.532639\pi\)
0.810296 + 0.586020i \(0.199306\pi\)
\(522\) −2.43121 14.9773i −0.106411 0.655538i
\(523\) −35.0914 + 9.40272i −1.53444 + 0.411152i −0.924465 0.381268i \(-0.875488\pi\)
−0.609976 + 0.792420i \(0.708821\pi\)
\(524\) −2.48830 0.905668i −0.108702 0.0395643i
\(525\) 0 0
\(526\) −7.48142 6.27765i −0.326205 0.273719i
\(527\) 1.13506 + 12.9737i 0.0494438 + 0.565145i
\(528\) −4.52544 0.627145i −0.196945 0.0272930i
\(529\) −11.9285 + 32.7734i −0.518633 + 1.42493i
\(530\) 0 0
\(531\) 1.35777 13.4140i 0.0589223 0.582119i
\(532\) 45.2929 + 12.1362i 1.96370 + 0.526171i
\(533\) −6.24875 4.37542i −0.270664 0.189521i
\(534\) −0.0161310 + 0.0249444i −0.000698057 + 0.00107945i
\(535\) 0 0
\(536\) −19.8425 3.49876i −0.857065 0.151124i
\(537\) 6.65762 0.245298i 0.287297 0.0105854i
\(538\) −13.8076 1.20800i −0.595286 0.0520808i
\(539\) −35.4450 −1.52672
\(540\) 0 0
\(541\) −22.9374 −0.986154 −0.493077 0.869986i \(-0.664128\pi\)
−0.493077 + 0.869986i \(0.664128\pi\)
\(542\) 11.6499 + 1.01923i 0.500406 + 0.0437798i
\(543\) −11.5173 + 21.7617i −0.494256 + 0.933885i
\(544\) −34.3707 6.06049i −1.47363 0.259841i
\(545\) 0 0
\(546\) 9.57320 + 0.483266i 0.409695 + 0.0206819i
\(547\) 12.5106 + 8.76004i 0.534916 + 0.374552i 0.809600 0.586982i \(-0.199684\pi\)
−0.274684 + 0.961535i \(0.588573\pi\)
\(548\) 25.3213 + 6.78483i 1.08167 + 0.289834i
\(549\) −6.51032 1.83976i −0.277854 0.0785189i
\(550\) 0 0
\(551\) 16.1772 44.4465i 0.689172 1.89348i
\(552\) 20.4044 26.2201i 0.868467 1.11600i
\(553\) 2.62461 + 29.9995i 0.111610 + 1.27571i
\(554\) 4.08296 + 3.42601i 0.173469 + 0.145557i
\(555\) 0 0
\(556\) 15.0588 + 5.48094i 0.638634 + 0.232444i
\(557\) −6.81110 + 1.82503i −0.288596 + 0.0773290i −0.400213 0.916422i \(-0.631064\pi\)
0.111617 + 0.993751i \(0.464397\pi\)
\(558\) 3.60175 + 3.10673i 0.152474 + 0.131518i
\(559\) 4.57413 2.64088i 0.193465 0.111697i
\(560\) 0 0
\(561\) −21.7460 + 11.1328i −0.918116 + 0.470028i
\(562\) −4.95772 + 10.6319i −0.209129 + 0.448478i
\(563\) 17.9144 + 25.5845i 0.755004 + 1.07826i 0.994227 + 0.107293i \(0.0342182\pi\)
−0.239224 + 0.970965i \(0.576893\pi\)
\(564\) −24.3007 5.56109i −1.02324 0.234164i
\(565\) 0 0
\(566\) 7.67220i 0.322487i
\(567\) 2.53244 + 42.1244i 0.106353 + 1.76906i
\(568\) −1.85118 1.85118i −0.0776739 0.0776739i
\(569\) −24.7601 + 20.7762i −1.03800 + 0.870984i −0.991781 0.127948i \(-0.959161\pi\)
−0.0462172 + 0.998931i \(0.514717\pi\)
\(570\) 0 0
\(571\) −7.28419 + 41.3107i −0.304834 + 1.72880i 0.319453 + 0.947602i \(0.396501\pi\)
−0.624286 + 0.781196i \(0.714610\pi\)
\(572\) −5.13264 2.39339i −0.214606 0.100073i
\(573\) 13.5832 42.0799i 0.567448 1.75791i
\(574\) 15.7316 2.77391i 0.656625 0.115781i
\(575\) 0 0
\(576\) −5.00716 + 3.40544i −0.208632 + 0.141894i
\(577\) −4.02551 15.0234i −0.167584 0.625433i −0.997696 0.0678366i \(-0.978390\pi\)
0.830112 0.557596i \(-0.188276\pi\)
\(578\) −12.2144 + 5.69568i −0.508054 + 0.236909i
\(579\) 10.5650 + 4.46063i 0.439065 + 0.185377i
\(580\) 0 0
\(581\) 2.21272 2.63701i 0.0917990 0.109402i
\(582\) 3.06662 + 2.38643i 0.127116 + 0.0989209i
\(583\) 2.61649 + 5.61107i 0.108364 + 0.232387i
\(584\) 4.83034 8.36640i 0.199881 0.346204i
\(585\) 0 0
\(586\) −3.42032 5.92417i −0.141292 0.244725i
\(587\) −15.1446 + 21.6287i −0.625084 + 0.892712i −0.999402 0.0345884i \(-0.988988\pi\)
0.374318 + 0.927300i \(0.377877\pi\)
\(588\) 28.3626 25.6366i 1.16965 1.05724i
\(589\) 5.07120 + 13.9330i 0.208955 + 0.574099i
\(590\) 0 0
\(591\) −32.7776 + 10.0900i −1.34829 + 0.415048i
\(592\) 0.485835 5.55312i 0.0199677 0.228232i
\(593\) −2.61058 + 2.61058i −0.107204 + 0.107204i −0.758674 0.651470i \(-0.774153\pi\)
0.651470 + 0.758674i \(0.274153\pi\)
\(594\) −2.85624 + 8.45309i −0.117193 + 0.346835i
\(595\) 0 0
\(596\) 2.60859 + 3.10880i 0.106852 + 0.127341i
\(597\) −0.0841254 2.28324i −0.00344302 0.0934468i
\(598\) 7.35514 5.15012i 0.300774 0.210604i
\(599\) −24.1321 + 8.78335i −0.986010 + 0.358878i −0.784174 0.620541i \(-0.786913\pi\)
−0.201836 + 0.979419i \(0.564691\pi\)
\(600\) 0 0
\(601\) −7.14602 40.5271i −0.291492 1.65313i −0.681128 0.732165i \(-0.738510\pi\)
0.389636 0.920969i \(-0.372601\pi\)
\(602\) −2.86264 + 10.6835i −0.116673 + 0.435428i
\(603\) 8.50518 22.4138i 0.346358 0.912761i
\(604\) −16.2885 9.40418i −0.662770 0.382650i
\(605\) 0 0
\(606\) 5.44676 + 7.19927i 0.221259 + 0.292450i
\(607\) 8.51183 0.744689i 0.345485 0.0302260i 0.0869069 0.996216i \(-0.472302\pi\)
0.258578 + 0.965990i \(0.416746\pi\)
\(608\) −39.5840 + 3.46315i −1.60534 + 0.140449i
\(609\) −34.1364 45.1198i −1.38328 1.82835i
\(610\) 0 0
\(611\) −13.7571 7.94266i −0.556553 0.321326i
\(612\) 9.34869 24.6368i 0.377899 0.995882i
\(613\) 2.41303 9.00556i 0.0974614 0.363731i −0.899920 0.436056i \(-0.856375\pi\)
0.997381 + 0.0723246i \(0.0230418\pi\)
\(614\) −3.40594 19.3161i −0.137453 0.779533i
\(615\) 0 0
\(616\) 26.2762 9.56376i 1.05870 0.385335i
\(617\) 37.1521 26.0142i 1.49569 1.04729i 0.513783 0.857920i \(-0.328244\pi\)
0.981905 0.189372i \(-0.0606453\pi\)
\(618\) −0.595612 16.1655i −0.0239590 0.650270i
\(619\) −15.0061 17.8836i −0.603147 0.718803i 0.374928 0.927054i \(-0.377667\pi\)
−0.978075 + 0.208251i \(0.933223\pi\)
\(620\) 0 0
\(621\) 26.1060 + 29.6842i 1.04760 + 1.19118i
\(622\) −4.64993 + 4.64993i −0.186445 + 0.186445i
\(623\) −0.00965394 + 0.110345i −0.000386777 + 0.00442088i
\(624\) 3.00121 0.923872i 0.120145 0.0369845i
\(625\) 0 0
\(626\) 2.51927 + 6.92165i 0.100690 + 0.276645i
\(627\) −20.6340 + 18.6508i −0.824042 + 0.744843i
\(628\) 7.96218 11.3712i 0.317726 0.453759i
\(629\) −14.9037 25.8140i −0.594251 1.02927i
\(630\) 0 0
\(631\) −15.4086 + 26.6885i −0.613407 + 1.06245i 0.377255 + 0.926110i \(0.376868\pi\)
−0.990662 + 0.136343i \(0.956465\pi\)
\(632\) −6.84355 14.6760i −0.272222 0.583781i
\(633\) −14.8411 11.5493i −0.589882 0.459044i
\(634\) 3.22031 3.83781i 0.127895 0.152419i
\(635\) 0 0
\(636\) −6.15205 2.59745i −0.243945 0.102996i
\(637\) 22.0798 10.2960i 0.874833 0.407941i
\(638\) −3.09613 11.5549i −0.122577 0.457464i
\(639\) 2.57567 1.75175i 0.101892 0.0692982i
\(640\) 0 0
\(641\) 12.3888 2.18449i 0.489330 0.0862820i 0.0764610 0.997073i \(-0.475638\pi\)
0.412869 + 0.910791i \(0.364527\pi\)
\(642\) 0.838722 2.59830i 0.0331017 0.102547i
\(643\) 34.5408 + 16.1067i 1.36216 + 0.635185i 0.959900 0.280342i \(-0.0904478\pi\)
0.402258 + 0.915526i \(0.368226\pi\)
\(644\) 9.12369 51.7430i 0.359524 2.03896i
\(645\) 0 0
\(646\) −22.5184 + 18.8952i −0.885976 + 0.743422i
\(647\) 16.5718 + 16.5718i 0.651504 + 0.651504i 0.953355 0.301851i \(-0.0976045\pi\)
−0.301851 + 0.953355i \(0.597604\pi\)
\(648\) −9.02693 20.8197i −0.354611 0.817876i
\(649\) 10.6295i 0.417246i
\(650\) 0 0
\(651\) 17.2891 + 3.95652i 0.677613 + 0.155068i
\(652\) 17.3664 + 24.8017i 0.680119 + 0.971311i
\(653\) 2.51370 5.39065i 0.0983687 0.210952i −0.850965 0.525223i \(-0.823982\pi\)
0.949334 + 0.314270i \(0.101760\pi\)
\(654\) −9.53035 + 4.87905i −0.372666 + 0.190786i
\(655\) 0 0
\(656\) 4.53210 2.61661i 0.176949 0.102161i
\(657\) 8.70394 + 7.50769i 0.339573 + 0.292903i
\(658\) 32.1316 8.60965i 1.25262 0.335639i
\(659\) 34.7751 + 12.6571i 1.35465 + 0.493051i 0.914395 0.404824i \(-0.132667\pi\)
0.440251 + 0.897875i \(0.354889\pi\)
\(660\) 0 0
\(661\) 13.5431 + 11.3640i 0.526766 + 0.442009i 0.866983 0.498338i \(-0.166056\pi\)
−0.340217 + 0.940347i \(0.610500\pi\)
\(662\) 0.738314 + 8.43896i 0.0286954 + 0.327990i
\(663\) 10.3124 13.2517i 0.400501 0.514653i
\(664\) −0.633102 + 1.73943i −0.0245691 + 0.0675031i
\(665\) 0 0
\(666\) −10.4763 2.96052i −0.405950 0.114718i
\(667\) −51.1928 13.7171i −1.98219 0.531128i
\(668\) −12.9390 9.06000i −0.500626 0.350542i
\(669\) −39.6736 2.00277i −1.53387 0.0774315i
\(670\) 0 0
\(671\) −5.25266 0.926186i −0.202777 0.0357550i
\(672\) −22.2336 + 42.0098i −0.857678 + 1.62056i
\(673\) 35.4920 + 3.10515i 1.36812 + 0.119695i 0.747418 0.664354i \(-0.231293\pi\)
0.620699 + 0.784049i \(0.286849\pi\)
\(674\) −1.72703 −0.0665229
\(675\) 0 0
\(676\) −15.2552 −0.586739
\(677\) −14.2347 1.24538i −0.547084 0.0478637i −0.189737 0.981835i \(-0.560763\pi\)
−0.357348 + 0.933971i \(0.616319\pi\)
\(678\) −21.0921 + 0.777131i −0.810035 + 0.0298455i
\(679\) 14.2691 + 2.51603i 0.547599 + 0.0965564i
\(680\) 0 0
\(681\) 10.0930 15.6074i 0.386764 0.598077i
\(682\) 3.07182 + 2.15091i 0.117626 + 0.0823625i
\(683\) −48.5064 12.9972i −1.85604 0.497326i −0.856230 0.516594i \(-0.827200\pi\)
−0.999814 + 0.0192684i \(0.993866\pi\)
\(684\) 3.02125 29.8483i 0.115521 1.14128i
\(685\) 0 0
\(686\) −9.29847 + 25.5473i −0.355017 + 0.975402i
\(687\) −19.8221 2.74699i −0.756261 0.104804i
\(688\) 0.315801 + 3.60962i 0.0120398 + 0.137616i
\(689\) −3.25978 2.73528i −0.124188 0.104206i
\(690\) 0 0
\(691\) −0.280238 0.101998i −0.0106608 0.00388020i 0.336684 0.941618i \(-0.390695\pi\)
−0.347345 + 0.937737i \(0.612917\pi\)
\(692\) −17.7180 + 4.74753i −0.673538 + 0.180474i
\(693\) 5.33090 + 32.8407i 0.202504 + 1.24751i
\(694\) −7.35481 + 4.24630i −0.279185 + 0.161187i
\(695\) 0 0
\(696\) 25.5473 + 16.5209i 0.968367 + 0.626223i
\(697\) 11.8263 25.3616i 0.447953 0.960639i
\(698\) 10.1292 + 14.4660i 0.383395 + 0.547545i
\(699\) −8.79867 + 9.47184i −0.332796 + 0.358258i
\(700\) 0 0
\(701\) 1.73681i 0.0655983i −0.999462 0.0327991i \(-0.989558\pi\)
0.999462 0.0327991i \(-0.0104422\pi\)
\(702\) −0.676196 6.09537i −0.0255214 0.230055i
\(703\) −23.9965 23.9965i −0.905046 0.905046i
\(704\) −3.65716 + 3.06872i −0.137835 + 0.115657i
\(705\) 0 0
\(706\) 3.99077 22.6328i 0.150195 0.851797i
\(707\) 30.5080 + 14.2261i 1.14737 + 0.535028i
\(708\) 7.68814 + 8.50562i 0.288938 + 0.319661i
\(709\) −28.4425 + 5.01519i −1.06818 + 0.188349i −0.679984 0.733227i \(-0.738013\pi\)
−0.388198 + 0.921576i \(0.626902\pi\)
\(710\) 0 0
\(711\) 18.6767 4.73294i 0.700431 0.177499i
\(712\) −0.0154159 0.0575329i −0.000577735 0.00215614i
\(713\) 15.0574 7.02136i 0.563902 0.262952i
\(714\) 4.35230 + 34.8923i 0.162881 + 1.30581i
\(715\) 0 0
\(716\) −3.64161 + 4.33991i −0.136094 + 0.162190i
\(717\) 47.7473 19.3979i 1.78315 0.724430i
\(718\) 6.69252 + 14.3521i 0.249762 + 0.535617i
\(719\) −21.8672 + 37.8751i −0.815509 + 1.41250i 0.0934526 + 0.995624i \(0.470210\pi\)
−0.908962 + 0.416880i \(0.863124\pi\)
\(720\) 0 0
\(721\) −30.1593 52.2374i −1.12319 1.94542i
\(722\) −11.2840 + 16.1153i −0.419949 + 0.599749i
\(723\) 28.2130 + 9.10707i 1.04925 + 0.338696i
\(724\) −7.16111 19.6750i −0.266141 0.731215i
\(725\) 0 0
\(726\) 1.51648 6.62664i 0.0562817 0.245938i
\(727\) −3.18769 + 36.4355i −0.118225 + 1.35132i 0.672932 + 0.739704i \(0.265035\pi\)
−0.791157 + 0.611613i \(0.790521\pi\)
\(728\) −13.5902 + 13.5902i −0.503687 + 0.503687i
\(729\) 26.3435 5.91772i 0.975686 0.219175i
\(730\) 0 0
\(731\) 12.4542 + 14.8424i 0.460637 + 0.548966i
\(732\) 4.87300 3.05802i 0.180111 0.113028i
\(733\) −4.88078 + 3.41756i −0.180276 + 0.126231i −0.660231 0.751062i \(-0.729542\pi\)
0.479955 + 0.877293i \(0.340653\pi\)
\(734\) −5.77082 + 2.10041i −0.213005 + 0.0775274i
\(735\) 0 0
\(736\) 7.73142 + 43.8471i 0.284984 + 1.61623i
\(737\) 4.89177 18.2563i 0.180191 0.672480i
\(738\) −3.36455 9.65073i −0.123851 0.355248i
\(739\) −12.8145 7.39844i −0.471388 0.272156i 0.245433 0.969414i \(-0.421070\pi\)
−0.716821 + 0.697258i \(0.754403\pi\)
\(740\) 0 0
\(741\) 7.43590 17.6119i 0.273165 0.646989i
\(742\) 8.87711 0.776647i 0.325889 0.0285116i
\(743\) 4.26304 0.372968i 0.156396 0.0136829i −0.00868886 0.999962i \(-0.502766\pi\)
0.165085 + 0.986279i \(0.447210\pi\)
\(744\) −9.46384 + 1.18048i −0.346961 + 0.0432784i
\(745\) 0 0
\(746\) 21.2030 + 12.2415i 0.776296 + 0.448194i
\(747\) −1.89221 1.12708i −0.0692323 0.0412377i
\(748\) 5.37692 20.0669i 0.196600 0.733720i
\(749\) −1.76787 10.0261i −0.0645966 0.366346i
\(750\) 0 0
\(751\) 19.0790 6.94420i 0.696204 0.253397i 0.0304146 0.999537i \(-0.490317\pi\)
0.665789 + 0.746140i \(0.268095\pi\)
\(752\) 8.92689 6.25068i 0.325530 0.227939i
\(753\) 15.0626 + 7.97182i 0.548910 + 0.290509i
\(754\) 5.28512 + 6.29857i 0.192473 + 0.229380i
\(755\) 0 0
\(756\) −28.0187 22.4229i −1.01903 0.815514i
\(757\) −25.0622 + 25.0622i −0.910900 + 0.910900i −0.996343 0.0854434i \(-0.972769\pi\)
0.0854434 + 0.996343i \(0.472769\pi\)
\(758\) 0.305657 3.49368i 0.0111020 0.126896i
\(759\) 22.8339 + 21.2111i 0.828819 + 0.769914i
\(760\) 0 0
\(761\) −11.5003 31.5969i −0.416887 1.14539i −0.953456 0.301531i \(-0.902502\pi\)
0.536570 0.843856i \(-0.319720\pi\)
\(762\) 1.03277 + 4.81329i 0.0374132 + 0.174367i
\(763\) −22.8988 + 32.7029i −0.828994 + 1.18393i
\(764\) 18.8010 + 32.5643i 0.680196 + 1.17813i
\(765\) 0 0
\(766\) −9.00671 + 15.6001i −0.325426 + 0.563654i
\(767\) 3.08765 + 6.62148i 0.111488 + 0.239088i
\(768\) 2.72732 19.6802i 0.0984138 0.710149i
\(769\) 0.789841 0.941295i 0.0284824 0.0339440i −0.751615 0.659602i \(-0.770725\pi\)
0.780098 + 0.625658i \(0.215169\pi\)
\(770\) 0 0
\(771\) −0.105535 + 0.0798448i −0.00380075 + 0.00287554i
\(772\) −8.83848 + 4.12145i −0.318104 + 0.148334i
\(773\) 0.759923 + 2.83607i 0.0273325 + 0.102006i 0.978245 0.207455i \(-0.0665180\pi\)
−0.950912 + 0.309461i \(0.899851\pi\)
\(774\) 7.04050 + 0.712642i 0.253066 + 0.0256154i
\(775\) 0 0
\(776\) −7.67293 + 1.35294i −0.275442 + 0.0485679i
\(777\) −39.6905 + 8.51622i −1.42389 + 0.305518i
\(778\) −25.1738 11.7387i −0.902524 0.420854i
\(779\) 5.53234 31.3755i 0.198217 1.12414i
\(780\) 0 0
\(781\) 1.88123 1.57854i 0.0673159 0.0564847i
\(782\) 23.2907 + 23.2907i 0.832875 + 0.832875i
\(783\) −24.9953 + 26.1838i −0.893261 + 0.935734i
\(784\) 16.7132i 0.596899i
\(785\) 0 0
\(786\) −0.665130 2.16068i −0.0237244 0.0770690i
\(787\) −26.2314 37.4623i −0.935048 1.33539i −0.942072 0.335411i \(-0.891125\pi\)
0.00702395 0.999975i \(-0.497764\pi\)
\(788\) 12.3253 26.4317i 0.439071 0.941591i
\(789\) −1.17468 + 23.2697i −0.0418199 + 0.828425i
\(790\) 0 0
\(791\) −68.1573 + 39.3506i −2.42339 + 1.39915i
\(792\) −8.73357 15.6140i −0.310334 0.554818i
\(793\) 3.54108 0.948830i 0.125748 0.0336940i
\(794\) −14.6051 5.31582i −0.518316 0.188651i
\(795\) 0 0
\(796\) 1.48838 + 1.24890i 0.0527541 + 0.0442660i
\(797\) −2.09208 23.9126i −0.0741053 0.847027i −0.938740 0.344626i \(-0.888006\pi\)
0.864635 0.502401i \(-0.167550\pi\)
\(798\) 15.0680 + 37.0892i 0.533401 + 1.31294i
\(799\) 19.9306 54.7588i 0.705093 1.93723i
\(800\) 0 0
\(801\) 0.0706766 0.00521520i 0.00249724 0.000184270i
\(802\) −24.5765 6.58524i −0.867825 0.232533i
\(803\) 7.42331 + 5.19786i 0.261963 + 0.183428i
\(804\) 9.29011 + 18.1466i 0.327637 + 0.639980i
\(805\) 0 0
\(806\) −2.53832 0.447574i −0.0894085 0.0157651i
\(807\) 17.5764 + 28.0082i 0.618718 + 0.985935i
\(808\) −18.0321 1.57760i −0.634367 0.0554999i
\(809\) −6.88614 −0.242104 −0.121052 0.992646i \(-0.538627\pi\)
−0.121052 + 0.992646i \(0.538627\pi\)
\(810\) 0 0
\(811\) 51.9012 1.82250 0.911248 0.411858i \(-0.135120\pi\)
0.911248 + 0.411858i \(0.135120\pi\)
\(812\) 47.9298 + 4.19332i 1.68201 + 0.147157i
\(813\) −14.8298 23.6314i −0.520103 0.828790i
\(814\) −8.45252 1.49041i −0.296261 0.0522388i
\(815\) 0 0
\(816\) 5.24939 + 10.2538i 0.183766 + 0.358953i
\(817\) 18.0698 + 12.6526i 0.632181 + 0.442658i
\(818\) −22.2310 5.95679i −0.777290 0.208274i
\(819\) −12.8603 18.9090i −0.449374 0.660733i
\(820\) 0 0
\(821\) 1.56336 4.29529i 0.0545616 0.149907i −0.909418 0.415884i \(-0.863472\pi\)
0.963979 + 0.265977i \(0.0856946\pi\)
\(822\) 8.42386 + 20.7350i 0.293816 + 0.723216i
\(823\) −0.775592 8.86506i −0.0270354 0.309016i −0.997657 0.0684071i \(-0.978208\pi\)
0.970622 0.240609i \(-0.0773472\pi\)
\(824\) 24.8467 + 20.8488i 0.865575 + 0.726304i
\(825\) 0 0
\(826\) −14.3767 5.23268i −0.500228 0.182068i
\(827\) −3.74729 + 1.00408i −0.130306 + 0.0349154i −0.323383 0.946268i \(-0.604820\pi\)
0.193077 + 0.981184i \(0.438153\pi\)
\(828\) −33.6129 0.457510i −1.16813 0.0158996i
\(829\) −23.2961 + 13.4500i −0.809106 + 0.467138i −0.846645 0.532157i \(-0.821381\pi\)
0.0375391 + 0.999295i \(0.488048\pi\)
\(830\) 0 0
\(831\) 0.641081 12.6994i 0.0222389 0.440537i
\(832\) 1.38677 2.97393i 0.0480774 0.103102i
\(833\) 51.2604 + 73.2075i 1.77607 + 2.53649i
\(834\) 4.02525 + 13.0761i 0.139383 + 0.452787i
\(835\) 0 0
\(836\) 23.6524i 0.818035i
\(837\) 0.726300 11.3243i 0.0251046 0.391425i
\(838\) −14.5470 14.5470i −0.502518 0.502518i
\(839\) 19.6667 16.5023i 0.678970 0.569724i −0.236735 0.971574i \(-0.576077\pi\)
0.915705 + 0.401850i \(0.131633\pi\)
\(840\) 0 0
\(841\) 3.39167 19.2351i 0.116954 0.663280i
\(842\) 5.02054 + 2.34112i 0.173019 + 0.0806802i
\(843\) 27.3637 5.87131i 0.942455 0.202219i
\(844\) 15.7488 2.77695i 0.542097 0.0955864i
\(845\) 0 0
\(846\) −8.73129 19.4097i −0.300188 0.667319i
\(847\) −6.56058 24.4844i −0.225424 0.841295i
\(848\) 2.64576 1.23374i 0.0908557 0.0423667i
\(849\) −14.5966 + 11.0434i −0.500956 + 0.379009i
\(850\) 0 0
\(851\) −24.4424 + 29.1294i −0.837876 + 0.998542i
\(852\) −0.363610 + 2.62379i −0.0124571 + 0.0898895i
\(853\) 2.16662 + 4.64633i 0.0741837 + 0.159087i 0.939902 0.341444i \(-0.110916\pi\)
−0.865719 + 0.500531i \(0.833138\pi\)
\(854\) −3.83845 + 6.64838i −0.131349 + 0.227503i
\(855\) 0 0
\(856\) 2.73725 + 4.74105i 0.0935572 + 0.162046i
\(857\) −0.221145 + 0.315828i −0.00755418 + 0.0107885i −0.822911 0.568170i \(-0.807652\pi\)
0.815357 + 0.578958i \(0.196541\pi\)
\(858\) −1.01434 4.72742i −0.0346291 0.161392i
\(859\) −14.9871 41.1768i −0.511354 1.40493i −0.879826 0.475295i \(-0.842341\pi\)
0.368472 0.929639i \(-0.379881\pi\)
\(860\) 0 0
\(861\) −27.9216 25.9372i −0.951566 0.883937i
\(862\) 1.31566 15.0381i 0.0448117 0.512200i
\(863\) −1.22824 + 1.22824i −0.0418098 + 0.0418098i −0.727703 0.685893i \(-0.759412\pi\)
0.685893 + 0.727703i \(0.259412\pi\)
\(864\) 28.8100 + 9.73468i 0.980136 + 0.331180i
\(865\) 0 0
\(866\) −5.18102 6.17450i −0.176058 0.209818i
\(867\) 28.4178 + 15.0400i 0.965118 + 0.510786i
\(868\) −12.3547 + 8.65089i −0.419347 + 0.293630i
\(869\) 14.2739 5.19529i 0.484210 0.176238i
\(870\) 0 0
\(871\) 2.25582 + 12.7934i 0.0764355 + 0.433487i
\(872\) 5.55626 20.7362i 0.188159 0.702217i
\(873\) 0.126167 9.26941i 0.00427011 0.313722i
\(874\) 32.4763 + 18.7502i 1.09853 + 0.634236i
\(875\) 0 0
\(876\) −9.69954 + 1.20988i −0.327717 + 0.0408779i
\(877\) 25.7918 2.25649i 0.870926 0.0761961i 0.357075 0.934076i \(-0.383774\pi\)
0.513851 + 0.857880i \(0.328218\pi\)
\(878\) 6.65655 0.582372i 0.224648 0.0196541i
\(879\) −6.34773 + 15.0346i −0.214104 + 0.507103i
\(880\) 0 0
\(881\) −9.98167 5.76292i −0.336291 0.194158i 0.322340 0.946624i \(-0.395531\pi\)
−0.658631 + 0.752466i \(0.728864\pi\)
\(882\) 32.0646 + 6.10494i 1.07967 + 0.205564i
\(883\) −9.45962 + 35.3038i −0.318342 + 1.18807i 0.602496 + 0.798122i \(0.294173\pi\)
−0.920838 + 0.389945i \(0.872494\pi\)
\(884\) 2.47954 + 14.0622i 0.0833961 + 0.472963i
\(885\) 0 0
\(886\) 1.05904 0.385458i 0.0355790 0.0129497i
\(887\) 20.5727 14.4052i 0.690763 0.483678i −0.174718 0.984618i \(-0.555901\pi\)
0.865482 + 0.500941i \(0.167013\pi\)
\(888\) 18.4894 11.6029i 0.620463 0.389368i
\(889\) 11.7992 + 14.0617i 0.395731 + 0.471614i
\(890\) 0 0
\(891\) 20.1936 6.73332i 0.676511 0.225575i
\(892\) 23.8865 23.8865i 0.799778 0.799778i
\(893\) 5.78232 66.0922i 0.193498 2.21169i
\(894\) −0.772911 + 3.37744i −0.0258500 + 0.112959i
\(895\) 0 0
\(896\) −16.4211 45.1166i −0.548591 1.50724i
\(897\) −20.3853 6.58031i −0.680646 0.219710i
\(898\) 1.38376 1.97622i 0.0461768 0.0659473i
\(899\) 7.60684 + 13.1754i 0.253702 + 0.439425i
\(900\) 0 0
\(901\) 7.80507 13.5188i 0.260024 0.450376i
\(902\) −3.40533 7.30275i −0.113385 0.243155i
\(903\) 24.4463 9.93163i 0.813522 0.330504i
\(904\) 27.2027 32.4190i 0.904750 1.07824i
\(905\) 0 0
\(906\) −1.98757 15.9342i −0.0660324 0.529380i
\(907\) −2.13753 + 0.996748i −0.0709756 + 0.0330965i −0.457782 0.889064i \(-0.651356\pi\)
0.386806 + 0.922161i \(0.373578\pi\)
\(908\) 4.09079 + 15.2670i 0.135758 + 0.506655i
\(909\) 5.85679 20.7253i 0.194257 0.687415i
\(910\) 0 0
\(911\) −28.9448 + 5.10374i −0.958983 + 0.169095i −0.631167 0.775647i \(-0.717424\pi\)
−0.327816 + 0.944742i \(0.606313\pi\)
\(912\) 8.79432 + 9.72942i 0.291209 + 0.322173i
\(913\) −1.57370 0.733830i −0.0520820 0.0242862i
\(914\) 2.17293 12.3233i 0.0718743 0.407619i
\(915\) 0 0
\(916\) 13.0361 10.9386i 0.430725 0.361421i
\(917\) −5.96079 5.96079i −0.196843 0.196843i
\(918\) 21.5896 6.32562i 0.712562 0.208777i
\(919\) 44.6781i 1.47380i 0.676004 + 0.736898i \(0.263710\pi\)
−0.676004 + 0.736898i \(0.736290\pi\)
\(920\) 0 0
\(921\) −31.8470 + 34.2836i −1.04939 + 1.12968i
\(922\) −5.43986 7.76892i −0.179152 0.255856i
\(923\) −0.713349 + 1.52978i −0.0234802 + 0.0503533i
\(924\) −23.7577 15.3636i −0.781572 0.505426i
\(925\) 0 0
\(926\) 0.855408 0.493870i 0.0281105 0.0162296i
\(927\) −29.8981 + 24.4018i −0.981981 + 0.801460i
\(928\) −39.3817 + 10.5523i −1.29277 + 0.346396i
\(929\) 12.8079 + 4.66169i 0.420213 + 0.152945i 0.543468 0.839430i \(-0.317111\pi\)
−0.123255 + 0.992375i \(0.539333\pi\)
\(930\) 0 0
\(931\) 77.9440 + 65.4028i 2.55451 + 2.14349i
\(932\) −0.958162 10.9518i −0.0313856 0.358740i
\(933\) 15.5398 + 2.15354i 0.508750 + 0.0705036i
\(934\) 0.0303201 0.0833037i 0.000992103 0.00272578i
\(935\) 0 0
\(936\) 9.97593 + 7.18952i 0.326073 + 0.234997i
\(937\) −12.7253 3.40972i −0.415716 0.111391i 0.0448974 0.998992i \(-0.485704\pi\)
−0.460613 + 0.887601i \(0.652371\pi\)
\(938\) −22.2839 15.6034i −0.727596 0.509468i
\(939\) 9.54243 14.7561i 0.311406 0.481546i
\(940\) 0 0
\(941\) 28.4137 + 5.01010i 0.926260 + 0.163325i 0.616378 0.787450i \(-0.288599\pi\)
0.309882 + 0.950775i \(0.399710\pi\)
\(942\) 11.8435 0.436370i 0.385882 0.0142177i
\(943\) −35.5629 3.11135i −1.15809 0.101320i
\(944\) −5.01209 −0.163130
\(945\) 0 0
\(946\) 5.57904 0.181390
\(947\) −45.6685 3.99548i −1.48403 0.129835i −0.683860 0.729613i \(-0.739700\pi\)
−0.800167 + 0.599778i \(0.795256\pi\)
\(948\) −7.66417 + 14.4813i −0.248921 + 0.470329i
\(949\) −6.13407 1.08160i −0.199120 0.0351103i
\(950\) 0 0
\(951\) −11.9369 0.602589i −0.387080 0.0195403i
\(952\) −57.7535 40.4394i −1.87180 1.31065i
\(953\) −15.2502 4.08629i −0.494003 0.132368i 0.00321227 0.999995i \(-0.498978\pi\)
−0.497216 + 0.867627i \(0.665644\pi\)
\(954\) −1.40052 5.52661i −0.0453435 0.178930i
\(955\) 0 0
\(956\) −14.9894 + 41.1831i −0.484793 + 1.33196i
\(957\) −17.5271 + 22.5227i −0.566570 + 0.728056i
\(958\) 1.65563 + 18.9239i 0.0534909 + 0.611404i
\(959\) 63.9290 + 53.6428i 2.06438 + 1.73222i
\(960\) 0 0
\(961\) 24.6489 + 8.97148i 0.795127 + 0.289402i
\(962\) 5.69827 1.52685i 0.183720 0.0492275i
\(963\) −6.15061 + 2.14430i −0.198201 + 0.0690991i
\(964\) −21.8332 + 12.6054i −0.703199 + 0.405992i
\(965\) 0 0
\(966\) 39.9290 20.4416i 1.28469 0.657697i
\(967\) 3.92572 8.41873i 0.126243 0.270728i −0.833021 0.553242i \(-0.813391\pi\)
0.959263 + 0.282514i \(0.0911683\pi\)
\(968\) 7.81810 + 11.1654i 0.251283 + 0.358869i
\(969\) 68.3620 + 15.6443i 2.19610 + 0.502567i
\(970\) 0 0
\(971\) 46.4051i 1.48921i −0.667506 0.744605i \(-0.732638\pi\)
0.667506 0.744605i \(-0.267362\pi\)
\(972\) −11.2886 + 19.9935i −0.362081 + 0.641293i
\(973\) 36.0737 + 36.0737i 1.15647 + 1.15647i
\(974\) 7.20866 6.04879i 0.230981 0.193816i
\(975\) 0 0
\(976\) −0.436719 + 2.47676i −0.0139790 + 0.0792791i
\(977\) −39.9638 18.6354i −1.27856 0.596201i −0.339708 0.940531i \(-0.610328\pi\)
−0.938849 + 0.344330i \(0.888106\pi\)
\(978\) −7.94066 + 24.5996i −0.253914 + 0.786607i
\(979\) 0.0550236 0.00970214i 0.00175856 0.000310082i
\(980\) 0 0
\(981\) 23.0006 + 11.1089i 0.734352 + 0.354681i
\(982\) −4.63127 17.2841i −0.147790 0.551559i
\(983\) 16.6857 7.78065i 0.532190 0.248164i −0.137897 0.990447i \(-0.544034\pi\)
0.670087 + 0.742282i \(0.266257\pi\)
\(984\) 18.8790 + 7.97089i 0.601841 + 0.254103i
\(985\) 0 0
\(986\) −19.3877 + 23.1054i −0.617431 + 0.735826i
\(987\) −62.6306 48.7389i −1.99355 1.55137i
\(988\) 6.87049 + 14.7338i 0.218580 + 0.468745i
\(989\) 12.3587 21.4059i 0.392983 0.680667i
\(990\) 0 0
\(991\) 15.5919 + 27.0059i 0.495292 + 0.857871i 0.999985 0.00542792i \(-0.00172777\pi\)
−0.504693 + 0.863299i \(0.668394\pi\)
\(992\) 7.33077 10.4694i 0.232752 0.332404i
\(993\) 14.9927 13.5517i 0.475779 0.430052i
\(994\) −1.20892 3.32149i −0.0383447 0.105351i
\(995\) 0 0
\(996\) 1.79002 0.551028i 0.0567190 0.0174600i
\(997\) −2.86290 + 32.7231i −0.0906689 + 1.03635i 0.805488 + 0.592612i \(0.201903\pi\)
−0.896157 + 0.443738i \(0.853652\pi\)
\(998\) 3.63463 3.63463i 0.115052 0.115052i
\(999\) 9.44718 + 24.1930i 0.298896 + 0.765432i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 675.2.ba.c.518.10 yes 288
5.2 odd 4 inner 675.2.ba.c.32.15 yes 288
5.3 odd 4 inner 675.2.ba.c.32.10 288
5.4 even 2 inner 675.2.ba.c.518.15 yes 288
27.11 odd 18 inner 675.2.ba.c.443.15 yes 288
135.38 even 36 inner 675.2.ba.c.632.15 yes 288
135.92 even 36 inner 675.2.ba.c.632.10 yes 288
135.119 odd 18 inner 675.2.ba.c.443.10 yes 288
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
675.2.ba.c.32.10 288 5.3 odd 4 inner
675.2.ba.c.32.15 yes 288 5.2 odd 4 inner
675.2.ba.c.443.10 yes 288 135.119 odd 18 inner
675.2.ba.c.443.15 yes 288 27.11 odd 18 inner
675.2.ba.c.518.10 yes 288 1.1 even 1 trivial
675.2.ba.c.518.15 yes 288 5.4 even 2 inner
675.2.ba.c.632.10 yes 288 135.92 even 36 inner
675.2.ba.c.632.15 yes 288 135.38 even 36 inner