Properties

Label 672.4.i.c.209.59
Level $672$
Weight $4$
Character 672.209
Analytic conductor $39.649$
Analytic rank $0$
Dimension $80$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [672,4,Mod(209,672)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(672, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 1, 1])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("672.209"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 672 = 2^{5} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 672.i (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [80] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(39.6492835239\)
Analytic rank: \(0\)
Dimension: \(80\)
Twist minimal: no (minimal twist has level 168)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 209.59
Character \(\chi\) \(=\) 672.209
Dual form 672.4.i.c.209.57

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(3.70908 + 3.63906i) q^{3} +9.02015i q^{5} +(-5.01951 + 17.8271i) q^{7} +(0.514533 + 26.9951i) q^{9} +8.71540 q^{11} -52.4602 q^{13} +(-32.8248 + 33.4564i) q^{15} -69.0503 q^{17} -129.296 q^{19} +(-83.4915 + 47.8557i) q^{21} -177.747i q^{23} +43.6369 q^{25} +(-96.3282 + 101.999i) q^{27} +247.372 q^{29} -52.1678i q^{31} +(32.3261 + 31.7158i) q^{33} +(-160.803 - 45.2767i) q^{35} +299.492i q^{37} +(-194.579 - 190.905i) q^{39} +185.754 q^{41} -330.296i q^{43} +(-243.500 + 4.64117i) q^{45} -81.9844 q^{47} +(-292.609 - 178.966i) q^{49} +(-256.113 - 251.278i) q^{51} +238.316 q^{53} +78.6142i q^{55} +(-479.570 - 470.517i) q^{57} -198.589i q^{59} +157.196 q^{61} +(-483.826 - 126.329i) q^{63} -473.198i q^{65} +527.615i q^{67} +(646.831 - 659.277i) q^{69} +245.212i q^{71} +745.090i q^{73} +(161.853 + 158.797i) q^{75} +(-43.7470 + 155.370i) q^{77} -598.112 q^{79} +(-728.471 + 27.7798i) q^{81} -3.93633i q^{83} -622.844i q^{85} +(917.522 + 900.200i) q^{87} -1258.73 q^{89} +(263.324 - 935.211i) q^{91} +(189.841 - 193.494i) q^{93} -1166.27i q^{95} +755.959i q^{97} +(4.48436 + 235.273i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 80 q - 64 q^{7} + 104 q^{9} + 8 q^{15} - 976 q^{25} - 568 q^{39} - 4048 q^{49} - 1448 q^{57} + 2152 q^{63} - 4992 q^{79} + 1568 q^{81}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/672\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(421\) \(449\) \(577\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 3.70908 + 3.63906i 0.713813 + 0.700337i
\(4\) 0 0
\(5\) 9.02015i 0.806787i 0.915027 + 0.403393i \(0.132169\pi\)
−0.915027 + 0.403393i \(0.867831\pi\)
\(6\) 0 0
\(7\) −5.01951 + 17.8271i −0.271028 + 0.962571i
\(8\) 0 0
\(9\) 0.514533 + 26.9951i 0.0190568 + 0.999818i
\(10\) 0 0
\(11\) 8.71540 0.238890 0.119445 0.992841i \(-0.461888\pi\)
0.119445 + 0.992841i \(0.461888\pi\)
\(12\) 0 0
\(13\) −52.4602 −1.11922 −0.559609 0.828757i \(-0.689049\pi\)
−0.559609 + 0.828757i \(0.689049\pi\)
\(14\) 0 0
\(15\) −32.8248 + 33.4564i −0.565022 + 0.575895i
\(16\) 0 0
\(17\) −69.0503 −0.985127 −0.492563 0.870277i \(-0.663940\pi\)
−0.492563 + 0.870277i \(0.663940\pi\)
\(18\) 0 0
\(19\) −129.296 −1.56119 −0.780595 0.625037i \(-0.785084\pi\)
−0.780595 + 0.625037i \(0.785084\pi\)
\(20\) 0 0
\(21\) −83.4915 + 47.8557i −0.867587 + 0.497285i
\(22\) 0 0
\(23\) 177.747i 1.61143i −0.592307 0.805713i \(-0.701783\pi\)
0.592307 0.805713i \(-0.298217\pi\)
\(24\) 0 0
\(25\) 43.6369 0.349095
\(26\) 0 0
\(27\) −96.3282 + 101.999i −0.686607 + 0.727029i
\(28\) 0 0
\(29\) 247.372 1.58399 0.791996 0.610526i \(-0.209042\pi\)
0.791996 + 0.610526i \(0.209042\pi\)
\(30\) 0 0
\(31\) 52.1678i 0.302245i −0.988515 0.151123i \(-0.951711\pi\)
0.988515 0.151123i \(-0.0482888\pi\)
\(32\) 0 0
\(33\) 32.3261 + 31.7158i 0.170523 + 0.167304i
\(34\) 0 0
\(35\) −160.803 45.2767i −0.776590 0.218662i
\(36\) 0 0
\(37\) 299.492i 1.33071i 0.746528 + 0.665354i \(0.231719\pi\)
−0.746528 + 0.665354i \(0.768281\pi\)
\(38\) 0 0
\(39\) −194.579 190.905i −0.798912 0.783829i
\(40\) 0 0
\(41\) 185.754 0.707559 0.353780 0.935329i \(-0.384896\pi\)
0.353780 + 0.935329i \(0.384896\pi\)
\(42\) 0 0
\(43\) 330.296i 1.17139i −0.810532 0.585695i \(-0.800822\pi\)
0.810532 0.585695i \(-0.199178\pi\)
\(44\) 0 0
\(45\) −243.500 + 4.64117i −0.806640 + 0.0153748i
\(46\) 0 0
\(47\) −81.9844 −0.254440 −0.127220 0.991875i \(-0.540605\pi\)
−0.127220 + 0.991875i \(0.540605\pi\)
\(48\) 0 0
\(49\) −292.609 178.966i −0.853088 0.521768i
\(50\) 0 0
\(51\) −256.113 251.278i −0.703196 0.689920i
\(52\) 0 0
\(53\) 238.316 0.617646 0.308823 0.951120i \(-0.400065\pi\)
0.308823 + 0.951120i \(0.400065\pi\)
\(54\) 0 0
\(55\) 78.6142i 0.192733i
\(56\) 0 0
\(57\) −479.570 470.517i −1.11440 1.09336i
\(58\) 0 0
\(59\) 198.589i 0.438204i −0.975702 0.219102i \(-0.929687\pi\)
0.975702 0.219102i \(-0.0703128\pi\)
\(60\) 0 0
\(61\) 157.196 0.329950 0.164975 0.986298i \(-0.447246\pi\)
0.164975 + 0.986298i \(0.447246\pi\)
\(62\) 0 0
\(63\) −483.826 126.329i −0.967562 0.252635i
\(64\) 0 0
\(65\) 473.198i 0.902970i
\(66\) 0 0
\(67\) 527.615i 0.962066i 0.876703 + 0.481033i \(0.159738\pi\)
−0.876703 + 0.481033i \(0.840262\pi\)
\(68\) 0 0
\(69\) 646.831 659.277i 1.12854 1.15026i
\(70\) 0 0
\(71\) 245.212i 0.409878i 0.978775 + 0.204939i \(0.0656996\pi\)
−0.978775 + 0.204939i \(0.934300\pi\)
\(72\) 0 0
\(73\) 745.090i 1.19461i 0.802016 + 0.597303i \(0.203761\pi\)
−0.802016 + 0.597303i \(0.796239\pi\)
\(74\) 0 0
\(75\) 161.853 + 158.797i 0.249188 + 0.244484i
\(76\) 0 0
\(77\) −43.7470 + 155.370i −0.0647459 + 0.229949i
\(78\) 0 0
\(79\) −598.112 −0.851808 −0.425904 0.904768i \(-0.640044\pi\)
−0.425904 + 0.904768i \(0.640044\pi\)
\(80\) 0 0
\(81\) −728.471 + 27.7798i −0.999274 + 0.0381067i
\(82\) 0 0
\(83\) 3.93633i 0.00520564i −0.999997 0.00260282i \(-0.999171\pi\)
0.999997 0.00260282i \(-0.000828505\pi\)
\(84\) 0 0
\(85\) 622.844i 0.794787i
\(86\) 0 0
\(87\) 917.522 + 900.200i 1.13067 + 1.10933i
\(88\) 0 0
\(89\) −1258.73 −1.49916 −0.749579 0.661915i \(-0.769744\pi\)
−0.749579 + 0.661915i \(0.769744\pi\)
\(90\) 0 0
\(91\) 263.324 935.211i 0.303339 1.07733i
\(92\) 0 0
\(93\) 189.841 193.494i 0.211674 0.215747i
\(94\) 0 0
\(95\) 1166.27i 1.25955i
\(96\) 0 0
\(97\) 755.959i 0.791300i 0.918401 + 0.395650i \(0.129481\pi\)
−0.918401 + 0.395650i \(0.870519\pi\)
\(98\) 0 0
\(99\) 4.48436 + 235.273i 0.00455248 + 0.238847i
\(100\) 0 0
\(101\) 1045.75i 1.03026i 0.857113 + 0.515128i \(0.172256\pi\)
−0.857113 + 0.515128i \(0.827744\pi\)
\(102\) 0 0
\(103\) 1520.53i 1.45458i −0.686328 0.727292i \(-0.740779\pi\)
0.686328 0.727292i \(-0.259221\pi\)
\(104\) 0 0
\(105\) −431.666 753.106i −0.401203 0.699958i
\(106\) 0 0
\(107\) 283.267 0.255930 0.127965 0.991779i \(-0.459156\pi\)
0.127965 + 0.991779i \(0.459156\pi\)
\(108\) 0 0
\(109\) 1180.64i 1.03747i 0.854935 + 0.518736i \(0.173597\pi\)
−0.854935 + 0.518736i \(0.826403\pi\)
\(110\) 0 0
\(111\) −1089.87 + 1110.84i −0.931943 + 0.949876i
\(112\) 0 0
\(113\) 1867.56i 1.55473i −0.629047 0.777367i \(-0.716555\pi\)
0.629047 0.777367i \(-0.283445\pi\)
\(114\) 0 0
\(115\) 1603.30 1.30008
\(116\) 0 0
\(117\) −26.9925 1416.17i −0.0213287 1.11901i
\(118\) 0 0
\(119\) 346.598 1230.96i 0.266997 0.948255i
\(120\) 0 0
\(121\) −1255.04 −0.942932
\(122\) 0 0
\(123\) 688.977 + 675.970i 0.505065 + 0.495530i
\(124\) 0 0
\(125\) 1521.13i 1.08843i
\(126\) 0 0
\(127\) −960.566 −0.671153 −0.335577 0.942013i \(-0.608931\pi\)
−0.335577 + 0.942013i \(0.608931\pi\)
\(128\) 0 0
\(129\) 1201.97 1225.10i 0.820367 0.836152i
\(130\) 0 0
\(131\) 1477.86i 0.985659i 0.870126 + 0.492829i \(0.164037\pi\)
−0.870126 + 0.492829i \(0.835963\pi\)
\(132\) 0 0
\(133\) 649.004 2304.97i 0.423126 1.50276i
\(134\) 0 0
\(135\) −920.050 868.895i −0.586557 0.553945i
\(136\) 0 0
\(137\) 344.829i 0.215042i 0.994203 + 0.107521i \(0.0342913\pi\)
−0.994203 + 0.107521i \(0.965709\pi\)
\(138\) 0 0
\(139\) −1156.15 −0.705489 −0.352745 0.935720i \(-0.614752\pi\)
−0.352745 + 0.935720i \(0.614752\pi\)
\(140\) 0 0
\(141\) −304.087 298.346i −0.181622 0.178193i
\(142\) 0 0
\(143\) −457.211 −0.267370
\(144\) 0 0
\(145\) 2231.33i 1.27794i
\(146\) 0 0
\(147\) −434.042 1728.62i −0.243532 0.969893i
\(148\) 0 0
\(149\) −1849.45 −1.01687 −0.508433 0.861102i \(-0.669775\pi\)
−0.508433 + 0.861102i \(0.669775\pi\)
\(150\) 0 0
\(151\) −2628.03 −1.41633 −0.708167 0.706045i \(-0.750477\pi\)
−0.708167 + 0.706045i \(0.750477\pi\)
\(152\) 0 0
\(153\) −35.5287 1864.02i −0.0187734 0.984948i
\(154\) 0 0
\(155\) 470.561 0.243848
\(156\) 0 0
\(157\) −1909.32 −0.970577 −0.485288 0.874354i \(-0.661285\pi\)
−0.485288 + 0.874354i \(0.661285\pi\)
\(158\) 0 0
\(159\) 883.933 + 867.246i 0.440883 + 0.432560i
\(160\) 0 0
\(161\) 3168.71 + 892.202i 1.55111 + 0.436741i
\(162\) 0 0
\(163\) 3458.92i 1.66211i 0.556191 + 0.831054i \(0.312262\pi\)
−0.556191 + 0.831054i \(0.687738\pi\)
\(164\) 0 0
\(165\) −286.081 + 291.586i −0.134978 + 0.137575i
\(166\) 0 0
\(167\) −2306.06 −1.06855 −0.534277 0.845310i \(-0.679416\pi\)
−0.534277 + 0.845310i \(0.679416\pi\)
\(168\) 0 0
\(169\) 555.068 0.252648
\(170\) 0 0
\(171\) −66.5273 3490.37i −0.0297513 1.56091i
\(172\) 0 0
\(173\) 18.1258i 0.00796576i −0.999992 0.00398288i \(-0.998732\pi\)
0.999992 0.00398288i \(-0.00126779\pi\)
\(174\) 0 0
\(175\) −219.036 + 777.918i −0.0946146 + 0.336029i
\(176\) 0 0
\(177\) 722.675 736.581i 0.306890 0.312796i
\(178\) 0 0
\(179\) 2596.01 1.08400 0.541998 0.840380i \(-0.317668\pi\)
0.541998 + 0.840380i \(0.317668\pi\)
\(180\) 0 0
\(181\) −1200.67 −0.493069 −0.246534 0.969134i \(-0.579292\pi\)
−0.246534 + 0.969134i \(0.579292\pi\)
\(182\) 0 0
\(183\) 583.054 + 572.047i 0.235522 + 0.231076i
\(184\) 0 0
\(185\) −2701.46 −1.07360
\(186\) 0 0
\(187\) −601.801 −0.235337
\(188\) 0 0
\(189\) −1334.83 2229.24i −0.513728 0.857953i
\(190\) 0 0
\(191\) 1778.65i 0.673816i 0.941538 + 0.336908i \(0.109381\pi\)
−0.941538 + 0.336908i \(0.890619\pi\)
\(192\) 0 0
\(193\) 151.059 0.0563393 0.0281697 0.999603i \(-0.491032\pi\)
0.0281697 + 0.999603i \(0.491032\pi\)
\(194\) 0 0
\(195\) 1722.00 1755.13i 0.632383 0.644551i
\(196\) 0 0
\(197\) −346.401 −0.125280 −0.0626398 0.998036i \(-0.519952\pi\)
−0.0626398 + 0.998036i \(0.519952\pi\)
\(198\) 0 0
\(199\) 3780.44i 1.34668i −0.739335 0.673338i \(-0.764860\pi\)
0.739335 0.673338i \(-0.235140\pi\)
\(200\) 0 0
\(201\) −1920.02 + 1956.97i −0.673770 + 0.686735i
\(202\) 0 0
\(203\) −1241.69 + 4409.92i −0.429306 + 1.52471i
\(204\) 0 0
\(205\) 1675.53i 0.570850i
\(206\) 0 0
\(207\) 4798.29 91.4567i 1.61113 0.0307086i
\(208\) 0 0
\(209\) −1126.87 −0.372953
\(210\) 0 0
\(211\) 2168.92i 0.707652i −0.935311 0.353826i \(-0.884881\pi\)
0.935311 0.353826i \(-0.115119\pi\)
\(212\) 0 0
\(213\) −892.341 + 909.511i −0.287053 + 0.292576i
\(214\) 0 0
\(215\) 2979.32 0.945061
\(216\) 0 0
\(217\) 929.998 + 261.857i 0.290933 + 0.0819169i
\(218\) 0 0
\(219\) −2711.43 + 2763.60i −0.836626 + 0.852725i
\(220\) 0 0
\(221\) 3622.39 1.10257
\(222\) 0 0
\(223\) 3892.25i 1.16881i 0.811462 + 0.584405i \(0.198672\pi\)
−0.811462 + 0.584405i \(0.801328\pi\)
\(224\) 0 0
\(225\) 22.4526 + 1177.98i 0.00665263 + 0.349032i
\(226\) 0 0
\(227\) 2544.85i 0.744085i 0.928216 + 0.372043i \(0.121342\pi\)
−0.928216 + 0.372043i \(0.878658\pi\)
\(228\) 0 0
\(229\) 775.951 0.223914 0.111957 0.993713i \(-0.464288\pi\)
0.111957 + 0.993713i \(0.464288\pi\)
\(230\) 0 0
\(231\) −727.661 + 417.082i −0.207258 + 0.118796i
\(232\) 0 0
\(233\) 475.828i 0.133788i −0.997760 0.0668938i \(-0.978691\pi\)
0.997760 0.0668938i \(-0.0213089\pi\)
\(234\) 0 0
\(235\) 739.512i 0.205278i
\(236\) 0 0
\(237\) −2218.44 2176.56i −0.608031 0.596552i
\(238\) 0 0
\(239\) 295.661i 0.0800196i 0.999199 + 0.0400098i \(0.0127389\pi\)
−0.999199 + 0.0400098i \(0.987261\pi\)
\(240\) 0 0
\(241\) 3284.88i 0.877998i −0.898488 0.438999i \(-0.855333\pi\)
0.898488 0.438999i \(-0.144667\pi\)
\(242\) 0 0
\(243\) −2803.05 2547.91i −0.739982 0.672627i
\(244\) 0 0
\(245\) 1614.30 2639.38i 0.420955 0.688260i
\(246\) 0 0
\(247\) 6782.90 1.74731
\(248\) 0 0
\(249\) 14.3245 14.6002i 0.00364570 0.00371585i
\(250\) 0 0
\(251\) 1029.64i 0.258926i −0.991584 0.129463i \(-0.958675\pi\)
0.991584 0.129463i \(-0.0413253\pi\)
\(252\) 0 0
\(253\) 1549.13i 0.384953i
\(254\) 0 0
\(255\) 2266.56 2310.18i 0.556619 0.567329i
\(256\) 0 0
\(257\) 2451.85 0.595106 0.297553 0.954705i \(-0.403830\pi\)
0.297553 + 0.954705i \(0.403830\pi\)
\(258\) 0 0
\(259\) −5339.06 1503.30i −1.28090 0.360659i
\(260\) 0 0
\(261\) 127.281 + 6677.83i 0.0301858 + 1.58371i
\(262\) 0 0
\(263\) 4396.49i 1.03080i 0.856951 + 0.515398i \(0.172356\pi\)
−0.856951 + 0.515398i \(0.827644\pi\)
\(264\) 0 0
\(265\) 2149.65i 0.498308i
\(266\) 0 0
\(267\) −4668.73 4580.59i −1.07012 1.04992i
\(268\) 0 0
\(269\) 3402.69i 0.771248i 0.922656 + 0.385624i \(0.126014\pi\)
−0.922656 + 0.385624i \(0.873986\pi\)
\(270\) 0 0
\(271\) 4179.66i 0.936887i −0.883493 0.468444i \(-0.844815\pi\)
0.883493 0.468444i \(-0.155185\pi\)
\(272\) 0 0
\(273\) 4379.98 2510.52i 0.971019 0.556570i
\(274\) 0 0
\(275\) 380.313 0.0833954
\(276\) 0 0
\(277\) 2605.51i 0.565163i 0.959243 + 0.282581i \(0.0911907\pi\)
−0.959243 + 0.282581i \(0.908809\pi\)
\(278\) 0 0
\(279\) 1408.27 26.8421i 0.302190 0.00575983i
\(280\) 0 0
\(281\) 7988.99i 1.69603i 0.529976 + 0.848013i \(0.322201\pi\)
−0.529976 + 0.848013i \(0.677799\pi\)
\(282\) 0 0
\(283\) 3622.36 0.760873 0.380437 0.924807i \(-0.375774\pi\)
0.380437 + 0.924807i \(0.375774\pi\)
\(284\) 0 0
\(285\) 4244.13 4325.79i 0.882107 0.899081i
\(286\) 0 0
\(287\) −932.395 + 3311.45i −0.191768 + 0.681077i
\(288\) 0 0
\(289\) −145.058 −0.0295254
\(290\) 0 0
\(291\) −2750.98 + 2803.91i −0.554176 + 0.564840i
\(292\) 0 0
\(293\) 8260.81i 1.64710i 0.567241 + 0.823552i \(0.308011\pi\)
−0.567241 + 0.823552i \(0.691989\pi\)
\(294\) 0 0
\(295\) 1791.30 0.353537
\(296\) 0 0
\(297\) −839.539 + 888.965i −0.164024 + 0.173680i
\(298\) 0 0
\(299\) 9324.63i 1.80354i
\(300\) 0 0
\(301\) 5888.22 + 1657.93i 1.12755 + 0.317479i
\(302\) 0 0
\(303\) −3805.54 + 3878.77i −0.721527 + 0.735410i
\(304\) 0 0
\(305\) 1417.94i 0.266199i
\(306\) 0 0
\(307\) 6375.65 1.18527 0.592635 0.805471i \(-0.298088\pi\)
0.592635 + 0.805471i \(0.298088\pi\)
\(308\) 0 0
\(309\) 5533.29 5639.76i 1.01870 1.03830i
\(310\) 0 0
\(311\) 3566.99 0.650371 0.325186 0.945650i \(-0.394573\pi\)
0.325186 + 0.945650i \(0.394573\pi\)
\(312\) 0 0
\(313\) 2364.18i 0.426936i −0.976950 0.213468i \(-0.931524\pi\)
0.976950 0.213468i \(-0.0684760\pi\)
\(314\) 0 0
\(315\) 1139.51 4364.19i 0.203823 0.780616i
\(316\) 0 0
\(317\) 5296.44 0.938415 0.469207 0.883088i \(-0.344540\pi\)
0.469207 + 0.883088i \(0.344540\pi\)
\(318\) 0 0
\(319\) 2155.94 0.378400
\(320\) 0 0
\(321\) 1050.66 + 1030.83i 0.182686 + 0.179237i
\(322\) 0 0
\(323\) 8927.95 1.53797
\(324\) 0 0
\(325\) −2289.20 −0.390713
\(326\) 0 0
\(327\) −4296.40 + 4379.07i −0.726579 + 0.740560i
\(328\) 0 0
\(329\) 411.522 1461.54i 0.0689602 0.244916i
\(330\) 0 0
\(331\) 664.908i 0.110413i −0.998475 0.0552064i \(-0.982418\pi\)
0.998475 0.0552064i \(-0.0175817\pi\)
\(332\) 0 0
\(333\) −8084.81 + 154.099i −1.33047 + 0.0253590i
\(334\) 0 0
\(335\) −4759.17 −0.776182
\(336\) 0 0
\(337\) 8618.15 1.39306 0.696529 0.717529i \(-0.254727\pi\)
0.696529 + 0.717529i \(0.254727\pi\)
\(338\) 0 0
\(339\) 6796.15 6926.92i 1.08884 1.10979i
\(340\) 0 0
\(341\) 454.663i 0.0722034i
\(342\) 0 0
\(343\) 4659.20 4318.04i 0.733449 0.679744i
\(344\) 0 0
\(345\) 5946.78 + 5834.51i 0.928011 + 0.910491i
\(346\) 0 0
\(347\) −11525.2 −1.78301 −0.891507 0.453006i \(-0.850352\pi\)
−0.891507 + 0.453006i \(0.850352\pi\)
\(348\) 0 0
\(349\) −232.968 −0.0357320 −0.0178660 0.999840i \(-0.505687\pi\)
−0.0178660 + 0.999840i \(0.505687\pi\)
\(350\) 0 0
\(351\) 5053.39 5350.90i 0.768462 0.813704i
\(352\) 0 0
\(353\) 10995.6 1.65789 0.828944 0.559331i \(-0.188942\pi\)
0.828944 + 0.559331i \(0.188942\pi\)
\(354\) 0 0
\(355\) −2211.85 −0.330684
\(356\) 0 0
\(357\) 5765.11 3304.45i 0.854683 0.489888i
\(358\) 0 0
\(359\) 3732.36i 0.548709i −0.961629 0.274354i \(-0.911536\pi\)
0.961629 0.274354i \(-0.0884642\pi\)
\(360\) 0 0
\(361\) 9858.53 1.43731
\(362\) 0 0
\(363\) −4655.05 4567.17i −0.673076 0.660370i
\(364\) 0 0
\(365\) −6720.83 −0.963792
\(366\) 0 0
\(367\) 1187.53i 0.168907i 0.996427 + 0.0844534i \(0.0269144\pi\)
−0.996427 + 0.0844534i \(0.973086\pi\)
\(368\) 0 0
\(369\) 95.5768 + 5014.45i 0.0134838 + 0.707431i
\(370\) 0 0
\(371\) −1196.23 + 4248.48i −0.167399 + 0.594528i
\(372\) 0 0
\(373\) 4872.40i 0.676362i 0.941081 + 0.338181i \(0.109812\pi\)
−0.941081 + 0.338181i \(0.890188\pi\)
\(374\) 0 0
\(375\) −5535.48 + 5641.99i −0.762269 + 0.776937i
\(376\) 0 0
\(377\) −12977.2 −1.77283
\(378\) 0 0
\(379\) 3969.71i 0.538022i −0.963137 0.269011i \(-0.913303\pi\)
0.963137 0.269011i \(-0.0866967\pi\)
\(380\) 0 0
\(381\) −3562.82 3495.55i −0.479078 0.470033i
\(382\) 0 0
\(383\) −2981.45 −0.397768 −0.198884 0.980023i \(-0.563732\pi\)
−0.198884 + 0.980023i \(0.563732\pi\)
\(384\) 0 0
\(385\) −1401.46 394.605i −0.185520 0.0522361i
\(386\) 0 0
\(387\) 8916.38 169.949i 1.17118 0.0223229i
\(388\) 0 0
\(389\) 477.774 0.0622728 0.0311364 0.999515i \(-0.490087\pi\)
0.0311364 + 0.999515i \(0.490087\pi\)
\(390\) 0 0
\(391\) 12273.5i 1.58746i
\(392\) 0 0
\(393\) −5378.02 + 5481.50i −0.690293 + 0.703576i
\(394\) 0 0
\(395\) 5395.06i 0.687227i
\(396\) 0 0
\(397\) 6740.60 0.852143 0.426072 0.904689i \(-0.359897\pi\)
0.426072 + 0.904689i \(0.359897\pi\)
\(398\) 0 0
\(399\) 10795.1 6187.57i 1.35447 0.776356i
\(400\) 0 0
\(401\) 10739.9i 1.33746i 0.743504 + 0.668732i \(0.233163\pi\)
−0.743504 + 0.668732i \(0.766837\pi\)
\(402\) 0 0
\(403\) 2736.73i 0.338278i
\(404\) 0 0
\(405\) −250.578 6570.91i −0.0307440 0.806201i
\(406\) 0 0
\(407\) 2610.19i 0.317893i
\(408\) 0 0
\(409\) 15374.7i 1.85875i −0.369139 0.929374i \(-0.620347\pi\)
0.369139 0.929374i \(-0.379653\pi\)
\(410\) 0 0
\(411\) −1254.85 + 1279.00i −0.150602 + 0.153500i
\(412\) 0 0
\(413\) 3540.25 + 996.817i 0.421803 + 0.118766i
\(414\) 0 0
\(415\) 35.5063 0.00419984
\(416\) 0 0
\(417\) −4288.23 4207.28i −0.503587 0.494080i
\(418\) 0 0
\(419\) 1812.00i 0.211269i 0.994405 + 0.105635i \(0.0336874\pi\)
−0.994405 + 0.105635i \(0.966313\pi\)
\(420\) 0 0
\(421\) 1588.18i 0.183855i −0.995766 0.0919276i \(-0.970697\pi\)
0.995766 0.0919276i \(-0.0293028\pi\)
\(422\) 0 0
\(423\) −42.1837 2213.18i −0.00484880 0.254393i
\(424\) 0 0
\(425\) −3013.14 −0.343903
\(426\) 0 0
\(427\) −789.049 + 2802.35i −0.0894257 + 0.317600i
\(428\) 0 0
\(429\) −1695.83 1663.82i −0.190852 0.187249i
\(430\) 0 0
\(431\) 2266.42i 0.253294i −0.991948 0.126647i \(-0.959578\pi\)
0.991948 0.126647i \(-0.0404216\pi\)
\(432\) 0 0
\(433\) 12900.1i 1.43173i 0.698238 + 0.715865i \(0.253968\pi\)
−0.698238 + 0.715865i \(0.746032\pi\)
\(434\) 0 0
\(435\) −8119.94 + 8276.18i −0.894992 + 0.912213i
\(436\) 0 0
\(437\) 22982.0i 2.51574i
\(438\) 0 0
\(439\) 3778.78i 0.410823i 0.978676 + 0.205412i \(0.0658533\pi\)
−0.978676 + 0.205412i \(0.934147\pi\)
\(440\) 0 0
\(441\) 4680.66 7991.09i 0.505416 0.862876i
\(442\) 0 0
\(443\) 372.016 0.0398985 0.0199492 0.999801i \(-0.493650\pi\)
0.0199492 + 0.999801i \(0.493650\pi\)
\(444\) 0 0
\(445\) 11353.9i 1.20950i
\(446\) 0 0
\(447\) −6859.76 6730.26i −0.725852 0.712149i
\(448\) 0 0
\(449\) 12340.3i 1.29705i −0.761192 0.648526i \(-0.775386\pi\)
0.761192 0.648526i \(-0.224614\pi\)
\(450\) 0 0
\(451\) 1618.92 0.169029
\(452\) 0 0
\(453\) −9747.58 9563.56i −1.01100 0.991910i
\(454\) 0 0
\(455\) 8435.74 + 2375.22i 0.869173 + 0.244730i
\(456\) 0 0
\(457\) −13249.9 −1.35625 −0.678124 0.734947i \(-0.737207\pi\)
−0.678124 + 0.734947i \(0.737207\pi\)
\(458\) 0 0
\(459\) 6651.49 7043.08i 0.676394 0.716216i
\(460\) 0 0
\(461\) 3328.58i 0.336285i −0.985763 0.168143i \(-0.946223\pi\)
0.985763 0.168143i \(-0.0537769\pi\)
\(462\) 0 0
\(463\) −4155.03 −0.417064 −0.208532 0.978016i \(-0.566869\pi\)
−0.208532 + 0.978016i \(0.566869\pi\)
\(464\) 0 0
\(465\) 1745.35 + 1712.40i 0.174061 + 0.170775i
\(466\) 0 0
\(467\) 497.911i 0.0493374i −0.999696 0.0246687i \(-0.992147\pi\)
0.999696 0.0246687i \(-0.00785309\pi\)
\(468\) 0 0
\(469\) −9405.83 2648.37i −0.926057 0.260747i
\(470\) 0 0
\(471\) −7081.83 6948.14i −0.692810 0.679731i
\(472\) 0 0
\(473\) 2878.66i 0.279833i
\(474\) 0 0
\(475\) −5642.09 −0.545004
\(476\) 0 0
\(477\) 122.622 + 6433.36i 0.0117703 + 0.617534i
\(478\) 0 0
\(479\) 20052.8 1.91281 0.956406 0.292041i \(-0.0943345\pi\)
0.956406 + 0.292041i \(0.0943345\pi\)
\(480\) 0 0
\(481\) 15711.4i 1.48935i
\(482\) 0 0
\(483\) 8506.21 + 14840.3i 0.801337 + 1.39805i
\(484\) 0 0
\(485\) −6818.87 −0.638410
\(486\) 0 0
\(487\) 5918.14 0.550670 0.275335 0.961348i \(-0.411211\pi\)
0.275335 + 0.961348i \(0.411211\pi\)
\(488\) 0 0
\(489\) −12587.2 + 12829.4i −1.16404 + 1.18643i
\(490\) 0 0
\(491\) 2586.64 0.237746 0.118873 0.992909i \(-0.462072\pi\)
0.118873 + 0.992909i \(0.462072\pi\)
\(492\) 0 0
\(493\) −17081.1 −1.56043
\(494\) 0 0
\(495\) −2122.20 + 40.4496i −0.192698 + 0.00367288i
\(496\) 0 0
\(497\) −4371.41 1230.84i −0.394537 0.111088i
\(498\) 0 0
\(499\) 18254.1i 1.63761i 0.574072 + 0.818805i \(0.305363\pi\)
−0.574072 + 0.818805i \(0.694637\pi\)
\(500\) 0 0
\(501\) −8553.37 8391.89i −0.762747 0.748347i
\(502\) 0 0
\(503\) −10858.4 −0.962531 −0.481265 0.876575i \(-0.659823\pi\)
−0.481265 + 0.876575i \(0.659823\pi\)
\(504\) 0 0
\(505\) −9432.81 −0.831197
\(506\) 0 0
\(507\) 2058.79 + 2019.92i 0.180343 + 0.176939i
\(508\) 0 0
\(509\) 5017.32i 0.436913i 0.975847 + 0.218456i \(0.0701022\pi\)
−0.975847 + 0.218456i \(0.929898\pi\)
\(510\) 0 0
\(511\) −13282.8 3739.99i −1.14989 0.323772i
\(512\) 0 0
\(513\) 12454.9 13188.1i 1.07192 1.13503i
\(514\) 0 0
\(515\) 13715.4 1.17354
\(516\) 0 0
\(517\) −714.527 −0.0607831
\(518\) 0 0
\(519\) 65.9607 67.2299i 0.00557871 0.00568606i
\(520\) 0 0
\(521\) 13237.4 1.11313 0.556564 0.830805i \(-0.312119\pi\)
0.556564 + 0.830805i \(0.312119\pi\)
\(522\) 0 0
\(523\) −17806.0 −1.48872 −0.744361 0.667777i \(-0.767246\pi\)
−0.744361 + 0.667777i \(0.767246\pi\)
\(524\) 0 0
\(525\) −3643.31 + 2088.28i −0.302871 + 0.173600i
\(526\) 0 0
\(527\) 3602.20i 0.297750i
\(528\) 0 0
\(529\) −19426.9 −1.59669
\(530\) 0 0
\(531\) 5360.92 102.180i 0.438124 0.00835076i
\(532\) 0 0
\(533\) −9744.70 −0.791913
\(534\) 0 0
\(535\) 2555.11i 0.206481i
\(536\) 0 0
\(537\) 9628.82 + 9447.04i 0.773770 + 0.759162i
\(538\) 0 0
\(539\) −2550.20 1559.76i −0.203794 0.124645i
\(540\) 0 0
\(541\) 7729.85i 0.614292i −0.951662 0.307146i \(-0.900626\pi\)
0.951662 0.307146i \(-0.0993740\pi\)
\(542\) 0 0
\(543\) −4453.40 4369.32i −0.351959 0.345314i
\(544\) 0 0
\(545\) −10649.5 −0.837018
\(546\) 0 0
\(547\) 9563.57i 0.747548i 0.927520 + 0.373774i \(0.121936\pi\)
−0.927520 + 0.373774i \(0.878064\pi\)
\(548\) 0 0
\(549\) 80.8828 + 4243.53i 0.00628779 + 0.329890i
\(550\) 0 0
\(551\) −31984.3 −2.47291
\(552\) 0 0
\(553\) 3002.23 10662.6i 0.230864 0.819926i
\(554\) 0 0
\(555\) −10019.9 9830.77i −0.766347 0.751880i
\(556\) 0 0
\(557\) 16797.4 1.27779 0.638894 0.769295i \(-0.279392\pi\)
0.638894 + 0.769295i \(0.279392\pi\)
\(558\) 0 0
\(559\) 17327.4i 1.31104i
\(560\) 0 0
\(561\) −2232.13 2189.99i −0.167986 0.164815i
\(562\) 0 0
\(563\) 15342.1i 1.14848i −0.818688 0.574239i \(-0.805298\pi\)
0.818688 0.574239i \(-0.194702\pi\)
\(564\) 0 0
\(565\) 16845.6 1.25434
\(566\) 0 0
\(567\) 3161.33 13125.9i 0.234151 0.972200i
\(568\) 0 0
\(569\) 23658.3i 1.74307i −0.490329 0.871537i \(-0.663123\pi\)
0.490329 0.871537i \(-0.336877\pi\)
\(570\) 0 0
\(571\) 20556.7i 1.50661i −0.657673 0.753304i \(-0.728459\pi\)
0.657673 0.753304i \(-0.271541\pi\)
\(572\) 0 0
\(573\) −6472.62 + 6597.17i −0.471898 + 0.480978i
\(574\) 0 0
\(575\) 7756.32i 0.562541i
\(576\) 0 0
\(577\) 1404.98i 0.101369i −0.998715 0.0506847i \(-0.983860\pi\)
0.998715 0.0506847i \(-0.0161404\pi\)
\(578\) 0 0
\(579\) 560.291 + 549.713i 0.0402157 + 0.0394565i
\(580\) 0 0
\(581\) 70.1732 + 19.7584i 0.00501080 + 0.00141087i
\(582\) 0 0
\(583\) 2077.02 0.147549
\(584\) 0 0
\(585\) 12774.0 243.476i 0.902806 0.0172077i
\(586\) 0 0
\(587\) 14366.9i 1.01020i 0.863062 + 0.505098i \(0.168544\pi\)
−0.863062 + 0.505098i \(0.831456\pi\)
\(588\) 0 0
\(589\) 6745.10i 0.471862i
\(590\) 0 0
\(591\) −1284.83 1260.57i −0.0894262 0.0877379i
\(592\) 0 0
\(593\) −5376.81 −0.372343 −0.186171 0.982517i \(-0.559608\pi\)
−0.186171 + 0.982517i \(0.559608\pi\)
\(594\) 0 0
\(595\) 11103.5 + 3126.37i 0.765039 + 0.215410i
\(596\) 0 0
\(597\) 13757.2 14022.0i 0.943127 0.961274i
\(598\) 0 0
\(599\) 15516.0i 1.05837i −0.848505 0.529187i \(-0.822497\pi\)
0.848505 0.529187i \(-0.177503\pi\)
\(600\) 0 0
\(601\) 28358.0i 1.92470i 0.271811 + 0.962351i \(0.412378\pi\)
−0.271811 + 0.962351i \(0.587622\pi\)
\(602\) 0 0
\(603\) −14243.0 + 271.476i −0.961891 + 0.0183339i
\(604\) 0 0
\(605\) 11320.7i 0.760745i
\(606\) 0 0
\(607\) 16509.3i 1.10394i 0.833865 + 0.551969i \(0.186123\pi\)
−0.833865 + 0.551969i \(0.813877\pi\)
\(608\) 0 0
\(609\) −20653.4 + 11838.2i −1.37425 + 0.787696i
\(610\) 0 0
\(611\) 4300.92 0.284773
\(612\) 0 0
\(613\) 8227.79i 0.542117i 0.962563 + 0.271058i \(0.0873736\pi\)
−0.962563 + 0.271058i \(0.912626\pi\)
\(614\) 0 0
\(615\) −6097.35 + 6214.68i −0.399787 + 0.407480i
\(616\) 0 0
\(617\) 2275.68i 0.148485i −0.997240 0.0742425i \(-0.976346\pi\)
0.997240 0.0742425i \(-0.0236539\pi\)
\(618\) 0 0
\(619\) 19550.8 1.26949 0.634743 0.772723i \(-0.281106\pi\)
0.634743 + 0.772723i \(0.281106\pi\)
\(620\) 0 0
\(621\) 18130.1 + 17122.0i 1.17155 + 1.10642i
\(622\) 0 0
\(623\) 6318.21 22439.5i 0.406314 1.44305i
\(624\) 0 0
\(625\) −8266.21 −0.529037
\(626\) 0 0
\(627\) −4179.64 4100.74i −0.266218 0.261192i
\(628\) 0 0
\(629\) 20680.0i 1.31092i
\(630\) 0 0
\(631\) −25354.7 −1.59961 −0.799807 0.600257i \(-0.795065\pi\)
−0.799807 + 0.600257i \(0.795065\pi\)
\(632\) 0 0
\(633\) 7892.82 8044.69i 0.495595 0.505131i
\(634\) 0 0
\(635\) 8664.45i 0.541477i
\(636\) 0 0
\(637\) 15350.3 + 9388.60i 0.954791 + 0.583972i
\(638\) 0 0
\(639\) −6619.53 + 126.170i −0.409803 + 0.00781096i
\(640\) 0 0
\(641\) 1867.33i 0.115063i 0.998344 + 0.0575313i \(0.0183229\pi\)
−0.998344 + 0.0575313i \(0.981677\pi\)
\(642\) 0 0
\(643\) −5536.73 −0.339576 −0.169788 0.985481i \(-0.554308\pi\)
−0.169788 + 0.985481i \(0.554308\pi\)
\(644\) 0 0
\(645\) 11050.5 + 10841.9i 0.674597 + 0.661861i
\(646\) 0 0
\(647\) 7249.89 0.440529 0.220265 0.975440i \(-0.429308\pi\)
0.220265 + 0.975440i \(0.429308\pi\)
\(648\) 0 0
\(649\) 1730.78i 0.104683i
\(650\) 0 0
\(651\) 2496.53 + 4355.56i 0.150302 + 0.262224i
\(652\) 0 0
\(653\) −5007.60 −0.300096 −0.150048 0.988679i \(-0.547943\pi\)
−0.150048 + 0.988679i \(0.547943\pi\)
\(654\) 0 0
\(655\) −13330.5 −0.795216
\(656\) 0 0
\(657\) −20113.8 + 383.374i −1.19439 + 0.0227654i
\(658\) 0 0
\(659\) 20066.4 1.18616 0.593078 0.805145i \(-0.297912\pi\)
0.593078 + 0.805145i \(0.297912\pi\)
\(660\) 0 0
\(661\) 24092.4 1.41768 0.708840 0.705369i \(-0.249219\pi\)
0.708840 + 0.705369i \(0.249219\pi\)
\(662\) 0 0
\(663\) 13435.7 + 13182.1i 0.787029 + 0.772171i
\(664\) 0 0
\(665\) 20791.2 + 5854.11i 1.21240 + 0.341373i
\(666\) 0 0
\(667\) 43969.6i 2.55249i
\(668\) 0 0
\(669\) −14164.1 + 14436.7i −0.818560 + 0.834311i
\(670\) 0 0
\(671\) 1370.03 0.0788217
\(672\) 0 0
\(673\) −17.0224 −0.000974985 −0.000487493 1.00000i \(-0.500155\pi\)
−0.000487493 1.00000i \(0.500155\pi\)
\(674\) 0 0
\(675\) −4203.46 + 4450.94i −0.239691 + 0.253802i
\(676\) 0 0
\(677\) 25059.2i 1.42261i −0.702885 0.711304i \(-0.748105\pi\)
0.702885 0.711304i \(-0.251895\pi\)
\(678\) 0 0
\(679\) −13476.5 3794.55i −0.761682 0.214464i
\(680\) 0 0
\(681\) −9260.84 + 9439.04i −0.521110 + 0.531137i
\(682\) 0 0
\(683\) −22610.8 −1.26673 −0.633367 0.773851i \(-0.718328\pi\)
−0.633367 + 0.773851i \(0.718328\pi\)
\(684\) 0 0
\(685\) −3110.41 −0.173493
\(686\) 0 0
\(687\) 2878.06 + 2823.73i 0.159832 + 0.156815i
\(688\) 0 0
\(689\) −12502.1 −0.691280
\(690\) 0 0
\(691\) 22189.8 1.22162 0.610810 0.791777i \(-0.290844\pi\)
0.610810 + 0.791777i \(0.290844\pi\)
\(692\) 0 0
\(693\) −4216.74 1101.01i −0.231141 0.0603521i
\(694\) 0 0
\(695\) 10428.6i 0.569179i
\(696\) 0 0
\(697\) −12826.4 −0.697036
\(698\) 0 0
\(699\) 1731.57 1764.88i 0.0936964 0.0954993i
\(700\) 0 0
\(701\) 9475.27 0.510522 0.255261 0.966872i \(-0.417839\pi\)
0.255261 + 0.966872i \(0.417839\pi\)
\(702\) 0 0
\(703\) 38723.2i 2.07749i
\(704\) 0 0
\(705\) 2691.13 2742.91i 0.143764 0.146530i
\(706\) 0 0
\(707\) −18642.6 5249.15i −0.991696 0.279228i
\(708\) 0 0
\(709\) 27170.6i 1.43923i −0.694374 0.719614i \(-0.744319\pi\)
0.694374 0.719614i \(-0.255681\pi\)
\(710\) 0 0
\(711\) −307.748 16146.1i −0.0162327 0.851653i
\(712\) 0 0
\(713\) −9272.65 −0.487046
\(714\) 0 0
\(715\) 4124.11i 0.215711i
\(716\) 0 0
\(717\) −1075.93 + 1096.63i −0.0560407 + 0.0571190i
\(718\) 0 0
\(719\) 387.852 0.0201174 0.0100587 0.999949i \(-0.496798\pi\)
0.0100587 + 0.999949i \(0.496798\pi\)
\(720\) 0 0
\(721\) 27106.6 + 7632.31i 1.40014 + 0.394233i
\(722\) 0 0
\(723\) 11953.8 12183.9i 0.614894 0.626726i
\(724\) 0 0
\(725\) 10794.5 0.552964
\(726\) 0 0
\(727\) 1084.95i 0.0553488i 0.999617 + 0.0276744i \(0.00881016\pi\)
−0.999617 + 0.0276744i \(0.991190\pi\)
\(728\) 0 0
\(729\) −1124.74 19650.8i −0.0571427 0.998366i
\(730\) 0 0
\(731\) 22807.1i 1.15397i
\(732\) 0 0
\(733\) −35437.5 −1.78570 −0.892848 0.450358i \(-0.851296\pi\)
−0.892848 + 0.450358i \(0.851296\pi\)
\(734\) 0 0
\(735\) 15592.4 3915.12i 0.782497 0.196478i
\(736\) 0 0
\(737\) 4598.37i 0.229828i
\(738\) 0 0
\(739\) 34674.6i 1.72601i 0.505192 + 0.863007i \(0.331422\pi\)
−0.505192 + 0.863007i \(0.668578\pi\)
\(740\) 0 0
\(741\) 25158.3 + 24683.4i 1.24725 + 1.22371i
\(742\) 0 0
\(743\) 22561.8i 1.11401i 0.830508 + 0.557007i \(0.188050\pi\)
−0.830508 + 0.557007i \(0.811950\pi\)
\(744\) 0 0
\(745\) 16682.3i 0.820394i
\(746\) 0 0
\(747\) 106.262 2.02537i 0.00520470 9.92029e-5i
\(748\) 0 0
\(749\) −1421.86 + 5049.82i −0.0693641 + 0.246351i
\(750\) 0 0
\(751\) 28928.9 1.40563 0.702816 0.711372i \(-0.251926\pi\)
0.702816 + 0.711372i \(0.251926\pi\)
\(752\) 0 0
\(753\) 3746.92 3819.02i 0.181335 0.184824i
\(754\) 0 0
\(755\) 23705.3i 1.14268i
\(756\) 0 0
\(757\) 19462.5i 0.934449i 0.884139 + 0.467224i \(0.154746\pi\)
−0.884139 + 0.467224i \(0.845254\pi\)
\(758\) 0 0
\(759\) 5637.39 5745.86i 0.269597 0.274785i
\(760\) 0 0
\(761\) 5992.80 0.285465 0.142732 0.989761i \(-0.454411\pi\)
0.142732 + 0.989761i \(0.454411\pi\)
\(762\) 0 0
\(763\) −21047.3 5926.21i −0.998640 0.281184i
\(764\) 0 0
\(765\) 16813.7 320.474i 0.794643 0.0151461i
\(766\) 0 0
\(767\) 10418.0i 0.490446i
\(768\) 0 0
\(769\) 15433.8i 0.723742i 0.932228 + 0.361871i \(0.117862\pi\)
−0.932228 + 0.361871i \(0.882138\pi\)
\(770\) 0 0
\(771\) 9094.10 + 8922.42i 0.424794 + 0.416774i
\(772\) 0 0
\(773\) 17828.8i 0.829569i −0.909920 0.414785i \(-0.863857\pi\)
0.909920 0.414785i \(-0.136143\pi\)
\(774\) 0 0
\(775\) 2276.44i 0.105512i
\(776\) 0 0
\(777\) −14332.4 25005.0i −0.661740 1.15450i
\(778\) 0 0
\(779\) −24017.3 −1.10463
\(780\) 0 0
\(781\) 2137.12i 0.0979157i
\(782\) 0 0
\(783\) −23828.9 + 25231.8i −1.08758 + 1.15161i
\(784\) 0 0
\(785\) 17222.4i 0.783049i
\(786\) 0 0
\(787\) −30953.0 −1.40197 −0.700987 0.713174i \(-0.747257\pi\)
−0.700987 + 0.713174i \(0.747257\pi\)
\(788\) 0 0
\(789\) −15999.1 + 16306.9i −0.721904 + 0.735795i
\(790\) 0 0
\(791\) 33293.1 + 9374.22i 1.49654 + 0.421377i
\(792\) 0 0
\(793\) −8246.55 −0.369286
\(794\) 0 0
\(795\) −7822.69 + 7973.21i −0.348984 + 0.355699i
\(796\) 0 0
\(797\) 7162.07i 0.318310i −0.987254 0.159155i \(-0.949123\pi\)
0.987254 0.159155i \(-0.0508770\pi\)
\(798\) 0 0
\(799\) 5661.05 0.250655
\(800\) 0 0
\(801\) −647.659 33979.5i −0.0285692 1.49889i
\(802\) 0 0
\(803\) 6493.76i 0.285380i
\(804\) 0 0
\(805\) −8047.79 + 28582.2i −0.352357 + 1.25142i
\(806\) 0 0
\(807\) −12382.6 + 12620.9i −0.540134 + 0.550527i
\(808\) 0 0
\(809\) 21655.6i 0.941125i 0.882367 + 0.470562i \(0.155949\pi\)
−0.882367 + 0.470562i \(0.844051\pi\)
\(810\) 0 0
\(811\) 2523.86 0.109278 0.0546392 0.998506i \(-0.482599\pi\)
0.0546392 + 0.998506i \(0.482599\pi\)
\(812\) 0 0
\(813\) 15210.0 15502.7i 0.656137 0.668762i
\(814\) 0 0
\(815\) −31200.0 −1.34097
\(816\) 0 0
\(817\) 42706.1i 1.82876i
\(818\) 0 0
\(819\) 25381.6 + 6627.26i 1.08291 + 0.282754i
\(820\) 0 0
\(821\) −24747.6 −1.05200 −0.526002 0.850483i \(-0.676310\pi\)
−0.526002 + 0.850483i \(0.676310\pi\)
\(822\) 0 0
\(823\) 35614.1 1.50842 0.754210 0.656634i \(-0.228020\pi\)
0.754210 + 0.656634i \(0.228020\pi\)
\(824\) 0 0
\(825\) 1410.61 + 1383.98i 0.0595287 + 0.0584048i
\(826\) 0 0
\(827\) −29256.6 −1.23017 −0.615085 0.788461i \(-0.710878\pi\)
−0.615085 + 0.788461i \(0.710878\pi\)
\(828\) 0 0
\(829\) 14291.2 0.598740 0.299370 0.954137i \(-0.403224\pi\)
0.299370 + 0.954137i \(0.403224\pi\)
\(830\) 0 0
\(831\) −9481.61 + 9664.05i −0.395804 + 0.403420i
\(832\) 0 0
\(833\) 20204.7 + 12357.7i 0.840399 + 0.514007i
\(834\) 0 0
\(835\) 20801.0i 0.862095i
\(836\) 0 0
\(837\) 5321.08 + 5025.23i 0.219741 + 0.207524i
\(838\) 0 0
\(839\) −43247.8 −1.77959 −0.889796 0.456358i \(-0.849154\pi\)
−0.889796 + 0.456358i \(0.849154\pi\)
\(840\) 0 0
\(841\) 36803.8 1.50903
\(842\) 0 0
\(843\) −29072.4 + 29631.8i −1.18779 + 1.21064i
\(844\) 0 0
\(845\) 5006.79i 0.203833i
\(846\) 0 0
\(847\) 6299.69 22373.7i 0.255561 0.907639i
\(848\) 0 0
\(849\) 13435.6 + 13182.0i 0.543121 + 0.532868i
\(850\) 0 0
\(851\) 53233.7 2.14434
\(852\) 0 0
\(853\) −27143.0 −1.08952 −0.544758 0.838593i \(-0.683378\pi\)
−0.544758 + 0.838593i \(0.683378\pi\)
\(854\) 0 0
\(855\) 31483.6 600.086i 1.25932 0.0240029i
\(856\) 0 0
\(857\) 41131.4 1.63947 0.819733 0.572746i \(-0.194122\pi\)
0.819733 + 0.572746i \(0.194122\pi\)
\(858\) 0 0
\(859\) 3353.69 0.133209 0.0666045 0.997779i \(-0.478783\pi\)
0.0666045 + 0.997779i \(0.478783\pi\)
\(860\) 0 0
\(861\) −15508.9 + 8889.41i −0.613870 + 0.351859i
\(862\) 0 0
\(863\) 32515.9i 1.28257i 0.767304 + 0.641283i \(0.221598\pi\)
−0.767304 + 0.641283i \(0.778402\pi\)
\(864\) 0 0
\(865\) 163.497 0.00642667
\(866\) 0 0
\(867\) −538.033 527.876i −0.0210756 0.0206777i
\(868\) 0 0
\(869\) −5212.78 −0.203488
\(870\) 0 0
\(871\) 27678.8i 1.07676i
\(872\) 0 0
\(873\) −20407.2 + 388.966i −0.791156 + 0.0150796i
\(874\) 0 0
\(875\) −27117.3 7635.33i −1.04769 0.294996i
\(876\) 0 0
\(877\) 11908.4i 0.458517i −0.973366 0.229259i \(-0.926370\pi\)
0.973366 0.229259i \(-0.0736301\pi\)
\(878\) 0 0
\(879\) −30061.5 + 30640.0i −1.15353 + 1.17572i
\(880\) 0 0
\(881\) −36671.3 −1.40237 −0.701184 0.712980i \(-0.747345\pi\)
−0.701184 + 0.712980i \(0.747345\pi\)
\(882\) 0 0
\(883\) 37102.7i 1.41405i 0.707190 + 0.707024i \(0.249963\pi\)
−0.707190 + 0.707024i \(0.750037\pi\)
\(884\) 0 0
\(885\) 6644.07 + 6518.64i 0.252359 + 0.247595i
\(886\) 0 0
\(887\) 48774.0 1.84630 0.923152 0.384435i \(-0.125604\pi\)
0.923152 + 0.384435i \(0.125604\pi\)
\(888\) 0 0
\(889\) 4821.57 17124.1i 0.181901 0.646033i
\(890\) 0 0
\(891\) −6348.91 + 242.112i −0.238717 + 0.00910330i
\(892\) 0 0
\(893\) 10600.3 0.397228
\(894\) 0 0
\(895\) 23416.4i 0.874553i
\(896\) 0 0
\(897\) −33932.8 + 34585.8i −1.26308 + 1.28739i
\(898\) 0 0
\(899\) 12904.8i 0.478754i
\(900\) 0 0
\(901\) −16455.8 −0.608459
\(902\) 0 0
\(903\) 15806.6 + 27576.9i 0.582514 + 1.01628i
\(904\) 0 0
\(905\) 10830.3i 0.397801i
\(906\) 0 0
\(907\) 1891.26i 0.0692372i 0.999401 + 0.0346186i \(0.0110216\pi\)
−0.999401 + 0.0346186i \(0.988978\pi\)
\(908\) 0 0
\(909\) −28230.1 + 538.073i −1.03007 + 0.0196334i
\(910\) 0 0
\(911\) 674.242i 0.0245210i 0.999925 + 0.0122605i \(0.00390274\pi\)
−0.999925 + 0.0122605i \(0.996097\pi\)
\(912\) 0 0
\(913\) 34.3067i 0.00124358i
\(914\) 0 0
\(915\) −5159.95 + 5259.23i −0.186429 + 0.190016i
\(916\) 0 0
\(917\) −26345.9 7418.13i −0.948767 0.267141i
\(918\) 0 0
\(919\) 246.949 0.00886408 0.00443204 0.999990i \(-0.498589\pi\)
0.00443204 + 0.999990i \(0.498589\pi\)
\(920\) 0 0
\(921\) 23647.8 + 23201.4i 0.846060 + 0.830088i
\(922\) 0 0
\(923\) 12863.9i 0.458742i
\(924\) 0 0
\(925\) 13068.9i 0.464543i
\(926\) 0 0
\(927\) 41046.8 782.363i 1.45432 0.0277197i
\(928\) 0 0
\(929\) −26737.6 −0.944275 −0.472138 0.881525i \(-0.656517\pi\)
−0.472138 + 0.881525i \(0.656517\pi\)
\(930\) 0 0
\(931\) 37833.3 + 23139.7i 1.33183 + 0.814578i
\(932\) 0 0
\(933\) 13230.3 + 12980.5i 0.464243 + 0.455479i
\(934\) 0 0
\(935\) 5428.33i 0.189867i
\(936\) 0 0
\(937\) 12780.7i 0.445602i −0.974864 0.222801i \(-0.928480\pi\)
0.974864 0.222801i \(-0.0715200\pi\)
\(938\) 0 0
\(939\) 8603.37 8768.91i 0.298999 0.304753i
\(940\) 0 0
\(941\) 43874.1i 1.51993i −0.649963 0.759966i \(-0.725216\pi\)
0.649963 0.759966i \(-0.274784\pi\)
\(942\) 0 0
\(943\) 33017.2i 1.14018i
\(944\) 0 0
\(945\) 20108.1 12040.4i 0.692185 0.414469i
\(946\) 0 0
\(947\) −2594.12 −0.0890153 −0.0445077 0.999009i \(-0.514172\pi\)
−0.0445077 + 0.999009i \(0.514172\pi\)
\(948\) 0 0
\(949\) 39087.6i 1.33702i
\(950\) 0 0
\(951\) 19644.9 + 19274.0i 0.669852 + 0.657206i
\(952\) 0 0
\(953\) 35759.6i 1.21550i 0.794130 + 0.607748i \(0.207927\pi\)
−0.794130 + 0.607748i \(0.792073\pi\)
\(954\) 0 0
\(955\) −16043.7 −0.543626
\(956\) 0 0
\(957\) 7996.56 + 7845.60i 0.270107 + 0.265008i
\(958\) 0 0
\(959\) −6147.30 1730.87i −0.206993 0.0582824i
\(960\) 0 0
\(961\) 27069.5 0.908648
\(962\) 0 0
\(963\) 145.750 + 7646.82i 0.00487720 + 0.255883i
\(964\) 0 0
\(965\) 1362.58i 0.0454538i
\(966\) 0 0
\(967\) −950.541 −0.0316105 −0.0158052 0.999875i \(-0.505031\pi\)
−0.0158052 + 0.999875i \(0.505031\pi\)
\(968\) 0 0
\(969\) 33114.5 + 32489.3i 1.09782 + 1.07710i
\(970\) 0 0
\(971\) 59078.8i 1.95255i −0.216531 0.976276i \(-0.569474\pi\)
0.216531 0.976276i \(-0.430526\pi\)
\(972\) 0 0
\(973\) 5803.28 20610.7i 0.191207 0.679084i
\(974\) 0 0
\(975\) −8490.82 8330.52i −0.278896 0.273631i
\(976\) 0 0
\(977\) 14531.7i 0.475854i −0.971283 0.237927i \(-0.923532\pi\)
0.971283 0.237927i \(-0.0764678\pi\)
\(978\) 0 0
\(979\) −10970.3 −0.358134
\(980\) 0 0
\(981\) −31871.4 + 607.477i −1.03728 + 0.0197709i
\(982\) 0 0
\(983\) 58495.3 1.89798 0.948989 0.315310i \(-0.102109\pi\)
0.948989 + 0.315310i \(0.102109\pi\)
\(984\) 0 0
\(985\) 3124.59i 0.101074i
\(986\) 0 0
\(987\) 6845.00 3923.43i 0.220749 0.126529i
\(988\) 0 0
\(989\) −58709.2 −1.88761
\(990\) 0 0
\(991\) 29846.4 0.956714 0.478357 0.878166i \(-0.341233\pi\)
0.478357 + 0.878166i \(0.341233\pi\)
\(992\) 0 0
\(993\) 2419.64 2466.20i 0.0773262 0.0788141i
\(994\) 0 0
\(995\) 34100.2 1.08648
\(996\) 0 0
\(997\) 14935.8 0.474444 0.237222 0.971455i \(-0.423763\pi\)
0.237222 + 0.971455i \(0.423763\pi\)
\(998\) 0 0
\(999\) −30548.0 28849.5i −0.967463 0.913672i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 672.4.i.c.209.59 80
3.2 odd 2 inner 672.4.i.c.209.58 80
4.3 odd 2 168.4.i.c.125.3 yes 80
7.6 odd 2 inner 672.4.i.c.209.21 80
8.3 odd 2 168.4.i.c.125.80 yes 80
8.5 even 2 inner 672.4.i.c.209.22 80
12.11 even 2 168.4.i.c.125.77 yes 80
21.20 even 2 inner 672.4.i.c.209.24 80
24.5 odd 2 inner 672.4.i.c.209.23 80
24.11 even 2 168.4.i.c.125.2 yes 80
28.27 even 2 168.4.i.c.125.4 yes 80
56.13 odd 2 inner 672.4.i.c.209.60 80
56.27 even 2 168.4.i.c.125.79 yes 80
84.83 odd 2 168.4.i.c.125.78 yes 80
168.83 odd 2 168.4.i.c.125.1 80
168.125 even 2 inner 672.4.i.c.209.57 80
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
168.4.i.c.125.1 80 168.83 odd 2
168.4.i.c.125.2 yes 80 24.11 even 2
168.4.i.c.125.3 yes 80 4.3 odd 2
168.4.i.c.125.4 yes 80 28.27 even 2
168.4.i.c.125.77 yes 80 12.11 even 2
168.4.i.c.125.78 yes 80 84.83 odd 2
168.4.i.c.125.79 yes 80 56.27 even 2
168.4.i.c.125.80 yes 80 8.3 odd 2
672.4.i.c.209.21 80 7.6 odd 2 inner
672.4.i.c.209.22 80 8.5 even 2 inner
672.4.i.c.209.23 80 24.5 odd 2 inner
672.4.i.c.209.24 80 21.20 even 2 inner
672.4.i.c.209.57 80 168.125 even 2 inner
672.4.i.c.209.58 80 3.2 odd 2 inner
672.4.i.c.209.59 80 1.1 even 1 trivial
672.4.i.c.209.60 80 56.13 odd 2 inner