Properties

Label 168.4.i.c.125.1
Level $168$
Weight $4$
Character 168.125
Analytic conductor $9.912$
Analytic rank $0$
Dimension $80$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [168,4,Mod(125,168)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(168, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 1, 1])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("168.125"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 168 = 2^{3} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 168.i (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [80] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.91232088096\)
Analytic rank: \(0\)
Dimension: \(80\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 125.1
Character \(\chi\) \(=\) 168.125
Dual form 168.4.i.c.125.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.81762 - 0.246982i) q^{2} +(-3.70908 + 3.63906i) q^{3} +(7.87800 + 1.39180i) q^{4} -9.02015i q^{5} +(11.3496 - 9.33741i) q^{6} +(5.01951 + 17.8271i) q^{7} +(-21.8535 - 5.86730i) q^{8} +(0.514533 - 26.9951i) q^{9} +(-2.22781 + 25.4154i) q^{10} -8.71540 q^{11} +(-34.2850 + 23.5062i) q^{12} -52.4602 q^{13} +(-9.74012 - 51.4697i) q^{14} +(32.8248 + 33.4564i) q^{15} +(60.1258 + 21.9293i) q^{16} -69.0503 q^{17} +(-8.11706 + 75.9349i) q^{18} +129.296 q^{19} +(12.5543 - 71.0607i) q^{20} +(-83.4915 - 47.8557i) q^{21} +(24.5567 + 2.15254i) q^{22} -177.747i q^{23} +(102.408 - 57.7638i) q^{24} +43.6369 q^{25} +(147.813 + 12.9567i) q^{26} +(96.3282 + 101.999i) q^{27} +(14.7319 + 147.428i) q^{28} +247.372 q^{29} +(-84.2249 - 102.375i) q^{30} -52.1678i q^{31} +(-163.996 - 76.6384i) q^{32} +(32.3261 - 31.7158i) q^{33} +(194.558 + 17.0542i) q^{34} +(160.803 - 45.2767i) q^{35} +(41.6254 - 211.951i) q^{36} -299.492i q^{37} +(-364.308 - 31.9338i) q^{38} +(194.579 - 190.905i) q^{39} +(-52.9239 + 197.122i) q^{40} +185.754 q^{41} +(223.428 + 155.460i) q^{42} -330.296i q^{43} +(-68.6599 - 12.1301i) q^{44} +(-243.500 - 4.64117i) q^{45} +(-43.9002 + 500.824i) q^{46} +81.9844 q^{47} +(-302.813 + 137.464i) q^{48} +(-292.609 + 178.966i) q^{49} +(-122.952 - 10.7775i) q^{50} +(256.113 - 251.278i) q^{51} +(-413.281 - 73.0142i) q^{52} +238.316 q^{53} +(-246.225 - 311.187i) q^{54} +78.6142i q^{55} +(-5.09695 - 419.035i) q^{56} +(-479.570 + 470.517i) q^{57} +(-697.001 - 61.0964i) q^{58} -198.589i q^{59} +(212.029 + 309.256i) q^{60} +157.196 q^{61} +(-12.8845 + 146.989i) q^{62} +(483.826 - 126.329i) q^{63} +(443.150 + 256.442i) q^{64} +473.198i q^{65} +(-98.9160 + 81.3793i) q^{66} +527.615i q^{67} +(-543.978 - 96.1044i) q^{68} +(646.831 + 659.277i) q^{69} +(-464.264 + 87.8573i) q^{70} +245.212i q^{71} +(-169.633 + 586.918i) q^{72} -745.090i q^{73} +(-73.9691 + 843.855i) q^{74} +(-161.853 + 158.797i) q^{75} +(1018.60 + 179.955i) q^{76} +(-43.7470 - 155.370i) q^{77} +(-595.400 + 489.842i) q^{78} +598.112 q^{79} +(197.805 - 542.343i) q^{80} +(-728.471 - 27.7798i) q^{81} +(-523.385 - 45.8779i) q^{82} -3.93633i q^{83} +(-591.140 - 493.211i) q^{84} +622.844i q^{85} +(-81.5772 + 930.651i) q^{86} +(-917.522 + 900.200i) q^{87} +(190.462 + 51.1359i) q^{88} -1258.73 q^{89} +(684.944 + 73.2171i) q^{90} +(-263.324 - 935.211i) q^{91} +(247.389 - 1400.29i) q^{92} +(189.841 + 193.494i) q^{93} +(-231.001 - 20.2487i) q^{94} -1166.27i q^{95} +(887.164 - 312.532i) q^{96} -755.959i q^{97} +(868.663 - 431.990i) q^{98} +(-4.48436 + 235.273i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 80 q + 28 q^{4} + 64 q^{7} + 104 q^{9} - 8 q^{15} - 892 q^{16} + 692 q^{18} + 128 q^{22} - 976 q^{25} + 612 q^{28} - 332 q^{30} + 1544 q^{36} + 568 q^{39} + 780 q^{42} + 208 q^{46} - 4048 q^{49} - 1448 q^{57}+ \cdots - 2072 q^{88}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/168\mathbb{Z}\right)^\times\).

\(n\) \(73\) \(85\) \(113\) \(127\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.81762 0.246982i −0.996180 0.0873213i
\(3\) −3.70908 + 3.63906i −0.713813 + 0.700337i
\(4\) 7.87800 + 1.39180i 0.984750 + 0.173975i
\(5\) 9.02015i 0.806787i −0.915027 0.403393i \(-0.867831\pi\)
0.915027 0.403393i \(-0.132169\pi\)
\(6\) 11.3496 9.33741i 0.772240 0.635331i
\(7\) 5.01951 + 17.8271i 0.271028 + 0.962571i
\(8\) −21.8535 5.86730i −0.965797 0.259301i
\(9\) 0.514533 26.9951i 0.0190568 0.999818i
\(10\) −2.22781 + 25.4154i −0.0704496 + 0.803705i
\(11\) −8.71540 −0.238890 −0.119445 0.992841i \(-0.538112\pi\)
−0.119445 + 0.992841i \(0.538112\pi\)
\(12\) −34.2850 + 23.5062i −0.824768 + 0.565471i
\(13\) −52.4602 −1.11922 −0.559609 0.828757i \(-0.689049\pi\)
−0.559609 + 0.828757i \(0.689049\pi\)
\(14\) −9.74012 51.4697i −0.185940 0.982561i
\(15\) 32.8248 + 33.4564i 0.565022 + 0.575895i
\(16\) 60.1258 + 21.9293i 0.939465 + 0.342645i
\(17\) −69.0503 −0.985127 −0.492563 0.870277i \(-0.663940\pi\)
−0.492563 + 0.870277i \(0.663940\pi\)
\(18\) −8.11706 + 75.9349i −0.106289 + 0.994335i
\(19\) 129.296 1.56119 0.780595 0.625037i \(-0.214916\pi\)
0.780595 + 0.625037i \(0.214916\pi\)
\(20\) 12.5543 71.0607i 0.140361 0.794483i
\(21\) −83.4915 47.8557i −0.867587 0.497285i
\(22\) 24.5567 + 2.15254i 0.237978 + 0.0208602i
\(23\) 177.747i 1.61143i −0.592307 0.805713i \(-0.701783\pi\)
0.592307 0.805713i \(-0.298217\pi\)
\(24\) 102.408 57.7638i 0.870996 0.491291i
\(25\) 43.6369 0.349095
\(26\) 147.813 + 12.9567i 1.11494 + 0.0977315i
\(27\) 96.3282 + 101.999i 0.686607 + 0.727029i
\(28\) 14.7319 + 147.428i 0.0994310 + 0.995044i
\(29\) 247.372 1.58399 0.791996 0.610526i \(-0.209042\pi\)
0.791996 + 0.610526i \(0.209042\pi\)
\(30\) −84.2249 102.375i −0.512576 0.623033i
\(31\) 52.1678i 0.302245i −0.988515 0.151123i \(-0.951711\pi\)
0.988515 0.151123i \(-0.0482888\pi\)
\(32\) −163.996 76.6384i −0.905956 0.423371i
\(33\) 32.3261 31.7158i 0.170523 0.167304i
\(34\) 194.558 + 17.0542i 0.981364 + 0.0860225i
\(35\) 160.803 45.2767i 0.776590 0.218662i
\(36\) 41.6254 211.951i 0.192710 0.981256i
\(37\) 299.492i 1.33071i −0.746528 0.665354i \(-0.768281\pi\)
0.746528 0.665354i \(-0.231719\pi\)
\(38\) −364.308 31.9338i −1.55523 0.136325i
\(39\) 194.579 190.905i 0.798912 0.783829i
\(40\) −52.9239 + 197.122i −0.209200 + 0.779192i
\(41\) 185.754 0.707559 0.353780 0.935329i \(-0.384896\pi\)
0.353780 + 0.935329i \(0.384896\pi\)
\(42\) 223.428 + 155.460i 0.820850 + 0.571144i
\(43\) 330.296i 1.17139i −0.810532 0.585695i \(-0.800822\pi\)
0.810532 0.585695i \(-0.199178\pi\)
\(44\) −68.6599 12.1301i −0.235247 0.0415610i
\(45\) −243.500 4.64117i −0.806640 0.0153748i
\(46\) −43.9002 + 500.824i −0.140712 + 1.60527i
\(47\) 81.9844 0.254440 0.127220 0.991875i \(-0.459395\pi\)
0.127220 + 0.991875i \(0.459395\pi\)
\(48\) −302.813 + 137.464i −0.910569 + 0.413358i
\(49\) −292.609 + 178.966i −0.853088 + 0.521768i
\(50\) −122.952 10.7775i −0.347762 0.0304834i
\(51\) 256.113 251.278i 0.703196 0.689920i
\(52\) −413.281 73.0142i −1.10215 0.194716i
\(53\) 238.316 0.617646 0.308823 0.951120i \(-0.400065\pi\)
0.308823 + 0.951120i \(0.400065\pi\)
\(54\) −246.225 311.187i −0.620499 0.784207i
\(55\) 78.6142i 0.192733i
\(56\) −5.09695 419.035i −0.0121626 0.999926i
\(57\) −479.570 + 470.517i −1.11440 + 1.09336i
\(58\) −697.001 61.0964i −1.57794 0.138316i
\(59\) 198.589i 0.438204i −0.975702 0.219102i \(-0.929687\pi\)
0.975702 0.219102i \(-0.0703128\pi\)
\(60\) 212.029 + 309.256i 0.456214 + 0.665412i
\(61\) 157.196 0.329950 0.164975 0.986298i \(-0.447246\pi\)
0.164975 + 0.986298i \(0.447246\pi\)
\(62\) −12.8845 + 146.989i −0.0263924 + 0.301091i
\(63\) 483.826 126.329i 0.967562 0.252635i
\(64\) 443.150 + 256.442i 0.865526 + 0.500863i
\(65\) 473.198i 0.902970i
\(66\) −98.9160 + 81.3793i −0.184481 + 0.151774i
\(67\) 527.615i 0.962066i 0.876703 + 0.481033i \(0.159738\pi\)
−0.876703 + 0.481033i \(0.840262\pi\)
\(68\) −543.978 96.1044i −0.970103 0.171388i
\(69\) 646.831 + 659.277i 1.12854 + 1.15026i
\(70\) −464.264 + 87.8573i −0.792717 + 0.150014i
\(71\) 245.212i 0.409878i 0.978775 + 0.204939i \(0.0656996\pi\)
−0.978775 + 0.204939i \(0.934300\pi\)
\(72\) −169.633 + 586.918i −0.277658 + 0.960680i
\(73\) 745.090i 1.19461i −0.802016 0.597303i \(-0.796239\pi\)
0.802016 0.597303i \(-0.203761\pi\)
\(74\) −73.9691 + 843.855i −0.116199 + 1.32562i
\(75\) −161.853 + 158.797i −0.249188 + 0.244484i
\(76\) 1018.60 + 179.955i 1.53738 + 0.271609i
\(77\) −43.7470 155.370i −0.0647459 0.229949i
\(78\) −595.400 + 489.842i −0.864305 + 0.711073i
\(79\) 598.112 0.851808 0.425904 0.904768i \(-0.359956\pi\)
0.425904 + 0.904768i \(0.359956\pi\)
\(80\) 197.805 542.343i 0.276441 0.757948i
\(81\) −728.471 27.7798i −0.999274 0.0381067i
\(82\) −523.385 45.8779i −0.704857 0.0617850i
\(83\) 3.93633i 0.00520564i −0.999997 0.00260282i \(-0.999171\pi\)
0.999997 0.00260282i \(-0.000828505\pi\)
\(84\) −591.140 493.211i −0.767841 0.640640i
\(85\) 622.844i 0.794787i
\(86\) −81.5772 + 930.651i −0.102287 + 1.16691i
\(87\) −917.522 + 900.200i −1.13067 + 1.10933i
\(88\) 190.462 + 51.1359i 0.230719 + 0.0619443i
\(89\) −1258.73 −1.49916 −0.749579 0.661915i \(-0.769744\pi\)
−0.749579 + 0.661915i \(0.769744\pi\)
\(90\) 684.944 + 73.2171i 0.802216 + 0.0857529i
\(91\) −263.324 935.211i −0.303339 1.07733i
\(92\) 247.389 1400.29i 0.280348 1.58685i
\(93\) 189.841 + 193.494i 0.211674 + 0.215747i
\(94\) −231.001 20.2487i −0.253468 0.0222180i
\(95\) 1166.27i 1.25955i
\(96\) 887.164 312.532i 0.943185 0.332267i
\(97\) 755.959i 0.791300i −0.918401 0.395650i \(-0.870519\pi\)
0.918401 0.395650i \(-0.129481\pi\)
\(98\) 868.663 431.990i 0.895390 0.445282i
\(99\) −4.48436 + 235.273i −0.00455248 + 0.238847i
\(100\) 343.771 + 60.7340i 0.343771 + 0.0607340i
\(101\) 1045.75i 1.03026i −0.857113 0.515128i \(-0.827744\pi\)
0.857113 0.515128i \(-0.172256\pi\)
\(102\) −783.691 + 644.751i −0.760754 + 0.625881i
\(103\) 1520.53i 1.45458i −0.686328 0.727292i \(-0.740779\pi\)
0.686328 0.727292i \(-0.259221\pi\)
\(104\) 1146.44 + 307.800i 1.08094 + 0.290214i
\(105\) −431.666 + 753.106i −0.401203 + 0.699958i
\(106\) −671.485 58.8597i −0.615287 0.0539336i
\(107\) −283.267 −0.255930 −0.127965 0.991779i \(-0.540844\pi\)
−0.127965 + 0.991779i \(0.540844\pi\)
\(108\) 616.911 + 937.621i 0.549651 + 0.835395i
\(109\) 1180.64i 1.03747i −0.854935 0.518736i \(-0.826403\pi\)
0.854935 0.518736i \(-0.173597\pi\)
\(110\) 19.4163 221.505i 0.0168297 0.191997i
\(111\) 1089.87 + 1110.84i 0.931943 + 0.949876i
\(112\) −89.1327 + 1181.94i −0.0751986 + 0.997169i
\(113\) 1867.56i 1.55473i 0.629047 + 0.777367i \(0.283445\pi\)
−0.629047 + 0.777367i \(0.716555\pi\)
\(114\) 1467.46 1207.29i 1.20561 0.991872i
\(115\) −1603.30 −1.30008
\(116\) 1948.80 + 344.293i 1.55984 + 0.275576i
\(117\) −26.9925 + 1416.17i −0.0213287 + 1.11901i
\(118\) −49.0478 + 559.548i −0.0382645 + 0.436530i
\(119\) −346.598 1230.96i −0.266997 0.948255i
\(120\) −521.038 923.733i −0.396367 0.702708i
\(121\) −1255.04 −0.942932
\(122\) −442.920 38.8247i −0.328690 0.0288116i
\(123\) −688.977 + 675.970i −0.505065 + 0.495530i
\(124\) 72.6073 410.978i 0.0525833 0.297636i
\(125\) 1521.13i 1.08843i
\(126\) −1394.44 + 236.453i −0.985926 + 0.167182i
\(127\) 960.566 0.671153 0.335577 0.942013i \(-0.391069\pi\)
0.335577 + 0.942013i \(0.391069\pi\)
\(128\) −1185.29 832.007i −0.818484 0.574529i
\(129\) 1201.97 + 1225.10i 0.820367 + 0.836152i
\(130\) 116.871 1333.29i 0.0788485 0.899521i
\(131\) 1477.86i 0.985659i 0.870126 + 0.492829i \(0.164037\pi\)
−0.870126 + 0.492829i \(0.835963\pi\)
\(132\) 298.807 204.866i 0.197029 0.135085i
\(133\) 649.004 + 2304.97i 0.423126 + 1.50276i
\(134\) 130.311 1486.62i 0.0840088 0.958391i
\(135\) 920.050 868.895i 0.586557 0.553945i
\(136\) 1508.99 + 405.139i 0.951432 + 0.255444i
\(137\) 344.829i 0.215042i −0.994203 0.107521i \(-0.965709\pi\)
0.994203 0.107521i \(-0.0342913\pi\)
\(138\) −1659.70 2017.35i −1.02379 1.24441i
\(139\) 1156.15 0.705489 0.352745 0.935720i \(-0.385248\pi\)
0.352745 + 0.935720i \(0.385248\pi\)
\(140\) 1329.82 132.884i 0.802789 0.0802196i
\(141\) −304.087 + 298.346i −0.181622 + 0.178193i
\(142\) 60.5629 690.915i 0.0357911 0.408312i
\(143\) 457.211 0.267370
\(144\) 622.919 1611.82i 0.360486 0.932765i
\(145\) 2231.33i 1.27794i
\(146\) −184.024 + 2099.38i −0.104315 + 1.19004i
\(147\) 434.042 1728.62i 0.243532 0.969893i
\(148\) 416.834 2359.40i 0.231510 1.31041i
\(149\) −1849.45 −1.01687 −0.508433 0.861102i \(-0.669775\pi\)
−0.508433 + 0.861102i \(0.669775\pi\)
\(150\) 495.260 407.456i 0.269585 0.221791i
\(151\) 2628.03 1.41633 0.708167 0.706045i \(-0.249523\pi\)
0.708167 + 0.706045i \(0.249523\pi\)
\(152\) −2825.57 758.620i −1.50779 0.404817i
\(153\) −35.5287 + 1864.02i −0.0187734 + 0.984948i
\(154\) 84.8890 + 448.579i 0.0444192 + 0.234724i
\(155\) −470.561 −0.243848
\(156\) 1798.60 1233.14i 0.923095 0.632885i
\(157\) −1909.32 −0.970577 −0.485288 0.874354i \(-0.661285\pi\)
−0.485288 + 0.874354i \(0.661285\pi\)
\(158\) −1685.25 147.723i −0.848554 0.0743809i
\(159\) −883.933 + 867.246i −0.440883 + 0.432560i
\(160\) −691.289 + 1479.27i −0.341570 + 0.730914i
\(161\) 3168.71 892.202i 1.55111 0.436741i
\(162\) 2045.69 + 258.192i 0.992129 + 0.125219i
\(163\) 3458.92i 1.66211i 0.556191 + 0.831054i \(0.312262\pi\)
−0.556191 + 0.831054i \(0.687738\pi\)
\(164\) 1463.37 + 258.533i 0.696769 + 0.123098i
\(165\) −286.081 291.586i −0.134978 0.137575i
\(166\) −0.972202 + 11.0911i −0.000454563 + 0.00518576i
\(167\) 2306.06 1.06855 0.534277 0.845310i \(-0.320584\pi\)
0.534277 + 0.845310i \(0.320584\pi\)
\(168\) 1543.80 + 1535.68i 0.708967 + 0.705242i
\(169\) 555.068 0.252648
\(170\) 153.831 1754.94i 0.0694018 0.791751i
\(171\) 66.5273 3490.37i 0.0297513 1.56091i
\(172\) 459.708 2602.08i 0.203793 1.15353i
\(173\) 18.1258i 0.00796576i 0.999992 + 0.00398288i \(0.00126779\pi\)
−0.999992 + 0.00398288i \(0.998732\pi\)
\(174\) 2807.56 2309.81i 1.22322 1.00636i
\(175\) 219.036 + 777.918i 0.0946146 + 0.336029i
\(176\) −524.020 191.122i −0.224429 0.0818544i
\(177\) 722.675 + 736.581i 0.306890 + 0.312796i
\(178\) 3546.63 + 310.883i 1.49343 + 0.130908i
\(179\) −2596.01 −1.08400 −0.541998 0.840380i \(-0.682332\pi\)
−0.541998 + 0.840380i \(0.682332\pi\)
\(180\) −1911.83 375.467i −0.791664 0.155476i
\(181\) −1200.67 −0.493069 −0.246534 0.969134i \(-0.579292\pi\)
−0.246534 + 0.969134i \(0.579292\pi\)
\(182\) 510.968 + 2700.11i 0.208107 + 1.09970i
\(183\) −583.054 + 572.047i −0.235522 + 0.231076i
\(184\) −1042.89 + 3884.39i −0.417843 + 1.55631i
\(185\) −2701.46 −1.07360
\(186\) −487.112 592.081i −0.192026 0.233406i
\(187\) 601.801 0.235337
\(188\) 645.873 + 114.106i 0.250559 + 0.0442662i
\(189\) −1334.83 + 2229.24i −0.513728 + 0.857953i
\(190\) −288.048 + 3286.11i −0.109985 + 1.25474i
\(191\) 1778.65i 0.673816i 0.941538 + 0.336908i \(0.109381\pi\)
−0.941538 + 0.336908i \(0.890619\pi\)
\(192\) −2576.88 + 661.483i −0.968597 + 0.248638i
\(193\) 151.059 0.0563393 0.0281697 0.999603i \(-0.491032\pi\)
0.0281697 + 0.999603i \(0.491032\pi\)
\(194\) −186.708 + 2130.01i −0.0690973 + 0.788277i
\(195\) −1722.00 1755.13i −0.632383 0.644551i
\(196\) −2554.26 + 1002.64i −0.930853 + 0.365394i
\(197\) −346.401 −0.125280 −0.0626398 0.998036i \(-0.519952\pi\)
−0.0626398 + 0.998036i \(0.519952\pi\)
\(198\) 70.7434 661.803i 0.0253915 0.237537i
\(199\) 3780.44i 1.34668i −0.739335 0.673338i \(-0.764860\pi\)
0.739335 0.673338i \(-0.235140\pi\)
\(200\) −953.618 256.031i −0.337155 0.0905206i
\(201\) −1920.02 1956.97i −0.673770 0.686735i
\(202\) −258.281 + 2946.53i −0.0899633 + 1.02632i
\(203\) 1241.69 + 4409.92i 0.429306 + 1.52471i
\(204\) 2367.39 1623.11i 0.812501 0.557060i
\(205\) 1675.53i 0.570850i
\(206\) −375.543 + 4284.28i −0.127016 + 1.44903i
\(207\) −4798.29 91.4567i −1.61113 0.0307086i
\(208\) −3154.21 1150.41i −1.05147 0.383494i
\(209\) −1126.87 −0.372953
\(210\) 1402.28 2015.35i 0.460791 0.662251i
\(211\) 2168.92i 0.707652i −0.935311 0.353826i \(-0.884881\pi\)
0.935311 0.353826i \(-0.115119\pi\)
\(212\) 1877.45 + 331.689i 0.608227 + 0.107455i
\(213\) −892.341 909.511i −0.287053 0.292576i
\(214\) 798.140 + 69.9618i 0.254952 + 0.0223481i
\(215\) −2979.32 −0.945061
\(216\) −1506.65 2794.23i −0.474603 0.880200i
\(217\) 929.998 261.857i 0.290933 0.0819169i
\(218\) −291.596 + 3326.59i −0.0905933 + 1.03351i
\(219\) 2711.43 + 2763.60i 0.836626 + 0.852725i
\(220\) −109.416 + 619.323i −0.0335309 + 0.189794i
\(221\) 3622.39 1.10257
\(222\) −2796.48 3399.10i −0.845439 1.02763i
\(223\) 3892.25i 1.16881i 0.811462 + 0.584405i \(0.198672\pi\)
−0.811462 + 0.584405i \(0.801328\pi\)
\(224\) 543.060 3308.25i 0.161985 0.986793i
\(225\) 22.4526 1177.98i 0.00665263 0.349032i
\(226\) 461.253 5262.07i 0.135761 1.54880i
\(227\) 2544.85i 0.744085i 0.928216 + 0.372043i \(0.121342\pi\)
−0.928216 + 0.372043i \(0.878658\pi\)
\(228\) −4432.92 + 3039.26i −1.28762 + 0.882807i
\(229\) 775.951 0.223914 0.111957 0.993713i \(-0.464288\pi\)
0.111957 + 0.993713i \(0.464288\pi\)
\(230\) 4517.50 + 395.987i 1.29511 + 0.113524i
\(231\) 727.661 + 417.082i 0.207258 + 0.118796i
\(232\) −5405.94 1451.40i −1.52982 0.410730i
\(233\) 475.828i 0.133788i 0.997760 + 0.0668938i \(0.0213089\pi\)
−0.997760 + 0.0668938i \(0.978691\pi\)
\(234\) 425.822 3983.56i 0.118961 1.11288i
\(235\) 739.512i 0.205278i
\(236\) 276.396 1564.48i 0.0762367 0.431521i
\(237\) −2218.44 + 2176.56i −0.608031 + 0.596552i
\(238\) 672.558 + 3554.00i 0.183174 + 0.967947i
\(239\) 295.661i 0.0800196i 0.999199 + 0.0400098i \(0.0127389\pi\)
−0.999199 + 0.0400098i \(0.987261\pi\)
\(240\) 1239.94 + 2731.42i 0.333492 + 0.734635i
\(241\) 3284.88i 0.877998i 0.898488 + 0.438999i \(0.144667\pi\)
−0.898488 + 0.438999i \(0.855333\pi\)
\(242\) 3536.23 + 309.973i 0.939330 + 0.0823380i
\(243\) 2803.05 2547.91i 0.739982 0.672627i
\(244\) 1238.39 + 218.787i 0.324918 + 0.0574032i
\(245\) 1614.30 + 2639.38i 0.420955 + 0.688260i
\(246\) 2108.23 1734.46i 0.546406 0.449534i
\(247\) −6782.90 −1.74731
\(248\) −306.084 + 1140.05i −0.0783724 + 0.291908i
\(249\) 14.3245 + 14.6002i 0.00364570 + 0.00371585i
\(250\) −375.692 + 4285.97i −0.0950433 + 1.08427i
\(251\) 1029.64i 0.258926i −0.991584 0.129463i \(-0.958675\pi\)
0.991584 0.129463i \(-0.0413253\pi\)
\(252\) 3987.41 321.833i 0.996759 0.0804506i
\(253\) 1549.13i 0.384953i
\(254\) −2706.51 237.242i −0.668589 0.0586059i
\(255\) −2266.56 2310.18i −0.556619 0.567329i
\(256\) 3134.22 + 2637.03i 0.765189 + 0.643805i
\(257\) 2451.85 0.595106 0.297553 0.954705i \(-0.403830\pi\)
0.297553 + 0.954705i \(0.403830\pi\)
\(258\) −3084.11 3748.72i −0.744219 0.904594i
\(259\) 5339.06 1503.30i 1.28090 0.360659i
\(260\) −658.599 + 3727.86i −0.157095 + 0.889200i
\(261\) 127.281 6677.83i 0.0301858 1.58371i
\(262\) 365.005 4164.05i 0.0860690 0.981894i
\(263\) 4396.49i 1.03080i 0.856951 + 0.515398i \(0.172356\pi\)
−0.856951 + 0.515398i \(0.827644\pi\)
\(264\) −892.524 + 503.434i −0.208072 + 0.117365i
\(265\) 2149.65i 0.498308i
\(266\) −1259.36 6654.84i −0.290287 1.53396i
\(267\) 4668.73 4580.59i 1.07012 1.04992i
\(268\) −734.336 + 4156.55i −0.167376 + 0.947394i
\(269\) 3402.69i 0.771248i −0.922656 0.385624i \(-0.873986\pi\)
0.922656 0.385624i \(-0.126014\pi\)
\(270\) −2806.95 + 2220.98i −0.632688 + 0.500610i
\(271\) 4179.66i 0.936887i −0.883493 0.468444i \(-0.844815\pi\)
0.883493 0.468444i \(-0.155185\pi\)
\(272\) −4151.70 1514.22i −0.925492 0.337548i
\(273\) 4379.98 + 2510.52i 0.971019 + 0.556570i
\(274\) −85.1666 + 971.600i −0.0187778 + 0.214221i
\(275\) −380.313 −0.0833954
\(276\) 4178.15 + 6094.05i 0.911214 + 1.32905i
\(277\) 2605.51i 0.565163i −0.959243 0.282581i \(-0.908809\pi\)
0.959243 0.282581i \(-0.0911907\pi\)
\(278\) −3257.58 285.547i −0.702794 0.0616042i
\(279\) −1408.27 26.8421i −0.302190 0.00575983i
\(280\) −3779.76 + 45.9752i −0.806727 + 0.00981266i
\(281\) 7988.99i 1.69603i −0.529976 0.848013i \(-0.677799\pi\)
0.529976 0.848013i \(-0.322201\pi\)
\(282\) 930.488 765.523i 0.196488 0.161653i
\(283\) −3622.36 −0.760873 −0.380437 0.924807i \(-0.624226\pi\)
−0.380437 + 0.924807i \(0.624226\pi\)
\(284\) −341.287 + 1931.78i −0.0713087 + 0.403627i
\(285\) 4244.13 + 4325.79i 0.882107 + 0.899081i
\(286\) −1288.25 112.923i −0.266349 0.0233471i
\(287\) 932.395 + 3311.45i 0.191768 + 0.681077i
\(288\) −2153.24 + 4387.64i −0.440559 + 0.897724i
\(289\) −145.058 −0.0295254
\(290\) −551.098 + 6287.05i −0.111592 + 1.27306i
\(291\) 2750.98 + 2803.91i 0.554176 + 0.564840i
\(292\) 1037.02 5869.82i 0.207832 1.17639i
\(293\) 8260.81i 1.64710i −0.567241 0.823552i \(-0.691989\pi\)
0.567241 0.823552i \(-0.308011\pi\)
\(294\) −1649.90 + 4763.40i −0.327294 + 0.944923i
\(295\) −1791.30 −0.353537
\(296\) −1757.21 + 6544.94i −0.345053 + 1.28519i
\(297\) −839.539 888.965i −0.164024 0.173680i
\(298\) 5211.06 + 456.781i 1.01298 + 0.0887940i
\(299\) 9324.63i 1.80354i
\(300\) −1496.09 + 1025.74i −0.287923 + 0.197403i
\(301\) 5888.22 1657.93i 1.12755 0.317479i
\(302\) −7404.81 649.076i −1.41092 0.123676i
\(303\) 3805.54 + 3878.77i 0.721527 + 0.735410i
\(304\) 7774.04 + 2835.37i 1.46668 + 0.534933i
\(305\) 1417.94i 0.266199i
\(306\) 560.485 5243.33i 0.104709 0.979546i
\(307\) −6375.65 −1.18527 −0.592635 0.805471i \(-0.701912\pi\)
−0.592635 + 0.805471i \(0.701912\pi\)
\(308\) −128.394 1284.89i −0.0237531 0.237706i
\(309\) 5533.29 + 5639.76i 1.01870 + 1.03830i
\(310\) 1325.86 + 116.220i 0.242916 + 0.0212931i
\(311\) −3566.99 −0.650371 −0.325186 0.945650i \(-0.605427\pi\)
−0.325186 + 0.945650i \(0.605427\pi\)
\(312\) −5372.33 + 3030.30i −0.974834 + 0.549861i
\(313\) 2364.18i 0.426936i 0.976950 + 0.213468i \(0.0684760\pi\)
−0.976950 + 0.213468i \(0.931524\pi\)
\(314\) 5379.75 + 471.568i 0.966870 + 0.0847520i
\(315\) −1139.51 4364.19i −0.203823 0.780616i
\(316\) 4711.92 + 832.454i 0.838818 + 0.148194i
\(317\) 5296.44 0.938415 0.469207 0.883088i \(-0.344540\pi\)
0.469207 + 0.883088i \(0.344540\pi\)
\(318\) 2704.78 2225.26i 0.476971 0.392409i
\(319\) −2155.94 −0.378400
\(320\) 2313.14 3997.28i 0.404090 0.698295i
\(321\) 1050.66 1030.83i 0.182686 0.179237i
\(322\) −9148.58 + 1731.28i −1.58332 + 0.299628i
\(323\) −8927.95 −1.53797
\(324\) −5700.23 1232.74i −0.977405 0.211375i
\(325\) −2289.20 −0.390713
\(326\) 854.291 9745.94i 0.145137 1.65576i
\(327\) 4296.40 + 4379.07i 0.726579 + 0.740560i
\(328\) −4059.38 1089.88i −0.683359 0.183471i
\(329\) 411.522 + 1461.54i 0.0689602 + 0.244916i
\(330\) 734.053 + 892.237i 0.122449 + 0.148836i
\(331\) 664.908i 0.110413i −0.998475 0.0552064i \(-0.982418\pi\)
0.998475 0.0552064i \(-0.0175817\pi\)
\(332\) 5.47860 31.0104i 0.000905654 0.00512626i
\(333\) −8084.81 154.099i −1.33047 0.0253590i
\(334\) −6497.61 569.555i −1.06447 0.0933074i
\(335\) 4759.17 0.776182
\(336\) −3970.55 4708.27i −0.644676 0.764456i
\(337\) 8618.15 1.39306 0.696529 0.717529i \(-0.254727\pi\)
0.696529 + 0.717529i \(0.254727\pi\)
\(338\) −1563.97 137.092i −0.251683 0.0220615i
\(339\) −6796.15 6926.92i −1.08884 1.10979i
\(340\) −866.876 + 4906.76i −0.138273 + 0.782667i
\(341\) 454.663i 0.0722034i
\(342\) −1049.51 + 9818.10i −0.165938 + 1.55235i
\(343\) −4659.20 4318.04i −0.733449 0.679744i
\(344\) −1937.95 + 7218.13i −0.303742 + 1.13132i
\(345\) 5946.78 5834.51i 0.928011 0.910491i
\(346\) 4.47673 51.0716i 0.000695580 0.00793533i
\(347\) 11525.2 1.78301 0.891507 0.453006i \(-0.149648\pi\)
0.891507 + 0.453006i \(0.149648\pi\)
\(348\) −8481.14 + 5814.77i −1.30643 + 0.895702i
\(349\) −232.968 −0.0357320 −0.0178660 0.999840i \(-0.505687\pi\)
−0.0178660 + 0.999840i \(0.505687\pi\)
\(350\) −425.029 2245.98i −0.0649107 0.343007i
\(351\) −5053.39 5350.90i −0.768462 0.813704i
\(352\) 1429.29 + 667.934i 0.216424 + 0.101139i
\(353\) 10995.6 1.65789 0.828944 0.559331i \(-0.188942\pi\)
0.828944 + 0.559331i \(0.188942\pi\)
\(354\) −1854.30 2253.90i −0.278404 0.338399i
\(355\) 2211.85 0.330684
\(356\) −9916.27 1751.90i −1.47630 0.260817i
\(357\) 5765.11 + 3304.45i 0.854683 + 0.489888i
\(358\) 7314.59 + 641.168i 1.07986 + 0.0946559i
\(359\) 3732.36i 0.548709i −0.961629 0.274354i \(-0.911536\pi\)
0.961629 0.274354i \(-0.0884642\pi\)
\(360\) 5294.09 + 1530.11i 0.775064 + 0.224011i
\(361\) 9858.53 1.43731
\(362\) 3383.05 + 296.545i 0.491185 + 0.0430554i
\(363\) 4655.05 4567.17i 0.673076 0.660370i
\(364\) −772.838 7734.09i −0.111285 1.11367i
\(365\) −6720.83 −0.963792
\(366\) 1784.11 1467.81i 0.254801 0.209627i
\(367\) 1187.53i 0.168907i 0.996427 + 0.0844534i \(0.0269144\pi\)
−0.996427 + 0.0844534i \(0.973086\pi\)
\(368\) 3897.86 10687.2i 0.552146 1.51388i
\(369\) 95.5768 5014.45i 0.0134838 0.707431i
\(370\) 7611.70 + 667.212i 1.06950 + 0.0937479i
\(371\) 1196.23 + 4248.48i 0.167399 + 0.594528i
\(372\) 1226.26 + 1788.57i 0.170911 + 0.249282i
\(373\) 4872.40i 0.676362i −0.941081 0.338181i \(-0.890188\pi\)
0.941081 0.338181i \(-0.109812\pi\)
\(374\) −1695.65 148.634i −0.234438 0.0205499i
\(375\) 5535.48 + 5641.99i 0.762269 + 0.776937i
\(376\) −1791.65 481.027i −0.245737 0.0659763i
\(377\) −12977.2 −1.77283
\(378\) 4311.63 5951.47i 0.586683 0.809817i
\(379\) 3969.71i 0.538022i −0.963137 0.269011i \(-0.913303\pi\)
0.963137 0.269011i \(-0.0866967\pi\)
\(380\) 1623.22 9187.89i 0.219130 1.24034i
\(381\) −3562.82 + 3495.55i −0.479078 + 0.470033i
\(382\) 439.295 5011.58i 0.0588385 0.671242i
\(383\) 2981.45 0.397768 0.198884 0.980023i \(-0.436268\pi\)
0.198884 + 0.980023i \(0.436268\pi\)
\(384\) 7424.06 1227.37i 0.986608 0.163109i
\(385\) −1401.46 + 394.605i −0.185520 + 0.0522361i
\(386\) −425.628 37.3089i −0.0561241 0.00491962i
\(387\) −8916.38 169.949i −1.17118 0.0223229i
\(388\) 1052.15 5955.45i 0.137667 0.779232i
\(389\) 477.774 0.0622728 0.0311364 0.999515i \(-0.490087\pi\)
0.0311364 + 0.999515i \(0.490087\pi\)
\(390\) 4418.45 + 5370.60i 0.573684 + 0.697310i
\(391\) 12273.5i 1.58746i
\(392\) 7444.58 2194.21i 0.959204 0.282715i
\(393\) −5378.02 5481.50i −0.690293 0.703576i
\(394\) 976.029 + 85.5549i 0.124801 + 0.0109396i
\(395\) 5395.06i 0.687227i
\(396\) −362.782 + 1847.24i −0.0460365 + 0.234412i
\(397\) 6740.60 0.852143 0.426072 0.904689i \(-0.359897\pi\)
0.426072 + 0.904689i \(0.359897\pi\)
\(398\) −933.701 + 10651.9i −0.117593 + 1.34153i
\(399\) −10795.1 6187.57i −1.35447 0.776356i
\(400\) 2623.70 + 956.925i 0.327963 + 0.119616i
\(401\) 10739.9i 1.33746i −0.743504 0.668732i \(-0.766837\pi\)
0.743504 0.668732i \(-0.233163\pi\)
\(402\) 4926.56 + 5988.20i 0.611230 + 0.742946i
\(403\) 2736.73i 0.338278i
\(404\) 1455.48 8238.41i 0.179239 1.01455i
\(405\) −250.578 + 6570.91i −0.0307440 + 0.806201i
\(406\) −2409.43 12732.2i −0.294527 1.55637i
\(407\) 2610.19i 0.317893i
\(408\) −7071.28 + 3988.61i −0.858041 + 0.483984i
\(409\) 15374.7i 1.85875i 0.369139 + 0.929374i \(0.379653\pi\)
−0.369139 + 0.929374i \(0.620347\pi\)
\(410\) −413.826 + 4721.02i −0.0498473 + 0.568669i
\(411\) 1254.85 + 1279.00i 0.150602 + 0.153500i
\(412\) 2116.28 11978.7i 0.253062 1.43240i
\(413\) 3540.25 996.817i 0.421803 0.118766i
\(414\) 13497.2 + 1442.78i 1.60230 + 0.171277i
\(415\) −35.5063 −0.00419984
\(416\) 8603.24 + 4020.46i 1.01396 + 0.473844i
\(417\) −4288.23 + 4207.28i −0.503587 + 0.494080i
\(418\) 3175.09 + 278.316i 0.371528 + 0.0325667i
\(419\) 1812.00i 0.211269i 0.994405 + 0.105635i \(0.0336874\pi\)
−0.994405 + 0.105635i \(0.966313\pi\)
\(420\) −4448.84 + 5332.17i −0.516860 + 0.619484i
\(421\) 1588.18i 0.183855i 0.995766 + 0.0919276i \(0.0293028\pi\)
−0.995766 + 0.0919276i \(0.970697\pi\)
\(422\) −535.684 + 6111.20i −0.0617931 + 0.704949i
\(423\) 42.1837 2213.18i 0.00484880 0.254393i
\(424\) −5208.04 1398.27i −0.596520 0.160156i
\(425\) −3013.14 −0.343903
\(426\) 2289.65 + 2783.05i 0.260408 + 0.316524i
\(427\) 789.049 + 2802.35i 0.0894257 + 0.317600i
\(428\) −2231.58 394.252i −0.252027 0.0445255i
\(429\) −1695.83 + 1663.82i −0.190852 + 0.187249i
\(430\) 8394.61 + 735.839i 0.941451 + 0.0825240i
\(431\) 2266.42i 0.253294i −0.991948 0.126647i \(-0.959578\pi\)
0.991948 0.126647i \(-0.0404216\pi\)
\(432\) 3555.04 + 8245.20i 0.395930 + 0.918281i
\(433\) 12900.1i 1.43173i −0.698238 0.715865i \(-0.746032\pi\)
0.698238 0.715865i \(-0.253968\pi\)
\(434\) −2685.06 + 508.120i −0.296975 + 0.0561994i
\(435\) 8119.94 + 8276.18i 0.894992 + 0.912213i
\(436\) 1643.21 9301.05i 0.180495 1.02165i
\(437\) 22982.0i 2.51574i
\(438\) −6957.22 8456.45i −0.758970 0.922523i
\(439\) 3778.78i 0.410823i 0.978676 + 0.205412i \(0.0658533\pi\)
−0.978676 + 0.205412i \(0.934147\pi\)
\(440\) 461.253 1717.99i 0.0499759 0.186141i
\(441\) 4680.66 + 7991.09i 0.505416 + 0.862876i
\(442\) −10206.5 894.664i −1.09836 0.0962779i
\(443\) −372.016 −0.0398985 −0.0199492 0.999801i \(-0.506350\pi\)
−0.0199492 + 0.999801i \(0.506350\pi\)
\(444\) 7039.91 + 10268.1i 0.752476 + 1.09753i
\(445\) 11353.9i 1.20950i
\(446\) 961.316 10966.9i 0.102062 1.16434i
\(447\) 6859.76 6730.26i 0.725852 0.712149i
\(448\) −2347.22 + 9187.27i −0.247535 + 0.968879i
\(449\) 12340.3i 1.29705i 0.761192 + 0.648526i \(0.224614\pi\)
−0.761192 + 0.648526i \(0.775386\pi\)
\(450\) −354.203 + 3313.56i −0.0371051 + 0.347118i
\(451\) −1618.92 −0.169029
\(452\) −2599.27 + 14712.6i −0.270486 + 1.53102i
\(453\) −9747.58 + 9563.56i −1.01100 + 0.991910i
\(454\) 628.531 7170.42i 0.0649745 0.741243i
\(455\) −8435.74 + 2375.22i −0.869173 + 0.244730i
\(456\) 13240.9 7468.64i 1.35979 0.766998i
\(457\) −13249.9 −1.35625 −0.678124 0.734947i \(-0.737207\pi\)
−0.678124 + 0.734947i \(0.737207\pi\)
\(458\) −2186.34 191.646i −0.223058 0.0195524i
\(459\) −6651.49 7043.08i −0.676394 0.716216i
\(460\) −12630.8 2231.48i −1.28025 0.226181i
\(461\) 3328.58i 0.336285i 0.985763 + 0.168143i \(0.0537769\pi\)
−0.985763 + 0.168143i \(0.946223\pi\)
\(462\) −1947.26 1354.90i −0.196093 0.136441i
\(463\) 4155.03 0.417064 0.208532 0.978016i \(-0.433131\pi\)
0.208532 + 0.978016i \(0.433131\pi\)
\(464\) 14873.4 + 5424.68i 1.48811 + 0.542747i
\(465\) 1745.35 1712.40i 0.174061 0.170775i
\(466\) 117.521 1340.70i 0.0116825 0.133277i
\(467\) 497.911i 0.0493374i −0.999696 0.0246687i \(-0.992147\pi\)
0.999696 0.0246687i \(-0.00785309\pi\)
\(468\) −2183.67 + 11119.0i −0.215684 + 1.09824i
\(469\) −9405.83 + 2648.37i −0.926057 + 0.260747i
\(470\) −182.646 + 2083.67i −0.0179252 + 0.204494i
\(471\) 7081.83 6948.14i 0.692810 0.679731i
\(472\) −1165.18 + 4339.85i −0.113627 + 0.423216i
\(473\) 2878.66i 0.279833i
\(474\) 6788.31 5584.82i 0.657800 0.541179i
\(475\) 5642.09 0.545004
\(476\) −1017.24 10179.9i −0.0979521 0.980245i
\(477\) 122.622 6433.36i 0.0117703 0.617534i
\(478\) 73.0228 833.060i 0.00698742 0.0797140i
\(479\) −20052.8 −1.91281 −0.956406 0.292041i \(-0.905666\pi\)
−0.956406 + 0.292041i \(0.905666\pi\)
\(480\) −2819.08 8002.35i −0.268069 0.760949i
\(481\) 15711.4i 1.48935i
\(482\) 811.305 9255.54i 0.0766679 0.874644i
\(483\) −8506.21 + 14840.3i −0.801337 + 1.39805i
\(484\) −9887.22 1746.77i −0.928552 0.164047i
\(485\) −6818.87 −0.638410
\(486\) −8527.22 + 6486.74i −0.795890 + 0.605442i
\(487\) −5918.14 −0.550670 −0.275335 0.961348i \(-0.588789\pi\)
−0.275335 + 0.961348i \(0.588789\pi\)
\(488\) −3435.29 922.319i −0.318664 0.0855562i
\(489\) −12587.2 12829.4i −1.16404 1.18643i
\(490\) −3896.62 7835.48i −0.359248 0.722389i
\(491\) −2586.64 −0.237746 −0.118873 0.992909i \(-0.537928\pi\)
−0.118873 + 0.992909i \(0.537928\pi\)
\(492\) −6368.58 + 4366.37i −0.583573 + 0.400104i
\(493\) −17081.1 −1.56043
\(494\) 19111.7 + 1675.25i 1.74064 + 0.152577i
\(495\) 2122.20 + 40.4496i 0.192698 + 0.00367288i
\(496\) 1144.00 3136.63i 0.103563 0.283949i
\(497\) −4371.41 + 1230.84i −0.394537 + 0.111088i
\(498\) −36.7551 44.6756i −0.00330730 0.00402001i
\(499\) 18254.1i 1.63761i 0.574072 + 0.818805i \(0.305363\pi\)
−0.574072 + 0.818805i \(0.694637\pi\)
\(500\) 2117.11 11983.5i 0.189360 1.07183i
\(501\) −8553.37 + 8391.89i −0.762747 + 0.748347i
\(502\) −254.302 + 2901.14i −0.0226097 + 0.257937i
\(503\) 10858.4 0.962531 0.481265 0.876575i \(-0.340177\pi\)
0.481265 + 0.876575i \(0.340177\pi\)
\(504\) −11314.5 78.0147i −0.999976 0.00689494i
\(505\) −9432.81 −0.831197
\(506\) 382.608 4364.88i 0.0336146 0.383483i
\(507\) −2058.79 + 2019.92i −0.180343 + 0.176939i
\(508\) 7567.34 + 1336.92i 0.660918 + 0.116764i
\(509\) 5017.32i 0.436913i −0.975847 0.218456i \(-0.929898\pi\)
0.975847 0.218456i \(-0.0701022\pi\)
\(510\) 5815.75 + 7069.01i 0.504953 + 0.613767i
\(511\) 13282.8 3739.99i 1.14989 0.323772i
\(512\) −8179.74 8204.24i −0.706049 0.708163i
\(513\) 12454.9 + 13188.1i 1.07192 + 1.13503i
\(514\) −6908.39 605.562i −0.592832 0.0519654i
\(515\) −13715.4 −1.17354
\(516\) 7764.01 + 11324.2i 0.662386 + 0.966125i
\(517\) −714.527 −0.0607831
\(518\) −15414.8 + 2917.09i −1.30750 + 0.247431i
\(519\) −65.9607 67.2299i −0.00557871 0.00568606i
\(520\) 2776.40 10341.0i 0.234141 0.872085i
\(521\) 13237.4 1.11313 0.556564 0.830805i \(-0.312119\pi\)
0.556564 + 0.830805i \(0.312119\pi\)
\(522\) −2007.93 + 18784.2i −0.168362 + 1.57502i
\(523\) 17806.0 1.48872 0.744361 0.667777i \(-0.232754\pi\)
0.744361 + 0.667777i \(0.232754\pi\)
\(524\) −2056.89 + 11642.6i −0.171480 + 0.970627i
\(525\) −3643.31 2088.28i −0.302871 0.173600i
\(526\) 1085.85 12387.7i 0.0900104 1.02686i
\(527\) 3602.20i 0.297750i
\(528\) 2639.14 1198.05i 0.217526 0.0987471i
\(529\) −19426.9 −1.59669
\(530\) −530.924 + 6056.89i −0.0435129 + 0.496405i
\(531\) −5360.92 102.180i −0.438124 0.00835076i
\(532\) 1904.78 + 19061.9i 0.155231 + 1.55345i
\(533\) −9744.70 −0.791913
\(534\) −14286.0 + 11753.3i −1.15771 + 0.952461i
\(535\) 2555.11i 0.206481i
\(536\) 3095.68 11530.2i 0.249464 0.929160i
\(537\) 9628.82 9447.04i 0.773770 0.759162i
\(538\) −840.403 + 9587.50i −0.0673464 + 0.768302i
\(539\) 2550.20 1559.76i 0.203794 0.124645i
\(540\) 8457.48 5564.63i 0.673985 0.443451i
\(541\) 7729.85i 0.614292i 0.951662 + 0.307146i \(0.0993740\pi\)
−0.951662 + 0.307146i \(0.900626\pi\)
\(542\) −1032.30 + 11776.7i −0.0818102 + 0.933309i
\(543\) 4453.40 4369.32i 0.351959 0.345314i
\(544\) 11323.9 + 5291.90i 0.892482 + 0.417074i
\(545\) −10649.5 −0.837018
\(546\) −11721.1 8155.47i −0.918710 0.639234i
\(547\) 9563.57i 0.747548i 0.927520 + 0.373774i \(0.121936\pi\)
−0.927520 + 0.373774i \(0.878064\pi\)
\(548\) 479.935 2716.57i 0.0374121 0.211763i
\(549\) 80.8828 4243.53i 0.00628779 0.329890i
\(550\) 1071.58 + 93.9304i 0.0830768 + 0.00728219i
\(551\) 31984.3 2.47291
\(552\) −10267.3 18202.7i −0.791679 1.40354i
\(553\) 3002.23 + 10662.6i 0.230864 + 0.819926i
\(554\) −643.514 + 7341.35i −0.0493507 + 0.563004i
\(555\) 10019.9 9830.77i 0.766347 0.751880i
\(556\) 9108.11 + 1609.13i 0.694730 + 0.122738i
\(557\) 16797.4 1.27779 0.638894 0.769295i \(-0.279392\pi\)
0.638894 + 0.769295i \(0.279392\pi\)
\(558\) 3961.35 + 423.449i 0.300533 + 0.0321255i
\(559\) 17327.4i 1.31104i
\(560\) 10661.3 + 803.990i 0.804502 + 0.0606693i
\(561\) −2232.13 + 2189.99i −0.167986 + 0.164815i
\(562\) −1973.14 + 22510.0i −0.148099 + 1.68955i
\(563\) 15342.1i 1.14848i −0.818688 0.574239i \(-0.805298\pi\)
0.818688 0.574239i \(-0.194702\pi\)
\(564\) −2810.83 + 1927.14i −0.209854 + 0.143878i
\(565\) 16845.6 1.25434
\(566\) 10206.5 + 894.658i 0.757967 + 0.0664404i
\(567\) −3161.33 13125.9i −0.234151 0.972200i
\(568\) 1438.73 5358.74i 0.106282 0.395859i
\(569\) 23658.3i 1.74307i 0.490329 + 0.871537i \(0.336877\pi\)
−0.490329 + 0.871537i \(0.663123\pi\)
\(570\) −10890.0 13236.7i −0.800229 0.972673i
\(571\) 20556.7i 1.50661i −0.657673 0.753304i \(-0.728459\pi\)
0.657673 0.753304i \(-0.271541\pi\)
\(572\) 3601.91 + 636.348i 0.263293 + 0.0465158i
\(573\) −6472.62 6597.17i −0.471898 0.480978i
\(574\) −1809.27 9560.71i −0.131563 0.695220i
\(575\) 7756.32i 0.562541i
\(576\) 7150.69 11830.9i 0.517266 0.855824i
\(577\) 1404.98i 0.101369i 0.998715 + 0.0506847i \(0.0161404\pi\)
−0.998715 + 0.0506847i \(0.983860\pi\)
\(578\) 408.720 + 35.8268i 0.0294127 + 0.00257820i
\(579\) −560.291 + 549.713i −0.0402157 + 0.0394565i
\(580\) 3105.57 17578.4i 0.222331 1.25846i
\(581\) 70.1732 19.7584i 0.00501080 0.00141087i
\(582\) −7058.71 8579.81i −0.502737 0.611073i
\(583\) −2077.02 −0.147549
\(584\) −4371.67 + 16282.8i −0.309762 + 1.15375i
\(585\) 12774.0 + 243.476i 0.902806 + 0.0172077i
\(586\) −2040.27 + 23275.8i −0.143827 + 1.64081i
\(587\) 14366.9i 1.01020i 0.863062 + 0.505098i \(0.168544\pi\)
−0.863062 + 0.505098i \(0.831456\pi\)
\(588\) 5825.28 13014.0i 0.408555 0.912734i
\(589\) 6745.10i 0.471862i
\(590\) 5047.21 + 442.418i 0.352187 + 0.0308713i
\(591\) 1284.83 1260.57i 0.0894262 0.0877379i
\(592\) 6567.64 18007.2i 0.455960 1.25015i
\(593\) −5376.81 −0.372343 −0.186171 0.982517i \(-0.559608\pi\)
−0.186171 + 0.982517i \(0.559608\pi\)
\(594\) 2145.95 + 2712.12i 0.148231 + 0.187339i
\(595\) −11103.5 + 3126.37i −0.765039 + 0.215410i
\(596\) −14570.0 2574.07i −1.00136 0.176910i
\(597\) 13757.2 + 14022.0i 0.943127 + 0.961274i
\(598\) 2303.01 26273.3i 0.157487 1.79665i
\(599\) 15516.0i 1.05837i −0.848505 0.529187i \(-0.822497\pi\)
0.848505 0.529187i \(-0.177503\pi\)
\(600\) 4468.76 2520.63i 0.304060 0.171507i
\(601\) 28358.0i 1.92470i −0.271811 0.962351i \(-0.587622\pi\)
0.271811 0.962351i \(-0.412378\pi\)
\(602\) −17000.3 + 3217.13i −1.15096 + 0.217808i
\(603\) 14243.0 + 271.476i 0.961891 + 0.0183339i
\(604\) 20703.6 + 3657.71i 1.39473 + 0.246407i
\(605\) 11320.7i 0.760745i
\(606\) −9764.59 11868.8i −0.654554 0.795606i
\(607\) 16509.3i 1.10394i 0.833865 + 0.551969i \(0.186123\pi\)
−0.833865 + 0.551969i \(0.813877\pi\)
\(608\) −21204.0 9909.05i −1.41437 0.660963i
\(609\) −20653.4 11838.2i −1.37425 0.787696i
\(610\) −350.204 + 3995.21i −0.0232449 + 0.265182i
\(611\) −4300.92 −0.284773
\(612\) −2874.24 + 14635.3i −0.189844 + 0.966661i
\(613\) 8227.79i 0.542117i −0.962563 0.271058i \(-0.912626\pi\)
0.962563 0.271058i \(-0.0873736\pi\)
\(614\) 17964.2 + 1574.67i 1.18074 + 0.103499i
\(615\) 6097.35 + 6214.68i 0.399787 + 0.407480i
\(616\) 44.4219 + 3652.05i 0.00290554 + 0.238872i
\(617\) 2275.68i 0.148485i 0.997240 + 0.0742425i \(0.0236539\pi\)
−0.997240 + 0.0742425i \(0.976346\pi\)
\(618\) −14197.8 17257.3i −0.924142 1.12329i
\(619\) −19550.8 −1.26949 −0.634743 0.772723i \(-0.718894\pi\)
−0.634743 + 0.772723i \(0.718894\pi\)
\(620\) −3707.08 654.928i −0.240129 0.0424235i
\(621\) 18130.1 17122.0i 1.17155 1.10642i
\(622\) 10050.4 + 880.982i 0.647887 + 0.0567913i
\(623\) −6318.21 22439.5i −0.406314 1.44305i
\(624\) 15885.6 7211.37i 1.01912 0.462637i
\(625\) −8266.21 −0.529037
\(626\) 583.908 6661.35i 0.0372806 0.425306i
\(627\) 4179.64 4100.74i 0.266218 0.261192i
\(628\) −15041.6 2657.40i −0.955776 0.168857i
\(629\) 20680.0i 1.31092i
\(630\) 2132.84 + 12578.1i 0.134880 + 0.795432i
\(631\) 25354.7 1.59961 0.799807 0.600257i \(-0.204935\pi\)
0.799807 + 0.600257i \(0.204935\pi\)
\(632\) −13070.8 3509.30i −0.822673 0.220874i
\(633\) 7892.82 + 8044.69i 0.495595 + 0.505131i
\(634\) −14923.4 1308.12i −0.934830 0.0819436i
\(635\) 8664.45i 0.541477i
\(636\) −8170.66 + 5601.90i −0.509415 + 0.349261i
\(637\) 15350.3 9388.60i 0.954791 0.583972i
\(638\) 6074.64 + 532.479i 0.376955 + 0.0330424i
\(639\) 6619.53 + 126.170i 0.409803 + 0.00781096i
\(640\) −7504.82 + 10691.5i −0.463522 + 0.660342i
\(641\) 1867.33i 0.115063i −0.998344 0.0575313i \(-0.981677\pi\)
0.998344 0.0575313i \(-0.0183229\pi\)
\(642\) −3214.96 + 2644.98i −0.197639 + 0.162600i
\(643\) 5536.73 0.339576 0.169788 0.985481i \(-0.445692\pi\)
0.169788 + 0.985481i \(0.445692\pi\)
\(644\) 26204.8 2618.55i 1.60344 0.160226i
\(645\) 11050.5 10841.9i 0.674597 0.661861i
\(646\) 25155.6 + 2205.04i 1.53209 + 0.134297i
\(647\) −7249.89 −0.440529 −0.220265 0.975440i \(-0.570692\pi\)
−0.220265 + 0.975440i \(0.570692\pi\)
\(648\) 15756.6 + 4881.24i 0.955214 + 0.295915i
\(649\) 1730.78i 0.104683i
\(650\) 6450.10 + 565.390i 0.389221 + 0.0341176i
\(651\) −2496.53 + 4355.56i −0.150302 + 0.262224i
\(652\) −4814.14 + 27249.4i −0.289166 + 1.63676i
\(653\) −5007.60 −0.300096 −0.150048 0.988679i \(-0.547943\pi\)
−0.150048 + 0.988679i \(0.547943\pi\)
\(654\) −11024.1 13399.7i −0.659137 0.801177i
\(655\) 13330.5 0.795216
\(656\) 11168.6 + 4073.45i 0.664727 + 0.242441i
\(657\) −20113.8 383.374i −1.19439 0.0227654i
\(658\) −798.538 4219.71i −0.0473104 0.250002i
\(659\) −20066.4 −1.18616 −0.593078 0.805145i \(-0.702088\pi\)
−0.593078 + 0.805145i \(0.702088\pi\)
\(660\) −1847.92 2695.29i −0.108985 0.158960i
\(661\) 24092.4 1.41768 0.708840 0.705369i \(-0.249219\pi\)
0.708840 + 0.705369i \(0.249219\pi\)
\(662\) −164.220 + 1873.46i −0.00964139 + 0.109991i
\(663\) −13435.7 + 13182.1i −0.787029 + 0.772171i
\(664\) −23.0956 + 86.0225i −0.00134983 + 0.00502759i
\(665\) 20791.2 5854.11i 1.21240 0.341373i
\(666\) 22741.9 + 2430.99i 1.32317 + 0.141440i
\(667\) 43969.6i 2.55249i
\(668\) 18167.2 + 3209.59i 1.05226 + 0.185902i
\(669\) −14164.1 14436.7i −0.818560 0.834311i
\(670\) −13409.5 1175.43i −0.773217 0.0677772i
\(671\) −1370.03 −0.0788217
\(672\) 10024.7 + 14246.8i 0.575460 + 0.817830i
\(673\) −17.0224 −0.000974985 −0.000487493 1.00000i \(-0.500155\pi\)
−0.000487493 1.00000i \(0.500155\pi\)
\(674\) −24282.7 2128.53i −1.38774 0.121644i
\(675\) 4203.46 + 4450.94i 0.239691 + 0.253802i
\(676\) 4372.82 + 772.545i 0.248795 + 0.0439546i
\(677\) 25059.2i 1.42261i 0.702885 + 0.711304i \(0.251895\pi\)
−0.702885 + 0.711304i \(0.748105\pi\)
\(678\) 17438.2 + 21196.0i 0.987770 + 1.20063i
\(679\) 13476.5 3794.55i 0.761682 0.214464i
\(680\) 3654.41 13611.3i 0.206089 0.767603i
\(681\) −9260.84 9439.04i −0.521110 0.531137i
\(682\) 112.293 1281.07i 0.00630489 0.0719276i
\(683\) 22610.8 1.26673 0.633367 0.773851i \(-0.281672\pi\)
0.633367 + 0.773851i \(0.281672\pi\)
\(684\) 5382.01 27404.5i 0.300857 1.53193i
\(685\) −3110.41 −0.173493
\(686\) 12061.4 + 13317.3i 0.671292 + 0.741193i
\(687\) −2878.06 + 2823.73i −0.159832 + 0.156815i
\(688\) 7243.16 19859.3i 0.401370 1.10048i
\(689\) −12502.1 −0.691280
\(690\) −18196.8 + 14970.7i −1.00397 + 0.825978i
\(691\) −22189.8 −1.22162 −0.610810 0.791777i \(-0.709156\pi\)
−0.610810 + 0.791777i \(0.709156\pi\)
\(692\) −25.2275 + 142.795i −0.00138585 + 0.00784428i
\(693\) −4216.74 + 1101.01i −0.231141 + 0.0603521i
\(694\) −32473.7 2846.52i −1.77620 0.155695i
\(695\) 10428.6i 0.569179i
\(696\) 25332.8 14289.1i 1.37965 0.778201i
\(697\) −12826.4 −0.697036
\(698\) 656.416 + 57.5388i 0.0355955 + 0.00312017i
\(699\) −1731.57 1764.88i −0.0936964 0.0954993i
\(700\) 642.855 + 6433.29i 0.0347109 + 0.347365i
\(701\) 9475.27 0.510522 0.255261 0.966872i \(-0.417839\pi\)
0.255261 + 0.966872i \(0.417839\pi\)
\(702\) 12917.0 + 16324.9i 0.694473 + 0.877699i
\(703\) 38723.2i 2.07749i
\(704\) −3862.22 2234.99i −0.206766 0.119651i
\(705\) 2691.13 + 2742.91i 0.143764 + 0.146530i
\(706\) −30981.3 2715.70i −1.65156 0.144769i
\(707\) 18642.6 5249.15i 0.991696 0.279228i
\(708\) 4668.06 + 6808.61i 0.247792 + 0.361417i
\(709\) 27170.6i 1.43923i 0.694374 + 0.719614i \(0.255681\pi\)
−0.694374 + 0.719614i \(0.744319\pi\)
\(710\) −6232.16 546.287i −0.329421 0.0288757i
\(711\) 307.748 16146.1i 0.0162327 0.851653i
\(712\) 27507.6 + 7385.35i 1.44788 + 0.388733i
\(713\) −9272.65 −0.487046
\(714\) −15427.8 10734.6i −0.808641 0.562649i
\(715\) 4124.11i 0.215711i
\(716\) −20451.4 3613.14i −1.06746 0.188589i
\(717\) −1075.93 1096.63i −0.0560407 0.0571190i
\(718\) −921.826 + 10516.4i −0.0479140 + 0.546613i
\(719\) −387.852 −0.0201174 −0.0100587 0.999949i \(-0.503202\pi\)
−0.0100587 + 0.999949i \(0.503202\pi\)
\(720\) −14538.8 5618.82i −0.752542 0.290835i
\(721\) 27106.6 7632.31i 1.40014 0.394233i
\(722\) −27777.6 2434.88i −1.43182 0.125508i
\(723\) −11953.8 12183.9i −0.614894 0.626726i
\(724\) −9458.92 1671.10i −0.485550 0.0857819i
\(725\) 10794.5 0.552964
\(726\) −14244.2 + 11718.8i −0.728170 + 0.599073i
\(727\) 1084.95i 0.0553488i 0.999617 + 0.0276744i \(0.00881016\pi\)
−0.999617 + 0.0276744i \(0.991190\pi\)
\(728\) 267.387 + 21982.6i 0.0136127 + 1.11913i
\(729\) −1124.74 + 19650.8i −0.0571427 + 0.998366i
\(730\) 18936.8 + 1659.92i 0.960111 + 0.0841596i
\(731\) 22807.1i 1.15397i
\(732\) −5389.48 + 3695.09i −0.272132 + 0.186577i
\(733\) −35437.5 −1.78570 −0.892848 0.450358i \(-0.851296\pi\)
−0.892848 + 0.450358i \(0.851296\pi\)
\(734\) 293.299 3346.02i 0.0147491 0.168262i
\(735\) −15592.4 3915.12i −0.782497 0.196478i
\(736\) −13622.2 + 29149.7i −0.682231 + 1.45988i
\(737\) 4598.37i 0.229828i
\(738\) −1507.78 + 14105.2i −0.0752061 + 0.703551i
\(739\) 34674.6i 1.72601i 0.505192 + 0.863007i \(0.331422\pi\)
−0.505192 + 0.863007i \(0.668578\pi\)
\(740\) −21282.1 3759.90i −1.05722 0.186780i
\(741\) 25158.3 24683.4i 1.24725 1.22371i
\(742\) −2321.23 12266.1i −0.114845 0.606875i
\(743\) 22561.8i 1.11401i 0.830508 + 0.557007i \(0.188050\pi\)
−0.830508 + 0.557007i \(0.811950\pi\)
\(744\) −3013.41 5342.38i −0.148490 0.263254i
\(745\) 16682.3i 0.820394i
\(746\) −1203.39 + 13728.6i −0.0590608 + 0.673779i
\(747\) −106.262 2.02537i −0.00520470 9.92029e-5i
\(748\) 4740.98 + 837.588i 0.231748 + 0.0409429i
\(749\) −1421.86 5049.82i −0.0693641 0.246351i
\(750\) −14203.4 17264.2i −0.691514 0.840531i
\(751\) −28928.9 −1.40563 −0.702816 0.711372i \(-0.748074\pi\)
−0.702816 + 0.711372i \(0.748074\pi\)
\(752\) 4929.38 + 1797.86i 0.239037 + 0.0871823i
\(753\) 3746.92 + 3819.02i 0.181335 + 0.184824i
\(754\) 36564.8 + 3205.12i 1.76606 + 0.154806i
\(755\) 23705.3i 1.14268i
\(756\) −13618.4 + 15704.1i −0.655156 + 0.755493i
\(757\) 19462.5i 0.934449i −0.884139 0.467224i \(-0.845254\pi\)
0.884139 0.467224i \(-0.154746\pi\)
\(758\) −980.446 + 11185.1i −0.0469807 + 0.535966i
\(759\) −5637.39 5745.86i −0.269597 0.274785i
\(760\) −6842.87 + 25487.1i −0.326601 + 1.21647i
\(761\) 5992.80 0.285465 0.142732 0.989761i \(-0.454411\pi\)
0.142732 + 0.989761i \(0.454411\pi\)
\(762\) 10902.0 8969.20i 0.518291 0.426404i
\(763\) 21047.3 5926.21i 0.998640 0.281184i
\(764\) −2475.54 + 14012.2i −0.117227 + 0.663540i
\(765\) 16813.7 + 320.474i 0.794643 + 0.0151461i
\(766\) −8400.62 736.365i −0.396249 0.0347336i
\(767\) 10418.0i 0.490446i
\(768\) −21221.3 + 1624.65i −0.997082 + 0.0763338i
\(769\) 15433.8i 0.723742i −0.932228 0.361871i \(-0.882138\pi\)
0.932228 0.361871i \(-0.117862\pi\)
\(770\) 4046.25 765.712i 0.189372 0.0358368i
\(771\) −9094.10 + 8922.42i −0.424794 + 0.416774i
\(772\) 1190.05 + 210.245i 0.0554801 + 0.00980166i
\(773\) 17828.8i 0.829569i 0.909920 + 0.414785i \(0.136143\pi\)
−0.909920 + 0.414785i \(0.863857\pi\)
\(774\) 25081.0 + 2681.04i 1.16475 + 0.124506i
\(775\) 2276.44i 0.105512i
\(776\) −4435.44 + 16520.3i −0.205184 + 0.764234i
\(777\) −14332.4 + 25005.0i −0.661740 + 1.15450i
\(778\) −1346.19 118.002i −0.0620349 0.00543774i
\(779\) 24017.3 1.10463
\(780\) −11123.1 16223.6i −0.510603 0.744741i
\(781\) 2137.12i 0.0979157i
\(782\) 3031.32 34582.0i 0.138619 1.58139i
\(783\) 23828.9 + 25231.8i 1.08758 + 1.15161i
\(784\) −21517.9 + 4343.79i −0.980227 + 0.197877i
\(785\) 17222.4i 0.783049i
\(786\) 13799.4 + 16773.1i 0.626219 + 0.761165i
\(787\) 30953.0 1.40197 0.700987 0.713174i \(-0.252743\pi\)
0.700987 + 0.713174i \(0.252743\pi\)
\(788\) −2728.95 482.123i −0.123369 0.0217956i
\(789\) −15999.1 16306.9i −0.721904 0.735795i
\(790\) −1332.48 + 15201.2i −0.0600095 + 0.684602i
\(791\) −33293.1 + 9374.22i −1.49654 + 0.421377i
\(792\) 1478.42 5115.22i 0.0663298 0.229497i
\(793\) −8246.55 −0.369286
\(794\) −18992.5 1664.81i −0.848888 0.0744102i
\(795\) 7822.69 + 7973.21i 0.348984 + 0.355699i
\(796\) 5261.63 29782.3i 0.234289 1.32614i
\(797\) 7162.07i 0.318310i 0.987254 + 0.159155i \(0.0508770\pi\)
−0.987254 + 0.159155i \(0.949123\pi\)
\(798\) 28888.4 + 20100.4i 1.28150 + 0.891664i
\(799\) −5661.05 −0.250655
\(800\) −7156.26 3344.26i −0.316265 0.147797i
\(801\) −647.659 + 33979.5i −0.0285692 + 1.49889i
\(802\) −2652.55 + 30260.9i −0.116789 + 1.33236i
\(803\) 6493.76i 0.285380i
\(804\) −12402.2 18089.3i −0.544020 0.793481i
\(805\) −8047.79 28582.2i −0.352357 1.25142i
\(806\) 675.922 7711.07i 0.0295389 0.336986i
\(807\) 12382.6 + 12620.9i 0.540134 + 0.550527i
\(808\) −6135.73 + 22853.3i −0.267146 + 0.995019i
\(809\) 21655.6i 0.941125i −0.882367 0.470562i \(-0.844051\pi\)
0.882367 0.470562i \(-0.155949\pi\)
\(810\) 2328.93 18452.5i 0.101025 0.800437i
\(811\) −2523.86 −0.109278 −0.0546392 0.998506i \(-0.517401\pi\)
−0.0546392 + 0.998506i \(0.517401\pi\)
\(812\) 3644.26 + 36469.5i 0.157498 + 1.57614i
\(813\) 15210.0 + 15502.7i 0.656137 + 0.668762i
\(814\) 644.670 7354.53i 0.0277588 0.316678i
\(815\) 31200.0 1.34097
\(816\) 20909.3 9491.91i 0.897025 0.407210i
\(817\) 42706.1i 1.82876i
\(818\) 3797.26 43320.0i 0.162308 1.85165i
\(819\) −25381.6 + 6627.26i −1.08291 + 0.282754i
\(820\) 2332.01 13199.8i 0.0993138 0.562144i
\(821\) −24747.6 −1.05200 −0.526002 0.850483i \(-0.676310\pi\)
−0.526002 + 0.850483i \(0.676310\pi\)
\(822\) −3219.82 3913.67i −0.136623 0.166064i
\(823\) −35614.1 −1.50842 −0.754210 0.656634i \(-0.771980\pi\)
−0.754210 + 0.656634i \(0.771980\pi\)
\(824\) −8921.40 + 33228.8i −0.377174 + 1.40483i
\(825\) 1410.61 1383.98i 0.0595287 0.0584048i
\(826\) −10221.3 + 1934.28i −0.430562 + 0.0814795i
\(827\) 29256.6 1.23017 0.615085 0.788461i \(-0.289122\pi\)
0.615085 + 0.788461i \(0.289122\pi\)
\(828\) −37673.7 7398.78i −1.58122 0.310538i
\(829\) 14291.2 0.598740 0.299370 0.954137i \(-0.403224\pi\)
0.299370 + 0.954137i \(0.403224\pi\)
\(830\) 100.043 + 8.76941i 0.00418380 + 0.000366736i
\(831\) 9481.61 + 9664.05i 0.395804 + 0.403420i
\(832\) −23247.7 13453.0i −0.968712 0.560575i
\(833\) 20204.7 12357.7i 0.840399 0.514007i
\(834\) 13121.8 10795.4i 0.544807 0.448219i
\(835\) 20801.0i 0.862095i
\(836\) −8877.47 1568.38i −0.367265 0.0648846i
\(837\) 5321.08 5025.23i 0.219741 0.207524i
\(838\) 447.531 5105.53i 0.0184483 0.210462i
\(839\) 43247.8 1.77959 0.889796 0.456358i \(-0.150846\pi\)
0.889796 + 0.456358i \(0.150846\pi\)
\(840\) 13852.1 13925.3i 0.568980 0.571985i
\(841\) 36803.8 1.50903
\(842\) 392.251 4474.89i 0.0160545 0.183153i
\(843\) 29072.4 + 29631.8i 1.18779 + 1.21064i
\(844\) 3018.71 17086.7i 0.123114 0.696860i
\(845\) 5006.79i 0.203833i
\(846\) −665.473 + 6225.48i −0.0270442 + 0.252998i
\(847\) −6299.69 22373.7i −0.255561 0.907639i
\(848\) 14328.9 + 5226.09i 0.580257 + 0.211633i
\(849\) 13435.6 13182.0i 0.543121 0.532868i
\(850\) 8489.89 + 744.191i 0.342589 + 0.0300300i
\(851\) −53233.7 −2.14434
\(852\) −5764.00 8407.09i −0.231774 0.338054i
\(853\) −27143.0 −1.08952 −0.544758 0.838593i \(-0.683378\pi\)
−0.544758 + 0.838593i \(0.683378\pi\)
\(854\) −1531.11 8090.85i −0.0613508 0.324196i
\(855\) −31483.6 600.086i −1.25932 0.0240029i
\(856\) 6190.37 + 1662.01i 0.247176 + 0.0663627i
\(857\) 41131.4 1.63947 0.819733 0.572746i \(-0.194122\pi\)
0.819733 + 0.572746i \(0.194122\pi\)
\(858\) 5189.15 4269.17i 0.206474 0.169868i
\(859\) −3353.69 −0.133209 −0.0666045 0.997779i \(-0.521217\pi\)
−0.0666045 + 0.997779i \(0.521217\pi\)
\(860\) −23471.1 4146.63i −0.930649 0.164417i
\(861\) −15508.9 8889.41i −0.613870 0.351859i
\(862\) −559.765 + 6385.93i −0.0221180 + 0.252327i
\(863\) 32515.9i 1.28257i 0.767304 + 0.641283i \(0.221598\pi\)
−0.767304 + 0.641283i \(0.778402\pi\)
\(864\) −7980.35 24109.9i −0.314233 0.949346i
\(865\) 163.497 0.00642667
\(866\) −3186.09 + 36347.6i −0.125021 + 1.42626i
\(867\) 538.033 527.876i 0.0210756 0.0206777i
\(868\) 7690.98 768.530i 0.300748 0.0300526i
\(869\) −5212.78 −0.203488
\(870\) −20834.9 25324.6i −0.811917 0.986880i
\(871\) 27678.8i 1.07676i
\(872\) −6927.14 + 25801.0i −0.269017 + 1.00199i
\(873\) −20407.2 388.966i −0.791156 0.0150796i
\(874\) −5676.14 + 64754.6i −0.219678 + 2.50613i
\(875\) 27117.3 7635.33i 1.04769 0.294996i
\(876\) 17514.2 + 25545.4i 0.675515 + 0.985273i
\(877\) 11908.4i 0.458517i 0.973366 + 0.229259i \(0.0736301\pi\)
−0.973366 + 0.229259i \(0.926370\pi\)
\(878\) 933.290 10647.2i 0.0358736 0.409254i
\(879\) 30061.5 + 30640.0i 1.15353 + 1.17572i
\(880\) −1723.95 + 4726.74i −0.0660390 + 0.181066i
\(881\) −36671.3 −1.40237 −0.701184 0.712980i \(-0.747345\pi\)
−0.701184 + 0.712980i \(0.747345\pi\)
\(882\) −11214.7 23671.9i −0.428138 0.903713i
\(883\) 37102.7i 1.41405i 0.707190 + 0.707024i \(0.249963\pi\)
−0.707190 + 0.707024i \(0.750037\pi\)
\(884\) 28537.2 + 5041.65i 1.08576 + 0.191820i
\(885\) 6644.07 6518.64i 0.252359 0.247595i
\(886\) 1048.20 + 91.8812i 0.0397461 + 0.00348399i
\(887\) −48774.0 −1.84630 −0.923152 0.384435i \(-0.874396\pi\)
−0.923152 + 0.384435i \(0.874396\pi\)
\(888\) −17299.8 30670.3i −0.653764 1.15904i
\(889\) 4821.57 + 17124.1i 0.181901 + 0.646033i
\(890\) 2804.22 31991.1i 0.105615 1.20488i
\(891\) 6348.91 + 242.112i 0.238717 + 0.00910330i
\(892\) −5417.25 + 30663.2i −0.203344 + 1.15098i
\(893\) 10600.3 0.397228
\(894\) −20990.5 + 17269.1i −0.785265 + 0.646046i
\(895\) 23416.4i 0.874553i
\(896\) 8882.66 25306.6i 0.331193 0.943563i
\(897\) −33932.8 34585.8i −1.26308 1.28739i
\(898\) 3047.84 34770.4i 0.113260 1.29210i
\(899\) 12904.8i 0.478754i
\(900\) 1816.40 9248.89i 0.0672741 0.342552i
\(901\) −16455.8 −0.608459
\(902\) 4561.51 + 399.844i 0.168383 + 0.0147598i
\(903\) −15806.6 + 27576.9i −0.582514 + 1.01628i
\(904\) 10957.5 40812.6i 0.403143 1.50156i
\(905\) 10830.3i 0.397801i
\(906\) 29827.0 24539.0i 1.09375 0.899840i
\(907\) 1891.26i 0.0692372i 0.999401 + 0.0346186i \(0.0110216\pi\)
−0.999401 + 0.0346186i \(0.988978\pi\)
\(908\) −3541.93 + 20048.3i −0.129453 + 0.732738i
\(909\) −28230.1 538.073i −1.03007 0.0196334i
\(910\) 24355.4 4609.01i 0.887223 0.167898i
\(911\) 674.242i 0.0245210i 0.999925 + 0.0122605i \(0.00390274\pi\)
−0.999925 + 0.0122605i \(0.996097\pi\)
\(912\) −39152.6 + 17773.5i −1.42157 + 0.645330i
\(913\) 34.3067i 0.00124358i
\(914\) 37333.3 + 3272.49i 1.35107 + 0.118429i
\(915\) 5159.95 + 5259.23i 0.186429 + 0.190016i
\(916\) 6112.94 + 1079.97i 0.220499 + 0.0389555i
\(917\) −26345.9 + 7418.13i −0.948767 + 0.267141i
\(918\) 17001.9 + 21487.6i 0.611270 + 0.772544i
\(919\) −246.949 −0.00886408 −0.00443204 0.999990i \(-0.501411\pi\)
−0.00443204 + 0.999990i \(0.501411\pi\)
\(920\) 35037.8 + 9407.06i 1.25561 + 0.337111i
\(921\) 23647.8 23201.4i 0.846060 0.830088i
\(922\) 822.099 9378.69i 0.0293648 0.335001i
\(923\) 12863.9i 0.458742i
\(924\) 5152.02 + 4298.53i 0.183430 + 0.153043i
\(925\) 13068.9i 0.464543i
\(926\) −11707.3 1026.22i −0.415471 0.0364185i
\(927\) −41046.8 782.363i −1.45432 0.0277197i
\(928\) −40567.9 18958.2i −1.43503 0.670617i
\(929\) −26737.6 −0.944275 −0.472138 0.881525i \(-0.656517\pi\)
−0.472138 + 0.881525i \(0.656517\pi\)
\(930\) −5340.66 + 4393.82i −0.188309 + 0.154924i
\(931\) −37833.3 + 23139.7i −1.33183 + 0.814578i
\(932\) −662.259 + 3748.57i −0.0232758 + 0.131747i
\(933\) 13230.3 12980.5i 0.464243 0.455479i
\(934\) −122.975 + 1402.93i −0.00430821 + 0.0491490i
\(935\) 5428.33i 0.189867i
\(936\) 8898.96 30789.8i 0.310760 1.07521i
\(937\) 12780.7i 0.445602i 0.974864 + 0.222801i \(0.0715200\pi\)
−0.974864 + 0.222801i \(0.928480\pi\)
\(938\) 27156.2 5139.03i 0.945289 0.178886i
\(939\) −8603.37 8768.91i −0.298999 0.304753i
\(940\) 1029.26 5825.87i 0.0357134 0.202148i
\(941\) 43874.1i 1.51993i 0.649963 + 0.759966i \(0.274784\pi\)
−0.649963 + 0.759966i \(0.725216\pi\)
\(942\) −21670.0 + 17828.1i −0.749519 + 0.616637i
\(943\) 33017.2i 1.14018i
\(944\) 4354.90 11940.3i 0.150148 0.411677i
\(945\) 20108.1 + 12040.4i 0.692185 + 0.414469i
\(946\) 710.978 8110.99i 0.0244354 0.278764i
\(947\) 2594.12 0.0890153 0.0445077 0.999009i \(-0.485828\pi\)
0.0445077 + 0.999009i \(0.485828\pi\)
\(948\) −20506.2 + 14059.3i −0.702544 + 0.481672i
\(949\) 39087.6i 1.33702i
\(950\) −15897.3 1393.49i −0.542922 0.0475904i
\(951\) −19644.9 + 19274.0i −0.669852 + 0.657206i
\(952\) 351.946 + 28934.5i 0.0119818 + 0.985054i
\(953\) 35759.6i 1.21550i −0.794130 0.607748i \(-0.792073\pi\)
0.794130 0.607748i \(-0.207927\pi\)
\(954\) −1934.43 + 18096.5i −0.0656492 + 0.614147i
\(955\) 16043.7 0.543626
\(956\) −411.501 + 2329.21i −0.0139215 + 0.0787993i
\(957\) 7996.56 7845.60i 0.270107 0.265008i
\(958\) 56501.3 + 4952.68i 1.90550 + 0.167029i
\(959\) 6147.30 1730.87i 0.206993 0.0582824i
\(960\) 5966.68 + 23243.9i 0.200598 + 0.781451i
\(961\) 27069.5 0.908648
\(962\) 3880.43 44268.8i 0.130052 1.48366i
\(963\) −145.750 + 7646.82i −0.00487720 + 0.255883i
\(964\) −4571.90 + 25878.2i −0.152750 + 0.864608i
\(965\) 1362.58i 0.0454538i
\(966\) 27632.6 39713.6i 0.920356 1.32274i
\(967\) 950.541 0.0316105 0.0158052 0.999875i \(-0.494969\pi\)
0.0158052 + 0.999875i \(0.494969\pi\)
\(968\) 27427.0 + 7363.71i 0.910680 + 0.244503i
\(969\) 33114.5 32489.3i 1.09782 1.07710i
\(970\) 19213.0 + 1684.14i 0.635971 + 0.0557468i
\(971\) 59078.8i 1.95255i −0.216531 0.976276i \(-0.569474\pi\)
0.216531 0.976276i \(-0.430526\pi\)
\(972\) 25628.6 16171.1i 0.845717 0.533631i
\(973\) 5803.28 + 20610.7i 0.191207 + 0.679084i
\(974\) 16675.1 + 1461.67i 0.548567 + 0.0480852i
\(975\) 8490.82 8330.52i 0.278896 0.273631i
\(976\) 9451.56 + 3447.20i 0.309976 + 0.113056i
\(977\) 14531.7i 0.475854i 0.971283 + 0.237927i \(0.0764678\pi\)
−0.971283 + 0.237927i \(0.923532\pi\)
\(978\) 32297.4 + 39257.3i 1.05599 + 1.28355i
\(979\) 10970.3 0.358134
\(980\) 9043.98 + 23039.8i 0.294795 + 0.751000i
\(981\) −31871.4 607.477i −1.03728 0.0197709i
\(982\) 7288.18 + 638.853i 0.236838 + 0.0207603i
\(983\) −58495.3 −1.89798 −0.948989 0.315310i \(-0.897891\pi\)
−0.948989 + 0.315310i \(0.897891\pi\)
\(984\) 19022.7 10729.9i 0.616281 0.347618i
\(985\) 3124.59i 0.101074i
\(986\) 48128.1 + 4218.72i 1.55447 + 0.136259i
\(987\) −6845.00 3923.43i −0.220749 0.126529i
\(988\) −53435.7 9440.47i −1.72066 0.303989i
\(989\) −58709.2 −1.88761
\(990\) −5969.56 638.116i −0.191642 0.0204855i
\(991\) −29846.4 −0.956714 −0.478357 0.878166i \(-0.658767\pi\)
−0.478357 + 0.878166i \(0.658767\pi\)
\(992\) −3998.05 + 8555.28i −0.127962 + 0.273821i
\(993\) 2419.64 + 2466.20i 0.0773262 + 0.0788141i
\(994\) 12621.0 2388.40i 0.402730 0.0762126i
\(995\) −34100.2 −1.08648
\(996\) 92.5281 + 134.957i 0.00294364 + 0.00429345i
\(997\) 14935.8 0.474444 0.237222 0.971455i \(-0.423763\pi\)
0.237222 + 0.971455i \(0.423763\pi\)
\(998\) 4508.44 51433.3i 0.142998 1.63135i
\(999\) 30548.0 28849.5i 0.967463 0.913672i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 168.4.i.c.125.1 80
3.2 odd 2 inner 168.4.i.c.125.79 yes 80
4.3 odd 2 672.4.i.c.209.57 80
7.6 odd 2 inner 168.4.i.c.125.2 yes 80
8.3 odd 2 672.4.i.c.209.24 80
8.5 even 2 inner 168.4.i.c.125.78 yes 80
12.11 even 2 672.4.i.c.209.60 80
21.20 even 2 inner 168.4.i.c.125.80 yes 80
24.5 odd 2 inner 168.4.i.c.125.4 yes 80
24.11 even 2 672.4.i.c.209.21 80
28.27 even 2 672.4.i.c.209.23 80
56.13 odd 2 inner 168.4.i.c.125.77 yes 80
56.27 even 2 672.4.i.c.209.58 80
84.83 odd 2 672.4.i.c.209.22 80
168.83 odd 2 672.4.i.c.209.59 80
168.125 even 2 inner 168.4.i.c.125.3 yes 80
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
168.4.i.c.125.1 80 1.1 even 1 trivial
168.4.i.c.125.2 yes 80 7.6 odd 2 inner
168.4.i.c.125.3 yes 80 168.125 even 2 inner
168.4.i.c.125.4 yes 80 24.5 odd 2 inner
168.4.i.c.125.77 yes 80 56.13 odd 2 inner
168.4.i.c.125.78 yes 80 8.5 even 2 inner
168.4.i.c.125.79 yes 80 3.2 odd 2 inner
168.4.i.c.125.80 yes 80 21.20 even 2 inner
672.4.i.c.209.21 80 24.11 even 2
672.4.i.c.209.22 80 84.83 odd 2
672.4.i.c.209.23 80 28.27 even 2
672.4.i.c.209.24 80 8.3 odd 2
672.4.i.c.209.57 80 4.3 odd 2
672.4.i.c.209.58 80 56.27 even 2
672.4.i.c.209.59 80 168.83 odd 2
672.4.i.c.209.60 80 12.11 even 2