Properties

Label 168.4.i.c.125.77
Level $168$
Weight $4$
Character 168.125
Analytic conductor $9.912$
Analytic rank $0$
Dimension $80$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [168,4,Mod(125,168)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(168, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 1, 1])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("168.125"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 168 = 2^{3} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 168.i (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [80] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.91232088096\)
Analytic rank: \(0\)
Dimension: \(80\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 125.77
Character \(\chi\) \(=\) 168.125
Dual form 168.4.i.c.125.79

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.81762 - 0.246982i) q^{2} +(-3.70908 + 3.63906i) q^{3} +(7.87800 - 1.39180i) q^{4} -9.02015i q^{5} +(-9.55201 + 11.1696i) q^{6} +(5.01951 - 17.8271i) q^{7} +(21.8535 - 5.86730i) q^{8} +(0.514533 - 26.9951i) q^{9} +(-2.22781 - 25.4154i) q^{10} +8.71540 q^{11} +(-24.1553 + 33.8308i) q^{12} -52.4602 q^{13} +(9.74012 - 51.4697i) q^{14} +(32.8248 + 33.4564i) q^{15} +(60.1258 - 21.9293i) q^{16} +69.0503 q^{17} +(-5.21754 - 76.1891i) q^{18} +129.296 q^{19} +(-12.5543 - 71.0607i) q^{20} +(46.2560 + 84.3883i) q^{21} +(24.5567 - 2.15254i) q^{22} -177.747i q^{23} +(-59.7049 + 101.288i) q^{24} +43.6369 q^{25} +(-147.813 + 12.9567i) q^{26} +(96.3282 + 101.999i) q^{27} +(14.7319 - 147.428i) q^{28} -247.372 q^{29} +(100.751 + 86.1605i) q^{30} +52.1678i q^{31} +(163.996 - 76.6384i) q^{32} +(-32.3261 + 31.7158i) q^{33} +(194.558 - 17.0542i) q^{34} +(-160.803 - 45.2767i) q^{35} +(-33.5184 - 213.384i) q^{36} +299.492i q^{37} +(364.308 - 31.9338i) q^{38} +(194.579 - 190.905i) q^{39} +(-52.9239 - 197.122i) q^{40} -185.754 q^{41} +(151.174 + 226.350i) q^{42} +330.296i q^{43} +(68.6599 - 12.1301i) q^{44} +(-243.500 - 4.64117i) q^{45} +(-43.9002 - 500.824i) q^{46} -81.9844 q^{47} +(-143.209 + 300.138i) q^{48} +(-292.609 - 178.966i) q^{49} +(122.952 - 10.7775i) q^{50} +(-256.113 + 251.278i) q^{51} +(-413.281 + 73.0142i) q^{52} -238.316 q^{53} +(296.609 + 263.604i) q^{54} -78.6142i q^{55} +(5.09695 - 419.035i) q^{56} +(-479.570 + 470.517i) q^{57} +(-697.001 + 61.0964i) q^{58} -198.589i q^{59} +(305.159 + 217.884i) q^{60} +157.196 q^{61} +(12.8845 + 146.989i) q^{62} +(-478.661 - 144.675i) q^{63} +(443.150 - 256.442i) q^{64} +473.198i q^{65} +(-83.2495 + 97.3472i) q^{66} -527.615i q^{67} +(543.978 - 96.1044i) q^{68} +(646.831 + 659.277i) q^{69} +(-464.264 - 87.8573i) q^{70} +245.212i q^{71} +(-147.144 - 592.956i) q^{72} +745.090i q^{73} +(73.9691 + 843.855i) q^{74} +(-161.853 + 158.797i) q^{75} +(1018.60 - 179.955i) q^{76} +(43.7470 - 155.370i) q^{77} +(501.100 - 585.957i) q^{78} +598.112 q^{79} +(-197.805 - 542.343i) q^{80} +(-728.471 - 27.7798i) q^{81} +(-523.385 + 45.8779i) q^{82} -3.93633i q^{83} +(481.857 + 600.432i) q^{84} -622.844i q^{85} +(81.5772 + 930.651i) q^{86} +(917.522 - 900.200i) q^{87} +(190.462 - 51.1359i) q^{88} +1258.73 q^{89} +(-687.237 + 47.0630i) q^{90} +(-263.324 + 935.211i) q^{91} +(-247.389 - 1400.29i) q^{92} +(-189.841 - 193.494i) q^{93} +(-231.001 + 20.2487i) q^{94} -1166.27i q^{95} +(-329.381 + 881.047i) q^{96} +755.959i q^{97} +(-868.663 - 431.990i) q^{98} +(4.48436 - 235.273i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 80 q + 28 q^{4} + 64 q^{7} + 104 q^{9} - 8 q^{15} - 892 q^{16} + 692 q^{18} + 128 q^{22} - 976 q^{25} + 612 q^{28} - 332 q^{30} + 1544 q^{36} + 568 q^{39} + 780 q^{42} + 208 q^{46} - 4048 q^{49} - 1448 q^{57}+ \cdots - 2072 q^{88}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/168\mathbb{Z}\right)^\times\).

\(n\) \(73\) \(85\) \(113\) \(127\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.81762 0.246982i 0.996180 0.0873213i
\(3\) −3.70908 + 3.63906i −0.713813 + 0.700337i
\(4\) 7.87800 1.39180i 0.984750 0.173975i
\(5\) 9.02015i 0.806787i −0.915027 0.403393i \(-0.867831\pi\)
0.915027 0.403393i \(-0.132169\pi\)
\(6\) −9.55201 + 11.1696i −0.649932 + 0.759993i
\(7\) 5.01951 17.8271i 0.271028 0.962571i
\(8\) 21.8535 5.86730i 0.965797 0.259301i
\(9\) 0.514533 26.9951i 0.0190568 0.999818i
\(10\) −2.22781 25.4154i −0.0704496 0.803705i
\(11\) 8.71540 0.238890 0.119445 0.992841i \(-0.461888\pi\)
0.119445 + 0.992841i \(0.461888\pi\)
\(12\) −24.1553 + 33.8308i −0.581086 + 0.813843i
\(13\) −52.4602 −1.11922 −0.559609 0.828757i \(-0.689049\pi\)
−0.559609 + 0.828757i \(0.689049\pi\)
\(14\) 9.74012 51.4697i 0.185940 0.982561i
\(15\) 32.8248 + 33.4564i 0.565022 + 0.575895i
\(16\) 60.1258 21.9293i 0.939465 0.342645i
\(17\) 69.0503 0.985127 0.492563 0.870277i \(-0.336060\pi\)
0.492563 + 0.870277i \(0.336060\pi\)
\(18\) −5.21754 76.1891i −0.0683214 0.997663i
\(19\) 129.296 1.56119 0.780595 0.625037i \(-0.214916\pi\)
0.780595 + 0.625037i \(0.214916\pi\)
\(20\) −12.5543 71.0607i −0.140361 0.794483i
\(21\) 46.2560 + 84.3883i 0.480661 + 0.876906i
\(22\) 24.5567 2.15254i 0.237978 0.0208602i
\(23\) 177.747i 1.61143i −0.592307 0.805713i \(-0.701783\pi\)
0.592307 0.805713i \(-0.298217\pi\)
\(24\) −59.7049 + 101.288i −0.507800 + 0.861475i
\(25\) 43.6369 0.349095
\(26\) −147.813 + 12.9567i −1.11494 + 0.0977315i
\(27\) 96.3282 + 101.999i 0.686607 + 0.727029i
\(28\) 14.7319 147.428i 0.0994310 0.995044i
\(29\) −247.372 −1.58399 −0.791996 0.610526i \(-0.790958\pi\)
−0.791996 + 0.610526i \(0.790958\pi\)
\(30\) 100.751 + 86.1605i 0.613152 + 0.524356i
\(31\) 52.1678i 0.302245i 0.988515 + 0.151123i \(0.0482888\pi\)
−0.988515 + 0.151123i \(0.951711\pi\)
\(32\) 163.996 76.6384i 0.905956 0.423371i
\(33\) −32.3261 + 31.7158i −0.170523 + 0.167304i
\(34\) 194.558 17.0542i 0.981364 0.0860225i
\(35\) −160.803 45.2767i −0.776590 0.218662i
\(36\) −33.5184 213.384i −0.155178 0.987887i
\(37\) 299.492i 1.33071i 0.746528 + 0.665354i \(0.231719\pi\)
−0.746528 + 0.665354i \(0.768281\pi\)
\(38\) 364.308 31.9338i 1.55523 0.136325i
\(39\) 194.579 190.905i 0.798912 0.783829i
\(40\) −52.9239 197.122i −0.209200 0.779192i
\(41\) −185.754 −0.707559 −0.353780 0.935329i \(-0.615104\pi\)
−0.353780 + 0.935329i \(0.615104\pi\)
\(42\) 151.174 + 226.350i 0.555398 + 0.831585i
\(43\) 330.296i 1.17139i 0.810532 + 0.585695i \(0.199178\pi\)
−0.810532 + 0.585695i \(0.800822\pi\)
\(44\) 68.6599 12.1301i 0.235247 0.0415610i
\(45\) −243.500 4.64117i −0.806640 0.0153748i
\(46\) −43.9002 500.824i −0.140712 1.60527i
\(47\) −81.9844 −0.254440 −0.127220 0.991875i \(-0.540605\pi\)
−0.127220 + 0.991875i \(0.540605\pi\)
\(48\) −143.209 + 300.138i −0.430635 + 0.902526i
\(49\) −292.609 178.966i −0.853088 0.521768i
\(50\) 122.952 10.7775i 0.347762 0.0304834i
\(51\) −256.113 + 251.278i −0.703196 + 0.689920i
\(52\) −413.281 + 73.0142i −1.10215 + 0.194716i
\(53\) −238.316 −0.617646 −0.308823 0.951120i \(-0.599935\pi\)
−0.308823 + 0.951120i \(0.599935\pi\)
\(54\) 296.609 + 263.604i 0.747469 + 0.664297i
\(55\) 78.6142i 0.192733i
\(56\) 5.09695 419.035i 0.0121626 0.999926i
\(57\) −479.570 + 470.517i −1.11440 + 1.09336i
\(58\) −697.001 + 61.0964i −1.57794 + 0.138316i
\(59\) 198.589i 0.438204i −0.975702 0.219102i \(-0.929687\pi\)
0.975702 0.219102i \(-0.0703128\pi\)
\(60\) 305.159 + 217.884i 0.656597 + 0.468812i
\(61\) 157.196 0.329950 0.164975 0.986298i \(-0.447246\pi\)
0.164975 + 0.986298i \(0.447246\pi\)
\(62\) 12.8845 + 146.989i 0.0263924 + 0.301091i
\(63\) −478.661 144.675i −0.957232 0.289322i
\(64\) 443.150 256.442i 0.865526 0.500863i
\(65\) 473.198i 0.902970i
\(66\) −83.2495 + 97.3472i −0.155262 + 0.181555i
\(67\) 527.615i 0.962066i −0.876703 0.481033i \(-0.840262\pi\)
0.876703 0.481033i \(-0.159738\pi\)
\(68\) 543.978 96.1044i 0.970103 0.171388i
\(69\) 646.831 + 659.277i 1.12854 + 1.15026i
\(70\) −464.264 87.8573i −0.792717 0.150014i
\(71\) 245.212i 0.409878i 0.978775 + 0.204939i \(0.0656996\pi\)
−0.978775 + 0.204939i \(0.934300\pi\)
\(72\) −147.144 592.956i −0.240848 0.970563i
\(73\) 745.090i 1.19461i 0.802016 + 0.597303i \(0.203761\pi\)
−0.802016 + 0.597303i \(0.796239\pi\)
\(74\) 73.9691 + 843.855i 0.116199 + 1.32562i
\(75\) −161.853 + 158.797i −0.249188 + 0.244484i
\(76\) 1018.60 179.955i 1.53738 0.271609i
\(77\) 43.7470 155.370i 0.0647459 0.229949i
\(78\) 501.100 585.957i 0.727415 0.850597i
\(79\) 598.112 0.851808 0.425904 0.904768i \(-0.359956\pi\)
0.425904 + 0.904768i \(0.359956\pi\)
\(80\) −197.805 542.343i −0.276441 0.757948i
\(81\) −728.471 27.7798i −0.999274 0.0381067i
\(82\) −523.385 + 45.8779i −0.704857 + 0.0617850i
\(83\) 3.93633i 0.00520564i −0.999997 0.00260282i \(-0.999171\pi\)
0.999997 0.00260282i \(-0.000828505\pi\)
\(84\) 481.857 + 600.432i 0.625891 + 0.779910i
\(85\) 622.844i 0.794787i
\(86\) 81.5772 + 930.651i 0.102287 + 1.16691i
\(87\) 917.522 900.200i 1.13067 1.10933i
\(88\) 190.462 51.1359i 0.230719 0.0619443i
\(89\) 1258.73 1.49916 0.749579 0.661915i \(-0.230256\pi\)
0.749579 + 0.661915i \(0.230256\pi\)
\(90\) −687.237 + 47.0630i −0.804902 + 0.0551208i
\(91\) −263.324 + 935.211i −0.303339 + 1.07733i
\(92\) −247.389 1400.29i −0.280348 1.58685i
\(93\) −189.841 193.494i −0.211674 0.215747i
\(94\) −231.001 + 20.2487i −0.253468 + 0.0222180i
\(95\) 1166.27i 1.25955i
\(96\) −329.381 + 881.047i −0.350181 + 0.936682i
\(97\) 755.959i 0.791300i 0.918401 + 0.395650i \(0.129481\pi\)
−0.918401 + 0.395650i \(0.870519\pi\)
\(98\) −868.663 431.990i −0.895390 0.445282i
\(99\) 4.48436 235.273i 0.00455248 0.238847i
\(100\) 343.771 60.7340i 0.343771 0.0607340i
\(101\) 1045.75i 1.03026i −0.857113 0.515128i \(-0.827744\pi\)
0.857113 0.515128i \(-0.172256\pi\)
\(102\) −659.569 + 771.262i −0.640265 + 0.748689i
\(103\) 1520.53i 1.45458i 0.686328 + 0.727292i \(0.259221\pi\)
−0.686328 + 0.727292i \(0.740779\pi\)
\(104\) −1146.44 + 307.800i −1.08094 + 0.290214i
\(105\) 761.195 417.236i 0.707477 0.387791i
\(106\) −671.485 + 58.8597i −0.615287 + 0.0539336i
\(107\) 283.267 0.255930 0.127965 0.991779i \(-0.459156\pi\)
0.127965 + 0.991779i \(0.459156\pi\)
\(108\) 900.837 + 669.481i 0.802621 + 0.596489i
\(109\) 1180.64i 1.03747i 0.854935 + 0.518736i \(0.173597\pi\)
−0.854935 + 0.518736i \(0.826403\pi\)
\(110\) −19.4163 221.505i −0.0168297 0.191997i
\(111\) −1089.87 1110.84i −0.931943 0.949876i
\(112\) −89.1327 1181.94i −0.0751986 0.997169i
\(113\) 1867.56i 1.55473i 0.629047 + 0.777367i \(0.283445\pi\)
−0.629047 + 0.777367i \(0.716555\pi\)
\(114\) −1235.04 + 1444.18i −1.01467 + 1.18649i
\(115\) −1603.30 −1.30008
\(116\) −1948.80 + 344.293i −1.55984 + 0.275576i
\(117\) −26.9925 + 1416.17i −0.0213287 + 1.11901i
\(118\) −49.0478 559.548i −0.0382645 0.436530i
\(119\) 346.598 1230.96i 0.266997 0.948255i
\(120\) 913.636 + 538.547i 0.695027 + 0.409686i
\(121\) −1255.04 −0.942932
\(122\) 442.920 38.8247i 0.328690 0.0288116i
\(123\) 688.977 675.970i 0.505065 0.495530i
\(124\) 72.6073 + 410.978i 0.0525833 + 0.297636i
\(125\) 1521.13i 1.08843i
\(126\) −1384.42 289.418i −0.978839 0.204630i
\(127\) 960.566 0.671153 0.335577 0.942013i \(-0.391069\pi\)
0.335577 + 0.942013i \(0.391069\pi\)
\(128\) 1185.29 832.007i 0.818484 0.574529i
\(129\) −1201.97 1225.10i −0.820367 0.836152i
\(130\) 116.871 + 1333.29i 0.0788485 + 0.899521i
\(131\) 1477.86i 0.985659i 0.870126 + 0.492829i \(0.164037\pi\)
−0.870126 + 0.492829i \(0.835963\pi\)
\(132\) −210.523 + 294.849i −0.138816 + 0.194419i
\(133\) 649.004 2304.97i 0.423126 1.50276i
\(134\) −130.311 1486.62i −0.0840088 0.958391i
\(135\) 920.050 868.895i 0.586557 0.553945i
\(136\) 1508.99 405.139i 0.951432 0.255444i
\(137\) 344.829i 0.215042i −0.994203 0.107521i \(-0.965709\pi\)
0.994203 0.107521i \(-0.0342913\pi\)
\(138\) 1985.36 + 1697.84i 1.22467 + 1.04732i
\(139\) 1156.15 0.705489 0.352745 0.935720i \(-0.385248\pi\)
0.352745 + 0.935720i \(0.385248\pi\)
\(140\) −1329.82 132.884i −0.802789 0.0802196i
\(141\) 304.087 298.346i 0.181622 0.178193i
\(142\) 60.5629 + 690.915i 0.0357911 + 0.408312i
\(143\) −457.211 −0.267370
\(144\) −561.046 1634.38i −0.324679 0.945824i
\(145\) 2231.33i 1.27794i
\(146\) 184.024 + 2099.38i 0.104315 + 1.19004i
\(147\) 1736.58 401.021i 0.974358 0.225004i
\(148\) 416.834 + 2359.40i 0.231510 + 1.31041i
\(149\) 1849.45 1.01687 0.508433 0.861102i \(-0.330225\pi\)
0.508433 + 0.861102i \(0.330225\pi\)
\(150\) −416.820 + 487.405i −0.226888 + 0.265310i
\(151\) 2628.03 1.41633 0.708167 0.706045i \(-0.249523\pi\)
0.708167 + 0.706045i \(0.249523\pi\)
\(152\) 2825.57 758.620i 1.50779 0.404817i
\(153\) 35.5287 1864.02i 0.0187734 0.984948i
\(154\) 84.8890 448.579i 0.0444192 0.234724i
\(155\) 470.561 0.243848
\(156\) 1267.19 1774.77i 0.650361 0.910867i
\(157\) −1909.32 −0.970577 −0.485288 0.874354i \(-0.661285\pi\)
−0.485288 + 0.874354i \(0.661285\pi\)
\(158\) 1685.25 147.723i 0.848554 0.0743809i
\(159\) 883.933 867.246i 0.440883 0.432560i
\(160\) −691.289 1479.27i −0.341570 0.730914i
\(161\) −3168.71 892.202i −1.55111 0.436741i
\(162\) −2059.42 + 101.646i −0.998784 + 0.0492967i
\(163\) 3458.92i 1.66211i −0.556191 0.831054i \(-0.687738\pi\)
0.556191 0.831054i \(-0.312262\pi\)
\(164\) −1463.37 + 258.533i −0.696769 + 0.123098i
\(165\) 286.081 + 291.586i 0.134978 + 0.137575i
\(166\) −0.972202 11.0911i −0.000454563 0.00518576i
\(167\) −2306.06 −1.06855 −0.534277 0.845310i \(-0.679416\pi\)
−0.534277 + 0.845310i \(0.679416\pi\)
\(168\) 1505.99 + 1572.78i 0.691603 + 0.722278i
\(169\) 555.068 0.252648
\(170\) −153.831 1754.94i −0.0694018 0.791751i
\(171\) 66.5273 3490.37i 0.0297513 1.56091i
\(172\) 459.708 + 2602.08i 0.203793 + 1.15353i
\(173\) 18.1258i 0.00796576i 0.999992 + 0.00398288i \(0.00126779\pi\)
−0.999992 + 0.00398288i \(0.998732\pi\)
\(174\) 2362.90 2763.04i 1.02949 1.20382i
\(175\) 219.036 777.918i 0.0946146 0.336029i
\(176\) 524.020 191.122i 0.224429 0.0818544i
\(177\) 722.675 + 736.581i 0.306890 + 0.312796i
\(178\) 3546.63 310.883i 1.49343 0.130908i
\(179\) 2596.01 1.08400 0.541998 0.840380i \(-0.317668\pi\)
0.541998 + 0.840380i \(0.317668\pi\)
\(180\) −1924.75 + 302.341i −0.797014 + 0.125195i
\(181\) −1200.67 −0.493069 −0.246534 0.969134i \(-0.579292\pi\)
−0.246534 + 0.969134i \(0.579292\pi\)
\(182\) −510.968 + 2700.11i −0.208107 + 1.09970i
\(183\) −583.054 + 572.047i −0.235522 + 0.231076i
\(184\) −1042.89 3884.39i −0.417843 1.55631i
\(185\) 2701.46 1.07360
\(186\) −582.691 498.307i −0.229704 0.196439i
\(187\) 601.801 0.235337
\(188\) −645.873 + 114.106i −0.250559 + 0.0442662i
\(189\) 2301.87 1205.26i 0.885907 0.463863i
\(190\) −288.048 3286.11i −0.109985 1.25474i
\(191\) 1778.65i 0.673816i 0.941538 + 0.336908i \(0.109381\pi\)
−0.941538 + 0.336908i \(0.890619\pi\)
\(192\) −710.470 + 2563.81i −0.267051 + 0.963682i
\(193\) 151.059 0.0563393 0.0281697 0.999603i \(-0.491032\pi\)
0.0281697 + 0.999603i \(0.491032\pi\)
\(194\) 186.708 + 2130.01i 0.0690973 + 0.788277i
\(195\) −1722.00 1755.13i −0.632383 0.644551i
\(196\) −2554.26 1002.64i −0.930853 0.365394i
\(197\) 346.401 0.125280 0.0626398 0.998036i \(-0.480048\pi\)
0.0626398 + 0.998036i \(0.480048\pi\)
\(198\) −45.4729 664.018i −0.0163213 0.238332i
\(199\) 3780.44i 1.34668i 0.739335 + 0.673338i \(0.235140\pi\)
−0.739335 + 0.673338i \(0.764860\pi\)
\(200\) 953.618 256.031i 0.337155 0.0905206i
\(201\) 1920.02 + 1956.97i 0.673770 + 0.686735i
\(202\) −258.281 2946.53i −0.0899633 1.02632i
\(203\) −1241.69 + 4409.92i −0.429306 + 1.52471i
\(204\) −1667.93 + 2336.03i −0.572443 + 0.801738i
\(205\) 1675.53i 0.570850i
\(206\) 375.543 + 4284.28i 0.127016 + 1.44903i
\(207\) −4798.29 91.4567i −1.61113 0.0307086i
\(208\) −3154.21 + 1150.41i −1.05147 + 0.383494i
\(209\) 1126.87 0.372953
\(210\) 2041.71 1363.61i 0.670912 0.448087i
\(211\) 2168.92i 0.707652i 0.935311 + 0.353826i \(0.115119\pi\)
−0.935311 + 0.353826i \(0.884881\pi\)
\(212\) −1877.45 + 331.689i −0.608227 + 0.107455i
\(213\) −892.341 909.511i −0.287053 0.292576i
\(214\) 798.140 69.9618i 0.254952 0.0223481i
\(215\) 2979.32 0.945061
\(216\) 2703.57 + 1663.85i 0.851641 + 0.524125i
\(217\) 929.998 + 261.857i 0.290933 + 0.0819169i
\(218\) 291.596 + 3326.59i 0.0905933 + 1.03351i
\(219\) −2711.43 2763.60i −0.836626 0.852725i
\(220\) −109.416 619.323i −0.0335309 0.189794i
\(221\) −3622.39 −1.10257
\(222\) −3345.19 2860.75i −1.01133 0.864869i
\(223\) 3892.25i 1.16881i −0.811462 0.584405i \(-0.801328\pi\)
0.811462 0.584405i \(-0.198672\pi\)
\(224\) −543.060 3308.25i −0.161985 0.986793i
\(225\) 22.4526 1177.98i 0.00665263 0.349032i
\(226\) 461.253 + 5262.07i 0.135761 + 1.54880i
\(227\) 2544.85i 0.744085i 0.928216 + 0.372043i \(0.121342\pi\)
−0.928216 + 0.372043i \(0.878658\pi\)
\(228\) −3123.19 + 4374.20i −0.907185 + 1.27056i
\(229\) 775.951 0.223914 0.111957 0.993713i \(-0.464288\pi\)
0.111957 + 0.993713i \(0.464288\pi\)
\(230\) −4517.50 + 395.987i −1.29511 + 0.113524i
\(231\) 403.139 + 735.477i 0.114825 + 0.209484i
\(232\) −5405.94 + 1451.40i −1.52982 + 0.410730i
\(233\) 475.828i 0.133788i 0.997760 + 0.0668938i \(0.0213089\pi\)
−0.997760 + 0.0668938i \(0.978691\pi\)
\(234\) 273.713 + 3996.89i 0.0764665 + 1.11660i
\(235\) 739.512i 0.205278i
\(236\) −276.396 1564.48i −0.0762367 0.431521i
\(237\) −2218.44 + 2176.56i −0.608031 + 0.596552i
\(238\) 672.558 3554.00i 0.183174 0.967947i
\(239\) 295.661i 0.0800196i 0.999199 + 0.0400098i \(0.0127389\pi\)
−0.999199 + 0.0400098i \(0.987261\pi\)
\(240\) 2707.29 + 1291.77i 0.728146 + 0.347431i
\(241\) 3284.88i 0.877998i −0.898488 0.438999i \(-0.855333\pi\)
0.898488 0.438999i \(-0.144667\pi\)
\(242\) −3536.23 + 309.973i −0.939330 + 0.0823380i
\(243\) 2803.05 2547.91i 0.739982 0.672627i
\(244\) 1238.39 218.787i 0.324918 0.0574032i
\(245\) −1614.30 + 2639.38i −0.420955 + 0.688260i
\(246\) 1774.33 2074.79i 0.459865 0.537740i
\(247\) −6782.90 −1.74731
\(248\) 306.084 + 1140.05i 0.0783724 + 0.291908i
\(249\) 14.3245 + 14.6002i 0.00364570 + 0.00371585i
\(250\) −375.692 4285.97i −0.0950433 1.08427i
\(251\) 1029.64i 0.258926i −0.991584 0.129463i \(-0.958675\pi\)
0.991584 0.129463i \(-0.0413253\pi\)
\(252\) −3972.25 473.546i −0.992969 0.118375i
\(253\) 1549.13i 0.384953i
\(254\) 2706.51 237.242i 0.668589 0.0586059i
\(255\) 2266.56 + 2310.18i 0.556619 + 0.567329i
\(256\) 3134.22 2637.03i 0.765189 0.643805i
\(257\) −2451.85 −0.595106 −0.297553 0.954705i \(-0.596170\pi\)
−0.297553 + 0.954705i \(0.596170\pi\)
\(258\) −3689.27 3154.99i −0.890247 0.761323i
\(259\) 5339.06 + 1503.30i 1.28090 + 0.360659i
\(260\) 658.599 + 3727.86i 0.157095 + 0.889200i
\(261\) −127.281 + 6677.83i −0.0301858 + 1.58371i
\(262\) 365.005 + 4164.05i 0.0860690 + 0.981894i
\(263\) 4396.49i 1.03080i 0.856951 + 0.515398i \(0.172356\pi\)
−0.856951 + 0.515398i \(0.827644\pi\)
\(264\) −520.351 + 882.768i −0.121308 + 0.205798i
\(265\) 2149.65i 0.498308i
\(266\) 1259.36 6654.84i 0.290287 1.53396i
\(267\) −4668.73 + 4580.59i −1.07012 + 1.04992i
\(268\) −734.336 4156.55i −0.167376 0.947394i
\(269\) 3402.69i 0.771248i −0.922656 0.385624i \(-0.873986\pi\)
0.922656 0.385624i \(-0.126014\pi\)
\(270\) 2377.75 2675.45i 0.535946 0.603048i
\(271\) 4179.66i 0.936887i 0.883493 + 0.468444i \(0.155185\pi\)
−0.883493 + 0.468444i \(0.844815\pi\)
\(272\) 4151.70 1514.22i 0.925492 0.337548i
\(273\) −2426.60 4427.02i −0.537964 0.981449i
\(274\) −85.1666 971.600i −0.0187778 0.214221i
\(275\) 380.313 0.0833954
\(276\) 6013.32 + 4293.52i 1.31145 + 0.936376i
\(277\) 2605.51i 0.565163i 0.959243 + 0.282581i \(0.0911907\pi\)
−0.959243 + 0.282581i \(0.908809\pi\)
\(278\) 3257.58 285.547i 0.702794 0.0616042i
\(279\) 1408.27 + 26.8421i 0.302190 + 0.00575983i
\(280\) −3779.76 45.9752i −0.806727 0.00981266i
\(281\) 7988.99i 1.69603i −0.529976 0.848013i \(-0.677799\pi\)
0.529976 0.848013i \(-0.322201\pi\)
\(282\) 783.116 915.730i 0.165368 0.193372i
\(283\) −3622.36 −0.760873 −0.380437 0.924807i \(-0.624226\pi\)
−0.380437 + 0.924807i \(0.624226\pi\)
\(284\) 341.287 + 1931.78i 0.0713087 + 0.403627i
\(285\) 4244.13 + 4325.79i 0.882107 + 0.899081i
\(286\) −1288.25 + 112.923i −0.266349 + 0.0233471i
\(287\) −932.395 + 3311.45i −0.191768 + 0.681077i
\(288\) −1984.48 4466.51i −0.406030 0.913860i
\(289\) −145.058 −0.0295254
\(290\) 551.098 + 6287.05i 0.111592 + 1.27306i
\(291\) −2750.98 2803.91i −0.554176 0.564840i
\(292\) 1037.02 + 5869.82i 0.207832 + 1.17639i
\(293\) 8260.81i 1.64710i −0.567241 0.823552i \(-0.691989\pi\)
0.567241 0.823552i \(-0.308011\pi\)
\(294\) 4793.98 1558.83i 0.950988 0.309227i
\(295\) −1791.30 −0.353537
\(296\) 1757.21 + 6544.94i 0.345053 + 1.28519i
\(297\) 839.539 + 888.965i 0.164024 + 0.173680i
\(298\) 5211.06 456.781i 1.01298 0.0887940i
\(299\) 9324.63i 1.80354i
\(300\) −1054.06 + 1476.27i −0.202854 + 0.284108i
\(301\) 5888.22 + 1657.93i 1.12755 + 0.317479i
\(302\) 7404.81 649.076i 1.41092 0.123676i
\(303\) 3805.54 + 3878.77i 0.721527 + 0.735410i
\(304\) 7774.04 2835.37i 1.46668 0.534933i
\(305\) 1417.94i 0.266199i
\(306\) −360.272 5260.88i −0.0673052 0.982825i
\(307\) −6375.65 −1.18527 −0.592635 0.805471i \(-0.701912\pi\)
−0.592635 + 0.805471i \(0.701912\pi\)
\(308\) 128.394 1284.89i 0.0237531 0.237706i
\(309\) −5533.29 5639.76i −1.01870 1.03830i
\(310\) 1325.86 116.220i 0.242916 0.0212931i
\(311\) 3566.99 0.650371 0.325186 0.945650i \(-0.394573\pi\)
0.325186 + 0.945650i \(0.394573\pi\)
\(312\) 3132.13 5313.60i 0.568339 0.964178i
\(313\) 2364.18i 0.426936i −0.976950 0.213468i \(-0.931524\pi\)
0.976950 0.213468i \(-0.0684760\pi\)
\(314\) −5379.75 + 471.568i −0.966870 + 0.0847520i
\(315\) −1304.99 + 4317.59i −0.233421 + 0.772282i
\(316\) 4711.92 832.454i 0.838818 0.148194i
\(317\) −5296.44 −0.938415 −0.469207 0.883088i \(-0.655460\pi\)
−0.469207 + 0.883088i \(0.655460\pi\)
\(318\) 2276.40 2661.89i 0.401428 0.469406i
\(319\) −2155.94 −0.378400
\(320\) −2313.14 3997.28i −0.404090 0.698295i
\(321\) −1050.66 + 1030.83i −0.182686 + 0.179237i
\(322\) −9148.58 1731.28i −1.58332 0.299628i
\(323\) 8927.95 1.53797
\(324\) −5777.55 + 795.039i −0.990664 + 0.136324i
\(325\) −2289.20 −0.390713
\(326\) −854.291 9745.94i −0.145137 1.65576i
\(327\) −4296.40 4379.07i −0.726579 0.740560i
\(328\) −4059.38 + 1089.88i −0.683359 + 0.183471i
\(329\) −411.522 + 1461.54i −0.0689602 + 0.244916i
\(330\) 878.086 + 750.923i 0.146476 + 0.125264i
\(331\) 664.908i 0.110413i 0.998475 + 0.0552064i \(0.0175817\pi\)
−0.998475 + 0.0552064i \(0.982418\pi\)
\(332\) −5.47860 31.0104i −0.000905654 0.00512626i
\(333\) 8084.81 + 154.099i 1.33047 + 0.0253590i
\(334\) −6497.61 + 569.555i −1.06447 + 0.0933074i
\(335\) −4759.17 −0.776182
\(336\) 4631.75 + 4059.55i 0.752032 + 0.659127i
\(337\) 8618.15 1.39306 0.696529 0.717529i \(-0.254727\pi\)
0.696529 + 0.717529i \(0.254727\pi\)
\(338\) 1563.97 137.092i 0.251683 0.0220615i
\(339\) −6796.15 6926.92i −1.08884 1.10979i
\(340\) −866.876 4906.76i −0.138273 0.782667i
\(341\) 454.663i 0.0722034i
\(342\) −674.608 9850.97i −0.106663 1.55754i
\(343\) −4659.20 + 4318.04i −0.733449 + 0.679744i
\(344\) 1937.95 + 7218.13i 0.303742 + 1.13132i
\(345\) 5946.78 5834.51i 0.928011 0.910491i
\(346\) 4.47673 + 51.0716i 0.000695580 + 0.00793533i
\(347\) −11525.2 −1.78301 −0.891507 0.453006i \(-0.850352\pi\)
−0.891507 + 0.453006i \(0.850352\pi\)
\(348\) 5975.33 8368.79i 0.920435 1.28912i
\(349\) −232.968 −0.0357320 −0.0178660 0.999840i \(-0.505687\pi\)
−0.0178660 + 0.999840i \(0.505687\pi\)
\(350\) 425.029 2245.98i 0.0649107 0.343007i
\(351\) −5053.39 5350.90i −0.768462 0.813704i
\(352\) 1429.29 667.934i 0.216424 0.101139i
\(353\) −10995.6 −1.65789 −0.828944 0.559331i \(-0.811058\pi\)
−0.828944 + 0.559331i \(0.811058\pi\)
\(354\) 2218.15 + 1896.92i 0.333032 + 0.284803i
\(355\) 2211.85 0.330684
\(356\) 9916.27 1751.90i 1.47630 0.260817i
\(357\) 3193.99 + 5827.04i 0.473512 + 0.863864i
\(358\) 7314.59 641.168i 1.07986 0.0946559i
\(359\) 3732.36i 0.548709i −0.961629 0.274354i \(-0.911536\pi\)
0.961629 0.274354i \(-0.0884642\pi\)
\(360\) −5348.55 + 1327.26i −0.783037 + 0.194313i
\(361\) 9858.53 1.43731
\(362\) −3383.05 + 296.545i −0.491185 + 0.0430554i
\(363\) 4655.05 4567.17i 0.673076 0.660370i
\(364\) −772.838 + 7734.09i −0.111285 + 1.11367i
\(365\) 6720.83 0.963792
\(366\) −1501.54 + 1755.82i −0.214445 + 0.250759i
\(367\) 1187.53i 0.168907i −0.996427 0.0844534i \(-0.973086\pi\)
0.996427 0.0844534i \(-0.0269144\pi\)
\(368\) −3897.86 10687.2i −0.552146 1.51388i
\(369\) −95.5768 + 5014.45i −0.0134838 + 0.707431i
\(370\) 7611.70 667.212i 1.06950 0.0937479i
\(371\) −1196.23 + 4248.48i −0.167399 + 0.594528i
\(372\) −1764.88 1260.13i −0.245980 0.175630i
\(373\) 4872.40i 0.676362i 0.941081 + 0.338181i \(0.109812\pi\)
−0.941081 + 0.338181i \(0.890188\pi\)
\(374\) 1695.65 148.634i 0.234438 0.0205499i
\(375\) 5535.48 + 5641.99i 0.762269 + 0.776937i
\(376\) −1791.65 + 481.027i −0.245737 + 0.0659763i
\(377\) 12977.2 1.77283
\(378\) 6188.13 3964.50i 0.842018 0.539449i
\(379\) 3969.71i 0.538022i 0.963137 + 0.269011i \(0.0866967\pi\)
−0.963137 + 0.269011i \(0.913303\pi\)
\(380\) −1623.22 9187.89i −0.219130 1.24034i
\(381\) −3562.82 + 3495.55i −0.479078 + 0.470033i
\(382\) 439.295 + 5011.58i 0.0588385 + 0.671242i
\(383\) −2981.45 −0.397768 −0.198884 0.980023i \(-0.563732\pi\)
−0.198884 + 0.980023i \(0.563732\pi\)
\(384\) −1368.62 + 7399.32i −0.181881 + 0.983321i
\(385\) −1401.46 394.605i −0.185520 0.0522361i
\(386\) 425.628 37.3089i 0.0561241 0.00491962i
\(387\) 8916.38 + 169.949i 1.17118 + 0.0223229i
\(388\) 1052.15 + 5955.45i 0.137667 + 0.779232i
\(389\) −477.774 −0.0622728 −0.0311364 0.999515i \(-0.509913\pi\)
−0.0311364 + 0.999515i \(0.509913\pi\)
\(390\) −5285.42 4519.99i −0.686251 0.586869i
\(391\) 12273.5i 1.58746i
\(392\) −7444.58 2194.21i −0.959204 0.282715i
\(393\) −5378.02 5481.50i −0.690293 0.703576i
\(394\) 976.029 85.5549i 0.124801 0.0109396i
\(395\) 5395.06i 0.687227i
\(396\) −292.126 1859.72i −0.0370704 0.235996i
\(397\) 6740.60 0.852143 0.426072 0.904689i \(-0.359897\pi\)
0.426072 + 0.904689i \(0.359897\pi\)
\(398\) 933.701 + 10651.9i 0.117593 + 1.34153i
\(399\) 5980.73 + 10911.1i 0.750403 + 1.36902i
\(400\) 2623.70 956.925i 0.327963 0.119616i
\(401\) 10739.9i 1.33746i −0.743504 0.668732i \(-0.766837\pi\)
0.743504 0.668732i \(-0.233163\pi\)
\(402\) 5893.23 + 5039.78i 0.731163 + 0.625277i
\(403\) 2736.73i 0.338278i
\(404\) −1455.48 8238.41i −0.179239 1.01455i
\(405\) −250.578 + 6570.91i −0.0307440 + 0.806201i
\(406\) −2409.43 + 12732.2i −0.294527 + 1.55637i
\(407\) 2610.19i 0.317893i
\(408\) −4122.64 + 6993.99i −0.500247 + 0.848662i
\(409\) 15374.7i 1.85875i −0.369139 0.929374i \(-0.620347\pi\)
0.369139 0.929374i \(-0.379653\pi\)
\(410\) 413.826 + 4721.02i 0.0498473 + 0.568669i
\(411\) 1254.85 + 1279.00i 0.150602 + 0.153500i
\(412\) 2116.28 + 11978.7i 0.253062 + 1.43240i
\(413\) −3540.25 996.817i −0.421803 0.118766i
\(414\) −13542.4 + 927.401i −1.60766 + 0.110095i
\(415\) −35.5063 −0.00419984
\(416\) −8603.24 + 4020.46i −1.01396 + 0.473844i
\(417\) −4288.23 + 4207.28i −0.503587 + 0.494080i
\(418\) 3175.09 278.316i 0.371528 0.0325667i
\(419\) 1812.00i 0.211269i 0.994405 + 0.105635i \(0.0336874\pi\)
−0.994405 + 0.105635i \(0.966313\pi\)
\(420\) 5415.98 4346.42i 0.629221 0.504961i
\(421\) 1588.18i 0.183855i −0.995766 0.0919276i \(-0.970697\pi\)
0.995766 0.0919276i \(-0.0293028\pi\)
\(422\) 535.684 + 6111.20i 0.0617931 + 0.704949i
\(423\) −42.1837 + 2213.18i −0.00484880 + 0.254393i
\(424\) −5208.04 + 1398.27i −0.596520 + 0.160156i
\(425\) 3013.14 0.343903
\(426\) −2738.91 2342.27i −0.311504 0.266393i
\(427\) 789.049 2802.35i 0.0894257 0.317600i
\(428\) 2231.58 394.252i 0.252027 0.0445255i
\(429\) 1695.83 1663.82i 0.190852 0.187249i
\(430\) 8394.61 735.839i 0.941451 0.0825240i
\(431\) 2266.42i 0.253294i −0.991948 0.126647i \(-0.959578\pi\)
0.991948 0.126647i \(-0.0404216\pi\)
\(432\) 8028.58 + 4020.38i 0.894156 + 0.447756i
\(433\) 12900.1i 1.43173i 0.698238 + 0.715865i \(0.253968\pi\)
−0.698238 + 0.715865i \(0.746032\pi\)
\(434\) 2685.06 + 508.120i 0.296975 + 0.0561994i
\(435\) −8119.94 8276.18i −0.894992 0.912213i
\(436\) 1643.21 + 9301.05i 0.180495 + 1.02165i
\(437\) 22982.0i 2.51574i
\(438\) −8322.34 7117.11i −0.907892 0.776412i
\(439\) 3778.78i 0.410823i −0.978676 0.205412i \(-0.934147\pi\)
0.978676 0.205412i \(-0.0658533\pi\)
\(440\) −461.253 1717.99i −0.0499759 0.186141i
\(441\) −4981.77 + 7806.93i −0.537930 + 0.842990i
\(442\) −10206.5 + 894.664i −1.09836 + 0.0962779i
\(443\) 372.016 0.0398985 0.0199492 0.999801i \(-0.493650\pi\)
0.0199492 + 0.999801i \(0.493650\pi\)
\(444\) −10132.1 7234.31i −1.08299 0.773255i
\(445\) 11353.9i 1.20950i
\(446\) −961.316 10966.9i −0.102062 1.16434i
\(447\) −6859.76 + 6730.26i −0.725852 + 0.712149i
\(448\) −2347.22 9187.27i −0.247535 0.968879i
\(449\) 12340.3i 1.29705i 0.761192 + 0.648526i \(0.224614\pi\)
−0.761192 + 0.648526i \(0.775386\pi\)
\(450\) −227.677 3324.65i −0.0238507 0.348279i
\(451\) −1618.92 −0.169029
\(452\) 2599.27 + 14712.6i 0.270486 + 1.53102i
\(453\) −9747.58 + 9563.56i −1.01100 + 0.991910i
\(454\) 628.531 + 7170.42i 0.0649745 + 0.741243i
\(455\) 8435.74 + 2375.22i 0.869173 + 0.244730i
\(456\) −7719.62 + 13096.2i −0.792772 + 1.34493i
\(457\) −13249.9 −1.35625 −0.678124 0.734947i \(-0.737207\pi\)
−0.678124 + 0.734947i \(0.737207\pi\)
\(458\) 2186.34 191.646i 0.223058 0.0195524i
\(459\) 6651.49 + 7043.08i 0.676394 + 0.716216i
\(460\) −12630.8 + 2231.48i −1.28025 + 0.226181i
\(461\) 3328.58i 0.336285i 0.985763 + 0.168143i \(0.0537769\pi\)
−0.985763 + 0.168143i \(0.946223\pi\)
\(462\) 1317.54 + 1972.73i 0.132679 + 0.198657i
\(463\) 4155.03 0.417064 0.208532 0.978016i \(-0.433131\pi\)
0.208532 + 0.978016i \(0.433131\pi\)
\(464\) −14873.4 + 5424.68i −1.48811 + 0.542747i
\(465\) −1745.35 + 1712.40i −0.174061 + 0.170775i
\(466\) 117.521 + 1340.70i 0.0116825 + 0.133277i
\(467\) 497.911i 0.0493374i −0.999696 0.0246687i \(-0.992147\pi\)
0.999696 0.0246687i \(-0.00785309\pi\)
\(468\) 1758.38 + 11194.1i 0.173678 + 1.10566i
\(469\) −9405.83 2648.37i −0.926057 0.260747i
\(470\) 182.646 + 2083.67i 0.0179252 + 0.204494i
\(471\) 7081.83 6948.14i 0.692810 0.679731i
\(472\) −1165.18 4339.85i −0.113627 0.423216i
\(473\) 2878.66i 0.279833i
\(474\) −5713.16 + 6680.65i −0.553617 + 0.647368i
\(475\) 5642.09 0.545004
\(476\) 1017.24 10179.9i 0.0979521 0.980245i
\(477\) −122.622 + 6433.36i −0.0117703 + 0.617534i
\(478\) 73.0228 + 833.060i 0.00698742 + 0.0797140i
\(479\) 20052.8 1.91281 0.956406 0.292041i \(-0.0943345\pi\)
0.956406 + 0.292041i \(0.0943345\pi\)
\(480\) 7947.18 + 2971.07i 0.755703 + 0.282521i
\(481\) 15711.4i 1.48935i
\(482\) −811.305 9255.54i −0.0766679 0.874644i
\(483\) 14999.8 8221.85i 1.41307 0.774549i
\(484\) −9887.22 + 1746.77i −0.928552 + 0.164047i
\(485\) 6818.87 0.638410
\(486\) 7268.64 7871.35i 0.678420 0.734674i
\(487\) −5918.14 −0.550670 −0.275335 0.961348i \(-0.588789\pi\)
−0.275335 + 0.961348i \(0.588789\pi\)
\(488\) 3435.29 922.319i 0.318664 0.0855562i
\(489\) 12587.2 + 12829.4i 1.16404 + 1.18643i
\(490\) −3896.62 + 7835.48i −0.359248 + 0.722389i
\(491\) 2586.64 0.237746 0.118873 0.992909i \(-0.462072\pi\)
0.118873 + 0.992909i \(0.462072\pi\)
\(492\) 4486.94 6284.21i 0.411153 0.575842i
\(493\) −17081.1 −1.56043
\(494\) −19111.7 + 1675.25i −1.74064 + 0.152577i
\(495\) −2122.20 40.4496i −0.192698 0.00367288i
\(496\) 1144.00 + 3136.63i 0.103563 + 0.283949i
\(497\) 4371.41 + 1230.84i 0.394537 + 0.111088i
\(498\) 43.9671 + 37.5998i 0.00395625 + 0.00338331i
\(499\) 18254.1i 1.63761i −0.574072 0.818805i \(-0.694637\pi\)
0.574072 0.818805i \(-0.305363\pi\)
\(500\) −2117.11 11983.5i −0.189360 1.07183i
\(501\) 8553.37 8391.89i 0.762747 0.748347i
\(502\) −254.302 2901.14i −0.0226097 0.257937i
\(503\) −10858.4 −0.962531 −0.481265 0.876575i \(-0.659823\pi\)
−0.481265 + 0.876575i \(0.659823\pi\)
\(504\) −11309.3 353.200i −0.999513 0.0312158i
\(505\) −9432.81 −0.831197
\(506\) −382.608 4364.88i −0.0336146 0.383483i
\(507\) −2058.79 + 2019.92i −0.180343 + 0.176939i
\(508\) 7567.34 1336.92i 0.660918 0.116764i
\(509\) 5017.32i 0.436913i −0.975847 0.218456i \(-0.929898\pi\)
0.975847 0.218456i \(-0.0701022\pi\)
\(510\) 6956.90 + 5949.41i 0.604032 + 0.516557i
\(511\) 13282.8 + 3739.99i 1.14989 + 0.323772i
\(512\) 8179.74 8204.24i 0.706049 0.708163i
\(513\) 12454.9 + 13188.1i 1.07192 + 1.13503i
\(514\) −6908.39 + 605.562i −0.592832 + 0.0519654i
\(515\) 13715.4 1.17354
\(516\) −11174.2 7978.40i −0.953326 0.680677i
\(517\) −714.527 −0.0607831
\(518\) 15414.8 + 2917.09i 1.30750 + 0.247431i
\(519\) −65.9607 67.2299i −0.00557871 0.00568606i
\(520\) 2776.40 + 10341.0i 0.234141 + 0.872085i
\(521\) −13237.4 −1.11313 −0.556564 0.830805i \(-0.687881\pi\)
−0.556564 + 0.830805i \(0.687881\pi\)
\(522\) 1290.67 + 18847.0i 0.108221 + 1.58029i
\(523\) 17806.0 1.48872 0.744361 0.667777i \(-0.232754\pi\)
0.744361 + 0.667777i \(0.232754\pi\)
\(524\) 2056.89 + 11642.6i 0.171480 + 0.970627i
\(525\) 2018.47 + 3682.44i 0.167796 + 0.306124i
\(526\) 1085.85 + 12387.7i 0.0900104 + 1.02686i
\(527\) 3602.20i 0.297750i
\(528\) −1248.13 + 2615.83i −0.102875 + 0.215605i
\(529\) −19426.9 −1.59669
\(530\) 530.924 + 6056.89i 0.0435129 + 0.496405i
\(531\) −5360.92 102.180i −0.438124 0.00835076i
\(532\) 1904.78 19061.9i 0.155231 1.55345i
\(533\) 9744.70 0.791913
\(534\) −12023.4 + 14059.5i −0.974351 + 1.13935i
\(535\) 2555.11i 0.206481i
\(536\) −3095.68 11530.2i −0.249464 0.929160i
\(537\) −9628.82 + 9447.04i −0.773770 + 0.759162i
\(538\) −840.403 9587.50i −0.0673464 0.768302i
\(539\) −2550.20 1559.76i −0.203794 0.124645i
\(540\) 6038.82 8125.68i 0.481240 0.647544i
\(541\) 7729.85i 0.614292i −0.951662 0.307146i \(-0.900626\pi\)
0.951662 0.307146i \(-0.0993740\pi\)
\(542\) 1032.30 + 11776.7i 0.0818102 + 0.933309i
\(543\) 4453.40 4369.32i 0.351959 0.345314i
\(544\) 11323.9 5291.90i 0.892482 0.417074i
\(545\) 10649.5 0.837018
\(546\) −7930.63 11874.4i −0.621611 0.930725i
\(547\) 9563.57i 0.747548i −0.927520 0.373774i \(-0.878064\pi\)
0.927520 0.373774i \(-0.121936\pi\)
\(548\) −479.935 2716.57i −0.0374121 0.211763i
\(549\) 80.8828 4243.53i 0.00628779 0.329890i
\(550\) 1071.58 93.9304i 0.0830768 0.00728219i
\(551\) −31984.3 −2.47291
\(552\) 18003.7 + 10612.4i 1.38820 + 0.818282i
\(553\) 3002.23 10662.6i 0.230864 0.819926i
\(554\) 643.514 + 7341.35i 0.0493507 + 0.563004i
\(555\) −10019.9 + 9830.77i −0.766347 + 0.751880i
\(556\) 9108.11 1609.13i 0.694730 0.122738i
\(557\) −16797.4 −1.27779 −0.638894 0.769295i \(-0.720608\pi\)
−0.638894 + 0.769295i \(0.720608\pi\)
\(558\) 3974.61 272.187i 0.301539 0.0206498i
\(559\) 17327.4i 1.31104i
\(560\) −10661.3 + 803.990i −0.804502 + 0.0606693i
\(561\) −2232.13 + 2189.99i −0.167986 + 0.164815i
\(562\) −1973.14 22510.0i −0.148099 1.68955i
\(563\) 15342.1i 1.14848i −0.818688 0.574239i \(-0.805298\pi\)
0.818688 0.574239i \(-0.194702\pi\)
\(564\) 1980.36 2773.60i 0.147851 0.207074i
\(565\) 16845.6 1.25434
\(566\) −10206.5 + 894.658i −0.757967 + 0.0664404i
\(567\) −4151.80 + 12847.1i −0.307512 + 0.951544i
\(568\) 1438.73 + 5358.74i 0.106282 + 0.395859i
\(569\) 23658.3i 1.74307i 0.490329 + 0.871537i \(0.336877\pi\)
−0.490329 + 0.871537i \(0.663123\pi\)
\(570\) 13026.8 + 11140.2i 0.957247 + 0.818620i
\(571\) 20556.7i 1.50661i 0.657673 + 0.753304i \(0.271541\pi\)
−0.657673 + 0.753304i \(0.728459\pi\)
\(572\) −3601.91 + 636.348i −0.263293 + 0.0465158i
\(573\) −6472.62 6597.17i −0.471898 0.480978i
\(574\) −1809.27 + 9560.71i −0.131563 + 0.695220i
\(575\) 7756.32i 0.562541i
\(576\) −6694.66 12094.8i −0.484278 0.874914i
\(577\) 1404.98i 0.101369i −0.998715 0.0506847i \(-0.983860\pi\)
0.998715 0.0506847i \(-0.0161404\pi\)
\(578\) −408.720 + 35.8268i −0.0294127 + 0.00257820i
\(579\) −560.291 + 549.713i −0.0402157 + 0.0394565i
\(580\) 3105.57 + 17578.4i 0.222331 + 1.25846i
\(581\) −70.1732 19.7584i −0.00501080 0.00141087i
\(582\) −8443.74 7220.93i −0.601382 0.514291i
\(583\) −2077.02 −0.147549
\(584\) 4371.67 + 16282.8i 0.309762 + 1.15375i
\(585\) 12774.0 + 243.476i 0.902806 + 0.0172077i
\(586\) −2040.27 23275.8i −0.143827 1.64081i
\(587\) 14366.9i 1.01020i 0.863062 + 0.505098i \(0.168544\pi\)
−0.863062 + 0.505098i \(0.831456\pi\)
\(588\) 13122.6 5576.22i 0.920354 0.391087i
\(589\) 6745.10i 0.471862i
\(590\) −5047.21 + 442.418i −0.352187 + 0.0308713i
\(591\) −1284.83 + 1260.57i −0.0894262 + 0.0877379i
\(592\) 6567.64 + 18007.2i 0.455960 + 1.25015i
\(593\) 5376.81 0.372343 0.186171 0.982517i \(-0.440392\pi\)
0.186171 + 0.982517i \(0.440392\pi\)
\(594\) 2585.06 + 2297.42i 0.178563 + 0.158694i
\(595\) −11103.5 3126.37i −0.765039 0.215410i
\(596\) 14570.0 2574.07i 1.00136 0.176910i
\(597\) −13757.2 14022.0i −0.943127 0.961274i
\(598\) 2303.01 + 26273.3i 0.157487 + 1.79665i
\(599\) 15516.0i 1.05837i −0.848505 0.529187i \(-0.822497\pi\)
0.848505 0.529187i \(-0.177503\pi\)
\(600\) −2605.33 + 4419.91i −0.177271 + 0.300737i
\(601\) 28358.0i 1.92470i 0.271811 + 0.962351i \(0.412378\pi\)
−0.271811 + 0.962351i \(0.587622\pi\)
\(602\) 17000.3 + 3217.13i 1.15096 + 0.217808i
\(603\) −14243.0 271.476i −0.961891 0.0183339i
\(604\) 20703.6 3657.71i 1.39473 0.246407i
\(605\) 11320.7i 0.760745i
\(606\) 11680.6 + 9989.00i 0.782988 + 0.669596i
\(607\) 16509.3i 1.10394i −0.833865 0.551969i \(-0.813877\pi\)
0.833865 0.551969i \(-0.186123\pi\)
\(608\) 21204.0 9909.05i 1.41437 0.660963i
\(609\) −11442.4 20875.3i −0.761364 1.38901i
\(610\) −350.204 3995.21i −0.0232449 0.265182i
\(611\) 4300.92 0.284773
\(612\) −2314.45 14734.2i −0.152870 0.973193i
\(613\) 8227.79i 0.542117i 0.962563 + 0.271058i \(0.0873736\pi\)
−0.962563 + 0.271058i \(0.912626\pi\)
\(614\) −17964.2 + 1574.67i −1.18074 + 0.103499i
\(615\) −6097.35 6214.68i −0.399787 0.407480i
\(616\) 44.4219 3652.05i 0.00290554 0.238872i
\(617\) 2275.68i 0.148485i 0.997240 + 0.0742425i \(0.0236539\pi\)
−0.997240 + 0.0742425i \(0.976346\pi\)
\(618\) −16983.6 14524.1i −1.10547 0.945380i
\(619\) −19550.8 −1.26949 −0.634743 0.772723i \(-0.718894\pi\)
−0.634743 + 0.772723i \(0.718894\pi\)
\(620\) 3707.08 654.928i 0.240129 0.0424235i
\(621\) 18130.1 17122.0i 1.17155 1.10642i
\(622\) 10050.4 880.982i 0.647887 0.0567913i
\(623\) 6318.21 22439.5i 0.406314 1.44305i
\(624\) 7512.79 15745.3i 0.481975 1.01012i
\(625\) −8266.21 −0.529037
\(626\) −583.908 6661.35i −0.0372806 0.425306i
\(627\) −4179.64 + 4100.74i −0.266218 + 0.261192i
\(628\) −15041.6 + 2657.40i −0.955776 + 0.168857i
\(629\) 20680.0i 1.31092i
\(630\) −2610.60 + 12487.7i −0.165093 + 0.789715i
\(631\) 25354.7 1.59961 0.799807 0.600257i \(-0.204935\pi\)
0.799807 + 0.600257i \(0.204935\pi\)
\(632\) 13070.8 3509.30i 0.822673 0.220874i
\(633\) −7892.82 8044.69i −0.495595 0.505131i
\(634\) −14923.4 + 1308.12i −0.934830 + 0.0819436i
\(635\) 8664.45i 0.541477i
\(636\) 5756.59 8062.42i 0.358905 0.502666i
\(637\) 15350.3 + 9388.60i 0.954791 + 0.583972i
\(638\) −6074.64 + 532.479i −0.376955 + 0.0330424i
\(639\) 6619.53 + 126.170i 0.409803 + 0.00781096i
\(640\) −7504.82 10691.5i −0.463522 0.660342i
\(641\) 1867.33i 0.115063i −0.998344 0.0575313i \(-0.981677\pi\)
0.998344 0.0575313i \(-0.0183229\pi\)
\(642\) −2705.77 + 3163.97i −0.166337 + 0.194505i
\(643\) 5536.73 0.339576 0.169788 0.985481i \(-0.445692\pi\)
0.169788 + 0.985481i \(0.445692\pi\)
\(644\) −26204.8 2618.55i −1.60344 0.160226i
\(645\) −11050.5 + 10841.9i −0.674597 + 0.661861i
\(646\) 25155.6 2205.04i 1.53209 0.134297i
\(647\) 7249.89 0.440529 0.220265 0.975440i \(-0.429308\pi\)
0.220265 + 0.975440i \(0.429308\pi\)
\(648\) −16082.6 + 3667.07i −0.974976 + 0.222309i
\(649\) 1730.78i 0.104683i
\(650\) −6450.10 + 565.390i −0.389221 + 0.0341176i
\(651\) −4402.35 + 2413.07i −0.265041 + 0.145278i
\(652\) −4814.14 27249.4i −0.289166 1.63676i
\(653\) 5007.60 0.300096 0.150048 0.988679i \(-0.452057\pi\)
0.150048 + 0.988679i \(0.452057\pi\)
\(654\) −13187.2 11277.4i −0.788471 0.674286i
\(655\) 13330.5 0.795216
\(656\) −11168.6 + 4073.45i −0.664727 + 0.242441i
\(657\) 20113.8 + 383.374i 1.19439 + 0.0227654i
\(658\) −798.538 + 4219.71i −0.0473104 + 0.250002i
\(659\) 20066.4 1.18616 0.593078 0.805145i \(-0.297912\pi\)
0.593078 + 0.805145i \(0.297912\pi\)
\(660\) 2659.58 + 1898.95i 0.156855 + 0.111995i
\(661\) 24092.4 1.41768 0.708840 0.705369i \(-0.249219\pi\)
0.708840 + 0.705369i \(0.249219\pi\)
\(662\) 164.220 + 1873.46i 0.00964139 + 0.109991i
\(663\) 13435.7 13182.1i 0.787029 0.772171i
\(664\) −23.0956 86.0225i −0.00134983 0.00502759i
\(665\) −20791.2 5854.11i −1.21240 0.341373i
\(666\) 22818.0 1562.61i 1.32760 0.0909158i
\(667\) 43969.6i 2.55249i
\(668\) −18167.2 + 3209.59i −1.05226 + 0.185902i
\(669\) 14164.1 + 14436.7i 0.818560 + 0.834311i
\(670\) −13409.5 + 1175.43i −0.773217 + 0.0677772i
\(671\) 1370.03 0.0788217
\(672\) 14053.2 + 10294.3i 0.806715 + 0.590941i
\(673\) −17.0224 −0.000974985 −0.000487493 1.00000i \(-0.500155\pi\)
−0.000487493 1.00000i \(0.500155\pi\)
\(674\) 24282.7 2128.53i 1.38774 0.121644i
\(675\) 4203.46 + 4450.94i 0.239691 + 0.253802i
\(676\) 4372.82 772.545i 0.248795 0.0439546i
\(677\) 25059.2i 1.42261i 0.702885 + 0.711304i \(0.251895\pi\)
−0.702885 + 0.711304i \(0.748105\pi\)
\(678\) −20859.8 17838.9i −1.18159 1.01047i
\(679\) 13476.5 + 3794.55i 0.761682 + 0.214464i
\(680\) −3654.41 13611.3i −0.206089 0.767603i
\(681\) −9260.84 9439.04i −0.521110 0.531137i
\(682\) 112.293 + 1281.07i 0.00630489 + 0.0719276i
\(683\) −22610.8 −1.26673 −0.633367 0.773851i \(-0.718328\pi\)
−0.633367 + 0.773851i \(0.718328\pi\)
\(684\) −4333.80 27589.7i −0.242262 1.54228i
\(685\) −3110.41 −0.173493
\(686\) −12061.4 + 13317.3i −0.671292 + 0.741193i
\(687\) −2878.06 + 2823.73i −0.159832 + 0.156815i
\(688\) 7243.16 + 19859.3i 0.401370 + 1.10048i
\(689\) 12502.1 0.691280
\(690\) 15314.8 17908.2i 0.844961 0.988049i
\(691\) −22189.8 −1.22162 −0.610810 0.791777i \(-0.709156\pi\)
−0.610810 + 0.791777i \(0.709156\pi\)
\(692\) 25.2275 + 142.795i 0.00138585 + 0.00784428i
\(693\) −4171.72 1260.90i −0.228673 0.0691162i
\(694\) −32473.7 + 2846.52i −1.77620 + 0.155695i
\(695\) 10428.6i 0.569179i
\(696\) 14769.3 25055.9i 0.804352 1.36457i
\(697\) −12826.4 −0.697036
\(698\) −656.416 + 57.5388i −0.0355955 + 0.00312017i
\(699\) −1731.57 1764.88i −0.0936964 0.0954993i
\(700\) 642.855 6433.29i 0.0347109 0.347365i
\(701\) −9475.27 −0.510522 −0.255261 0.966872i \(-0.582161\pi\)
−0.255261 + 0.966872i \(0.582161\pi\)
\(702\) −15560.1 13828.7i −0.836580 0.743493i
\(703\) 38723.2i 2.07749i
\(704\) 3862.22 2234.99i 0.206766 0.119651i
\(705\) −2691.13 2742.91i −0.143764 0.146530i
\(706\) −30981.3 + 2715.70i −1.65156 + 0.144769i
\(707\) −18642.6 5249.15i −0.991696 0.279228i
\(708\) 6718.41 + 4796.96i 0.356629 + 0.254634i
\(709\) 27170.6i 1.43923i −0.694374 0.719614i \(-0.744319\pi\)
0.694374 0.719614i \(-0.255681\pi\)
\(710\) 6232.16 546.287i 0.329421 0.0288757i
\(711\) 307.748 16146.1i 0.0162327 0.851653i
\(712\) 27507.6 7385.35i 1.44788 0.388733i
\(713\) 9272.65 0.487046
\(714\) 10438.6 + 15629.5i 0.547137 + 0.819217i
\(715\) 4124.11i 0.215711i
\(716\) 20451.4 3613.14i 1.06746 0.188589i
\(717\) −1075.93 1096.63i −0.0560407 0.0571190i
\(718\) −921.826 10516.4i −0.0479140 0.546613i
\(719\) 387.852 0.0201174 0.0100587 0.999949i \(-0.496798\pi\)
0.0100587 + 0.999949i \(0.496798\pi\)
\(720\) −14742.4 + 5060.72i −0.763078 + 0.261947i
\(721\) 27106.6 + 7632.31i 1.40014 + 0.394233i
\(722\) 27777.6 2434.88i 1.43182 0.125508i
\(723\) 11953.8 + 12183.9i 0.614894 + 0.626726i
\(724\) −9458.92 + 1671.10i −0.485550 + 0.0857819i
\(725\) −10794.5 −0.552964
\(726\) 11988.2 14018.3i 0.612841 0.716621i
\(727\) 1084.95i 0.0553488i −0.999617 0.0276744i \(-0.991190\pi\)
0.999617 0.0276744i \(-0.00881016\pi\)
\(728\) −267.387 + 21982.6i −0.0136127 + 1.11913i
\(729\) −1124.74 + 19650.8i −0.0571427 + 0.998366i
\(730\) 18936.8 1659.92i 0.960111 0.0841596i
\(731\) 22807.1i 1.15397i
\(732\) −3797.12 + 5318.08i −0.191729 + 0.268527i
\(733\) −35437.5 −1.78570 −0.892848 0.450358i \(-0.851296\pi\)
−0.892848 + 0.450358i \(0.851296\pi\)
\(734\) −293.299 3346.02i −0.0147491 0.168262i
\(735\) −3617.27 15664.2i −0.181531 0.786099i
\(736\) −13622.2 29149.7i −0.682231 1.45988i
\(737\) 4598.37i 0.229828i
\(738\) 969.180 + 14152.4i 0.0483415 + 0.705906i
\(739\) 34674.6i 1.72601i −0.505192 0.863007i \(-0.668578\pi\)
0.505192 0.863007i \(-0.331422\pi\)
\(740\) 21282.1 3759.90i 1.05722 0.186780i
\(741\) 25158.3 24683.4i 1.24725 1.22371i
\(742\) −2321.23 + 12266.1i −0.114845 + 0.606875i
\(743\) 22561.8i 1.11401i 0.830508 + 0.557007i \(0.188050\pi\)
−0.830508 + 0.557007i \(0.811950\pi\)
\(744\) −5283.99 3114.67i −0.260377 0.153480i
\(745\) 16682.3i 0.820394i
\(746\) 1203.39 + 13728.6i 0.0590608 + 0.673779i
\(747\) −106.262 2.02537i −0.00520470 9.92029e-5i
\(748\) 4740.98 837.588i 0.231748 0.0409429i
\(749\) 1421.86 5049.82i 0.0693641 0.246351i
\(750\) 16990.4 + 14529.8i 0.827200 + 0.707406i
\(751\) −28928.9 −1.40563 −0.702816 0.711372i \(-0.748074\pi\)
−0.702816 + 0.711372i \(0.748074\pi\)
\(752\) −4929.38 + 1797.86i −0.239037 + 0.0871823i
\(753\) 3746.92 + 3819.02i 0.181335 + 0.184824i
\(754\) 36564.8 3205.12i 1.76606 0.154806i
\(755\) 23705.3i 1.14268i
\(756\) 16456.6 12698.8i 0.791696 0.610915i
\(757\) 19462.5i 0.934449i 0.884139 + 0.467224i \(0.154746\pi\)
−0.884139 + 0.467224i \(0.845254\pi\)
\(758\) 980.446 + 11185.1i 0.0469807 + 0.535966i
\(759\) 5637.39 + 5745.86i 0.269597 + 0.274785i
\(760\) −6842.87 25487.1i −0.326601 1.21647i
\(761\) −5992.80 −0.285465 −0.142732 0.989761i \(-0.545589\pi\)
−0.142732 + 0.989761i \(0.545589\pi\)
\(762\) −9175.33 + 10729.1i −0.436204 + 0.510071i
\(763\) 21047.3 + 5926.21i 0.998640 + 0.281184i
\(764\) 2475.54 + 14012.2i 0.117227 + 0.663540i
\(765\) −16813.7 320.474i −0.794643 0.0151461i
\(766\) −8400.62 + 736.365i −0.396249 + 0.0347336i
\(767\) 10418.0i 0.490446i
\(768\) −2028.76 + 21186.5i −0.0953212 + 0.995447i
\(769\) 15433.8i 0.723742i 0.932228 + 0.361871i \(0.117862\pi\)
−0.932228 + 0.361871i \(0.882138\pi\)
\(770\) −4046.25 765.712i −0.189372 0.0358368i
\(771\) 9094.10 8922.42i 0.424794 0.416774i
\(772\) 1190.05 210.245i 0.0554801 0.00980166i
\(773\) 17828.8i 0.829569i 0.909920 + 0.414785i \(0.136143\pi\)
−0.909920 + 0.414785i \(0.863857\pi\)
\(774\) 25165.0 1723.33i 1.16865 0.0800310i
\(775\) 2276.44i 0.105512i
\(776\) 4435.44 + 16520.3i 0.205184 + 0.764234i
\(777\) −25273.6 + 13853.3i −1.16691 + 0.639619i
\(778\) −1346.19 + 118.002i −0.0620349 + 0.00543774i
\(779\) −24017.3 −1.10463
\(780\) −16008.7 11430.2i −0.734875 0.524703i
\(781\) 2137.12i 0.0979157i
\(782\) −3031.32 34582.0i −0.138619 1.58139i
\(783\) −23828.9 25231.8i −1.08758 1.15161i
\(784\) −21517.9 4343.79i −0.980227 0.197877i
\(785\) 17222.4i 0.783049i
\(786\) −16507.1 14116.5i −0.749093 0.640611i
\(787\) 30953.0 1.40197 0.700987 0.713174i \(-0.252743\pi\)
0.700987 + 0.713174i \(0.252743\pi\)
\(788\) 2728.95 482.123i 0.123369 0.0217956i
\(789\) −15999.1 16306.9i −0.721904 0.735795i
\(790\) −1332.48 15201.2i −0.0600095 0.684602i
\(791\) 33293.1 + 9374.22i 1.49654 + 0.421377i
\(792\) −1282.42 5167.85i −0.0575363 0.231858i
\(793\) −8246.55 −0.369286
\(794\) 18992.5 1664.81i 0.848888 0.0744102i
\(795\) −7822.69 7973.21i −0.348984 0.355699i
\(796\) 5261.63 + 29782.3i 0.234289 + 1.32614i
\(797\) 7162.07i 0.318310i 0.987254 + 0.159155i \(0.0508770\pi\)
−0.987254 + 0.159155i \(0.949123\pi\)
\(798\) 19546.3 + 29266.2i 0.867081 + 1.29826i
\(799\) −5661.05 −0.250655
\(800\) 7156.26 3344.26i 0.316265 0.147797i
\(801\) 647.659 33979.5i 0.0285692 1.49889i
\(802\) −2652.55 30260.9i −0.116789 1.33236i
\(803\) 6493.76i 0.285380i
\(804\) 17849.6 + 12744.7i 0.782970 + 0.559043i
\(805\) −8047.79 + 28582.2i −0.352357 + 1.25142i
\(806\) −675.922 7711.07i −0.0295389 0.336986i
\(807\) 12382.6 + 12620.9i 0.540134 + 0.550527i
\(808\) −6135.73 22853.3i −0.267146 0.995019i
\(809\) 21655.6i 0.941125i −0.882367 0.470562i \(-0.844051\pi\)
0.882367 0.470562i \(-0.155949\pi\)
\(810\) 916.863 + 18576.2i 0.0397720 + 0.805806i
\(811\) −2523.86 −0.109278 −0.0546392 0.998506i \(-0.517401\pi\)
−0.0546392 + 0.998506i \(0.517401\pi\)
\(812\) −3644.26 + 36469.5i −0.157498 + 1.57614i
\(813\) −15210.0 15502.7i −0.656137 0.668762i
\(814\) 644.670 + 7354.53i 0.0277588 + 0.316678i
\(815\) −31200.0 −1.34097
\(816\) −9888.65 + 20724.6i −0.424230 + 0.889102i
\(817\) 42706.1i 1.82876i
\(818\) −3797.26 43320.0i −0.162308 1.85165i
\(819\) 25110.6 + 7589.66i 1.07135 + 0.323815i
\(820\) 2332.01 + 13199.8i 0.0993138 + 0.562144i
\(821\) 24747.6 1.05200 0.526002 0.850483i \(-0.323690\pi\)
0.526002 + 0.850483i \(0.323690\pi\)
\(822\) 3851.60 + 3293.81i 0.163430 + 0.139763i
\(823\) −35614.1 −1.50842 −0.754210 0.656634i \(-0.771980\pi\)
−0.754210 + 0.656634i \(0.771980\pi\)
\(824\) 8921.40 + 33228.8i 0.377174 + 1.40483i
\(825\) −1410.61 + 1383.98i −0.0595287 + 0.0584048i
\(826\) −10221.3 1934.28i −0.430562 0.0814795i
\(827\) −29256.6 −1.23017 −0.615085 0.788461i \(-0.710878\pi\)
−0.615085 + 0.788461i \(0.710878\pi\)
\(828\) −37928.2 + 5957.79i −1.59191 + 0.250057i
\(829\) 14291.2 0.598740 0.299370 0.954137i \(-0.403224\pi\)
0.299370 + 0.954137i \(0.403224\pi\)
\(830\) −100.043 + 8.76941i −0.00418380 + 0.000366736i
\(831\) −9481.61 9664.05i −0.395804 0.403420i
\(832\) −23247.7 + 13453.0i −0.968712 + 0.560575i
\(833\) −20204.7 12357.7i −0.840399 0.514007i
\(834\) −11043.5 + 12913.6i −0.458520 + 0.536167i
\(835\) 20801.0i 0.862095i
\(836\) 8877.47 1568.38i 0.367265 0.0648846i
\(837\) −5321.08 + 5025.23i −0.219741 + 0.207524i
\(838\) 447.531 + 5105.53i 0.0184483 + 0.210462i
\(839\) −43247.8 −1.77959 −0.889796 0.456358i \(-0.849154\pi\)
−0.889796 + 0.456358i \(0.849154\pi\)
\(840\) 14186.7 13584.2i 0.582724 0.557976i
\(841\) 36803.8 1.50903
\(842\) −392.251 4474.89i −0.0160545 0.183153i
\(843\) 29072.4 + 29631.8i 1.18779 + 1.21064i
\(844\) 3018.71 + 17086.7i 0.123114 + 0.696860i
\(845\) 5006.79i 0.203833i
\(846\) 427.757 + 6246.32i 0.0173837 + 0.253845i
\(847\) −6299.69 + 22373.7i −0.255561 + 0.907639i
\(848\) −14328.9 + 5226.09i −0.580257 + 0.211633i
\(849\) 13435.6 13182.0i 0.543121 0.532868i
\(850\) 8489.89 744.191i 0.342589 0.0300300i
\(851\) 53233.7 2.14434
\(852\) −8295.72 5923.17i −0.333576 0.238174i
\(853\) −27143.0 −1.08952 −0.544758 0.838593i \(-0.683378\pi\)
−0.544758 + 0.838593i \(0.683378\pi\)
\(854\) 1531.11 8090.85i 0.0613508 0.324196i
\(855\) −31483.6 600.086i −1.25932 0.0240029i
\(856\) 6190.37 1662.01i 0.247176 0.0663627i
\(857\) −41131.4 −1.63947 −0.819733 0.572746i \(-0.805878\pi\)
−0.819733 + 0.572746i \(0.805878\pi\)
\(858\) 4367.28 5106.85i 0.173772 0.203199i
\(859\) −3353.69 −0.133209 −0.0666045 0.997779i \(-0.521217\pi\)
−0.0666045 + 0.997779i \(0.521217\pi\)
\(860\) 23471.1 4146.63i 0.930649 0.164417i
\(861\) −8592.24 15675.5i −0.340096 0.620463i
\(862\) −559.765 6385.93i −0.0221180 0.252327i
\(863\) 32515.9i 1.28257i 0.767304 + 0.641283i \(0.221598\pi\)
−0.767304 + 0.641283i \(0.778402\pi\)
\(864\) 23614.5 + 9345.01i 0.929839 + 0.367967i
\(865\) 163.497 0.00642667
\(866\) 3186.09 + 36347.6i 0.125021 + 1.42626i
\(867\) 538.033 527.876i 0.0210756 0.0206777i
\(868\) 7690.98 + 768.530i 0.300748 + 0.0300526i
\(869\) 5212.78 0.203488
\(870\) −24923.0 21313.7i −0.971228 0.830577i
\(871\) 27678.8i 1.07676i
\(872\) 6927.14 + 25801.0i 0.269017 + 1.00199i
\(873\) 20407.2 + 388.966i 0.791156 + 0.0150796i
\(874\) −5676.14 64754.6i −0.219678 2.50613i
\(875\) −27117.3 7635.33i −1.04769 0.294996i
\(876\) −25207.0 17997.9i −0.972221 0.694168i
\(877\) 11908.4i 0.458517i −0.973366 0.229259i \(-0.926370\pi\)
0.973366 0.229259i \(-0.0736301\pi\)
\(878\) −933.290 10647.2i −0.0358736 0.409254i
\(879\) 30061.5 + 30640.0i 1.15353 + 1.17572i
\(880\) −1723.95 4726.74i −0.0660390 0.181066i
\(881\) 36671.3 1.40237 0.701184 0.712980i \(-0.252655\pi\)
0.701184 + 0.712980i \(0.252655\pi\)
\(882\) −12108.6 + 23227.4i −0.462264 + 0.886742i
\(883\) 37102.7i 1.41405i −0.707190 0.707024i \(-0.750037\pi\)
0.707190 0.707024i \(-0.249963\pi\)
\(884\) −28537.2 + 5041.65i −1.08576 + 0.191820i
\(885\) 6644.07 6518.64i 0.252359 0.247595i
\(886\) 1048.20 91.8812i 0.0397461 0.00348399i
\(887\) 48774.0 1.84630 0.923152 0.384435i \(-0.125604\pi\)
0.923152 + 0.384435i \(0.125604\pi\)
\(888\) −30335.0 17881.1i −1.14637 0.675733i
\(889\) 4821.57 17124.1i 0.181901 0.646033i
\(890\) −2804.22 31991.1i −0.105615 1.20488i
\(891\) −6348.91 242.112i −0.238717 0.00910330i
\(892\) −5417.25 30663.2i −0.203344 1.15098i
\(893\) −10600.3 −0.397228
\(894\) −17666.0 + 20657.6i −0.660893 + 0.772811i
\(895\) 23416.4i 0.874553i
\(896\) −8882.66 25306.6i −0.331193 0.943563i
\(897\) −33932.8 34585.8i −1.26308 1.28739i
\(898\) 3047.84 + 34770.4i 0.113260 + 1.29210i
\(899\) 12904.8i 0.478754i
\(900\) −1462.64 9311.39i −0.0541718 0.344866i
\(901\) −16455.8 −0.608459
\(902\) −4561.51 + 399.844i −0.168383 + 0.0147598i
\(903\) −27873.2 + 15278.2i −1.02720 + 0.563041i
\(904\) 10957.5 + 40812.6i 0.403143 + 1.50156i
\(905\) 10830.3i 0.397801i
\(906\) −25103.0 + 29354.0i −0.920520 + 1.07640i
\(907\) 1891.26i 0.0692372i −0.999401 0.0346186i \(-0.988978\pi\)
0.999401 0.0346186i \(-0.0110216\pi\)
\(908\) 3541.93 + 20048.3i 0.129453 + 0.732738i
\(909\) −28230.1 538.073i −1.03007 0.0196334i
\(910\) 24355.4 + 4609.01i 0.887223 + 0.167898i
\(911\) 674.242i 0.0245210i 0.999925 + 0.0122605i \(0.00390274\pi\)
−0.999925 + 0.0122605i \(0.996097\pi\)
\(912\) −18516.4 + 38806.8i −0.672303 + 1.40901i
\(913\) 34.3067i 0.00124358i
\(914\) −37333.3 + 3272.49i −1.35107 + 0.118429i
\(915\) 5159.95 + 5259.23i 0.186429 + 0.190016i
\(916\) 6112.94 1079.97i 0.220499 0.0389555i
\(917\) 26345.9 + 7418.13i 0.948767 + 0.267141i
\(918\) 20480.9 + 18202.0i 0.736352 + 0.654416i
\(919\) −246.949 −0.00886408 −0.00443204 0.999990i \(-0.501411\pi\)
−0.00443204 + 0.999990i \(0.501411\pi\)
\(920\) −35037.8 + 9407.06i −1.25561 + 0.337111i
\(921\) 23647.8 23201.4i 0.846060 0.830088i
\(922\) 822.099 + 9378.69i 0.0293648 + 0.335001i
\(923\) 12863.9i 0.458742i
\(924\) 4199.57 + 5233.00i 0.149519 + 0.186313i
\(925\) 13068.9i 0.464543i
\(926\) 11707.3 1026.22i 0.415471 0.0364185i
\(927\) 41046.8 + 782.363i 1.45432 + 0.0277197i
\(928\) −40567.9 + 18958.2i −1.43503 + 0.670617i
\(929\) 26737.6 0.944275 0.472138 0.881525i \(-0.343483\pi\)
0.472138 + 0.881525i \(0.343483\pi\)
\(930\) −4494.80 + 5255.96i −0.158484 + 0.185322i
\(931\) −37833.3 23139.7i −1.33183 0.814578i
\(932\) 662.259 + 3748.57i 0.0232758 + 0.131747i
\(933\) −13230.3 + 12980.5i −0.464243 + 0.455479i
\(934\) −122.975 1402.93i −0.00430821 0.0491490i
\(935\) 5428.33i 0.189867i
\(936\) 7719.20 + 31106.6i 0.269562 + 1.08627i
\(937\) 12780.7i 0.445602i −0.974864 0.222801i \(-0.928480\pi\)
0.974864 0.222801i \(-0.0715200\pi\)
\(938\) −27156.2 5139.03i −0.945289 0.178886i
\(939\) 8603.37 + 8768.91i 0.298999 + 0.304753i
\(940\) 1029.26 + 5825.87i 0.0357134 + 0.202148i
\(941\) 43874.1i 1.51993i 0.649963 + 0.759966i \(0.274784\pi\)
−0.649963 + 0.759966i \(0.725216\pi\)
\(942\) 18237.9 21326.3i 0.630809 0.737631i
\(943\) 33017.2i 1.14018i
\(944\) −4354.90 11940.3i −0.150148 0.411677i
\(945\) −10871.7 20763.2i −0.374238 0.714738i
\(946\) 710.978 + 8110.99i 0.0244354 + 0.278764i
\(947\) −2594.12 −0.0890153 −0.0445077 0.999009i \(-0.514172\pi\)
−0.0445077 + 0.999009i \(0.514172\pi\)
\(948\) −14447.5 + 20234.6i −0.494973 + 0.693237i
\(949\) 39087.6i 1.33702i
\(950\) 15897.3 1393.49i 0.542922 0.0475904i
\(951\) 19644.9 19274.0i 0.669852 0.657206i
\(952\) 351.946 28934.5i 0.0119818 0.985054i
\(953\) 35759.6i 1.21550i −0.794130 0.607748i \(-0.792073\pi\)
0.794130 0.607748i \(-0.207927\pi\)
\(954\) 1243.42 + 18157.1i 0.0421984 + 0.616203i
\(955\) 16043.7 0.543626
\(956\) 411.501 + 2329.21i 0.0139215 + 0.0787993i
\(957\) 7996.56 7845.60i 0.270107 0.265008i
\(958\) 56501.3 4952.68i 1.90550 0.167029i
\(959\) −6147.30 1730.87i −0.206993 0.0582824i
\(960\) 23125.9 + 6408.55i 0.777486 + 0.215453i
\(961\) 27069.5 0.908648
\(962\) −3880.43 44268.8i −0.130052 1.48366i
\(963\) 145.750 7646.82i 0.00487720 0.255883i
\(964\) −4571.90 25878.2i −0.152750 0.864608i
\(965\) 1362.58i 0.0454538i
\(966\) 40233.0 26870.8i 1.34004 0.894982i
\(967\) 950.541 0.0316105 0.0158052 0.999875i \(-0.494969\pi\)
0.0158052 + 0.999875i \(0.494969\pi\)
\(968\) −27427.0 + 7363.71i −0.910680 + 0.244503i
\(969\) −33114.5 + 32489.3i −1.09782 + 1.07710i
\(970\) 19213.0 1684.14i 0.635971 0.0557468i
\(971\) 59078.8i 1.95255i −0.216531 0.976276i \(-0.569474\pi\)
0.216531 0.976276i \(-0.430526\pi\)
\(972\) 18536.2 23973.7i 0.611676 0.791108i
\(973\) 5803.28 20610.7i 0.191207 0.679084i
\(974\) −16675.1 + 1461.67i −0.548567 + 0.0480852i
\(975\) 8490.82 8330.52i 0.278896 0.273631i
\(976\) 9451.56 3447.20i 0.309976 0.113056i
\(977\) 14531.7i 0.475854i 0.971283 + 0.237927i \(0.0764678\pi\)
−0.971283 + 0.237927i \(0.923532\pi\)
\(978\) 38634.7 + 33039.6i 1.26319 + 1.08026i
\(979\) 10970.3 0.358134
\(980\) −9043.98 + 23039.8i −0.294795 + 0.751000i
\(981\) 31871.4 + 607.477i 1.03728 + 0.0197709i
\(982\) 7288.18 638.853i 0.236838 0.0207603i
\(983\) 58495.3 1.89798 0.948989 0.315310i \(-0.102109\pi\)
0.948989 + 0.315310i \(0.102109\pi\)
\(984\) 11090.4 18814.7i 0.359299 0.609545i
\(985\) 3124.59i 0.101074i
\(986\) −48128.1 + 4218.72i −1.55447 + 0.136259i
\(987\) −3792.27 6918.53i −0.122299 0.223120i
\(988\) −53435.7 + 9440.47i −1.72066 + 0.303989i
\(989\) 58709.2 1.88761
\(990\) −5989.54 + 410.172i −0.192283 + 0.0131678i
\(991\) −29846.4 −0.956714 −0.478357 0.878166i \(-0.658767\pi\)
−0.478357 + 0.878166i \(0.658767\pi\)
\(992\) 3998.05 + 8555.28i 0.127962 + 0.273821i
\(993\) −2419.64 2466.20i −0.0773262 0.0788141i
\(994\) 12621.0 + 2388.40i 0.402730 + 0.0762126i
\(995\) 34100.2 1.08648
\(996\) 133.169 + 95.0831i 0.00423657 + 0.00302492i
\(997\) 14935.8 0.474444 0.237222 0.971455i \(-0.423763\pi\)
0.237222 + 0.971455i \(0.423763\pi\)
\(998\) −4508.44 51433.3i −0.142998 1.63135i
\(999\) −30548.0 + 28849.5i −0.967463 + 0.913672i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 168.4.i.c.125.77 yes 80
3.2 odd 2 inner 168.4.i.c.125.3 yes 80
4.3 odd 2 672.4.i.c.209.58 80
7.6 odd 2 inner 168.4.i.c.125.78 yes 80
8.3 odd 2 672.4.i.c.209.23 80
8.5 even 2 inner 168.4.i.c.125.2 yes 80
12.11 even 2 672.4.i.c.209.59 80
21.20 even 2 inner 168.4.i.c.125.4 yes 80
24.5 odd 2 inner 168.4.i.c.125.80 yes 80
24.11 even 2 672.4.i.c.209.22 80
28.27 even 2 672.4.i.c.209.24 80
56.13 odd 2 inner 168.4.i.c.125.1 80
56.27 even 2 672.4.i.c.209.57 80
84.83 odd 2 672.4.i.c.209.21 80
168.83 odd 2 672.4.i.c.209.60 80
168.125 even 2 inner 168.4.i.c.125.79 yes 80
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
168.4.i.c.125.1 80 56.13 odd 2 inner
168.4.i.c.125.2 yes 80 8.5 even 2 inner
168.4.i.c.125.3 yes 80 3.2 odd 2 inner
168.4.i.c.125.4 yes 80 21.20 even 2 inner
168.4.i.c.125.77 yes 80 1.1 even 1 trivial
168.4.i.c.125.78 yes 80 7.6 odd 2 inner
168.4.i.c.125.79 yes 80 168.125 even 2 inner
168.4.i.c.125.80 yes 80 24.5 odd 2 inner
672.4.i.c.209.21 80 84.83 odd 2
672.4.i.c.209.22 80 24.11 even 2
672.4.i.c.209.23 80 8.3 odd 2
672.4.i.c.209.24 80 28.27 even 2
672.4.i.c.209.57 80 56.27 even 2
672.4.i.c.209.58 80 4.3 odd 2
672.4.i.c.209.59 80 12.11 even 2
672.4.i.c.209.60 80 168.83 odd 2