Properties

Label 672.3.bh.d.481.6
Level $672$
Weight $3$
Character 672.481
Analytic conductor $18.311$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [672,3,Mod(481,672)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("672.481"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(672, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 0, 5])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 672 = 2^{5} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 672.bh (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,24,0,0,0,12,0,24,0,12,0,0,0,0,0,48] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.3106737650\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 8 x^{15} + 120 x^{14} - 700 x^{13} + 5060 x^{12} - 21624 x^{11} + 95002 x^{10} - 292520 x^{9} + \cdots + 76783 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{16} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 481.6
Root \(0.500000 + 4.68078i\) of defining polynomial
Character \(\chi\) \(=\) 672.481
Dual form 672.3.bh.d.577.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.50000 - 0.866025i) q^{3} +(1.77068 + 1.02231i) q^{5} +(-6.69221 - 2.05287i) q^{7} +(1.50000 - 2.59808i) q^{9} +(6.13527 + 10.6266i) q^{11} -16.5743i q^{13} +3.54137 q^{15} +(5.61550 - 3.24211i) q^{17} +(11.2051 + 6.46927i) q^{19} +(-11.8162 + 2.71632i) q^{21} +(13.4273 - 23.2568i) q^{23} +(-10.4098 - 18.0303i) q^{25} -5.19615i q^{27} +38.4413 q^{29} +(6.60865 - 3.81551i) q^{31} +(18.4058 + 10.6266i) q^{33} +(-9.75114 - 10.4765i) q^{35} +(26.9315 - 46.6467i) q^{37} +(-14.3538 - 24.8615i) q^{39} -6.44781i q^{41} -13.8206 q^{43} +(5.31205 - 3.06692i) q^{45} +(24.4111 + 14.0938i) q^{47} +(40.5715 + 27.4765i) q^{49} +(5.61550 - 9.72633i) q^{51} +(-34.4114 - 59.6024i) q^{53} +25.0885i q^{55} +22.4102 q^{57} +(-62.8802 + 36.3039i) q^{59} +(-21.4925 - 12.4087i) q^{61} +(-15.3718 + 14.3076i) q^{63} +(16.9440 - 29.3479i) q^{65} +(35.3422 + 61.2144i) q^{67} -46.5135i q^{69} -12.5498 q^{71} +(93.9800 - 54.2594i) q^{73} +(-31.2294 - 18.0303i) q^{75} +(-19.2435 - 83.7104i) q^{77} +(-48.8779 + 84.6590i) q^{79} +(-4.50000 - 7.79423i) q^{81} -83.3264i q^{83} +13.2577 q^{85} +(57.6619 - 33.2911i) q^{87} +(51.6473 + 29.8186i) q^{89} +(-34.0249 + 110.919i) q^{91} +(6.60865 - 11.4465i) q^{93} +(13.2271 + 22.9101i) q^{95} +147.707i q^{97} +36.8116 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 24 q^{3} + 12 q^{7} + 24 q^{9} + 12 q^{11} + 48 q^{17} - 36 q^{19} + 24 q^{21} - 48 q^{23} + 20 q^{25} + 64 q^{29} + 60 q^{31} + 36 q^{33} - 36 q^{37} - 12 q^{39} - 72 q^{43} + 72 q^{47} - 40 q^{49}+ \cdots + 72 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/672\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(421\) \(449\) \(577\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.50000 0.866025i 0.500000 0.288675i
\(4\) 0 0
\(5\) 1.77068 + 1.02231i 0.354137 + 0.204461i 0.666506 0.745500i \(-0.267789\pi\)
−0.312369 + 0.949961i \(0.601122\pi\)
\(6\) 0 0
\(7\) −6.69221 2.05287i −0.956031 0.293267i
\(8\) 0 0
\(9\) 1.50000 2.59808i 0.166667 0.288675i
\(10\) 0 0
\(11\) 6.13527 + 10.6266i 0.557752 + 0.966055i 0.997684 + 0.0680235i \(0.0216693\pi\)
−0.439932 + 0.898031i \(0.644997\pi\)
\(12\) 0 0
\(13\) 16.5743i 1.27495i −0.770472 0.637474i \(-0.779979\pi\)
0.770472 0.637474i \(-0.220021\pi\)
\(14\) 0 0
\(15\) 3.54137 0.236091
\(16\) 0 0
\(17\) 5.61550 3.24211i 0.330323 0.190712i −0.325661 0.945487i \(-0.605587\pi\)
0.655985 + 0.754774i \(0.272254\pi\)
\(18\) 0 0
\(19\) 11.2051 + 6.46927i 0.589742 + 0.340488i 0.764996 0.644035i \(-0.222741\pi\)
−0.175253 + 0.984523i \(0.556074\pi\)
\(20\) 0 0
\(21\) −11.8162 + 2.71632i −0.562674 + 0.129349i
\(22\) 0 0
\(23\) 13.4273 23.2568i 0.583795 1.01116i −0.411229 0.911532i \(-0.634900\pi\)
0.995024 0.0996313i \(-0.0317663\pi\)
\(24\) 0 0
\(25\) −10.4098 18.0303i −0.416391 0.721211i
\(26\) 0 0
\(27\) 5.19615i 0.192450i
\(28\) 0 0
\(29\) 38.4413 1.32556 0.662780 0.748814i \(-0.269376\pi\)
0.662780 + 0.748814i \(0.269376\pi\)
\(30\) 0 0
\(31\) 6.60865 3.81551i 0.213182 0.123081i −0.389607 0.920981i \(-0.627389\pi\)
0.602789 + 0.797900i \(0.294056\pi\)
\(32\) 0 0
\(33\) 18.4058 + 10.6266i 0.557752 + 0.322018i
\(34\) 0 0
\(35\) −9.75114 10.4765i −0.278604 0.299328i
\(36\) 0 0
\(37\) 26.9315 46.6467i 0.727877 1.26072i −0.229901 0.973214i \(-0.573840\pi\)
0.957779 0.287507i \(-0.0928263\pi\)
\(38\) 0 0
\(39\) −14.3538 24.8615i −0.368046 0.637474i
\(40\) 0 0
\(41\) 6.44781i 0.157264i −0.996904 0.0786319i \(-0.974945\pi\)
0.996904 0.0786319i \(-0.0250552\pi\)
\(42\) 0 0
\(43\) −13.8206 −0.321408 −0.160704 0.987003i \(-0.551377\pi\)
−0.160704 + 0.987003i \(0.551377\pi\)
\(44\) 0 0
\(45\) 5.31205 3.06692i 0.118046 0.0681537i
\(46\) 0 0
\(47\) 24.4111 + 14.0938i 0.519386 + 0.299868i 0.736683 0.676238i \(-0.236391\pi\)
−0.217297 + 0.976105i \(0.569724\pi\)
\(48\) 0 0
\(49\) 40.5715 + 27.4765i 0.827989 + 0.560745i
\(50\) 0 0
\(51\) 5.61550 9.72633i 0.110108 0.190712i
\(52\) 0 0
\(53\) −34.4114 59.6024i −0.649272 1.12457i −0.983297 0.182008i \(-0.941740\pi\)
0.334025 0.942564i \(-0.391593\pi\)
\(54\) 0 0
\(55\) 25.0885i 0.456154i
\(56\) 0 0
\(57\) 22.4102 0.393162
\(58\) 0 0
\(59\) −62.8802 + 36.3039i −1.06577 + 0.615321i −0.927022 0.375007i \(-0.877640\pi\)
−0.138745 + 0.990328i \(0.544307\pi\)
\(60\) 0 0
\(61\) −21.4925 12.4087i −0.352337 0.203422i 0.313377 0.949629i \(-0.398540\pi\)
−0.665714 + 0.746207i \(0.731873\pi\)
\(62\) 0 0
\(63\) −15.3718 + 14.3076i −0.243997 + 0.227104i
\(64\) 0 0
\(65\) 16.9440 29.3479i 0.260677 0.451506i
\(66\) 0 0
\(67\) 35.3422 + 61.2144i 0.527495 + 0.913648i 0.999486 + 0.0320451i \(0.0102020\pi\)
−0.471991 + 0.881603i \(0.656465\pi\)
\(68\) 0 0
\(69\) 46.5135i 0.674109i
\(70\) 0 0
\(71\) −12.5498 −0.176758 −0.0883788 0.996087i \(-0.528169\pi\)
−0.0883788 + 0.996087i \(0.528169\pi\)
\(72\) 0 0
\(73\) 93.9800 54.2594i 1.28740 0.743279i 0.309208 0.950994i \(-0.399936\pi\)
0.978189 + 0.207715i \(0.0666028\pi\)
\(74\) 0 0
\(75\) −31.2294 18.0303i −0.416391 0.240404i
\(76\) 0 0
\(77\) −19.2435 83.7104i −0.249916 1.08715i
\(78\) 0 0
\(79\) −48.8779 + 84.6590i −0.618708 + 1.07163i 0.371014 + 0.928627i \(0.379010\pi\)
−0.989722 + 0.143006i \(0.954323\pi\)
\(80\) 0 0
\(81\) −4.50000 7.79423i −0.0555556 0.0962250i
\(82\) 0 0
\(83\) 83.3264i 1.00393i −0.864887 0.501966i \(-0.832610\pi\)
0.864887 0.501966i \(-0.167390\pi\)
\(84\) 0 0
\(85\) 13.2577 0.155973
\(86\) 0 0
\(87\) 57.6619 33.2911i 0.662780 0.382656i
\(88\) 0 0
\(89\) 51.6473 + 29.8186i 0.580306 + 0.335040i 0.761255 0.648453i \(-0.224584\pi\)
−0.180949 + 0.983493i \(0.557917\pi\)
\(90\) 0 0
\(91\) −34.0249 + 110.919i −0.373900 + 1.21889i
\(92\) 0 0
\(93\) 6.60865 11.4465i 0.0710608 0.123081i
\(94\) 0 0
\(95\) 13.2271 + 22.9101i 0.139233 + 0.241159i
\(96\) 0 0
\(97\) 147.707i 1.52275i 0.648312 + 0.761375i \(0.275475\pi\)
−0.648312 + 0.761375i \(0.724525\pi\)
\(98\) 0 0
\(99\) 36.8116 0.371835
\(100\) 0 0
\(101\) 89.0062 51.3878i 0.881250 0.508790i 0.0101796 0.999948i \(-0.496760\pi\)
0.871070 + 0.491158i \(0.163426\pi\)
\(102\) 0 0
\(103\) −98.4243 56.8253i −0.955576 0.551702i −0.0607674 0.998152i \(-0.519355\pi\)
−0.894809 + 0.446450i \(0.852688\pi\)
\(104\) 0 0
\(105\) −23.6996 7.26997i −0.225710 0.0692378i
\(106\) 0 0
\(107\) 97.1996 168.355i 0.908408 1.57341i 0.0921308 0.995747i \(-0.470632\pi\)
0.816277 0.577661i \(-0.196034\pi\)
\(108\) 0 0
\(109\) −64.4077 111.557i −0.590896 1.02346i −0.994112 0.108358i \(-0.965441\pi\)
0.403216 0.915105i \(-0.367892\pi\)
\(110\) 0 0
\(111\) 93.2933i 0.840480i
\(112\) 0 0
\(113\) −22.5876 −0.199890 −0.0999451 0.994993i \(-0.531867\pi\)
−0.0999451 + 0.994993i \(0.531867\pi\)
\(114\) 0 0
\(115\) 47.5510 27.4536i 0.413487 0.238727i
\(116\) 0 0
\(117\) −43.0614 24.8615i −0.368046 0.212491i
\(118\) 0 0
\(119\) −44.2357 + 10.1690i −0.371729 + 0.0854538i
\(120\) 0 0
\(121\) −14.7831 + 25.6051i −0.122174 + 0.211612i
\(122\) 0 0
\(123\) −5.58397 9.67172i −0.0453981 0.0786319i
\(124\) 0 0
\(125\) 93.6832i 0.749465i
\(126\) 0 0
\(127\) 8.72204 0.0686775 0.0343387 0.999410i \(-0.489067\pi\)
0.0343387 + 0.999410i \(0.489067\pi\)
\(128\) 0 0
\(129\) −20.7308 + 11.9690i −0.160704 + 0.0927826i
\(130\) 0 0
\(131\) −99.9492 57.7057i −0.762971 0.440501i 0.0673905 0.997727i \(-0.478533\pi\)
−0.830361 + 0.557225i \(0.811866\pi\)
\(132\) 0 0
\(133\) −61.7064 66.2964i −0.463958 0.498469i
\(134\) 0 0
\(135\) 5.31205 9.20075i 0.0393485 0.0681537i
\(136\) 0 0
\(137\) 102.088 + 176.821i 0.745167 + 1.29067i 0.950117 + 0.311895i \(0.100964\pi\)
−0.204949 + 0.978773i \(0.565703\pi\)
\(138\) 0 0
\(139\) 189.134i 1.36068i 0.732898 + 0.680338i \(0.238167\pi\)
−0.732898 + 0.680338i \(0.761833\pi\)
\(140\) 0 0
\(141\) 48.8223 0.346257
\(142\) 0 0
\(143\) 176.129 101.688i 1.23167 0.711105i
\(144\) 0 0
\(145\) 68.0674 + 39.2987i 0.469430 + 0.271026i
\(146\) 0 0
\(147\) 84.6525 + 6.07882i 0.575867 + 0.0413525i
\(148\) 0 0
\(149\) −107.003 + 185.335i −0.718143 + 1.24386i 0.243591 + 0.969878i \(0.421675\pi\)
−0.961735 + 0.273983i \(0.911659\pi\)
\(150\) 0 0
\(151\) 131.942 + 228.530i 0.873787 + 1.51344i 0.858050 + 0.513567i \(0.171676\pi\)
0.0157369 + 0.999876i \(0.494991\pi\)
\(152\) 0 0
\(153\) 19.4527i 0.127142i
\(154\) 0 0
\(155\) 15.6025 0.100661
\(156\) 0 0
\(157\) −22.9344 + 13.2412i −0.146079 + 0.0843386i −0.571258 0.820771i \(-0.693544\pi\)
0.425179 + 0.905109i \(0.360211\pi\)
\(158\) 0 0
\(159\) −103.234 59.6024i −0.649272 0.374858i
\(160\) 0 0
\(161\) −137.601 + 128.075i −0.854667 + 0.795495i
\(162\) 0 0
\(163\) −13.7906 + 23.8860i −0.0846047 + 0.146540i −0.905223 0.424937i \(-0.860296\pi\)
0.820618 + 0.571477i \(0.193629\pi\)
\(164\) 0 0
\(165\) 21.7273 + 37.6327i 0.131680 + 0.228077i
\(166\) 0 0
\(167\) 113.557i 0.679980i 0.940429 + 0.339990i \(0.110424\pi\)
−0.940429 + 0.339990i \(0.889576\pi\)
\(168\) 0 0
\(169\) −105.708 −0.625494
\(170\) 0 0
\(171\) 33.6153 19.4078i 0.196581 0.113496i
\(172\) 0 0
\(173\) −22.0339 12.7213i −0.127364 0.0735334i 0.434965 0.900448i \(-0.356761\pi\)
−0.562328 + 0.826914i \(0.690094\pi\)
\(174\) 0 0
\(175\) 32.6507 + 142.032i 0.186575 + 0.811614i
\(176\) 0 0
\(177\) −62.8802 + 108.912i −0.355256 + 0.615321i
\(178\) 0 0
\(179\) −67.9229 117.646i −0.379457 0.657239i 0.611526 0.791224i \(-0.290556\pi\)
−0.990983 + 0.133985i \(0.957223\pi\)
\(180\) 0 0
\(181\) 237.390i 1.31155i 0.754957 + 0.655774i \(0.227658\pi\)
−0.754957 + 0.655774i \(0.772342\pi\)
\(182\) 0 0
\(183\) −42.9851 −0.234891
\(184\) 0 0
\(185\) 95.3743 55.0644i 0.515537 0.297645i
\(186\) 0 0
\(187\) 68.9052 + 39.7824i 0.368477 + 0.212740i
\(188\) 0 0
\(189\) −10.6670 + 34.7738i −0.0564393 + 0.183988i
\(190\) 0 0
\(191\) 106.028 183.645i 0.555118 0.961492i −0.442776 0.896632i \(-0.646006\pi\)
0.997894 0.0648604i \(-0.0206602\pi\)
\(192\) 0 0
\(193\) 1.03965 + 1.80072i 0.00538677 + 0.00933015i 0.868706 0.495328i \(-0.164952\pi\)
−0.863319 + 0.504658i \(0.831619\pi\)
\(194\) 0 0
\(195\) 58.6958i 0.301004i
\(196\) 0 0
\(197\) −297.578 −1.51055 −0.755274 0.655409i \(-0.772496\pi\)
−0.755274 + 0.655409i \(0.772496\pi\)
\(198\) 0 0
\(199\) −220.767 + 127.460i −1.10938 + 0.640501i −0.938669 0.344820i \(-0.887940\pi\)
−0.170711 + 0.985321i \(0.554607\pi\)
\(200\) 0 0
\(201\) 106.027 + 61.2144i 0.527495 + 0.304549i
\(202\) 0 0
\(203\) −257.257 78.9149i −1.26728 0.388743i
\(204\) 0 0
\(205\) 6.59164 11.4170i 0.0321543 0.0556929i
\(206\) 0 0
\(207\) −40.2819 69.7703i −0.194598 0.337054i
\(208\) 0 0
\(209\) 158.763i 0.759631i
\(210\) 0 0
\(211\) 188.235 0.892110 0.446055 0.895005i \(-0.352829\pi\)
0.446055 + 0.895005i \(0.352829\pi\)
\(212\) 0 0
\(213\) −18.8247 + 10.8684i −0.0883788 + 0.0510255i
\(214\) 0 0
\(215\) −24.4719 14.1288i −0.113823 0.0657155i
\(216\) 0 0
\(217\) −52.0593 + 11.9675i −0.239904 + 0.0551497i
\(218\) 0 0
\(219\) 93.9800 162.778i 0.429132 0.743279i
\(220\) 0 0
\(221\) −53.7358 93.0731i −0.243148 0.421145i
\(222\) 0 0
\(223\) 91.4723i 0.410190i 0.978742 + 0.205095i \(0.0657503\pi\)
−0.978742 + 0.205095i \(0.934250\pi\)
\(224\) 0 0
\(225\) −62.4587 −0.277594
\(226\) 0 0
\(227\) −46.8480 + 27.0477i −0.206379 + 0.119153i −0.599627 0.800279i \(-0.704685\pi\)
0.393249 + 0.919432i \(0.371351\pi\)
\(228\) 0 0
\(229\) −181.400 104.731i −0.792138 0.457341i 0.0485765 0.998819i \(-0.484532\pi\)
−0.840715 + 0.541478i \(0.817865\pi\)
\(230\) 0 0
\(231\) −101.361 108.900i −0.438791 0.471430i
\(232\) 0 0
\(233\) −38.0063 + 65.8289i −0.163117 + 0.282527i −0.935985 0.352040i \(-0.885488\pi\)
0.772868 + 0.634567i \(0.218822\pi\)
\(234\) 0 0
\(235\) 28.8163 + 49.9113i 0.122623 + 0.212388i
\(236\) 0 0
\(237\) 169.318i 0.714422i
\(238\) 0 0
\(239\) 142.401 0.595820 0.297910 0.954594i \(-0.403710\pi\)
0.297910 + 0.954594i \(0.403710\pi\)
\(240\) 0 0
\(241\) −327.326 + 188.982i −1.35820 + 0.784156i −0.989381 0.145346i \(-0.953570\pi\)
−0.368817 + 0.929502i \(0.620237\pi\)
\(242\) 0 0
\(243\) −13.5000 7.79423i −0.0555556 0.0320750i
\(244\) 0 0
\(245\) 43.7499 + 90.1286i 0.178571 + 0.367872i
\(246\) 0 0
\(247\) 107.224 185.717i 0.434105 0.751891i
\(248\) 0 0
\(249\) −72.1628 124.990i −0.289810 0.501966i
\(250\) 0 0
\(251\) 76.3113i 0.304029i 0.988378 + 0.152015i \(0.0485761\pi\)
−0.988378 + 0.152015i \(0.951424\pi\)
\(252\) 0 0
\(253\) 329.520 1.30245
\(254\) 0 0
\(255\) 19.8866 11.4815i 0.0779865 0.0450255i
\(256\) 0 0
\(257\) −38.5195 22.2393i −0.149881 0.0865341i 0.423184 0.906044i \(-0.360912\pi\)
−0.573065 + 0.819510i \(0.694246\pi\)
\(258\) 0 0
\(259\) −275.991 + 256.883i −1.06560 + 0.991825i
\(260\) 0 0
\(261\) 57.6619 99.8733i 0.220927 0.382656i
\(262\) 0 0
\(263\) 194.459 + 336.814i 0.739390 + 1.28066i 0.952770 + 0.303691i \(0.0982191\pi\)
−0.213381 + 0.976969i \(0.568448\pi\)
\(264\) 0 0
\(265\) 140.716i 0.531004i
\(266\) 0 0
\(267\) 103.295 0.386871
\(268\) 0 0
\(269\) −98.9666 + 57.1384i −0.367905 + 0.212410i −0.672543 0.740058i \(-0.734798\pi\)
0.304638 + 0.952468i \(0.401465\pi\)
\(270\) 0 0
\(271\) −355.967 205.518i −1.31353 0.758367i −0.330851 0.943683i \(-0.607336\pi\)
−0.982679 + 0.185316i \(0.940669\pi\)
\(272\) 0 0
\(273\) 45.0212 + 195.845i 0.164913 + 0.717381i
\(274\) 0 0
\(275\) 127.734 221.241i 0.464486 0.804514i
\(276\) 0 0
\(277\) 45.3175 + 78.4922i 0.163601 + 0.283365i 0.936158 0.351581i \(-0.114356\pi\)
−0.772557 + 0.634946i \(0.781022\pi\)
\(278\) 0 0
\(279\) 22.8930i 0.0820539i
\(280\) 0 0
\(281\) 67.3105 0.239539 0.119770 0.992802i \(-0.461784\pi\)
0.119770 + 0.992802i \(0.461784\pi\)
\(282\) 0 0
\(283\) −223.431 + 128.998i −0.789508 + 0.455823i −0.839789 0.542912i \(-0.817322\pi\)
0.0502810 + 0.998735i \(0.483988\pi\)
\(284\) 0 0
\(285\) 39.6814 + 22.9101i 0.139233 + 0.0803862i
\(286\) 0 0
\(287\) −13.2365 + 43.1502i −0.0461203 + 0.150349i
\(288\) 0 0
\(289\) −123.477 + 213.869i −0.427258 + 0.740032i
\(290\) 0 0
\(291\) 127.918 + 221.560i 0.439580 + 0.761375i
\(292\) 0 0
\(293\) 440.320i 1.50280i 0.659848 + 0.751399i \(0.270621\pi\)
−0.659848 + 0.751399i \(0.729379\pi\)
\(294\) 0 0
\(295\) −148.455 −0.503237
\(296\) 0 0
\(297\) 55.2174 31.8798i 0.185917 0.107339i
\(298\) 0 0
\(299\) −385.465 222.548i −1.28918 0.744309i
\(300\) 0 0
\(301\) 92.4901 + 28.3718i 0.307276 + 0.0942585i
\(302\) 0 0
\(303\) 89.0062 154.163i 0.293750 0.508790i
\(304\) 0 0
\(305\) −25.3710 43.9439i −0.0831836 0.144078i
\(306\) 0 0
\(307\) 465.462i 1.51616i 0.652160 + 0.758082i \(0.273863\pi\)
−0.652160 + 0.758082i \(0.726137\pi\)
\(308\) 0 0
\(309\) −196.849 −0.637051
\(310\) 0 0
\(311\) 222.189 128.281i 0.714434 0.412478i −0.0982668 0.995160i \(-0.531330\pi\)
0.812701 + 0.582682i \(0.197997\pi\)
\(312\) 0 0
\(313\) 85.1309 + 49.1504i 0.271984 + 0.157030i 0.629789 0.776766i \(-0.283141\pi\)
−0.357805 + 0.933796i \(0.616475\pi\)
\(314\) 0 0
\(315\) −41.8454 + 9.61950i −0.132842 + 0.0305381i
\(316\) 0 0
\(317\) 145.846 252.613i 0.460083 0.796887i −0.538882 0.842381i \(-0.681153\pi\)
0.998965 + 0.0454947i \(0.0144864\pi\)
\(318\) 0 0
\(319\) 235.848 + 408.500i 0.739334 + 1.28056i
\(320\) 0 0
\(321\) 336.709i 1.04894i
\(322\) 0 0
\(323\) 83.8963 0.259741
\(324\) 0 0
\(325\) −298.840 + 172.535i −0.919507 + 0.530878i
\(326\) 0 0
\(327\) −193.223 111.557i −0.590896 0.341154i
\(328\) 0 0
\(329\) −134.432 144.432i −0.408608 0.439002i
\(330\) 0 0
\(331\) 143.715 248.922i 0.434184 0.752029i −0.563044 0.826427i \(-0.690370\pi\)
0.997229 + 0.0743973i \(0.0237033\pi\)
\(332\) 0 0
\(333\) −80.7944 139.940i −0.242626 0.420240i
\(334\) 0 0
\(335\) 144.522i 0.431409i
\(336\) 0 0
\(337\) 294.785 0.874731 0.437366 0.899284i \(-0.355912\pi\)
0.437366 + 0.899284i \(0.355912\pi\)
\(338\) 0 0
\(339\) −33.8814 + 19.5614i −0.0999451 + 0.0577033i
\(340\) 0 0
\(341\) 81.0917 + 46.8183i 0.237806 + 0.137297i
\(342\) 0 0
\(343\) −215.107 267.166i −0.627135 0.778911i
\(344\) 0 0
\(345\) 47.5510 82.3608i 0.137829 0.238727i
\(346\) 0 0
\(347\) −36.6378 63.4585i −0.105584 0.182878i 0.808392 0.588644i \(-0.200338\pi\)
−0.913977 + 0.405766i \(0.867005\pi\)
\(348\) 0 0
\(349\) 101.957i 0.292140i −0.989274 0.146070i \(-0.953338\pi\)
0.989274 0.146070i \(-0.0466624\pi\)
\(350\) 0 0
\(351\) −86.1228 −0.245364
\(352\) 0 0
\(353\) −65.5939 + 37.8706i −0.185818 + 0.107282i −0.590023 0.807386i \(-0.700882\pi\)
0.404205 + 0.914668i \(0.367548\pi\)
\(354\) 0 0
\(355\) −22.2217 12.8297i −0.0625964 0.0361400i
\(356\) 0 0
\(357\) −57.5470 + 53.5628i −0.161196 + 0.150036i
\(358\) 0 0
\(359\) −62.3384 + 107.973i −0.173645 + 0.300761i −0.939691 0.342024i \(-0.888888\pi\)
0.766047 + 0.642785i \(0.222221\pi\)
\(360\) 0 0
\(361\) −96.7970 167.657i −0.268136 0.464425i
\(362\) 0 0
\(363\) 51.2102i 0.141075i
\(364\) 0 0
\(365\) 221.879 0.607887
\(366\) 0 0
\(367\) 422.961 244.196i 1.15248 0.665385i 0.202991 0.979181i \(-0.434934\pi\)
0.949491 + 0.313795i \(0.101601\pi\)
\(368\) 0 0
\(369\) −16.7519 9.67172i −0.0453981 0.0262106i
\(370\) 0 0
\(371\) 107.933 + 469.514i 0.290924 + 1.26554i
\(372\) 0 0
\(373\) −248.879 + 431.071i −0.667236 + 1.15569i 0.311438 + 0.950267i \(0.399190\pi\)
−0.978674 + 0.205421i \(0.934144\pi\)
\(374\) 0 0
\(375\) −81.1320 140.525i −0.216352 0.374733i
\(376\) 0 0
\(377\) 637.138i 1.69002i
\(378\) 0 0
\(379\) 699.265 1.84503 0.922514 0.385964i \(-0.126131\pi\)
0.922514 + 0.385964i \(0.126131\pi\)
\(380\) 0 0
\(381\) 13.0831 7.55351i 0.0343387 0.0198255i
\(382\) 0 0
\(383\) −572.153 330.333i −1.49387 0.862487i −0.493896 0.869521i \(-0.664428\pi\)
−0.999975 + 0.00703401i \(0.997761\pi\)
\(384\) 0 0
\(385\) 51.5034 167.897i 0.133775 0.436097i
\(386\) 0 0
\(387\) −20.7308 + 35.9069i −0.0535681 + 0.0927826i
\(388\) 0 0
\(389\) 207.214 + 358.906i 0.532685 + 0.922637i 0.999272 + 0.0381615i \(0.0121501\pi\)
−0.466587 + 0.884475i \(0.654517\pi\)
\(390\) 0 0
\(391\) 174.131i 0.445348i
\(392\) 0 0
\(393\) −199.898 −0.508647
\(394\) 0 0
\(395\) −173.095 + 99.9363i −0.438214 + 0.253003i
\(396\) 0 0
\(397\) 11.7266 + 6.77035i 0.0295380 + 0.0170538i 0.514696 0.857373i \(-0.327905\pi\)
−0.485158 + 0.874426i \(0.661238\pi\)
\(398\) 0 0
\(399\) −149.974 46.0052i −0.375875 0.115301i
\(400\) 0 0
\(401\) 203.149 351.864i 0.506605 0.877466i −0.493365 0.869822i \(-0.664233\pi\)
0.999971 0.00764415i \(-0.00243323\pi\)
\(402\) 0 0
\(403\) −63.2395 109.534i −0.156922 0.271797i
\(404\) 0 0
\(405\) 18.4015i 0.0454358i
\(406\) 0 0
\(407\) 660.927 1.62390
\(408\) 0 0
\(409\) 459.724 265.422i 1.12402 0.648953i 0.181596 0.983373i \(-0.441874\pi\)
0.942424 + 0.334420i \(0.108540\pi\)
\(410\) 0 0
\(411\) 306.264 + 176.821i 0.745167 + 0.430223i
\(412\) 0 0
\(413\) 495.335 113.869i 1.19936 0.275711i
\(414\) 0 0
\(415\) 85.1850 147.545i 0.205265 0.355530i
\(416\) 0 0
\(417\) 163.795 + 283.701i 0.392793 + 0.680338i
\(418\) 0 0
\(419\) 781.472i 1.86509i −0.361055 0.932545i \(-0.617583\pi\)
0.361055 0.932545i \(-0.382417\pi\)
\(420\) 0 0
\(421\) 620.648 1.47422 0.737112 0.675771i \(-0.236189\pi\)
0.737112 + 0.675771i \(0.236189\pi\)
\(422\) 0 0
\(423\) 73.2334 42.2813i 0.173129 0.0999559i
\(424\) 0 0
\(425\) −116.912 67.4993i −0.275088 0.158822i
\(426\) 0 0
\(427\) 118.359 + 127.163i 0.277188 + 0.297806i
\(428\) 0 0
\(429\) 176.129 305.064i 0.410557 0.711105i
\(430\) 0 0
\(431\) 399.782 + 692.443i 0.927569 + 1.60660i 0.787376 + 0.616473i \(0.211439\pi\)
0.140193 + 0.990124i \(0.455228\pi\)
\(432\) 0 0
\(433\) 299.556i 0.691814i −0.938269 0.345907i \(-0.887571\pi\)
0.938269 0.345907i \(-0.112429\pi\)
\(434\) 0 0
\(435\) 136.135 0.312953
\(436\) 0 0
\(437\) 300.909 173.730i 0.688578 0.397551i
\(438\) 0 0
\(439\) −208.614 120.444i −0.475204 0.274359i 0.243212 0.969973i \(-0.421799\pi\)
−0.718416 + 0.695614i \(0.755132\pi\)
\(440\) 0 0
\(441\) 132.243 64.1930i 0.299871 0.145562i
\(442\) 0 0
\(443\) 67.6910 117.244i 0.152801 0.264660i −0.779455 0.626458i \(-0.784504\pi\)
0.932256 + 0.361799i \(0.117837\pi\)
\(444\) 0 0
\(445\) 60.9673 + 105.599i 0.137005 + 0.237300i
\(446\) 0 0
\(447\) 370.671i 0.829241i
\(448\) 0 0
\(449\) −865.136 −1.92681 −0.963404 0.268055i \(-0.913619\pi\)
−0.963404 + 0.268055i \(0.913619\pi\)
\(450\) 0 0
\(451\) 68.5184 39.5591i 0.151925 0.0877142i
\(452\) 0 0
\(453\) 395.825 + 228.530i 0.873787 + 0.504481i
\(454\) 0 0
\(455\) −173.640 + 161.619i −0.381627 + 0.355206i
\(456\) 0 0
\(457\) 375.026 649.564i 0.820626 1.42137i −0.0845906 0.996416i \(-0.526958\pi\)
0.905217 0.424950i \(-0.139708\pi\)
\(458\) 0 0
\(459\) −16.8465 29.1790i −0.0367026 0.0635708i
\(460\) 0 0
\(461\) 493.466i 1.07042i −0.844717 0.535212i \(-0.820232\pi\)
0.844717 0.535212i \(-0.179768\pi\)
\(462\) 0 0
\(463\) −279.584 −0.603853 −0.301927 0.953331i \(-0.597630\pi\)
−0.301927 + 0.953331i \(0.597630\pi\)
\(464\) 0 0
\(465\) 23.4037 13.5121i 0.0503305 0.0290583i
\(466\) 0 0
\(467\) −712.016 411.083i −1.52466 0.880263i −0.999573 0.0292136i \(-0.990700\pi\)
−0.525086 0.851049i \(-0.675967\pi\)
\(468\) 0 0
\(469\) −110.852 482.213i −0.236358 1.02817i
\(470\) 0 0
\(471\) −22.9344 + 39.7235i −0.0486929 + 0.0843386i
\(472\) 0 0
\(473\) −84.7929 146.866i −0.179266 0.310498i
\(474\) 0 0
\(475\) 269.375i 0.567105i
\(476\) 0 0
\(477\) −206.469 −0.432848
\(478\) 0 0
\(479\) 491.761 283.918i 1.02664 0.592732i 0.110621 0.993863i \(-0.464716\pi\)
0.916021 + 0.401131i \(0.131383\pi\)
\(480\) 0 0
\(481\) −773.137 446.371i −1.60735 0.928006i
\(482\) 0 0
\(483\) −95.4862 + 311.278i −0.197694 + 0.644469i
\(484\) 0 0
\(485\) −151.001 + 261.542i −0.311343 + 0.539262i
\(486\) 0 0
\(487\) 14.7365 + 25.5243i 0.0302597 + 0.0524113i 0.880759 0.473565i \(-0.157033\pi\)
−0.850499 + 0.525977i \(0.823700\pi\)
\(488\) 0 0
\(489\) 47.7719i 0.0976931i
\(490\) 0 0
\(491\) −139.613 −0.284344 −0.142172 0.989842i \(-0.545409\pi\)
−0.142172 + 0.989842i \(0.545409\pi\)
\(492\) 0 0
\(493\) 215.867 124.631i 0.437864 0.252801i
\(494\) 0 0
\(495\) 65.1818 + 37.6327i 0.131680 + 0.0760257i
\(496\) 0 0
\(497\) 83.9859 + 25.7631i 0.168986 + 0.0518372i
\(498\) 0 0
\(499\) 300.617 520.684i 0.602439 1.04346i −0.390011 0.920810i \(-0.627529\pi\)
0.992451 0.122645i \(-0.0391377\pi\)
\(500\) 0 0
\(501\) 98.3429 + 170.335i 0.196293 + 0.339990i
\(502\) 0 0
\(503\) 630.250i 1.25298i 0.779429 + 0.626491i \(0.215509\pi\)
−0.779429 + 0.626491i \(0.784491\pi\)
\(504\) 0 0
\(505\) 210.136 0.416111
\(506\) 0 0
\(507\) −158.563 + 91.5462i −0.312747 + 0.180565i
\(508\) 0 0
\(509\) 30.2755 + 17.4796i 0.0594803 + 0.0343410i 0.529445 0.848344i \(-0.322400\pi\)
−0.469965 + 0.882685i \(0.655733\pi\)
\(510\) 0 0
\(511\) −740.322 + 170.187i −1.44877 + 0.333046i
\(512\) 0 0
\(513\) 33.6153 58.2234i 0.0655269 0.113496i
\(514\) 0 0
\(515\) −116.186 201.239i −0.225603 0.390756i
\(516\) 0 0
\(517\) 345.877i 0.669007i
\(518\) 0 0
\(519\) −44.0678 −0.0849090
\(520\) 0 0
\(521\) 432.482 249.693i 0.830099 0.479258i −0.0237873 0.999717i \(-0.507572\pi\)
0.853887 + 0.520459i \(0.174239\pi\)
\(522\) 0 0
\(523\) −659.230 380.606i −1.26048 0.727737i −0.287310 0.957838i \(-0.592761\pi\)
−0.973167 + 0.230101i \(0.926094\pi\)
\(524\) 0 0
\(525\) 171.980 + 184.772i 0.327580 + 0.351947i
\(526\) 0 0
\(527\) 24.7406 42.8519i 0.0469461 0.0813130i
\(528\) 0 0
\(529\) −96.0845 166.423i −0.181634 0.314600i
\(530\) 0 0
\(531\) 217.824i 0.410214i
\(532\) 0 0
\(533\) −106.868 −0.200503
\(534\) 0 0
\(535\) 344.220 198.735i 0.643401 0.371468i
\(536\) 0 0
\(537\) −203.769 117.646i −0.379457 0.219080i
\(538\) 0 0
\(539\) −43.0648 + 599.712i −0.0798976 + 1.11264i
\(540\) 0 0
\(541\) 176.568 305.825i 0.326373 0.565295i −0.655416 0.755268i \(-0.727507\pi\)
0.981789 + 0.189973i \(0.0608400\pi\)
\(542\) 0 0
\(543\) 205.586 + 356.085i 0.378611 + 0.655774i
\(544\) 0 0
\(545\) 263.377i 0.483261i
\(546\) 0 0
\(547\) 71.1385 0.130052 0.0650260 0.997884i \(-0.479287\pi\)
0.0650260 + 0.997884i \(0.479287\pi\)
\(548\) 0 0
\(549\) −64.4776 + 37.2262i −0.117446 + 0.0678072i
\(550\) 0 0
\(551\) 430.739 + 248.687i 0.781740 + 0.451338i
\(552\) 0 0
\(553\) 500.895 466.216i 0.905778 0.843067i
\(554\) 0 0
\(555\) 95.3743 165.193i 0.171846 0.297645i
\(556\) 0 0
\(557\) 207.721 + 359.783i 0.372928 + 0.645930i 0.990015 0.140965i \(-0.0450206\pi\)
−0.617087 + 0.786895i \(0.711687\pi\)
\(558\) 0 0
\(559\) 229.067i 0.409779i
\(560\) 0 0
\(561\) 137.810 0.245651
\(562\) 0 0
\(563\) −509.087 + 293.921i −0.904239 + 0.522063i −0.878573 0.477608i \(-0.841504\pi\)
−0.0256661 + 0.999671i \(0.508171\pi\)
\(564\) 0 0
\(565\) −39.9955 23.0914i −0.0707885 0.0408698i
\(566\) 0 0
\(567\) 14.1144 + 61.3986i 0.0248932 + 0.108287i
\(568\) 0 0
\(569\) 244.661 423.765i 0.429984 0.744753i −0.566888 0.823795i \(-0.691853\pi\)
0.996871 + 0.0790417i \(0.0251860\pi\)
\(570\) 0 0
\(571\) 176.937 + 306.464i 0.309872 + 0.536714i 0.978334 0.207032i \(-0.0663804\pi\)
−0.668462 + 0.743746i \(0.733047\pi\)
\(572\) 0 0
\(573\) 367.290i 0.640995i
\(574\) 0 0
\(575\) −559.101 −0.972350
\(576\) 0 0
\(577\) −551.570 + 318.449i −0.955927 + 0.551905i −0.894917 0.446233i \(-0.852765\pi\)
−0.0610097 + 0.998137i \(0.519432\pi\)
\(578\) 0 0
\(579\) 3.11894 + 1.80072i 0.00538677 + 0.00311005i
\(580\) 0 0
\(581\) −171.058 + 557.638i −0.294420 + 0.959790i
\(582\) 0 0
\(583\) 422.247 731.353i 0.724266 1.25447i
\(584\) 0 0
\(585\) −50.8321 88.0437i −0.0868924 0.150502i
\(586\) 0 0
\(587\) 831.051i 1.41576i 0.706333 + 0.707880i \(0.250348\pi\)
−0.706333 + 0.707880i \(0.749652\pi\)
\(588\) 0 0
\(589\) 98.7342 0.167630
\(590\) 0 0
\(591\) −446.367 + 257.710i −0.755274 + 0.436058i
\(592\) 0 0
\(593\) 996.763 + 575.481i 1.68088 + 0.970457i 0.961077 + 0.276281i \(0.0891019\pi\)
0.719805 + 0.694177i \(0.244231\pi\)
\(594\) 0 0
\(595\) −88.7234 27.2163i −0.149115 0.0457417i
\(596\) 0 0
\(597\) −220.767 + 382.379i −0.369793 + 0.640501i
\(598\) 0 0
\(599\) 244.474 + 423.442i 0.408138 + 0.706915i 0.994681 0.103003i \(-0.0328450\pi\)
−0.586543 + 0.809918i \(0.699512\pi\)
\(600\) 0 0
\(601\) 995.313i 1.65609i 0.560659 + 0.828047i \(0.310548\pi\)
−0.560659 + 0.828047i \(0.689452\pi\)
\(602\) 0 0
\(603\) 212.053 0.351663
\(604\) 0 0
\(605\) −52.3524 + 30.2257i −0.0865329 + 0.0499598i
\(606\) 0 0
\(607\) −452.616 261.318i −0.745660 0.430507i 0.0784634 0.996917i \(-0.474999\pi\)
−0.824124 + 0.566410i \(0.808332\pi\)
\(608\) 0 0
\(609\) −454.228 + 104.419i −0.745859 + 0.171460i
\(610\) 0 0
\(611\) 233.595 404.598i 0.382316 0.662191i
\(612\) 0 0
\(613\) 137.094 + 237.454i 0.223645 + 0.387364i 0.955912 0.293653i \(-0.0948711\pi\)
−0.732267 + 0.681018i \(0.761538\pi\)
\(614\) 0 0
\(615\) 22.8341i 0.0371286i
\(616\) 0 0
\(617\) −101.665 −0.164773 −0.0823867 0.996600i \(-0.526254\pi\)
−0.0823867 + 0.996600i \(0.526254\pi\)
\(618\) 0 0
\(619\) 179.409 103.582i 0.289837 0.167337i −0.348031 0.937483i \(-0.613150\pi\)
0.637868 + 0.770145i \(0.279816\pi\)
\(620\) 0 0
\(621\) −120.846 69.7703i −0.194598 0.112351i
\(622\) 0 0
\(623\) −284.421 305.577i −0.456534 0.490493i
\(624\) 0 0
\(625\) −164.472 + 284.874i −0.263155 + 0.455798i
\(626\) 0 0
\(627\) 137.493 + 238.144i 0.219287 + 0.379816i
\(628\) 0 0
\(629\) 349.259i 0.555261i
\(630\) 0 0
\(631\) −500.062 −0.792492 −0.396246 0.918144i \(-0.629687\pi\)
−0.396246 + 0.918144i \(0.629687\pi\)
\(632\) 0 0
\(633\) 282.353 163.017i 0.446055 0.257530i
\(634\) 0 0
\(635\) 15.4440 + 8.91659i 0.0243212 + 0.0140419i
\(636\) 0 0
\(637\) 455.404 672.445i 0.714921 1.05564i
\(638\) 0 0
\(639\) −18.8247 + 32.6053i −0.0294596 + 0.0510255i
\(640\) 0 0
\(641\) 262.210 + 454.162i 0.409065 + 0.708521i 0.994785 0.101992i \(-0.0325218\pi\)
−0.585721 + 0.810513i \(0.699188\pi\)
\(642\) 0 0
\(643\) 879.365i 1.36760i −0.729671 0.683798i \(-0.760327\pi\)
0.729671 0.683798i \(-0.239673\pi\)
\(644\) 0 0
\(645\) −48.9437 −0.0758817
\(646\) 0 0
\(647\) 79.5097 45.9049i 0.122890 0.0709504i −0.437295 0.899318i \(-0.644063\pi\)
0.560185 + 0.828368i \(0.310730\pi\)
\(648\) 0 0
\(649\) −771.575 445.469i −1.18887 0.686393i
\(650\) 0 0
\(651\) −67.7247 + 63.0359i −0.104032 + 0.0968293i
\(652\) 0 0
\(653\) −126.457 + 219.031i −0.193656 + 0.335422i −0.946459 0.322824i \(-0.895368\pi\)
0.752803 + 0.658246i \(0.228701\pi\)
\(654\) 0 0
\(655\) −117.986 204.357i −0.180131 0.311996i
\(656\) 0 0
\(657\) 325.556i 0.495519i
\(658\) 0 0
\(659\) 575.427 0.873182 0.436591 0.899660i \(-0.356186\pi\)
0.436591 + 0.899660i \(0.356186\pi\)
\(660\) 0 0
\(661\) −791.756 + 457.120i −1.19782 + 0.691559i −0.960068 0.279768i \(-0.909742\pi\)
−0.237748 + 0.971327i \(0.576409\pi\)
\(662\) 0 0
\(663\) −161.207 93.0731i −0.243148 0.140382i
\(664\) 0 0
\(665\) −41.4874 180.473i −0.0623871 0.271388i
\(666\) 0 0
\(667\) 516.162 894.019i 0.773856 1.34036i
\(668\) 0 0
\(669\) 79.2173 + 137.208i 0.118412 + 0.205095i
\(670\) 0 0
\(671\) 304.524i 0.453835i
\(672\) 0 0
\(673\) 80.8779 0.120175 0.0600876 0.998193i \(-0.480862\pi\)
0.0600876 + 0.998193i \(0.480862\pi\)
\(674\) 0 0
\(675\) −93.6881 + 54.0908i −0.138797 + 0.0801346i
\(676\) 0 0
\(677\) −773.940 446.835i −1.14319 0.660022i −0.195972 0.980609i \(-0.562786\pi\)
−0.947219 + 0.320588i \(0.896120\pi\)
\(678\) 0 0
\(679\) 303.223 988.485i 0.446572 1.45580i
\(680\) 0 0
\(681\) −46.8480 + 81.1431i −0.0687929 + 0.119153i
\(682\) 0 0
\(683\) −1.31596 2.27931i −0.00192673 0.00333720i 0.865060 0.501668i \(-0.167280\pi\)
−0.866987 + 0.498330i \(0.833947\pi\)
\(684\) 0 0
\(685\) 417.460i 0.609431i
\(686\) 0 0
\(687\) −362.799 −0.528092
\(688\) 0 0
\(689\) −987.869 + 570.347i −1.43377 + 0.827789i
\(690\) 0 0
\(691\) 645.194 + 372.503i 0.933711 + 0.539078i 0.887983 0.459876i \(-0.152106\pi\)
0.0457278 + 0.998954i \(0.485439\pi\)
\(692\) 0 0
\(693\) −246.351 75.5695i −0.355485 0.109047i
\(694\) 0 0
\(695\) −193.353 + 334.897i −0.278205 + 0.481866i
\(696\) 0 0
\(697\) −20.9045 36.2077i −0.0299921 0.0519479i
\(698\) 0 0
\(699\) 131.658i 0.188352i
\(700\) 0 0
\(701\) 361.857 0.516202 0.258101 0.966118i \(-0.416903\pi\)
0.258101 + 0.966118i \(0.416903\pi\)
\(702\) 0 0
\(703\) 603.540 348.454i 0.858520 0.495667i
\(704\) 0 0
\(705\) 86.4489 + 49.9113i 0.122623 + 0.0707962i
\(706\) 0 0
\(707\) −701.141 + 161.180i −0.991713 + 0.227977i
\(708\) 0 0
\(709\) −93.3275 + 161.648i −0.131633 + 0.227994i −0.924306 0.381652i \(-0.875355\pi\)
0.792673 + 0.609646i \(0.208689\pi\)
\(710\) 0 0
\(711\) 146.634 + 253.977i 0.206236 + 0.357211i
\(712\) 0 0
\(713\) 204.928i 0.287416i
\(714\) 0 0
\(715\) 415.825 0.581573
\(716\) 0 0
\(717\) 213.601 123.323i 0.297910 0.171998i
\(718\) 0 0
\(719\) 390.952 + 225.716i 0.543744 + 0.313931i 0.746595 0.665279i \(-0.231687\pi\)
−0.202851 + 0.979210i \(0.565021\pi\)
\(720\) 0 0
\(721\) 542.022 + 582.339i 0.751764 + 0.807683i
\(722\) 0 0
\(723\) −327.326 + 566.945i −0.452733 + 0.784156i
\(724\) 0 0
\(725\) −400.165 693.107i −0.551952 0.956009i
\(726\) 0 0
\(727\) 245.173i 0.337239i −0.985681 0.168620i \(-0.946069\pi\)
0.985681 0.168620i \(-0.0539309\pi\)
\(728\) 0 0
\(729\) −27.0000 −0.0370370
\(730\) 0 0
\(731\) −77.6093 + 44.8078i −0.106169 + 0.0612965i
\(732\) 0 0
\(733\) 125.959 + 72.7222i 0.171840 + 0.0992117i 0.583453 0.812147i \(-0.301701\pi\)
−0.411613 + 0.911359i \(0.635035\pi\)
\(734\) 0 0
\(735\) 143.678 + 97.3044i 0.195481 + 0.132387i
\(736\) 0 0
\(737\) −433.668 + 751.134i −0.588423 + 1.01918i
\(738\) 0 0
\(739\) −239.497 414.822i −0.324083 0.561328i 0.657243 0.753678i \(-0.271722\pi\)
−0.981326 + 0.192350i \(0.938389\pi\)
\(740\) 0 0
\(741\) 371.434i 0.501261i
\(742\) 0 0
\(743\) −717.987 −0.966335 −0.483167 0.875528i \(-0.660514\pi\)
−0.483167 + 0.875528i \(0.660514\pi\)
\(744\) 0 0
\(745\) −378.938 + 218.780i −0.508642 + 0.293665i
\(746\) 0 0
\(747\) −216.488 124.990i −0.289810 0.167322i
\(748\) 0 0
\(749\) −996.091 + 927.127i −1.32989 + 1.23782i
\(750\) 0 0
\(751\) 96.6403 167.386i 0.128682 0.222884i −0.794484 0.607285i \(-0.792259\pi\)
0.923166 + 0.384401i \(0.125592\pi\)
\(752\) 0 0
\(753\) 66.0875 + 114.467i 0.0877656 + 0.152015i
\(754\) 0 0
\(755\) 539.539i 0.714621i
\(756\) 0 0
\(757\) 220.503 0.291285 0.145643 0.989337i \(-0.453475\pi\)
0.145643 + 0.989337i \(0.453475\pi\)
\(758\) 0 0
\(759\) 494.281 285.373i 0.651226 0.375986i
\(760\) 0 0
\(761\) 1034.04 + 597.004i 1.35879 + 0.784500i 0.989461 0.144798i \(-0.0462532\pi\)
0.369332 + 0.929298i \(0.379587\pi\)
\(762\) 0 0
\(763\) 202.017 + 878.787i 0.264767 + 1.15175i
\(764\) 0 0
\(765\) 19.8866 34.4445i 0.0259955 0.0450255i
\(766\) 0 0
\(767\) 601.713 + 1042.20i 0.784502 + 1.35880i
\(768\) 0 0
\(769\) 1394.14i 1.81293i 0.422279 + 0.906466i \(0.361230\pi\)
−0.422279 + 0.906466i \(0.638770\pi\)
\(770\) 0 0
\(771\) −77.0390 −0.0999209
\(772\) 0 0
\(773\) −5.10280 + 2.94610i −0.00660129 + 0.00381126i −0.503297 0.864113i \(-0.667880\pi\)
0.496696 + 0.867925i \(0.334546\pi\)
\(774\) 0 0
\(775\) −137.589 79.4372i −0.177535 0.102500i
\(776\) 0 0
\(777\) −191.519 + 624.339i −0.246485 + 0.803525i
\(778\) 0 0
\(779\) 41.7127 72.2485i 0.0535464 0.0927451i
\(780\) 0 0
\(781\) −76.9964 133.362i −0.0985869 0.170757i
\(782\) 0 0
\(783\) 199.747i 0.255104i
\(784\) 0 0
\(785\) −54.1460 −0.0689758
\(786\) 0 0
\(787\) −1231.26 + 710.870i −1.56450 + 0.903265i −0.567709 + 0.823229i \(0.692170\pi\)
−0.996792 + 0.0800358i \(0.974497\pi\)
\(788\) 0 0
\(789\) 583.378 + 336.814i 0.739390 + 0.426887i
\(790\) 0 0
\(791\) 151.161 + 46.3694i 0.191101 + 0.0586212i
\(792\) 0 0
\(793\) −205.666 + 356.225i −0.259352 + 0.449211i
\(794\) 0 0
\(795\) −121.864 211.074i −0.153288 0.265502i
\(796\) 0 0
\(797\) 671.028i 0.841942i −0.907074 0.420971i \(-0.861689\pi\)
0.907074 0.420971i \(-0.138311\pi\)
\(798\) 0 0
\(799\) 182.774 0.228754
\(800\) 0 0
\(801\) 154.942 89.4557i 0.193435 0.111680i
\(802\) 0 0
\(803\) 1153.19 + 665.792i 1.43610 + 0.829131i
\(804\) 0 0
\(805\) −374.580 + 86.1093i −0.465317 + 0.106968i
\(806\) 0 0
\(807\) −98.9666 + 171.415i −0.122635 + 0.212410i
\(808\) 0 0
\(809\) −348.851 604.228i −0.431213 0.746882i 0.565765 0.824566i \(-0.308581\pi\)
−0.996978 + 0.0776841i \(0.975247\pi\)
\(810\) 0 0
\(811\) 1045.25i 1.28884i −0.764671 0.644421i \(-0.777099\pi\)
0.764671 0.644421i \(-0.222901\pi\)
\(812\) 0 0
\(813\) −711.934 −0.875687
\(814\) 0 0
\(815\) −48.8375 + 28.1963i −0.0599233 + 0.0345967i
\(816\) 0 0
\(817\) −154.861 89.4089i −0.189548 0.109436i
\(818\) 0 0
\(819\) 237.139 + 254.778i 0.289546 + 0.311084i
\(820\) 0 0
\(821\) 194.315 336.563i 0.236680 0.409942i −0.723079 0.690765i \(-0.757274\pi\)
0.959760 + 0.280823i \(0.0906072\pi\)
\(822\) 0 0
\(823\) 127.219 + 220.351i 0.154580 + 0.267741i 0.932906 0.360120i \(-0.117264\pi\)
−0.778326 + 0.627860i \(0.783931\pi\)
\(824\) 0 0
\(825\) 442.482i 0.536342i
\(826\) 0 0
\(827\) 1009.61 1.22081 0.610406 0.792088i \(-0.291006\pi\)
0.610406 + 0.792088i \(0.291006\pi\)
\(828\) 0 0
\(829\) −692.786 + 399.980i −0.835689 + 0.482485i −0.855797 0.517313i \(-0.826932\pi\)
0.0201076 + 0.999798i \(0.493599\pi\)
\(830\) 0 0
\(831\) 135.952 + 78.4922i 0.163601 + 0.0944551i
\(832\) 0 0
\(833\) 316.911 + 22.7571i 0.380445 + 0.0273194i
\(834\) 0 0
\(835\) −116.090 + 201.073i −0.139029 + 0.240806i
\(836\) 0 0
\(837\) −19.8260 34.3396i −0.0236869 0.0410270i
\(838\) 0 0
\(839\) 557.928i 0.664992i 0.943105 + 0.332496i \(0.107891\pi\)
−0.943105 + 0.332496i \(0.892109\pi\)
\(840\) 0 0
\(841\) 636.731 0.757112
\(842\) 0 0
\(843\) 100.966 58.2926i 0.119770 0.0691490i
\(844\) 0 0
\(845\) −187.176 108.066i −0.221510 0.127889i
\(846\) 0 0
\(847\) 151.496 141.007i 0.178861 0.166478i
\(848\) 0 0
\(849\) −223.431 + 386.994i −0.263169 + 0.455823i
\(850\) 0 0
\(851\) −723.233 1252.68i −0.849863 1.47201i
\(852\) 0 0
\(853\) 1050.40i 1.23142i 0.787974 + 0.615709i \(0.211130\pi\)
−0.787974 + 0.615709i \(0.788870\pi\)
\(854\) 0 0
\(855\) 79.3628 0.0928220
\(856\) 0 0
\(857\) −832.914 + 480.883i −0.971895 + 0.561124i −0.899813 0.436275i \(-0.856298\pi\)
−0.0720816 + 0.997399i \(0.522964\pi\)
\(858\) 0 0
\(859\) −1398.37 807.348i −1.62790 0.939870i −0.984718 0.174159i \(-0.944279\pi\)
−0.643185 0.765711i \(-0.722387\pi\)
\(860\) 0 0
\(861\) 17.5143 + 76.1884i 0.0203419 + 0.0884883i
\(862\) 0 0
\(863\) 589.299 1020.70i 0.682849 1.18273i −0.291259 0.956644i \(-0.594074\pi\)
0.974108 0.226085i \(-0.0725927\pi\)
\(864\) 0 0
\(865\) −26.0100 45.0507i −0.0300694 0.0520818i
\(866\) 0 0
\(867\) 427.738i 0.493355i
\(868\) 0 0
\(869\) −1199.52 −1.38034
\(870\) 0 0
\(871\) 1014.59 585.773i 1.16485 0.672529i
\(872\) 0 0
\(873\) 383.753 + 221.560i 0.439580 + 0.253792i
\(874\) 0 0
\(875\) −192.319 + 626.948i −0.219794 + 0.716512i
\(876\) 0 0
\(877\) 266.040 460.794i 0.303352 0.525421i −0.673541 0.739150i \(-0.735228\pi\)
0.976893 + 0.213729i \(0.0685609\pi\)
\(878\) 0 0
\(879\) 381.328 + 660.480i 0.433820 + 0.751399i
\(880\) 0 0
\(881\) 1103.22i 1.25224i 0.779729 + 0.626118i \(0.215357\pi\)
−0.779729 + 0.626118i \(0.784643\pi\)
\(882\) 0 0
\(883\) 213.506 0.241796 0.120898 0.992665i \(-0.461423\pi\)
0.120898 + 0.992665i \(0.461423\pi\)
\(884\) 0 0
\(885\) −222.682 + 128.566i −0.251618 + 0.145272i
\(886\) 0 0
\(887\) −1380.19 796.856i −1.55603 0.898372i −0.997631 0.0687962i \(-0.978084\pi\)
−0.558395 0.829575i \(-0.688582\pi\)
\(888\) 0 0
\(889\) −58.3698 17.9052i −0.0656578 0.0201409i
\(890\) 0 0
\(891\) 55.2174 95.6394i 0.0619724 0.107339i
\(892\) 0 0
\(893\) 182.353 + 315.845i 0.204203 + 0.353689i
\(894\) 0 0
\(895\) 277.752i 0.310337i
\(896\) 0 0
\(897\) −770.930 −0.859454
\(898\) 0 0
\(899\) 254.045 146.673i 0.282586 0.163151i
\(900\) 0 0
\(901\) −386.475 223.131i −0.428940 0.247648i
\(902\) 0 0
\(903\) 163.306 37.5411i 0.180848 0.0415738i
\(904\) 0 0
\(905\) −242.685 + 420.343i −0.268161 + 0.464468i
\(906\) 0 0
\(907\) −865.834 1499.67i −0.954613 1.65344i −0.735252 0.677794i \(-0.762936\pi\)
−0.219360 0.975644i \(-0.570397\pi\)
\(908\) 0 0
\(909\) 308.327i 0.339193i
\(910\) 0 0
\(911\) −478.767 −0.525540 −0.262770 0.964858i \(-0.584636\pi\)
−0.262770 + 0.964858i \(0.584636\pi\)
\(912\) 0 0
\(913\) 885.476 511.230i 0.969853 0.559945i
\(914\) 0 0
\(915\) −76.1130 43.9439i −0.0831836 0.0480261i
\(916\) 0 0
\(917\) 550.419 + 591.361i 0.600239 + 0.644887i
\(918\) 0 0
\(919\) −795.127 + 1377.20i −0.865209 + 1.49859i 0.00163103 + 0.999999i \(0.499481\pi\)
−0.866840 + 0.498587i \(0.833853\pi\)
\(920\) 0 0
\(921\) 403.102 + 698.193i 0.437679 + 0.758082i
\(922\) 0 0
\(923\) 208.004i 0.225357i
\(924\) 0 0
\(925\) −1121.40 −1.21233
\(926\) 0 0
\(927\) −295.273 + 170.476i −0.318525 + 0.183901i
\(928\) 0 0
\(929\) −748.214 431.982i −0.805397 0.464996i 0.0399577 0.999201i \(-0.487278\pi\)
−0.845355 + 0.534205i \(0.820611\pi\)
\(930\) 0 0
\(931\) 276.855 + 570.345i 0.297373 + 0.612615i
\(932\) 0 0
\(933\) 222.189 384.842i 0.238145 0.412478i
\(934\) 0 0
\(935\) 81.3396 + 140.884i 0.0869942 + 0.150678i
\(936\) 0 0
\(937\) 1187.54i 1.26739i 0.773584 + 0.633694i \(0.218462\pi\)
−0.773584 + 0.633694i \(0.781538\pi\)
\(938\) 0 0
\(939\) 170.262 0.181322
\(940\) 0 0
\(941\) 1140.58 658.512i 1.21209 0.699800i 0.248876 0.968535i \(-0.419939\pi\)
0.963214 + 0.268735i \(0.0866056\pi\)
\(942\) 0 0
\(943\) −149.955 86.5767i −0.159019 0.0918099i
\(944\) 0 0
\(945\) −54.4373 + 50.6684i −0.0576056 + 0.0536174i
\(946\) 0 0
\(947\) −217.972 + 377.539i −0.230172 + 0.398669i −0.957858 0.287241i \(-0.907262\pi\)
0.727687 + 0.685909i \(0.240595\pi\)
\(948\) 0 0
\(949\) −899.313 1557.66i −0.947643 1.64137i
\(950\) 0 0
\(951\) 505.226i 0.531258i
\(952\) 0 0
\(953\) 1318.53 1.38355 0.691777 0.722112i \(-0.256828\pi\)
0.691777 + 0.722112i \(0.256828\pi\)
\(954\) 0 0
\(955\) 375.483 216.785i 0.393175 0.227000i
\(956\) 0 0
\(957\) 707.543 + 408.500i 0.739334 + 0.426855i
\(958\) 0 0
\(959\) −320.203 1392.90i −0.333892 1.45245i
\(960\) 0 0
\(961\) −451.384 + 781.820i −0.469702 + 0.813548i
\(962\) 0 0
\(963\) −291.599 505.064i −0.302803 0.524469i
\(964\) 0 0
\(965\) 4.25134i 0.00440554i
\(966\) 0 0
\(967\) 706.981 0.731107 0.365554 0.930790i \(-0.380880\pi\)
0.365554 + 0.930790i \(0.380880\pi\)
\(968\) 0 0
\(969\) 125.845 72.6564i 0.129870 0.0749808i
\(970\) 0 0
\(971\) 548.877 + 316.894i 0.565269 + 0.326358i 0.755258 0.655428i \(-0.227512\pi\)
−0.189988 + 0.981786i \(0.560845\pi\)
\(972\) 0 0
\(973\) 388.267 1265.73i 0.399042 1.30085i
\(974\) 0 0
\(975\) −298.840 + 517.606i −0.306502 + 0.530878i
\(976\) 0 0
\(977\) 664.402 + 1150.78i 0.680043 + 1.17787i 0.974967 + 0.222349i \(0.0713724\pi\)
−0.294924 + 0.955521i \(0.595294\pi\)
\(978\) 0 0
\(979\) 731.780i 0.747477i
\(980\) 0 0
\(981\) −386.446 −0.393931
\(982\) 0 0
\(983\) −307.260 + 177.397i −0.312574 + 0.180465i −0.648078 0.761574i \(-0.724427\pi\)
0.335504 + 0.942039i \(0.391094\pi\)
\(984\) 0 0
\(985\) −526.917 304.215i −0.534941 0.308848i
\(986\) 0 0
\(987\) −326.729 100.226i −0.331033 0.101546i
\(988\) 0 0
\(989\) −185.573 + 321.421i −0.187637 + 0.324996i
\(990\) 0 0
\(991\) 286.950 + 497.011i 0.289556 + 0.501525i 0.973704 0.227818i \(-0.0731592\pi\)
−0.684148 + 0.729343i \(0.739826\pi\)
\(992\) 0 0
\(993\) 497.843i 0.501353i
\(994\) 0 0
\(995\) −521.211 −0.523830
\(996\) 0 0
\(997\) 923.961 533.449i 0.926741 0.535054i 0.0409617 0.999161i \(-0.486958\pi\)
0.885779 + 0.464106i \(0.153624\pi\)
\(998\) 0 0
\(999\) −242.383 139.940i −0.242626 0.140080i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 672.3.bh.d.481.6 yes 16
4.3 odd 2 672.3.bh.b.481.6 16
7.3 odd 6 inner 672.3.bh.d.577.6 yes 16
28.3 even 6 672.3.bh.b.577.6 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
672.3.bh.b.481.6 16 4.3 odd 2
672.3.bh.b.577.6 yes 16 28.3 even 6
672.3.bh.d.481.6 yes 16 1.1 even 1 trivial
672.3.bh.d.577.6 yes 16 7.3 odd 6 inner