Properties

Label 672.3.bh.b.577.6
Level $672$
Weight $3$
Character 672.577
Analytic conductor $18.311$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [672,3,Mod(481,672)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("672.481"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(672, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 0, 5])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 672 = 2^{5} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 672.bh (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,-24,0,0,0,-12,0,24,0,-12,0,0,0,0,0,48] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.3106737650\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 8 x^{15} + 120 x^{14} - 700 x^{13} + 5060 x^{12} - 21624 x^{11} + 95002 x^{10} - 292520 x^{9} + \cdots + 76783 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{16} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 577.6
Root \(0.500000 - 4.68078i\) of defining polynomial
Character \(\chi\) \(=\) 672.577
Dual form 672.3.bh.b.481.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.50000 - 0.866025i) q^{3} +(1.77068 - 1.02231i) q^{5} +(6.69221 - 2.05287i) q^{7} +(1.50000 + 2.59808i) q^{9} +(-6.13527 + 10.6266i) q^{11} +16.5743i q^{13} -3.54137 q^{15} +(5.61550 + 3.24211i) q^{17} +(-11.2051 + 6.46927i) q^{19} +(-11.8162 - 2.71632i) q^{21} +(-13.4273 - 23.2568i) q^{23} +(-10.4098 + 18.0303i) q^{25} -5.19615i q^{27} +38.4413 q^{29} +(-6.60865 - 3.81551i) q^{31} +(18.4058 - 10.6266i) q^{33} +(9.75114 - 10.4765i) q^{35} +(26.9315 + 46.6467i) q^{37} +(14.3538 - 24.8615i) q^{39} +6.44781i q^{41} +13.8206 q^{43} +(5.31205 + 3.06692i) q^{45} +(-24.4111 + 14.0938i) q^{47} +(40.5715 - 27.4765i) q^{49} +(-5.61550 - 9.72633i) q^{51} +(-34.4114 + 59.6024i) q^{53} +25.0885i q^{55} +22.4102 q^{57} +(62.8802 + 36.3039i) q^{59} +(-21.4925 + 12.4087i) q^{61} +(15.3718 + 14.3076i) q^{63} +(16.9440 + 29.3479i) q^{65} +(-35.3422 + 61.2144i) q^{67} +46.5135i q^{69} +12.5498 q^{71} +(93.9800 + 54.2594i) q^{73} +(31.2294 - 18.0303i) q^{75} +(-19.2435 + 83.7104i) q^{77} +(48.8779 + 84.6590i) q^{79} +(-4.50000 + 7.79423i) q^{81} -83.3264i q^{83} +13.2577 q^{85} +(-57.6619 - 33.2911i) q^{87} +(51.6473 - 29.8186i) q^{89} +(34.0249 + 110.919i) q^{91} +(6.60865 + 11.4465i) q^{93} +(-13.2271 + 22.9101i) q^{95} -147.707i q^{97} -36.8116 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 24 q^{3} - 12 q^{7} + 24 q^{9} - 12 q^{11} + 48 q^{17} + 36 q^{19} + 24 q^{21} + 48 q^{23} + 20 q^{25} + 64 q^{29} - 60 q^{31} + 36 q^{33} - 36 q^{37} + 12 q^{39} + 72 q^{43} - 72 q^{47} - 40 q^{49}+ \cdots - 72 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/672\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(421\) \(449\) \(577\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.50000 0.866025i −0.500000 0.288675i
\(4\) 0 0
\(5\) 1.77068 1.02231i 0.354137 0.204461i −0.312369 0.949961i \(-0.601122\pi\)
0.666506 + 0.745500i \(0.267789\pi\)
\(6\) 0 0
\(7\) 6.69221 2.05287i 0.956031 0.293267i
\(8\) 0 0
\(9\) 1.50000 + 2.59808i 0.166667 + 0.288675i
\(10\) 0 0
\(11\) −6.13527 + 10.6266i −0.557752 + 0.966055i 0.439932 + 0.898031i \(0.355003\pi\)
−0.997684 + 0.0680235i \(0.978331\pi\)
\(12\) 0 0
\(13\) 16.5743i 1.27495i 0.770472 + 0.637474i \(0.220021\pi\)
−0.770472 + 0.637474i \(0.779979\pi\)
\(14\) 0 0
\(15\) −3.54137 −0.236091
\(16\) 0 0
\(17\) 5.61550 + 3.24211i 0.330323 + 0.190712i 0.655985 0.754774i \(-0.272254\pi\)
−0.325661 + 0.945487i \(0.605587\pi\)
\(18\) 0 0
\(19\) −11.2051 + 6.46927i −0.589742 + 0.340488i −0.764996 0.644035i \(-0.777259\pi\)
0.175253 + 0.984523i \(0.443926\pi\)
\(20\) 0 0
\(21\) −11.8162 2.71632i −0.562674 0.129349i
\(22\) 0 0
\(23\) −13.4273 23.2568i −0.583795 1.01116i −0.995024 0.0996313i \(-0.968234\pi\)
0.411229 0.911532i \(-0.365100\pi\)
\(24\) 0 0
\(25\) −10.4098 + 18.0303i −0.416391 + 0.721211i
\(26\) 0 0
\(27\) 5.19615i 0.192450i
\(28\) 0 0
\(29\) 38.4413 1.32556 0.662780 0.748814i \(-0.269376\pi\)
0.662780 + 0.748814i \(0.269376\pi\)
\(30\) 0 0
\(31\) −6.60865 3.81551i −0.213182 0.123081i 0.389607 0.920981i \(-0.372611\pi\)
−0.602789 + 0.797900i \(0.705944\pi\)
\(32\) 0 0
\(33\) 18.4058 10.6266i 0.557752 0.322018i
\(34\) 0 0
\(35\) 9.75114 10.4765i 0.278604 0.299328i
\(36\) 0 0
\(37\) 26.9315 + 46.6467i 0.727877 + 1.26072i 0.957779 + 0.287507i \(0.0928263\pi\)
−0.229901 + 0.973214i \(0.573840\pi\)
\(38\) 0 0
\(39\) 14.3538 24.8615i 0.368046 0.637474i
\(40\) 0 0
\(41\) 6.44781i 0.157264i 0.996904 + 0.0786319i \(0.0250552\pi\)
−0.996904 + 0.0786319i \(0.974945\pi\)
\(42\) 0 0
\(43\) 13.8206 0.321408 0.160704 0.987003i \(-0.448623\pi\)
0.160704 + 0.987003i \(0.448623\pi\)
\(44\) 0 0
\(45\) 5.31205 + 3.06692i 0.118046 + 0.0681537i
\(46\) 0 0
\(47\) −24.4111 + 14.0938i −0.519386 + 0.299868i −0.736683 0.676238i \(-0.763609\pi\)
0.217297 + 0.976105i \(0.430276\pi\)
\(48\) 0 0
\(49\) 40.5715 27.4765i 0.827989 0.560745i
\(50\) 0 0
\(51\) −5.61550 9.72633i −0.110108 0.190712i
\(52\) 0 0
\(53\) −34.4114 + 59.6024i −0.649272 + 1.12457i 0.334025 + 0.942564i \(0.391593\pi\)
−0.983297 + 0.182008i \(0.941740\pi\)
\(54\) 0 0
\(55\) 25.0885i 0.456154i
\(56\) 0 0
\(57\) 22.4102 0.393162
\(58\) 0 0
\(59\) 62.8802 + 36.3039i 1.06577 + 0.615321i 0.927022 0.375007i \(-0.122360\pi\)
0.138745 + 0.990328i \(0.455693\pi\)
\(60\) 0 0
\(61\) −21.4925 + 12.4087i −0.352337 + 0.203422i −0.665714 0.746207i \(-0.731873\pi\)
0.313377 + 0.949629i \(0.398540\pi\)
\(62\) 0 0
\(63\) 15.3718 + 14.3076i 0.243997 + 0.227104i
\(64\) 0 0
\(65\) 16.9440 + 29.3479i 0.260677 + 0.451506i
\(66\) 0 0
\(67\) −35.3422 + 61.2144i −0.527495 + 0.913648i 0.471991 + 0.881603i \(0.343535\pi\)
−0.999486 + 0.0320451i \(0.989798\pi\)
\(68\) 0 0
\(69\) 46.5135i 0.674109i
\(70\) 0 0
\(71\) 12.5498 0.176758 0.0883788 0.996087i \(-0.471831\pi\)
0.0883788 + 0.996087i \(0.471831\pi\)
\(72\) 0 0
\(73\) 93.9800 + 54.2594i 1.28740 + 0.743279i 0.978189 0.207715i \(-0.0666028\pi\)
0.309208 + 0.950994i \(0.399936\pi\)
\(74\) 0 0
\(75\) 31.2294 18.0303i 0.416391 0.240404i
\(76\) 0 0
\(77\) −19.2435 + 83.7104i −0.249916 + 1.08715i
\(78\) 0 0
\(79\) 48.8779 + 84.6590i 0.618708 + 1.07163i 0.989722 + 0.143006i \(0.0456767\pi\)
−0.371014 + 0.928627i \(0.620990\pi\)
\(80\) 0 0
\(81\) −4.50000 + 7.79423i −0.0555556 + 0.0962250i
\(82\) 0 0
\(83\) 83.3264i 1.00393i −0.864887 0.501966i \(-0.832610\pi\)
0.864887 0.501966i \(-0.167390\pi\)
\(84\) 0 0
\(85\) 13.2577 0.155973
\(86\) 0 0
\(87\) −57.6619 33.2911i −0.662780 0.382656i
\(88\) 0 0
\(89\) 51.6473 29.8186i 0.580306 0.335040i −0.180949 0.983493i \(-0.557917\pi\)
0.761255 + 0.648453i \(0.224584\pi\)
\(90\) 0 0
\(91\) 34.0249 + 110.919i 0.373900 + 1.21889i
\(92\) 0 0
\(93\) 6.60865 + 11.4465i 0.0710608 + 0.123081i
\(94\) 0 0
\(95\) −13.2271 + 22.9101i −0.139233 + 0.241159i
\(96\) 0 0
\(97\) 147.707i 1.52275i −0.648312 0.761375i \(-0.724525\pi\)
0.648312 0.761375i \(-0.275475\pi\)
\(98\) 0 0
\(99\) −36.8116 −0.371835
\(100\) 0 0
\(101\) 89.0062 + 51.3878i 0.881250 + 0.508790i 0.871070 0.491158i \(-0.163426\pi\)
0.0101796 + 0.999948i \(0.496760\pi\)
\(102\) 0 0
\(103\) 98.4243 56.8253i 0.955576 0.551702i 0.0607674 0.998152i \(-0.480645\pi\)
0.894809 + 0.446450i \(0.147312\pi\)
\(104\) 0 0
\(105\) −23.6996 + 7.26997i −0.225710 + 0.0692378i
\(106\) 0 0
\(107\) −97.1996 168.355i −0.908408 1.57341i −0.816277 0.577661i \(-0.803966\pi\)
−0.0921308 0.995747i \(-0.529368\pi\)
\(108\) 0 0
\(109\) −64.4077 + 111.557i −0.590896 + 1.02346i 0.403216 + 0.915105i \(0.367892\pi\)
−0.994112 + 0.108358i \(0.965441\pi\)
\(110\) 0 0
\(111\) 93.2933i 0.840480i
\(112\) 0 0
\(113\) −22.5876 −0.199890 −0.0999451 0.994993i \(-0.531867\pi\)
−0.0999451 + 0.994993i \(0.531867\pi\)
\(114\) 0 0
\(115\) −47.5510 27.4536i −0.413487 0.238727i
\(116\) 0 0
\(117\) −43.0614 + 24.8615i −0.368046 + 0.212491i
\(118\) 0 0
\(119\) 44.2357 + 10.1690i 0.371729 + 0.0854538i
\(120\) 0 0
\(121\) −14.7831 25.6051i −0.122174 0.211612i
\(122\) 0 0
\(123\) 5.58397 9.67172i 0.0453981 0.0786319i
\(124\) 0 0
\(125\) 93.6832i 0.749465i
\(126\) 0 0
\(127\) −8.72204 −0.0686775 −0.0343387 0.999410i \(-0.510933\pi\)
−0.0343387 + 0.999410i \(0.510933\pi\)
\(128\) 0 0
\(129\) −20.7308 11.9690i −0.160704 0.0927826i
\(130\) 0 0
\(131\) 99.9492 57.7057i 0.762971 0.440501i −0.0673905 0.997727i \(-0.521467\pi\)
0.830361 + 0.557225i \(0.188134\pi\)
\(132\) 0 0
\(133\) −61.7064 + 66.2964i −0.463958 + 0.498469i
\(134\) 0 0
\(135\) −5.31205 9.20075i −0.0393485 0.0681537i
\(136\) 0 0
\(137\) 102.088 176.821i 0.745167 1.29067i −0.204949 0.978773i \(-0.565703\pi\)
0.950117 0.311895i \(-0.100964\pi\)
\(138\) 0 0
\(139\) 189.134i 1.36068i 0.732898 + 0.680338i \(0.238167\pi\)
−0.732898 + 0.680338i \(0.761833\pi\)
\(140\) 0 0
\(141\) 48.8223 0.346257
\(142\) 0 0
\(143\) −176.129 101.688i −1.23167 0.711105i
\(144\) 0 0
\(145\) 68.0674 39.2987i 0.469430 0.271026i
\(146\) 0 0
\(147\) −84.6525 + 6.07882i −0.575867 + 0.0413525i
\(148\) 0 0
\(149\) −107.003 185.335i −0.718143 1.24386i −0.961735 0.273983i \(-0.911659\pi\)
0.243591 0.969878i \(-0.421675\pi\)
\(150\) 0 0
\(151\) −131.942 + 228.530i −0.873787 + 1.51344i −0.0157369 + 0.999876i \(0.505009\pi\)
−0.858050 + 0.513567i \(0.828324\pi\)
\(152\) 0 0
\(153\) 19.4527i 0.127142i
\(154\) 0 0
\(155\) −15.6025 −0.100661
\(156\) 0 0
\(157\) −22.9344 13.2412i −0.146079 0.0843386i 0.425179 0.905109i \(-0.360211\pi\)
−0.571258 + 0.820771i \(0.693544\pi\)
\(158\) 0 0
\(159\) 103.234 59.6024i 0.649272 0.374858i
\(160\) 0 0
\(161\) −137.601 128.075i −0.854667 0.795495i
\(162\) 0 0
\(163\) 13.7906 + 23.8860i 0.0846047 + 0.146540i 0.905223 0.424937i \(-0.139704\pi\)
−0.820618 + 0.571477i \(0.806371\pi\)
\(164\) 0 0
\(165\) 21.7273 37.6327i 0.131680 0.228077i
\(166\) 0 0
\(167\) 113.557i 0.679980i 0.940429 + 0.339990i \(0.110424\pi\)
−0.940429 + 0.339990i \(0.889576\pi\)
\(168\) 0 0
\(169\) −105.708 −0.625494
\(170\) 0 0
\(171\) −33.6153 19.4078i −0.196581 0.113496i
\(172\) 0 0
\(173\) −22.0339 + 12.7213i −0.127364 + 0.0735334i −0.562328 0.826914i \(-0.690094\pi\)
0.434965 + 0.900448i \(0.356761\pi\)
\(174\) 0 0
\(175\) −32.6507 + 142.032i −0.186575 + 0.811614i
\(176\) 0 0
\(177\) −62.8802 108.912i −0.355256 0.615321i
\(178\) 0 0
\(179\) 67.9229 117.646i 0.379457 0.657239i −0.611526 0.791224i \(-0.709444\pi\)
0.990983 + 0.133985i \(0.0427774\pi\)
\(180\) 0 0
\(181\) 237.390i 1.31155i −0.754957 0.655774i \(-0.772342\pi\)
0.754957 0.655774i \(-0.227658\pi\)
\(182\) 0 0
\(183\) 42.9851 0.234891
\(184\) 0 0
\(185\) 95.3743 + 55.0644i 0.515537 + 0.297645i
\(186\) 0 0
\(187\) −68.9052 + 39.7824i −0.368477 + 0.212740i
\(188\) 0 0
\(189\) −10.6670 34.7738i −0.0564393 0.183988i
\(190\) 0 0
\(191\) −106.028 183.645i −0.555118 0.961492i −0.997894 0.0648604i \(-0.979340\pi\)
0.442776 0.896632i \(-0.353994\pi\)
\(192\) 0 0
\(193\) 1.03965 1.80072i 0.00538677 0.00933015i −0.863319 0.504658i \(-0.831619\pi\)
0.868706 + 0.495328i \(0.164952\pi\)
\(194\) 0 0
\(195\) 58.6958i 0.301004i
\(196\) 0 0
\(197\) −297.578 −1.51055 −0.755274 0.655409i \(-0.772496\pi\)
−0.755274 + 0.655409i \(0.772496\pi\)
\(198\) 0 0
\(199\) 220.767 + 127.460i 1.10938 + 0.640501i 0.938669 0.344820i \(-0.112060\pi\)
0.170711 + 0.985321i \(0.445393\pi\)
\(200\) 0 0
\(201\) 106.027 61.2144i 0.527495 0.304549i
\(202\) 0 0
\(203\) 257.257 78.9149i 1.26728 0.388743i
\(204\) 0 0
\(205\) 6.59164 + 11.4170i 0.0321543 + 0.0556929i
\(206\) 0 0
\(207\) 40.2819 69.7703i 0.194598 0.337054i
\(208\) 0 0
\(209\) 158.763i 0.759631i
\(210\) 0 0
\(211\) −188.235 −0.892110 −0.446055 0.895005i \(-0.647171\pi\)
−0.446055 + 0.895005i \(0.647171\pi\)
\(212\) 0 0
\(213\) −18.8247 10.8684i −0.0883788 0.0510255i
\(214\) 0 0
\(215\) 24.4719 14.1288i 0.113823 0.0657155i
\(216\) 0 0
\(217\) −52.0593 11.9675i −0.239904 0.0551497i
\(218\) 0 0
\(219\) −93.9800 162.778i −0.429132 0.743279i
\(220\) 0 0
\(221\) −53.7358 + 93.0731i −0.243148 + 0.421145i
\(222\) 0 0
\(223\) 91.4723i 0.410190i 0.978742 + 0.205095i \(0.0657503\pi\)
−0.978742 + 0.205095i \(0.934250\pi\)
\(224\) 0 0
\(225\) −62.4587 −0.277594
\(226\) 0 0
\(227\) 46.8480 + 27.0477i 0.206379 + 0.119153i 0.599627 0.800279i \(-0.295315\pi\)
−0.393249 + 0.919432i \(0.628649\pi\)
\(228\) 0 0
\(229\) −181.400 + 104.731i −0.792138 + 0.457341i −0.840715 0.541478i \(-0.817865\pi\)
0.0485765 + 0.998819i \(0.484532\pi\)
\(230\) 0 0
\(231\) 101.361 108.900i 0.438791 0.471430i
\(232\) 0 0
\(233\) −38.0063 65.8289i −0.163117 0.282527i 0.772868 0.634567i \(-0.218822\pi\)
−0.935985 + 0.352040i \(0.885488\pi\)
\(234\) 0 0
\(235\) −28.8163 + 49.9113i −0.122623 + 0.212388i
\(236\) 0 0
\(237\) 169.318i 0.714422i
\(238\) 0 0
\(239\) −142.401 −0.595820 −0.297910 0.954594i \(-0.596290\pi\)
−0.297910 + 0.954594i \(0.596290\pi\)
\(240\) 0 0
\(241\) −327.326 188.982i −1.35820 0.784156i −0.368817 0.929502i \(-0.620237\pi\)
−0.989381 + 0.145346i \(0.953570\pi\)
\(242\) 0 0
\(243\) 13.5000 7.79423i 0.0555556 0.0320750i
\(244\) 0 0
\(245\) 43.7499 90.1286i 0.178571 0.367872i
\(246\) 0 0
\(247\) −107.224 185.717i −0.434105 0.751891i
\(248\) 0 0
\(249\) −72.1628 + 124.990i −0.289810 + 0.501966i
\(250\) 0 0
\(251\) 76.3113i 0.304029i 0.988378 + 0.152015i \(0.0485761\pi\)
−0.988378 + 0.152015i \(0.951424\pi\)
\(252\) 0 0
\(253\) 329.520 1.30245
\(254\) 0 0
\(255\) −19.8866 11.4815i −0.0779865 0.0450255i
\(256\) 0 0
\(257\) −38.5195 + 22.2393i −0.149881 + 0.0865341i −0.573065 0.819510i \(-0.694246\pi\)
0.423184 + 0.906044i \(0.360912\pi\)
\(258\) 0 0
\(259\) 275.991 + 256.883i 1.06560 + 0.991825i
\(260\) 0 0
\(261\) 57.6619 + 99.8733i 0.220927 + 0.382656i
\(262\) 0 0
\(263\) −194.459 + 336.814i −0.739390 + 1.28066i 0.213381 + 0.976969i \(0.431552\pi\)
−0.952770 + 0.303691i \(0.901781\pi\)
\(264\) 0 0
\(265\) 140.716i 0.531004i
\(266\) 0 0
\(267\) −103.295 −0.386871
\(268\) 0 0
\(269\) −98.9666 57.1384i −0.367905 0.212410i 0.304638 0.952468i \(-0.401465\pi\)
−0.672543 + 0.740058i \(0.734798\pi\)
\(270\) 0 0
\(271\) 355.967 205.518i 1.31353 0.758367i 0.330851 0.943683i \(-0.392664\pi\)
0.982679 + 0.185316i \(0.0593308\pi\)
\(272\) 0 0
\(273\) 45.0212 195.845i 0.164913 0.717381i
\(274\) 0 0
\(275\) −127.734 221.241i −0.464486 0.804514i
\(276\) 0 0
\(277\) 45.3175 78.4922i 0.163601 0.283365i −0.772557 0.634946i \(-0.781022\pi\)
0.936158 + 0.351581i \(0.114356\pi\)
\(278\) 0 0
\(279\) 22.8930i 0.0820539i
\(280\) 0 0
\(281\) 67.3105 0.239539 0.119770 0.992802i \(-0.461784\pi\)
0.119770 + 0.992802i \(0.461784\pi\)
\(282\) 0 0
\(283\) 223.431 + 128.998i 0.789508 + 0.455823i 0.839789 0.542912i \(-0.182678\pi\)
−0.0502810 + 0.998735i \(0.516012\pi\)
\(284\) 0 0
\(285\) 39.6814 22.9101i 0.139233 0.0803862i
\(286\) 0 0
\(287\) 13.2365 + 43.1502i 0.0461203 + 0.150349i
\(288\) 0 0
\(289\) −123.477 213.869i −0.427258 0.740032i
\(290\) 0 0
\(291\) −127.918 + 221.560i −0.439580 + 0.761375i
\(292\) 0 0
\(293\) 440.320i 1.50280i −0.659848 0.751399i \(-0.729379\pi\)
0.659848 0.751399i \(-0.270621\pi\)
\(294\) 0 0
\(295\) 148.455 0.503237
\(296\) 0 0
\(297\) 55.2174 + 31.8798i 0.185917 + 0.107339i
\(298\) 0 0
\(299\) 385.465 222.548i 1.28918 0.744309i
\(300\) 0 0
\(301\) 92.4901 28.3718i 0.307276 0.0942585i
\(302\) 0 0
\(303\) −89.0062 154.163i −0.293750 0.508790i
\(304\) 0 0
\(305\) −25.3710 + 43.9439i −0.0831836 + 0.144078i
\(306\) 0 0
\(307\) 465.462i 1.51616i 0.652160 + 0.758082i \(0.273863\pi\)
−0.652160 + 0.758082i \(0.726137\pi\)
\(308\) 0 0
\(309\) −196.849 −0.637051
\(310\) 0 0
\(311\) −222.189 128.281i −0.714434 0.412478i 0.0982668 0.995160i \(-0.468670\pi\)
−0.812701 + 0.582682i \(0.802003\pi\)
\(312\) 0 0
\(313\) 85.1309 49.1504i 0.271984 0.157030i −0.357805 0.933796i \(-0.616475\pi\)
0.629789 + 0.776766i \(0.283141\pi\)
\(314\) 0 0
\(315\) 41.8454 + 9.61950i 0.132842 + 0.0305381i
\(316\) 0 0
\(317\) 145.846 + 252.613i 0.460083 + 0.796887i 0.998965 0.0454947i \(-0.0144864\pi\)
−0.538882 + 0.842381i \(0.681153\pi\)
\(318\) 0 0
\(319\) −235.848 + 408.500i −0.739334 + 1.28056i
\(320\) 0 0
\(321\) 336.709i 1.04894i
\(322\) 0 0
\(323\) −83.8963 −0.259741
\(324\) 0 0
\(325\) −298.840 172.535i −0.919507 0.530878i
\(326\) 0 0
\(327\) 193.223 111.557i 0.590896 0.341154i
\(328\) 0 0
\(329\) −134.432 + 144.432i −0.408608 + 0.439002i
\(330\) 0 0
\(331\) −143.715 248.922i −0.434184 0.752029i 0.563044 0.826427i \(-0.309630\pi\)
−0.997229 + 0.0743973i \(0.976297\pi\)
\(332\) 0 0
\(333\) −80.7944 + 139.940i −0.242626 + 0.420240i
\(334\) 0 0
\(335\) 144.522i 0.431409i
\(336\) 0 0
\(337\) 294.785 0.874731 0.437366 0.899284i \(-0.355912\pi\)
0.437366 + 0.899284i \(0.355912\pi\)
\(338\) 0 0
\(339\) 33.8814 + 19.5614i 0.0999451 + 0.0577033i
\(340\) 0 0
\(341\) 81.0917 46.8183i 0.237806 0.137297i
\(342\) 0 0
\(343\) 215.107 267.166i 0.627135 0.778911i
\(344\) 0 0
\(345\) 47.5510 + 82.3608i 0.137829 + 0.238727i
\(346\) 0 0
\(347\) 36.6378 63.4585i 0.105584 0.182878i −0.808392 0.588644i \(-0.799662\pi\)
0.913977 + 0.405766i \(0.132995\pi\)
\(348\) 0 0
\(349\) 101.957i 0.292140i 0.989274 + 0.146070i \(0.0466624\pi\)
−0.989274 + 0.146070i \(0.953338\pi\)
\(350\) 0 0
\(351\) 86.1228 0.245364
\(352\) 0 0
\(353\) −65.5939 37.8706i −0.185818 0.107282i 0.404205 0.914668i \(-0.367548\pi\)
−0.590023 + 0.807386i \(0.700882\pi\)
\(354\) 0 0
\(355\) 22.2217 12.8297i 0.0625964 0.0361400i
\(356\) 0 0
\(357\) −57.5470 53.5628i −0.161196 0.150036i
\(358\) 0 0
\(359\) 62.3384 + 107.973i 0.173645 + 0.300761i 0.939691 0.342024i \(-0.111112\pi\)
−0.766047 + 0.642785i \(0.777779\pi\)
\(360\) 0 0
\(361\) −96.7970 + 167.657i −0.268136 + 0.464425i
\(362\) 0 0
\(363\) 51.2102i 0.141075i
\(364\) 0 0
\(365\) 221.879 0.607887
\(366\) 0 0
\(367\) −422.961 244.196i −1.15248 0.665385i −0.202991 0.979181i \(-0.565066\pi\)
−0.949491 + 0.313795i \(0.898399\pi\)
\(368\) 0 0
\(369\) −16.7519 + 9.67172i −0.0453981 + 0.0262106i
\(370\) 0 0
\(371\) −107.933 + 469.514i −0.290924 + 1.26554i
\(372\) 0 0
\(373\) −248.879 431.071i −0.667236 1.15569i −0.978674 0.205421i \(-0.934144\pi\)
0.311438 0.950267i \(-0.399190\pi\)
\(374\) 0 0
\(375\) 81.1320 140.525i 0.216352 0.374733i
\(376\) 0 0
\(377\) 637.138i 1.69002i
\(378\) 0 0
\(379\) −699.265 −1.84503 −0.922514 0.385964i \(-0.873869\pi\)
−0.922514 + 0.385964i \(0.873869\pi\)
\(380\) 0 0
\(381\) 13.0831 + 7.55351i 0.0343387 + 0.0198255i
\(382\) 0 0
\(383\) 572.153 330.333i 1.49387 0.862487i 0.493896 0.869521i \(-0.335572\pi\)
0.999975 + 0.00703401i \(0.00223901\pi\)
\(384\) 0 0
\(385\) 51.5034 + 167.897i 0.133775 + 0.436097i
\(386\) 0 0
\(387\) 20.7308 + 35.9069i 0.0535681 + 0.0927826i
\(388\) 0 0
\(389\) 207.214 358.906i 0.532685 0.922637i −0.466587 0.884475i \(-0.654517\pi\)
0.999272 0.0381615i \(-0.0121501\pi\)
\(390\) 0 0
\(391\) 174.131i 0.445348i
\(392\) 0 0
\(393\) −199.898 −0.508647
\(394\) 0 0
\(395\) 173.095 + 99.9363i 0.438214 + 0.253003i
\(396\) 0 0
\(397\) 11.7266 6.77035i 0.0295380 0.0170538i −0.485158 0.874426i \(-0.661238\pi\)
0.514696 + 0.857373i \(0.327905\pi\)
\(398\) 0 0
\(399\) 149.974 46.0052i 0.375875 0.115301i
\(400\) 0 0
\(401\) 203.149 + 351.864i 0.506605 + 0.877466i 0.999971 + 0.00764415i \(0.00243323\pi\)
−0.493365 + 0.869822i \(0.664233\pi\)
\(402\) 0 0
\(403\) 63.2395 109.534i 0.156922 0.271797i
\(404\) 0 0
\(405\) 18.4015i 0.0454358i
\(406\) 0 0
\(407\) −660.927 −1.62390
\(408\) 0 0
\(409\) 459.724 + 265.422i 1.12402 + 0.648953i 0.942424 0.334420i \(-0.108540\pi\)
0.181596 + 0.983373i \(0.441874\pi\)
\(410\) 0 0
\(411\) −306.264 + 176.821i −0.745167 + 0.430223i
\(412\) 0 0
\(413\) 495.335 + 113.869i 1.19936 + 0.275711i
\(414\) 0 0
\(415\) −85.1850 147.545i −0.205265 0.355530i
\(416\) 0 0
\(417\) 163.795 283.701i 0.392793 0.680338i
\(418\) 0 0
\(419\) 781.472i 1.86509i −0.361055 0.932545i \(-0.617583\pi\)
0.361055 0.932545i \(-0.382417\pi\)
\(420\) 0 0
\(421\) 620.648 1.47422 0.737112 0.675771i \(-0.236189\pi\)
0.737112 + 0.675771i \(0.236189\pi\)
\(422\) 0 0
\(423\) −73.2334 42.2813i −0.173129 0.0999559i
\(424\) 0 0
\(425\) −116.912 + 67.4993i −0.275088 + 0.158822i
\(426\) 0 0
\(427\) −118.359 + 127.163i −0.277188 + 0.297806i
\(428\) 0 0
\(429\) 176.129 + 305.064i 0.410557 + 0.711105i
\(430\) 0 0
\(431\) −399.782 + 692.443i −0.927569 + 1.60660i −0.140193 + 0.990124i \(0.544772\pi\)
−0.787376 + 0.616473i \(0.788561\pi\)
\(432\) 0 0
\(433\) 299.556i 0.691814i 0.938269 + 0.345907i \(0.112429\pi\)
−0.938269 + 0.345907i \(0.887571\pi\)
\(434\) 0 0
\(435\) −136.135 −0.312953
\(436\) 0 0
\(437\) 300.909 + 173.730i 0.688578 + 0.397551i
\(438\) 0 0
\(439\) 208.614 120.444i 0.475204 0.274359i −0.243212 0.969973i \(-0.578201\pi\)
0.718416 + 0.695614i \(0.244868\pi\)
\(440\) 0 0
\(441\) 132.243 + 64.1930i 0.299871 + 0.145562i
\(442\) 0 0
\(443\) −67.6910 117.244i −0.152801 0.264660i 0.779455 0.626458i \(-0.215496\pi\)
−0.932256 + 0.361799i \(0.882163\pi\)
\(444\) 0 0
\(445\) 60.9673 105.599i 0.137005 0.237300i
\(446\) 0 0
\(447\) 370.671i 0.829241i
\(448\) 0 0
\(449\) −865.136 −1.92681 −0.963404 0.268055i \(-0.913619\pi\)
−0.963404 + 0.268055i \(0.913619\pi\)
\(450\) 0 0
\(451\) −68.5184 39.5591i −0.151925 0.0877142i
\(452\) 0 0
\(453\) 395.825 228.530i 0.873787 0.504481i
\(454\) 0 0
\(455\) 173.640 + 161.619i 0.381627 + 0.355206i
\(456\) 0 0
\(457\) 375.026 + 649.564i 0.820626 + 1.42137i 0.905217 + 0.424950i \(0.139708\pi\)
−0.0845906 + 0.996416i \(0.526958\pi\)
\(458\) 0 0
\(459\) 16.8465 29.1790i 0.0367026 0.0635708i
\(460\) 0 0
\(461\) 493.466i 1.07042i 0.844717 + 0.535212i \(0.179768\pi\)
−0.844717 + 0.535212i \(0.820232\pi\)
\(462\) 0 0
\(463\) 279.584 0.603853 0.301927 0.953331i \(-0.402370\pi\)
0.301927 + 0.953331i \(0.402370\pi\)
\(464\) 0 0
\(465\) 23.4037 + 13.5121i 0.0503305 + 0.0290583i
\(466\) 0 0
\(467\) 712.016 411.083i 1.52466 0.880263i 0.525086 0.851049i \(-0.324033\pi\)
0.999573 0.0292136i \(-0.00930030\pi\)
\(468\) 0 0
\(469\) −110.852 + 482.213i −0.236358 + 1.02817i
\(470\) 0 0
\(471\) 22.9344 + 39.7235i 0.0486929 + 0.0843386i
\(472\) 0 0
\(473\) −84.7929 + 146.866i −0.179266 + 0.310498i
\(474\) 0 0
\(475\) 269.375i 0.567105i
\(476\) 0 0
\(477\) −206.469 −0.432848
\(478\) 0 0
\(479\) −491.761 283.918i −1.02664 0.592732i −0.110621 0.993863i \(-0.535284\pi\)
−0.916021 + 0.401131i \(0.868617\pi\)
\(480\) 0 0
\(481\) −773.137 + 446.371i −1.60735 + 0.928006i
\(482\) 0 0
\(483\) 95.4862 + 311.278i 0.197694 + 0.644469i
\(484\) 0 0
\(485\) −151.001 261.542i −0.311343 0.539262i
\(486\) 0 0
\(487\) −14.7365 + 25.5243i −0.0302597 + 0.0524113i −0.880759 0.473565i \(-0.842967\pi\)
0.850499 + 0.525977i \(0.176300\pi\)
\(488\) 0 0
\(489\) 47.7719i 0.0976931i
\(490\) 0 0
\(491\) 139.613 0.284344 0.142172 0.989842i \(-0.454591\pi\)
0.142172 + 0.989842i \(0.454591\pi\)
\(492\) 0 0
\(493\) 215.867 + 124.631i 0.437864 + 0.252801i
\(494\) 0 0
\(495\) −65.1818 + 37.6327i −0.131680 + 0.0760257i
\(496\) 0 0
\(497\) 83.9859 25.7631i 0.168986 0.0518372i
\(498\) 0 0
\(499\) −300.617 520.684i −0.602439 1.04346i −0.992451 0.122645i \(-0.960862\pi\)
0.390011 0.920810i \(-0.372471\pi\)
\(500\) 0 0
\(501\) 98.3429 170.335i 0.196293 0.339990i
\(502\) 0 0
\(503\) 630.250i 1.25298i 0.779429 + 0.626491i \(0.215509\pi\)
−0.779429 + 0.626491i \(0.784491\pi\)
\(504\) 0 0
\(505\) 210.136 0.416111
\(506\) 0 0
\(507\) 158.563 + 91.5462i 0.312747 + 0.180565i
\(508\) 0 0
\(509\) 30.2755 17.4796i 0.0594803 0.0343410i −0.469965 0.882685i \(-0.655733\pi\)
0.529445 + 0.848344i \(0.322400\pi\)
\(510\) 0 0
\(511\) 740.322 + 170.187i 1.44877 + 0.333046i
\(512\) 0 0
\(513\) 33.6153 + 58.2234i 0.0655269 + 0.113496i
\(514\) 0 0
\(515\) 116.186 201.239i 0.225603 0.390756i
\(516\) 0 0
\(517\) 345.877i 0.669007i
\(518\) 0 0
\(519\) 44.0678 0.0849090
\(520\) 0 0
\(521\) 432.482 + 249.693i 0.830099 + 0.479258i 0.853887 0.520459i \(-0.174239\pi\)
−0.0237873 + 0.999717i \(0.507572\pi\)
\(522\) 0 0
\(523\) 659.230 380.606i 1.26048 0.727737i 0.287310 0.957838i \(-0.407239\pi\)
0.973167 + 0.230101i \(0.0739056\pi\)
\(524\) 0 0
\(525\) 171.980 184.772i 0.327580 0.351947i
\(526\) 0 0
\(527\) −24.7406 42.8519i −0.0469461 0.0813130i
\(528\) 0 0
\(529\) −96.0845 + 166.423i −0.181634 + 0.314600i
\(530\) 0 0
\(531\) 217.824i 0.410214i
\(532\) 0 0
\(533\) −106.868 −0.200503
\(534\) 0 0
\(535\) −344.220 198.735i −0.643401 0.371468i
\(536\) 0 0
\(537\) −203.769 + 117.646i −0.379457 + 0.219080i
\(538\) 0 0
\(539\) 43.0648 + 599.712i 0.0798976 + 1.11264i
\(540\) 0 0
\(541\) 176.568 + 305.825i 0.326373 + 0.565295i 0.981789 0.189973i \(-0.0608400\pi\)
−0.655416 + 0.755268i \(0.727507\pi\)
\(542\) 0 0
\(543\) −205.586 + 356.085i −0.378611 + 0.655774i
\(544\) 0 0
\(545\) 263.377i 0.483261i
\(546\) 0 0
\(547\) −71.1385 −0.130052 −0.0650260 0.997884i \(-0.520713\pi\)
−0.0650260 + 0.997884i \(0.520713\pi\)
\(548\) 0 0
\(549\) −64.4776 37.2262i −0.117446 0.0678072i
\(550\) 0 0
\(551\) −430.739 + 248.687i −0.781740 + 0.451338i
\(552\) 0 0
\(553\) 500.895 + 466.216i 0.905778 + 0.843067i
\(554\) 0 0
\(555\) −95.3743 165.193i −0.171846 0.297645i
\(556\) 0 0
\(557\) 207.721 359.783i 0.372928 0.645930i −0.617087 0.786895i \(-0.711687\pi\)
0.990015 + 0.140965i \(0.0450206\pi\)
\(558\) 0 0
\(559\) 229.067i 0.409779i
\(560\) 0 0
\(561\) 137.810 0.245651
\(562\) 0 0
\(563\) 509.087 + 293.921i 0.904239 + 0.522063i 0.878573 0.477608i \(-0.158496\pi\)
0.0256661 + 0.999671i \(0.491829\pi\)
\(564\) 0 0
\(565\) −39.9955 + 23.0914i −0.0707885 + 0.0408698i
\(566\) 0 0
\(567\) −14.1144 + 61.3986i −0.0248932 + 0.108287i
\(568\) 0 0
\(569\) 244.661 + 423.765i 0.429984 + 0.744753i 0.996871 0.0790417i \(-0.0251860\pi\)
−0.566888 + 0.823795i \(0.691853\pi\)
\(570\) 0 0
\(571\) −176.937 + 306.464i −0.309872 + 0.536714i −0.978334 0.207032i \(-0.933620\pi\)
0.668462 + 0.743746i \(0.266953\pi\)
\(572\) 0 0
\(573\) 367.290i 0.640995i
\(574\) 0 0
\(575\) 559.101 0.972350
\(576\) 0 0
\(577\) −551.570 318.449i −0.955927 0.551905i −0.0610097 0.998137i \(-0.519432\pi\)
−0.894917 + 0.446233i \(0.852765\pi\)
\(578\) 0 0
\(579\) −3.11894 + 1.80072i −0.00538677 + 0.00311005i
\(580\) 0 0
\(581\) −171.058 557.638i −0.294420 0.959790i
\(582\) 0 0
\(583\) −422.247 731.353i −0.724266 1.25447i
\(584\) 0 0
\(585\) −50.8321 + 88.0437i −0.0868924 + 0.150502i
\(586\) 0 0
\(587\) 831.051i 1.41576i 0.706333 + 0.707880i \(0.250348\pi\)
−0.706333 + 0.707880i \(0.749652\pi\)
\(588\) 0 0
\(589\) 98.7342 0.167630
\(590\) 0 0
\(591\) 446.367 + 257.710i 0.755274 + 0.436058i
\(592\) 0 0
\(593\) 996.763 575.481i 1.68088 0.970457i 0.719805 0.694177i \(-0.244231\pi\)
0.961077 0.276281i \(-0.0891019\pi\)
\(594\) 0 0
\(595\) 88.7234 27.2163i 0.149115 0.0457417i
\(596\) 0 0
\(597\) −220.767 382.379i −0.369793 0.640501i
\(598\) 0 0
\(599\) −244.474 + 423.442i −0.408138 + 0.706915i −0.994681 0.103003i \(-0.967155\pi\)
0.586543 + 0.809918i \(0.300488\pi\)
\(600\) 0 0
\(601\) 995.313i 1.65609i −0.560659 0.828047i \(-0.689452\pi\)
0.560659 0.828047i \(-0.310548\pi\)
\(602\) 0 0
\(603\) −212.053 −0.351663
\(604\) 0 0
\(605\) −52.3524 30.2257i −0.0865329 0.0499598i
\(606\) 0 0
\(607\) 452.616 261.318i 0.745660 0.430507i −0.0784634 0.996917i \(-0.525001\pi\)
0.824124 + 0.566410i \(0.191668\pi\)
\(608\) 0 0
\(609\) −454.228 104.419i −0.745859 0.171460i
\(610\) 0 0
\(611\) −233.595 404.598i −0.382316 0.662191i
\(612\) 0 0
\(613\) 137.094 237.454i 0.223645 0.387364i −0.732267 0.681018i \(-0.761538\pi\)
0.955912 + 0.293653i \(0.0948711\pi\)
\(614\) 0 0
\(615\) 22.8341i 0.0371286i
\(616\) 0 0
\(617\) −101.665 −0.164773 −0.0823867 0.996600i \(-0.526254\pi\)
−0.0823867 + 0.996600i \(0.526254\pi\)
\(618\) 0 0
\(619\) −179.409 103.582i −0.289837 0.167337i 0.348031 0.937483i \(-0.386850\pi\)
−0.637868 + 0.770145i \(0.720184\pi\)
\(620\) 0 0
\(621\) −120.846 + 69.7703i −0.194598 + 0.112351i
\(622\) 0 0
\(623\) 284.421 305.577i 0.456534 0.490493i
\(624\) 0 0
\(625\) −164.472 284.874i −0.263155 0.455798i
\(626\) 0 0
\(627\) −137.493 + 238.144i −0.219287 + 0.379816i
\(628\) 0 0
\(629\) 349.259i 0.555261i
\(630\) 0 0
\(631\) 500.062 0.792492 0.396246 0.918144i \(-0.370313\pi\)
0.396246 + 0.918144i \(0.370313\pi\)
\(632\) 0 0
\(633\) 282.353 + 163.017i 0.446055 + 0.257530i
\(634\) 0 0
\(635\) −15.4440 + 8.91659i −0.0243212 + 0.0140419i
\(636\) 0 0
\(637\) 455.404 + 672.445i 0.714921 + 1.05564i
\(638\) 0 0
\(639\) 18.8247 + 32.6053i 0.0294596 + 0.0510255i
\(640\) 0 0
\(641\) 262.210 454.162i 0.409065 0.708521i −0.585721 0.810513i \(-0.699188\pi\)
0.994785 + 0.101992i \(0.0325218\pi\)
\(642\) 0 0
\(643\) 879.365i 1.36760i −0.729671 0.683798i \(-0.760327\pi\)
0.729671 0.683798i \(-0.239673\pi\)
\(644\) 0 0
\(645\) −48.9437 −0.0758817
\(646\) 0 0
\(647\) −79.5097 45.9049i −0.122890 0.0709504i 0.437295 0.899318i \(-0.355937\pi\)
−0.560185 + 0.828368i \(0.689270\pi\)
\(648\) 0 0
\(649\) −771.575 + 445.469i −1.18887 + 0.686393i
\(650\) 0 0
\(651\) 67.7247 + 63.0359i 0.104032 + 0.0968293i
\(652\) 0 0
\(653\) −126.457 219.031i −0.193656 0.335422i 0.752803 0.658246i \(-0.228701\pi\)
−0.946459 + 0.322824i \(0.895368\pi\)
\(654\) 0 0
\(655\) 117.986 204.357i 0.180131 0.311996i
\(656\) 0 0
\(657\) 325.556i 0.495519i
\(658\) 0 0
\(659\) −575.427 −0.873182 −0.436591 0.899660i \(-0.643814\pi\)
−0.436591 + 0.899660i \(0.643814\pi\)
\(660\) 0 0
\(661\) −791.756 457.120i −1.19782 0.691559i −0.237748 0.971327i \(-0.576409\pi\)
−0.960068 + 0.279768i \(0.909742\pi\)
\(662\) 0 0
\(663\) 161.207 93.0731i 0.243148 0.140382i
\(664\) 0 0
\(665\) −41.4874 + 180.473i −0.0623871 + 0.271388i
\(666\) 0 0
\(667\) −516.162 894.019i −0.773856 1.34036i
\(668\) 0 0
\(669\) 79.2173 137.208i 0.118412 0.205095i
\(670\) 0 0
\(671\) 304.524i 0.453835i
\(672\) 0 0
\(673\) 80.8779 0.120175 0.0600876 0.998193i \(-0.480862\pi\)
0.0600876 + 0.998193i \(0.480862\pi\)
\(674\) 0 0
\(675\) 93.6881 + 54.0908i 0.138797 + 0.0801346i
\(676\) 0 0
\(677\) −773.940 + 446.835i −1.14319 + 0.660022i −0.947219 0.320588i \(-0.896120\pi\)
−0.195972 + 0.980609i \(0.562786\pi\)
\(678\) 0 0
\(679\) −303.223 988.485i −0.446572 1.45580i
\(680\) 0 0
\(681\) −46.8480 81.1431i −0.0687929 0.119153i
\(682\) 0 0
\(683\) 1.31596 2.27931i 0.00192673 0.00333720i −0.865060 0.501668i \(-0.832720\pi\)
0.866987 + 0.498330i \(0.166053\pi\)
\(684\) 0 0
\(685\) 417.460i 0.609431i
\(686\) 0 0
\(687\) 362.799 0.528092
\(688\) 0 0
\(689\) −987.869 570.347i −1.43377 0.827789i
\(690\) 0 0
\(691\) −645.194 + 372.503i −0.933711 + 0.539078i −0.887983 0.459876i \(-0.847894\pi\)
−0.0457278 + 0.998954i \(0.514561\pi\)
\(692\) 0 0
\(693\) −246.351 + 75.5695i −0.355485 + 0.109047i
\(694\) 0 0
\(695\) 193.353 + 334.897i 0.278205 + 0.481866i
\(696\) 0 0
\(697\) −20.9045 + 36.2077i −0.0299921 + 0.0519479i
\(698\) 0 0
\(699\) 131.658i 0.188352i
\(700\) 0 0
\(701\) 361.857 0.516202 0.258101 0.966118i \(-0.416903\pi\)
0.258101 + 0.966118i \(0.416903\pi\)
\(702\) 0 0
\(703\) −603.540 348.454i −0.858520 0.495667i
\(704\) 0 0
\(705\) 86.4489 49.9113i 0.122623 0.0707962i
\(706\) 0 0
\(707\) 701.141 + 161.180i 0.991713 + 0.227977i
\(708\) 0 0
\(709\) −93.3275 161.648i −0.131633 0.227994i 0.792673 0.609646i \(-0.208689\pi\)
−0.924306 + 0.381652i \(0.875355\pi\)
\(710\) 0 0
\(711\) −146.634 + 253.977i −0.206236 + 0.357211i
\(712\) 0 0
\(713\) 204.928i 0.287416i
\(714\) 0 0
\(715\) −415.825 −0.581573
\(716\) 0 0
\(717\) 213.601 + 123.323i 0.297910 + 0.171998i
\(718\) 0 0
\(719\) −390.952 + 225.716i −0.543744 + 0.313931i −0.746595 0.665279i \(-0.768313\pi\)
0.202851 + 0.979210i \(0.434979\pi\)
\(720\) 0 0
\(721\) 542.022 582.339i 0.751764 0.807683i
\(722\) 0 0
\(723\) 327.326 + 566.945i 0.452733 + 0.784156i
\(724\) 0 0
\(725\) −400.165 + 693.107i −0.551952 + 0.956009i
\(726\) 0 0
\(727\) 245.173i 0.337239i −0.985681 0.168620i \(-0.946069\pi\)
0.985681 0.168620i \(-0.0539309\pi\)
\(728\) 0 0
\(729\) −27.0000 −0.0370370
\(730\) 0 0
\(731\) 77.6093 + 44.8078i 0.106169 + 0.0612965i
\(732\) 0 0
\(733\) 125.959 72.7222i 0.171840 0.0992117i −0.411613 0.911359i \(-0.635035\pi\)
0.583453 + 0.812147i \(0.301701\pi\)
\(734\) 0 0
\(735\) −143.678 + 97.3044i −0.195481 + 0.132387i
\(736\) 0 0
\(737\) −433.668 751.134i −0.588423 1.01918i
\(738\) 0 0
\(739\) 239.497 414.822i 0.324083 0.561328i −0.657243 0.753678i \(-0.728278\pi\)
0.981326 + 0.192350i \(0.0616109\pi\)
\(740\) 0 0
\(741\) 371.434i 0.501261i
\(742\) 0 0
\(743\) 717.987 0.966335 0.483167 0.875528i \(-0.339486\pi\)
0.483167 + 0.875528i \(0.339486\pi\)
\(744\) 0 0
\(745\) −378.938 218.780i −0.508642 0.293665i
\(746\) 0 0
\(747\) 216.488 124.990i 0.289810 0.167322i
\(748\) 0 0
\(749\) −996.091 927.127i −1.32989 1.23782i
\(750\) 0 0
\(751\) −96.6403 167.386i −0.128682 0.222884i 0.794484 0.607285i \(-0.207741\pi\)
−0.923166 + 0.384401i \(0.874408\pi\)
\(752\) 0 0
\(753\) 66.0875 114.467i 0.0877656 0.152015i
\(754\) 0 0
\(755\) 539.539i 0.714621i
\(756\) 0 0
\(757\) 220.503 0.291285 0.145643 0.989337i \(-0.453475\pi\)
0.145643 + 0.989337i \(0.453475\pi\)
\(758\) 0 0
\(759\) −494.281 285.373i −0.651226 0.375986i
\(760\) 0 0
\(761\) 1034.04 597.004i 1.35879 0.784500i 0.369332 0.929298i \(-0.379587\pi\)
0.989461 + 0.144798i \(0.0462532\pi\)
\(762\) 0 0
\(763\) −202.017 + 878.787i −0.264767 + 1.15175i
\(764\) 0 0
\(765\) 19.8866 + 34.4445i 0.0259955 + 0.0450255i
\(766\) 0 0
\(767\) −601.713 + 1042.20i −0.784502 + 1.35880i
\(768\) 0 0
\(769\) 1394.14i 1.81293i −0.422279 0.906466i \(-0.638770\pi\)
0.422279 0.906466i \(-0.361230\pi\)
\(770\) 0 0
\(771\) 77.0390 0.0999209
\(772\) 0 0
\(773\) −5.10280 2.94610i −0.00660129 0.00381126i 0.496696 0.867925i \(-0.334546\pi\)
−0.503297 + 0.864113i \(0.667880\pi\)
\(774\) 0 0
\(775\) 137.589 79.4372i 0.177535 0.102500i
\(776\) 0 0
\(777\) −191.519 624.339i −0.246485 0.803525i
\(778\) 0 0
\(779\) −41.7127 72.2485i −0.0535464 0.0927451i
\(780\) 0 0
\(781\) −76.9964 + 133.362i −0.0985869 + 0.170757i
\(782\) 0 0
\(783\) 199.747i 0.255104i
\(784\) 0 0
\(785\) −54.1460 −0.0689758
\(786\) 0 0
\(787\) 1231.26 + 710.870i 1.56450 + 0.903265i 0.996792 + 0.0800358i \(0.0255035\pi\)
0.567709 + 0.823229i \(0.307830\pi\)
\(788\) 0 0
\(789\) 583.378 336.814i 0.739390 0.426887i
\(790\) 0 0
\(791\) −151.161 + 46.3694i −0.191101 + 0.0586212i
\(792\) 0 0
\(793\) −205.666 356.225i −0.259352 0.449211i
\(794\) 0 0
\(795\) 121.864 211.074i 0.153288 0.265502i
\(796\) 0 0
\(797\) 671.028i 0.841942i 0.907074 + 0.420971i \(0.138311\pi\)
−0.907074 + 0.420971i \(0.861689\pi\)
\(798\) 0 0
\(799\) −182.774 −0.228754
\(800\) 0 0
\(801\) 154.942 + 89.4557i 0.193435 + 0.111680i
\(802\) 0 0
\(803\) −1153.19 + 665.792i −1.43610 + 0.829131i
\(804\) 0 0
\(805\) −374.580 86.1093i −0.465317 0.106968i
\(806\) 0 0
\(807\) 98.9666 + 171.415i 0.122635 + 0.212410i
\(808\) 0 0
\(809\) −348.851 + 604.228i −0.431213 + 0.746882i −0.996978 0.0776841i \(-0.975247\pi\)
0.565765 + 0.824566i \(0.308581\pi\)
\(810\) 0 0
\(811\) 1045.25i 1.28884i −0.764671 0.644421i \(-0.777099\pi\)
0.764671 0.644421i \(-0.222901\pi\)
\(812\) 0 0
\(813\) −711.934 −0.875687
\(814\) 0 0
\(815\) 48.8375 + 28.1963i 0.0599233 + 0.0345967i
\(816\) 0 0
\(817\) −154.861 + 89.4089i −0.189548 + 0.109436i
\(818\) 0 0
\(819\) −237.139 + 254.778i −0.289546 + 0.311084i
\(820\) 0 0
\(821\) 194.315 + 336.563i 0.236680 + 0.409942i 0.959760 0.280823i \(-0.0906072\pi\)
−0.723079 + 0.690765i \(0.757274\pi\)
\(822\) 0 0
\(823\) −127.219 + 220.351i −0.154580 + 0.267741i −0.932906 0.360120i \(-0.882736\pi\)
0.778326 + 0.627860i \(0.216069\pi\)
\(824\) 0 0
\(825\) 442.482i 0.536342i
\(826\) 0 0
\(827\) −1009.61 −1.22081 −0.610406 0.792088i \(-0.708994\pi\)
−0.610406 + 0.792088i \(0.708994\pi\)
\(828\) 0 0
\(829\) −692.786 399.980i −0.835689 0.482485i 0.0201076 0.999798i \(-0.493599\pi\)
−0.855797 + 0.517313i \(0.826932\pi\)
\(830\) 0 0
\(831\) −135.952 + 78.4922i −0.163601 + 0.0944551i
\(832\) 0 0
\(833\) 316.911 22.7571i 0.380445 0.0273194i
\(834\) 0 0
\(835\) 116.090 + 201.073i 0.139029 + 0.240806i
\(836\) 0 0
\(837\) −19.8260 + 34.3396i −0.0236869 + 0.0410270i
\(838\) 0 0
\(839\) 557.928i 0.664992i 0.943105 + 0.332496i \(0.107891\pi\)
−0.943105 + 0.332496i \(0.892109\pi\)
\(840\) 0 0
\(841\) 636.731 0.757112
\(842\) 0 0
\(843\) −100.966 58.2926i −0.119770 0.0691490i
\(844\) 0 0
\(845\) −187.176 + 108.066i −0.221510 + 0.127889i
\(846\) 0 0
\(847\) −151.496 141.007i −0.178861 0.166478i
\(848\) 0 0
\(849\) −223.431 386.994i −0.263169 0.455823i
\(850\) 0 0
\(851\) 723.233 1252.68i 0.849863 1.47201i
\(852\) 0 0
\(853\) 1050.40i 1.23142i −0.787974 0.615709i \(-0.788870\pi\)
0.787974 0.615709i \(-0.211130\pi\)
\(854\) 0 0
\(855\) −79.3628 −0.0928220
\(856\) 0 0
\(857\) −832.914 480.883i −0.971895 0.561124i −0.0720816 0.997399i \(-0.522964\pi\)
−0.899813 + 0.436275i \(0.856298\pi\)
\(858\) 0 0
\(859\) 1398.37 807.348i 1.62790 0.939870i 0.643185 0.765711i \(-0.277613\pi\)
0.984718 0.174159i \(-0.0557207\pi\)
\(860\) 0 0
\(861\) 17.5143 76.1884i 0.0203419 0.0884883i
\(862\) 0 0
\(863\) −589.299 1020.70i −0.682849 1.18273i −0.974108 0.226085i \(-0.927407\pi\)
0.291259 0.956644i \(-0.405926\pi\)
\(864\) 0 0
\(865\) −26.0100 + 45.0507i −0.0300694 + 0.0520818i
\(866\) 0 0
\(867\) 427.738i 0.493355i
\(868\) 0 0
\(869\) −1199.52 −1.38034
\(870\) 0 0
\(871\) −1014.59 585.773i −1.16485 0.672529i
\(872\) 0 0
\(873\) 383.753 221.560i 0.439580 0.253792i
\(874\) 0 0
\(875\) 192.319 + 626.948i 0.219794 + 0.716512i
\(876\) 0 0
\(877\) 266.040 + 460.794i 0.303352 + 0.525421i 0.976893 0.213729i \(-0.0685609\pi\)
−0.673541 + 0.739150i \(0.735228\pi\)
\(878\) 0 0
\(879\) −381.328 + 660.480i −0.433820 + 0.751399i
\(880\) 0 0
\(881\) 1103.22i 1.25224i −0.779729 0.626118i \(-0.784643\pi\)
0.779729 0.626118i \(-0.215357\pi\)
\(882\) 0 0
\(883\) −213.506 −0.241796 −0.120898 0.992665i \(-0.538577\pi\)
−0.120898 + 0.992665i \(0.538577\pi\)
\(884\) 0 0
\(885\) −222.682 128.566i −0.251618 0.145272i
\(886\) 0 0
\(887\) 1380.19 796.856i 1.55603 0.898372i 0.558395 0.829575i \(-0.311418\pi\)
0.997631 0.0687962i \(-0.0219158\pi\)
\(888\) 0 0
\(889\) −58.3698 + 17.9052i −0.0656578 + 0.0201409i
\(890\) 0 0
\(891\) −55.2174 95.6394i −0.0619724 0.107339i
\(892\) 0 0
\(893\) 182.353 315.845i 0.204203 0.353689i
\(894\) 0 0
\(895\) 277.752i 0.310337i
\(896\) 0 0
\(897\) −770.930 −0.859454
\(898\) 0 0
\(899\) −254.045 146.673i −0.282586 0.163151i
\(900\) 0 0
\(901\) −386.475 + 223.131i −0.428940 + 0.247648i
\(902\) 0 0
\(903\) −163.306 37.5411i −0.180848 0.0415738i
\(904\) 0 0
\(905\) −242.685 420.343i −0.268161 0.464468i
\(906\) 0 0
\(907\) 865.834 1499.67i 0.954613 1.65344i 0.219360 0.975644i \(-0.429603\pi\)
0.735252 0.677794i \(-0.237064\pi\)
\(908\) 0 0
\(909\) 308.327i 0.339193i
\(910\) 0 0
\(911\) 478.767 0.525540 0.262770 0.964858i \(-0.415364\pi\)
0.262770 + 0.964858i \(0.415364\pi\)
\(912\) 0 0
\(913\) 885.476 + 511.230i 0.969853 + 0.559945i
\(914\) 0 0
\(915\) 76.1130 43.9439i 0.0831836 0.0480261i
\(916\) 0 0
\(917\) 550.419 591.361i 0.600239 0.644887i
\(918\) 0 0
\(919\) 795.127 + 1377.20i 0.865209 + 1.49859i 0.866840 + 0.498587i \(0.166147\pi\)
−0.00163103 + 0.999999i \(0.500519\pi\)
\(920\) 0 0
\(921\) 403.102 698.193i 0.437679 0.758082i
\(922\) 0 0
\(923\) 208.004i 0.225357i
\(924\) 0 0
\(925\) −1121.40 −1.21233
\(926\) 0 0
\(927\) 295.273 + 170.476i 0.318525 + 0.183901i
\(928\) 0 0
\(929\) −748.214 + 431.982i −0.805397 + 0.464996i −0.845355 0.534205i \(-0.820611\pi\)
0.0399577 + 0.999201i \(0.487278\pi\)
\(930\) 0 0
\(931\) −276.855 + 570.345i −0.297373 + 0.612615i
\(932\) 0 0
\(933\) 222.189 + 384.842i 0.238145 + 0.412478i
\(934\) 0 0
\(935\) −81.3396 + 140.884i −0.0869942 + 0.150678i
\(936\) 0 0
\(937\) 1187.54i 1.26739i −0.773584 0.633694i \(-0.781538\pi\)
0.773584 0.633694i \(-0.218462\pi\)
\(938\) 0 0
\(939\) −170.262 −0.181322
\(940\) 0 0
\(941\) 1140.58 + 658.512i 1.21209 + 0.699800i 0.963214 0.268735i \(-0.0866056\pi\)
0.248876 + 0.968535i \(0.419939\pi\)
\(942\) 0 0
\(943\) 149.955 86.5767i 0.159019 0.0918099i
\(944\) 0 0
\(945\) −54.4373 50.6684i −0.0576056 0.0536174i
\(946\) 0 0
\(947\) 217.972 + 377.539i 0.230172 + 0.398669i 0.957858 0.287241i \(-0.0927379\pi\)
−0.727687 + 0.685909i \(0.759405\pi\)
\(948\) 0 0
\(949\) −899.313 + 1557.66i −0.947643 + 1.64137i
\(950\) 0 0
\(951\) 505.226i 0.531258i
\(952\) 0 0
\(953\) 1318.53 1.38355 0.691777 0.722112i \(-0.256828\pi\)
0.691777 + 0.722112i \(0.256828\pi\)
\(954\) 0 0
\(955\) −375.483 216.785i −0.393175 0.227000i
\(956\) 0 0
\(957\) 707.543 408.500i 0.739334 0.426855i
\(958\) 0 0
\(959\) 320.203 1392.90i 0.333892 1.45245i
\(960\) 0 0
\(961\) −451.384 781.820i −0.469702 0.813548i
\(962\) 0 0
\(963\) 291.599 505.064i 0.302803 0.524469i
\(964\) 0 0
\(965\) 4.25134i 0.00440554i
\(966\) 0 0
\(967\) −706.981 −0.731107 −0.365554 0.930790i \(-0.619120\pi\)
−0.365554 + 0.930790i \(0.619120\pi\)
\(968\) 0 0
\(969\) 125.845 + 72.6564i 0.129870 + 0.0749808i
\(970\) 0 0
\(971\) −548.877 + 316.894i −0.565269 + 0.326358i −0.755258 0.655428i \(-0.772488\pi\)
0.189988 + 0.981786i \(0.439155\pi\)
\(972\) 0 0
\(973\) 388.267 + 1265.73i 0.399042 + 1.30085i
\(974\) 0 0
\(975\) 298.840 + 517.606i 0.306502 + 0.530878i
\(976\) 0 0
\(977\) 664.402 1150.78i 0.680043 1.17787i −0.294924 0.955521i \(-0.595294\pi\)
0.974967 0.222349i \(-0.0713724\pi\)
\(978\) 0 0
\(979\) 731.780i 0.747477i
\(980\) 0 0
\(981\) −386.446 −0.393931
\(982\) 0 0
\(983\) 307.260 + 177.397i 0.312574 + 0.180465i 0.648078 0.761574i \(-0.275573\pi\)
−0.335504 + 0.942039i \(0.608906\pi\)
\(984\) 0 0
\(985\) −526.917 + 304.215i −0.534941 + 0.308848i
\(986\) 0 0
\(987\) 326.729 100.226i 0.331033 0.101546i
\(988\) 0 0
\(989\) −185.573 321.421i −0.187637 0.324996i
\(990\) 0 0
\(991\) −286.950 + 497.011i −0.289556 + 0.501525i −0.973704 0.227818i \(-0.926841\pi\)
0.684148 + 0.729343i \(0.260174\pi\)
\(992\) 0 0
\(993\) 497.843i 0.501353i
\(994\) 0 0
\(995\) 521.211 0.523830
\(996\) 0 0
\(997\) 923.961 + 533.449i 0.926741 + 0.535054i 0.885779 0.464106i \(-0.153624\pi\)
0.0409617 + 0.999161i \(0.486958\pi\)
\(998\) 0 0
\(999\) 242.383 139.940i 0.242626 0.140080i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 672.3.bh.b.577.6 yes 16
4.3 odd 2 672.3.bh.d.577.6 yes 16
7.5 odd 6 inner 672.3.bh.b.481.6 16
28.19 even 6 672.3.bh.d.481.6 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
672.3.bh.b.481.6 16 7.5 odd 6 inner
672.3.bh.b.577.6 yes 16 1.1 even 1 trivial
672.3.bh.d.481.6 yes 16 28.19 even 6
672.3.bh.d.577.6 yes 16 4.3 odd 2