Properties

Label 672.3.bh.a.577.5
Level $672$
Weight $3$
Character 672.577
Analytic conductor $18.311$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [672,3,Mod(481,672)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("672.481"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(672, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 0, 5])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 672 = 2^{5} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 672.bh (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,-24,0,0,0,-12,0,24,0,-12,0,0,0,0,0,-48] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.3106737650\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 8 x^{15} + 76 x^{14} - 392 x^{13} + 1982 x^{12} - 7160 x^{11} + 23796 x^{10} - 61736 x^{9} + \cdots + 16807 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{18}\cdot 7 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 577.5
Root \(0.500000 - 0.920550i\) of defining polynomial
Character \(\chi\) \(=\) 672.577
Dual form 672.3.bh.a.481.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.50000 - 0.866025i) q^{3} +(3.54218 - 2.04508i) q^{5} +(-3.04344 - 6.30377i) q^{7} +(1.50000 + 2.59808i) q^{9} +(-10.0406 + 17.3908i) q^{11} -21.9625i q^{13} -7.08436 q^{15} +(-10.9033 - 6.29500i) q^{17} +(-4.58876 + 2.64932i) q^{19} +(-0.894071 + 12.0913i) q^{21} +(8.75901 + 15.1710i) q^{23} +(-4.13532 + 7.16258i) q^{25} -5.19615i q^{27} +1.81648 q^{29} +(-37.2378 - 21.4993i) q^{31} +(30.1218 - 17.3908i) q^{33} +(-23.6721 - 16.1050i) q^{35} +(19.1992 + 33.2540i) q^{37} +(-19.0200 + 32.9437i) q^{39} -8.75947i q^{41} +33.6352 q^{43} +(10.6265 + 6.13523i) q^{45} +(-45.2937 + 26.1504i) q^{47} +(-30.4750 + 38.3702i) q^{49} +(10.9033 + 18.8850i) q^{51} +(-7.44072 + 12.8877i) q^{53} +82.1352i q^{55} +9.17752 q^{57} +(-16.2209 - 9.36515i) q^{59} +(-14.1845 + 8.18944i) q^{61} +(11.8125 - 17.3627i) q^{63} +(-44.9149 - 77.7949i) q^{65} +(-56.5994 + 98.0330i) q^{67} -30.3421i q^{69} -77.8034 q^{71} +(-113.411 - 65.4779i) q^{73} +(12.4060 - 7.16258i) q^{75} +(140.186 + 10.3658i) q^{77} +(-56.9426 - 98.6274i) q^{79} +(-4.50000 + 7.79423i) q^{81} -70.7869i q^{83} -51.4951 q^{85} +(-2.72472 - 1.57312i) q^{87} +(-126.937 + 73.2873i) q^{89} +(-138.446 + 66.8413i) q^{91} +(37.2378 + 64.4978i) q^{93} +(-10.8361 + 18.7687i) q^{95} -22.0792i q^{97} -60.2436 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 24 q^{3} - 12 q^{7} + 24 q^{9} - 12 q^{11} - 48 q^{17} - 60 q^{19} + 24 q^{21} - 48 q^{23} + 52 q^{25} - 64 q^{29} - 60 q^{31} + 36 q^{33} - 4 q^{37} + 12 q^{39} + 72 q^{43} + 120 q^{47} - 8 q^{49}+ \cdots - 72 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/672\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(421\) \(449\) \(577\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.50000 0.866025i −0.500000 0.288675i
\(4\) 0 0
\(5\) 3.54218 2.04508i 0.708436 0.409015i −0.102046 0.994780i \(-0.532539\pi\)
0.810481 + 0.585764i \(0.199206\pi\)
\(6\) 0 0
\(7\) −3.04344 6.30377i −0.434776 0.900538i
\(8\) 0 0
\(9\) 1.50000 + 2.59808i 0.166667 + 0.288675i
\(10\) 0 0
\(11\) −10.0406 + 17.3908i −0.912782 + 1.58098i −0.102665 + 0.994716i \(0.532737\pi\)
−0.810117 + 0.586268i \(0.800597\pi\)
\(12\) 0 0
\(13\) 21.9625i 1.68942i −0.535225 0.844710i \(-0.679773\pi\)
0.535225 0.844710i \(-0.320227\pi\)
\(14\) 0 0
\(15\) −7.08436 −0.472290
\(16\) 0 0
\(17\) −10.9033 6.29500i −0.641368 0.370294i 0.143773 0.989611i \(-0.454076\pi\)
−0.785141 + 0.619316i \(0.787410\pi\)
\(18\) 0 0
\(19\) −4.58876 + 2.64932i −0.241514 + 0.139438i −0.615872 0.787846i \(-0.711196\pi\)
0.374359 + 0.927284i \(0.377863\pi\)
\(20\) 0 0
\(21\) −0.894071 + 12.0913i −0.0425748 + 0.575778i
\(22\) 0 0
\(23\) 8.75901 + 15.1710i 0.380826 + 0.659611i 0.991181 0.132518i \(-0.0423062\pi\)
−0.610354 + 0.792129i \(0.708973\pi\)
\(24\) 0 0
\(25\) −4.13532 + 7.16258i −0.165413 + 0.286503i
\(26\) 0 0
\(27\) 5.19615i 0.192450i
\(28\) 0 0
\(29\) 1.81648 0.0626374 0.0313187 0.999509i \(-0.490029\pi\)
0.0313187 + 0.999509i \(0.490029\pi\)
\(30\) 0 0
\(31\) −37.2378 21.4993i −1.20122 0.693525i −0.240394 0.970675i \(-0.577277\pi\)
−0.960827 + 0.277150i \(0.910610\pi\)
\(32\) 0 0
\(33\) 30.1218 17.3908i 0.912782 0.526995i
\(34\) 0 0
\(35\) −23.6721 16.1050i −0.676345 0.460143i
\(36\) 0 0
\(37\) 19.1992 + 33.2540i 0.518898 + 0.898758i 0.999759 + 0.0219609i \(0.00699093\pi\)
−0.480861 + 0.876797i \(0.659676\pi\)
\(38\) 0 0
\(39\) −19.0200 + 32.9437i −0.487693 + 0.844710i
\(40\) 0 0
\(41\) 8.75947i 0.213646i −0.994278 0.106823i \(-0.965932\pi\)
0.994278 0.106823i \(-0.0340678\pi\)
\(42\) 0 0
\(43\) 33.6352 0.782213 0.391107 0.920345i \(-0.372092\pi\)
0.391107 + 0.920345i \(0.372092\pi\)
\(44\) 0 0
\(45\) 10.6265 + 6.13523i 0.236145 + 0.136338i
\(46\) 0 0
\(47\) −45.2937 + 26.1504i −0.963697 + 0.556391i −0.897309 0.441403i \(-0.854481\pi\)
−0.0663879 + 0.997794i \(0.521147\pi\)
\(48\) 0 0
\(49\) −30.4750 + 38.3702i −0.621939 + 0.783066i
\(50\) 0 0
\(51\) 10.9033 + 18.8850i 0.213789 + 0.370294i
\(52\) 0 0
\(53\) −7.44072 + 12.8877i −0.140391 + 0.243164i −0.927644 0.373466i \(-0.878169\pi\)
0.787253 + 0.616630i \(0.211503\pi\)
\(54\) 0 0
\(55\) 82.1352i 1.49337i
\(56\) 0 0
\(57\) 9.17752 0.161009
\(58\) 0 0
\(59\) −16.2209 9.36515i −0.274931 0.158731i 0.356195 0.934411i \(-0.384074\pi\)
−0.631126 + 0.775680i \(0.717407\pi\)
\(60\) 0 0
\(61\) −14.1845 + 8.18944i −0.232533 + 0.134253i −0.611740 0.791059i \(-0.709530\pi\)
0.379207 + 0.925312i \(0.376197\pi\)
\(62\) 0 0
\(63\) 11.8125 17.3627i 0.187500 0.275599i
\(64\) 0 0
\(65\) −44.9149 77.7949i −0.690999 1.19684i
\(66\) 0 0
\(67\) −56.5994 + 98.0330i −0.844767 + 1.46318i 0.0410559 + 0.999157i \(0.486928\pi\)
−0.885823 + 0.464023i \(0.846406\pi\)
\(68\) 0 0
\(69\) 30.3421i 0.439740i
\(70\) 0 0
\(71\) −77.8034 −1.09582 −0.547911 0.836537i \(-0.684577\pi\)
−0.547911 + 0.836537i \(0.684577\pi\)
\(72\) 0 0
\(73\) −113.411 65.4779i −1.55358 0.896958i −0.997846 0.0655949i \(-0.979105\pi\)
−0.555730 0.831363i \(-0.687561\pi\)
\(74\) 0 0
\(75\) 12.4060 7.16258i 0.165413 0.0955011i
\(76\) 0 0
\(77\) 140.186 + 10.3658i 1.82059 + 0.134620i
\(78\) 0 0
\(79\) −56.9426 98.6274i −0.720792 1.24845i −0.960683 0.277648i \(-0.910445\pi\)
0.239891 0.970800i \(-0.422888\pi\)
\(80\) 0 0
\(81\) −4.50000 + 7.79423i −0.0555556 + 0.0962250i
\(82\) 0 0
\(83\) 70.7869i 0.852854i −0.904522 0.426427i \(-0.859772\pi\)
0.904522 0.426427i \(-0.140228\pi\)
\(84\) 0 0
\(85\) −51.4951 −0.605824
\(86\) 0 0
\(87\) −2.72472 1.57312i −0.0313187 0.0180818i
\(88\) 0 0
\(89\) −126.937 + 73.2873i −1.42626 + 0.823453i −0.996823 0.0796430i \(-0.974622\pi\)
−0.429439 + 0.903096i \(0.641289\pi\)
\(90\) 0 0
\(91\) −138.446 + 66.8413i −1.52139 + 0.734520i
\(92\) 0 0
\(93\) 37.2378 + 64.4978i 0.400407 + 0.693525i
\(94\) 0 0
\(95\) −10.8361 + 18.7687i −0.114065 + 0.197566i
\(96\) 0 0
\(97\) 22.0792i 0.227621i −0.993502 0.113810i \(-0.963694\pi\)
0.993502 0.113810i \(-0.0363057\pi\)
\(98\) 0 0
\(99\) −60.2436 −0.608521
\(100\) 0 0
\(101\) 158.719 + 91.6365i 1.57148 + 0.907292i 0.995989 + 0.0894806i \(0.0285207\pi\)
0.575487 + 0.817811i \(0.304813\pi\)
\(102\) 0 0
\(103\) −22.2167 + 12.8268i −0.215696 + 0.124532i −0.603956 0.797018i \(-0.706410\pi\)
0.388260 + 0.921550i \(0.373076\pi\)
\(104\) 0 0
\(105\) 21.5608 + 44.6581i 0.205341 + 0.425316i
\(106\) 0 0
\(107\) 8.66237 + 15.0037i 0.0809567 + 0.140221i 0.903661 0.428248i \(-0.140869\pi\)
−0.822704 + 0.568469i \(0.807536\pi\)
\(108\) 0 0
\(109\) −71.2088 + 123.337i −0.653291 + 1.13153i 0.329028 + 0.944320i \(0.393279\pi\)
−0.982319 + 0.187214i \(0.940054\pi\)
\(110\) 0 0
\(111\) 66.5081i 0.599172i
\(112\) 0 0
\(113\) 183.612 1.62488 0.812442 0.583042i \(-0.198138\pi\)
0.812442 + 0.583042i \(0.198138\pi\)
\(114\) 0 0
\(115\) 62.0519 + 35.8257i 0.539582 + 0.311528i
\(116\) 0 0
\(117\) 57.0601 32.9437i 0.487693 0.281570i
\(118\) 0 0
\(119\) −6.49886 + 87.8901i −0.0546123 + 0.738572i
\(120\) 0 0
\(121\) −141.127 244.439i −1.16634 2.02016i
\(122\) 0 0
\(123\) −7.58592 + 13.1392i −0.0616742 + 0.106823i
\(124\) 0 0
\(125\) 136.082i 1.08866i
\(126\) 0 0
\(127\) 65.7409 0.517645 0.258822 0.965925i \(-0.416666\pi\)
0.258822 + 0.965925i \(0.416666\pi\)
\(128\) 0 0
\(129\) −50.4528 29.1289i −0.391107 0.225806i
\(130\) 0 0
\(131\) 9.90519 5.71876i 0.0756121 0.0436547i −0.461717 0.887027i \(-0.652767\pi\)
0.537329 + 0.843372i \(0.319433\pi\)
\(132\) 0 0
\(133\) 30.6663 + 20.8634i 0.230574 + 0.156868i
\(134\) 0 0
\(135\) −10.6265 18.4057i −0.0787151 0.136338i
\(136\) 0 0
\(137\) −13.8277 + 23.9504i −0.100932 + 0.174820i −0.912069 0.410037i \(-0.865516\pi\)
0.811137 + 0.584857i \(0.198849\pi\)
\(138\) 0 0
\(139\) 90.1235i 0.648370i −0.945994 0.324185i \(-0.894910\pi\)
0.945994 0.324185i \(-0.105090\pi\)
\(140\) 0 0
\(141\) 90.5875 0.642464
\(142\) 0 0
\(143\) 381.945 + 220.516i 2.67095 + 1.54207i
\(144\) 0 0
\(145\) 6.43431 3.71485i 0.0443745 0.0256196i
\(146\) 0 0
\(147\) 78.9421 31.1632i 0.537021 0.211995i
\(148\) 0 0
\(149\) −105.816 183.278i −0.710171 1.23005i −0.964793 0.263012i \(-0.915284\pi\)
0.254621 0.967041i \(-0.418049\pi\)
\(150\) 0 0
\(151\) 81.3619 140.923i 0.538821 0.933265i −0.460147 0.887843i \(-0.652203\pi\)
0.998968 0.0454221i \(-0.0144633\pi\)
\(152\) 0 0
\(153\) 37.7700i 0.246863i
\(154\) 0 0
\(155\) −175.871 −1.13465
\(156\) 0 0
\(157\) −132.476 76.4852i −0.843798 0.487167i 0.0147552 0.999891i \(-0.495303\pi\)
−0.858554 + 0.512724i \(0.828636\pi\)
\(158\) 0 0
\(159\) 22.3222 12.8877i 0.140391 0.0810548i
\(160\) 0 0
\(161\) 68.9773 101.387i 0.428430 0.629732i
\(162\) 0 0
\(163\) 1.80839 + 3.13222i 0.0110944 + 0.0192161i 0.871519 0.490361i \(-0.163135\pi\)
−0.860425 + 0.509577i \(0.829802\pi\)
\(164\) 0 0
\(165\) 71.1312 123.203i 0.431098 0.746684i
\(166\) 0 0
\(167\) 87.6077i 0.524597i −0.964987 0.262298i \(-0.915520\pi\)
0.964987 0.262298i \(-0.0844805\pi\)
\(168\) 0 0
\(169\) −313.349 −1.85414
\(170\) 0 0
\(171\) −13.7663 7.94796i −0.0805045 0.0464793i
\(172\) 0 0
\(173\) 255.529 147.530i 1.47705 0.852773i 0.477383 0.878695i \(-0.341585\pi\)
0.999664 + 0.0259220i \(0.00825216\pi\)
\(174\) 0 0
\(175\) 57.7368 + 4.26924i 0.329925 + 0.0243956i
\(176\) 0 0
\(177\) 16.2209 + 28.0955i 0.0916436 + 0.158731i
\(178\) 0 0
\(179\) 149.739 259.356i 0.836533 1.44892i −0.0562429 0.998417i \(-0.517912\pi\)
0.892776 0.450501i \(-0.148755\pi\)
\(180\) 0 0
\(181\) 49.1016i 0.271280i 0.990758 + 0.135640i \(0.0433090\pi\)
−0.990758 + 0.135640i \(0.956691\pi\)
\(182\) 0 0
\(183\) 28.3690 0.155022
\(184\) 0 0
\(185\) 136.014 + 78.5278i 0.735212 + 0.424475i
\(186\) 0 0
\(187\) 218.951 126.411i 1.17086 0.675996i
\(188\) 0 0
\(189\) −32.7553 + 15.8142i −0.173309 + 0.0836728i
\(190\) 0 0
\(191\) −74.0704 128.294i −0.387803 0.671694i 0.604351 0.796718i \(-0.293433\pi\)
−0.992154 + 0.125024i \(0.960099\pi\)
\(192\) 0 0
\(193\) −86.8312 + 150.396i −0.449903 + 0.779254i −0.998379 0.0569118i \(-0.981875\pi\)
0.548477 + 0.836166i \(0.315208\pi\)
\(194\) 0 0
\(195\) 155.590i 0.797897i
\(196\) 0 0
\(197\) 59.0342 0.299666 0.149833 0.988711i \(-0.452126\pi\)
0.149833 + 0.988711i \(0.452126\pi\)
\(198\) 0 0
\(199\) 7.52989 + 4.34738i 0.0378386 + 0.0218462i 0.518800 0.854896i \(-0.326379\pi\)
−0.480961 + 0.876742i \(0.659712\pi\)
\(200\) 0 0
\(201\) 169.798 98.0330i 0.844767 0.487727i
\(202\) 0 0
\(203\) −5.52835 11.4507i −0.0272332 0.0564073i
\(204\) 0 0
\(205\) −17.9138 31.0276i −0.0873844 0.151354i
\(206\) 0 0
\(207\) −26.2770 + 45.5131i −0.126942 + 0.219870i
\(208\) 0 0
\(209\) 106.403i 0.509106i
\(210\) 0 0
\(211\) 391.284 1.85443 0.927214 0.374532i \(-0.122196\pi\)
0.927214 + 0.374532i \(0.122196\pi\)
\(212\) 0 0
\(213\) 116.705 + 67.3797i 0.547911 + 0.316337i
\(214\) 0 0
\(215\) 119.142 68.7865i 0.554148 0.319937i
\(216\) 0 0
\(217\) −22.1955 + 300.170i −0.102283 + 1.38327i
\(218\) 0 0
\(219\) 113.411 + 196.434i 0.517859 + 0.896958i
\(220\) 0 0
\(221\) −138.254 + 239.462i −0.625582 + 1.08354i
\(222\) 0 0
\(223\) 214.781i 0.963144i −0.876406 0.481572i \(-0.840066\pi\)
0.876406 0.481572i \(-0.159934\pi\)
\(224\) 0 0
\(225\) −24.8119 −0.110275
\(226\) 0 0
\(227\) −157.877 91.1502i −0.695493 0.401543i 0.110174 0.993912i \(-0.464859\pi\)
−0.805666 + 0.592370i \(0.798193\pi\)
\(228\) 0 0
\(229\) 172.572 99.6346i 0.753590 0.435086i −0.0733993 0.997303i \(-0.523385\pi\)
0.826990 + 0.562217i \(0.190051\pi\)
\(230\) 0 0
\(231\) −201.301 136.953i −0.871435 0.592870i
\(232\) 0 0
\(233\) 31.6667 + 54.8483i 0.135908 + 0.235400i 0.925944 0.377661i \(-0.123271\pi\)
−0.790036 + 0.613061i \(0.789938\pi\)
\(234\) 0 0
\(235\) −106.959 + 185.258i −0.455145 + 0.788334i
\(236\) 0 0
\(237\) 197.255i 0.832299i
\(238\) 0 0
\(239\) 226.373 0.947168 0.473584 0.880749i \(-0.342960\pi\)
0.473584 + 0.880749i \(0.342960\pi\)
\(240\) 0 0
\(241\) −237.975 137.395i −0.987448 0.570103i −0.0829373 0.996555i \(-0.526430\pi\)
−0.904510 + 0.426452i \(0.859763\pi\)
\(242\) 0 0
\(243\) 13.5000 7.79423i 0.0555556 0.0320750i
\(244\) 0 0
\(245\) −29.4778 + 198.238i −0.120318 + 0.809134i
\(246\) 0 0
\(247\) 58.1856 + 100.780i 0.235569 + 0.408018i
\(248\) 0 0
\(249\) −61.3033 + 106.180i −0.246198 + 0.426427i
\(250\) 0 0
\(251\) 35.9601i 0.143267i 0.997431 + 0.0716336i \(0.0228212\pi\)
−0.997431 + 0.0716336i \(0.977179\pi\)
\(252\) 0 0
\(253\) −351.783 −1.39045
\(254\) 0 0
\(255\) 77.2426 + 44.5960i 0.302912 + 0.174886i
\(256\) 0 0
\(257\) 294.047 169.768i 1.14415 0.660576i 0.196696 0.980465i \(-0.436979\pi\)
0.947455 + 0.319889i \(0.103645\pi\)
\(258\) 0 0
\(259\) 151.194 222.234i 0.583761 0.858046i
\(260\) 0 0
\(261\) 2.72472 + 4.71936i 0.0104396 + 0.0180818i
\(262\) 0 0
\(263\) −62.0629 + 107.496i −0.235981 + 0.408731i −0.959557 0.281514i \(-0.909164\pi\)
0.723577 + 0.690244i \(0.242497\pi\)
\(264\) 0 0
\(265\) 60.8674i 0.229688i
\(266\) 0 0
\(267\) 253.875 0.950842
\(268\) 0 0
\(269\) −306.478 176.945i −1.13932 0.657789i −0.193061 0.981187i \(-0.561842\pi\)
−0.946263 + 0.323397i \(0.895175\pi\)
\(270\) 0 0
\(271\) −189.549 + 109.436i −0.699444 + 0.403824i −0.807140 0.590360i \(-0.798986\pi\)
0.107696 + 0.994184i \(0.465653\pi\)
\(272\) 0 0
\(273\) 265.556 + 19.6360i 0.972731 + 0.0719267i
\(274\) 0 0
\(275\) −83.0421 143.833i −0.301971 0.523030i
\(276\) 0 0
\(277\) 29.2203 50.6111i 0.105488 0.182711i −0.808449 0.588566i \(-0.799693\pi\)
0.913938 + 0.405855i \(0.133026\pi\)
\(278\) 0 0
\(279\) 128.996i 0.462350i
\(280\) 0 0
\(281\) −485.027 −1.72607 −0.863037 0.505141i \(-0.831440\pi\)
−0.863037 + 0.505141i \(0.831440\pi\)
\(282\) 0 0
\(283\) −195.507 112.876i −0.690838 0.398855i 0.113088 0.993585i \(-0.463926\pi\)
−0.803926 + 0.594730i \(0.797259\pi\)
\(284\) 0 0
\(285\) 32.5084 18.7687i 0.114065 0.0658552i
\(286\) 0 0
\(287\) −55.2177 + 26.6589i −0.192396 + 0.0928881i
\(288\) 0 0
\(289\) −65.2459 113.009i −0.225764 0.391035i
\(290\) 0 0
\(291\) −19.1212 + 33.1189i −0.0657085 + 0.113810i
\(292\) 0 0
\(293\) 312.862i 1.06779i 0.845552 + 0.533894i \(0.179272\pi\)
−0.845552 + 0.533894i \(0.820728\pi\)
\(294\) 0 0
\(295\) −76.6098 −0.259694
\(296\) 0 0
\(297\) 90.3654 + 52.1725i 0.304261 + 0.175665i
\(298\) 0 0
\(299\) 333.193 192.369i 1.11436 0.643376i
\(300\) 0 0
\(301\) −102.366 212.028i −0.340088 0.704413i
\(302\) 0 0
\(303\) −158.719 274.909i −0.523825 0.907292i
\(304\) 0 0
\(305\) −33.4961 + 58.0169i −0.109823 + 0.190219i
\(306\) 0 0
\(307\) 263.601i 0.858635i −0.903154 0.429318i \(-0.858754\pi\)
0.903154 0.429318i \(-0.141246\pi\)
\(308\) 0 0
\(309\) 44.4334 0.143797
\(310\) 0 0
\(311\) 273.433 + 157.866i 0.879204 + 0.507609i 0.870396 0.492352i \(-0.163863\pi\)
0.00880827 + 0.999961i \(0.497196\pi\)
\(312\) 0 0
\(313\) 137.826 79.5740i 0.440339 0.254230i −0.263402 0.964686i \(-0.584845\pi\)
0.703741 + 0.710456i \(0.251511\pi\)
\(314\) 0 0
\(315\) 6.33392 85.6594i 0.0201077 0.271935i
\(316\) 0 0
\(317\) −117.031 202.703i −0.369183 0.639443i 0.620255 0.784400i \(-0.287029\pi\)
−0.989438 + 0.144957i \(0.953696\pi\)
\(318\) 0 0
\(319\) −18.2386 + 31.5901i −0.0571742 + 0.0990287i
\(320\) 0 0
\(321\) 30.0073i 0.0934807i
\(322\) 0 0
\(323\) 66.7099 0.206532
\(324\) 0 0
\(325\) 157.308 + 90.8217i 0.484024 + 0.279452i
\(326\) 0 0
\(327\) 213.626 123.337i 0.653291 0.377178i
\(328\) 0 0
\(329\) 302.694 + 205.934i 0.920044 + 0.625940i
\(330\) 0 0
\(331\) 270.288 + 468.152i 0.816579 + 1.41436i 0.908189 + 0.418561i \(0.137465\pi\)
−0.0916097 + 0.995795i \(0.529201\pi\)
\(332\) 0 0
\(333\) −57.5977 + 99.7621i −0.172966 + 0.299586i
\(334\) 0 0
\(335\) 463.001i 1.38209i
\(336\) 0 0
\(337\) 233.419 0.692639 0.346319 0.938117i \(-0.387431\pi\)
0.346319 + 0.938117i \(0.387431\pi\)
\(338\) 0 0
\(339\) −275.418 159.013i −0.812442 0.469064i
\(340\) 0 0
\(341\) 747.780 431.731i 2.19290 1.26607i
\(342\) 0 0
\(343\) 334.626 + 75.3301i 0.975585 + 0.219621i
\(344\) 0 0
\(345\) −62.0519 107.477i −0.179861 0.311528i
\(346\) 0 0
\(347\) 3.31307 5.73841i 0.00954776 0.0165372i −0.861212 0.508246i \(-0.830294\pi\)
0.870760 + 0.491709i \(0.163627\pi\)
\(348\) 0 0
\(349\) 423.659i 1.21392i 0.794732 + 0.606961i \(0.207612\pi\)
−0.794732 + 0.606961i \(0.792388\pi\)
\(350\) 0 0
\(351\) −114.120 −0.325129
\(352\) 0 0
\(353\) −131.570 75.9618i −0.372719 0.215189i 0.301927 0.953331i \(-0.402370\pi\)
−0.674645 + 0.738142i \(0.735703\pi\)
\(354\) 0 0
\(355\) −275.593 + 159.114i −0.776319 + 0.448208i
\(356\) 0 0
\(357\) 85.8633 126.207i 0.240514 0.353521i
\(358\) 0 0
\(359\) 134.228 + 232.490i 0.373895 + 0.647604i 0.990161 0.139933i \(-0.0446888\pi\)
−0.616266 + 0.787538i \(0.711356\pi\)
\(360\) 0 0
\(361\) −166.462 + 288.321i −0.461114 + 0.798673i
\(362\) 0 0
\(363\) 488.879i 1.34677i
\(364\) 0 0
\(365\) −535.630 −1.46748
\(366\) 0 0
\(367\) −311.896 180.073i −0.849854 0.490663i 0.0107477 0.999942i \(-0.496579\pi\)
−0.860602 + 0.509279i \(0.829912\pi\)
\(368\) 0 0
\(369\) 22.7578 13.1392i 0.0616742 0.0356076i
\(370\) 0 0
\(371\) 103.886 + 7.68168i 0.280017 + 0.0207053i
\(372\) 0 0
\(373\) −307.413 532.454i −0.824163 1.42749i −0.902558 0.430569i \(-0.858313\pi\)
0.0783949 0.996922i \(-0.475021\pi\)
\(374\) 0 0
\(375\) 117.851 204.123i 0.314268 0.544328i
\(376\) 0 0
\(377\) 39.8944i 0.105821i
\(378\) 0 0
\(379\) −56.9607 −0.150292 −0.0751460 0.997173i \(-0.523942\pi\)
−0.0751460 + 0.997173i \(0.523942\pi\)
\(380\) 0 0
\(381\) −98.6114 56.9333i −0.258822 0.149431i
\(382\) 0 0
\(383\) −159.734 + 92.2224i −0.417060 + 0.240790i −0.693819 0.720150i \(-0.744073\pi\)
0.276759 + 0.960939i \(0.410740\pi\)
\(384\) 0 0
\(385\) 517.761 249.973i 1.34483 0.649281i
\(386\) 0 0
\(387\) 50.4528 + 87.3867i 0.130369 + 0.225806i
\(388\) 0 0
\(389\) 156.503 271.070i 0.402320 0.696839i −0.591685 0.806169i \(-0.701537\pi\)
0.994006 + 0.109330i \(0.0348705\pi\)
\(390\) 0 0
\(391\) 220.552i 0.564071i
\(392\) 0 0
\(393\) −19.8104 −0.0504081
\(394\) 0 0
\(395\) −403.401 232.904i −1.02127 0.589630i
\(396\) 0 0
\(397\) −168.237 + 97.1315i −0.423770 + 0.244664i −0.696689 0.717373i \(-0.745344\pi\)
0.272919 + 0.962037i \(0.412011\pi\)
\(398\) 0 0
\(399\) −27.9312 57.8529i −0.0700030 0.144995i
\(400\) 0 0
\(401\) 75.0503 + 129.991i 0.187158 + 0.324167i 0.944302 0.329081i \(-0.106739\pi\)
−0.757144 + 0.653248i \(0.773406\pi\)
\(402\) 0 0
\(403\) −472.177 + 817.834i −1.17165 + 2.02937i
\(404\) 0 0
\(405\) 36.8114i 0.0908923i
\(406\) 0 0
\(407\) −771.087 −1.89456
\(408\) 0 0
\(409\) 523.278 + 302.115i 1.27941 + 0.738666i 0.976739 0.214430i \(-0.0687893\pi\)
0.302668 + 0.953096i \(0.402123\pi\)
\(410\) 0 0
\(411\) 41.4832 23.9504i 0.100932 0.0582734i
\(412\) 0 0
\(413\) −9.66844 + 130.755i −0.0234103 + 0.316598i
\(414\) 0 0
\(415\) −144.765 250.740i −0.348831 0.604192i
\(416\) 0 0
\(417\) −78.0492 + 135.185i −0.187168 + 0.324185i
\(418\) 0 0
\(419\) 38.8085i 0.0926218i −0.998927 0.0463109i \(-0.985254\pi\)
0.998927 0.0463109i \(-0.0147465\pi\)
\(420\) 0 0
\(421\) −576.869 −1.37023 −0.685117 0.728433i \(-0.740249\pi\)
−0.685117 + 0.728433i \(0.740249\pi\)
\(422\) 0 0
\(423\) −135.881 78.4511i −0.321232 0.185464i
\(424\) 0 0
\(425\) 90.1769 52.0637i 0.212181 0.122503i
\(426\) 0 0
\(427\) 94.7940 + 64.4919i 0.222000 + 0.151035i
\(428\) 0 0
\(429\) −381.945 661.548i −0.890315 1.54207i
\(430\) 0 0
\(431\) 313.062 542.239i 0.726362 1.25810i −0.232049 0.972704i \(-0.574543\pi\)
0.958411 0.285392i \(-0.0921238\pi\)
\(432\) 0 0
\(433\) 347.489i 0.802516i 0.915965 + 0.401258i \(0.131427\pi\)
−0.915965 + 0.401258i \(0.868573\pi\)
\(434\) 0 0
\(435\) −12.8686 −0.0295830
\(436\) 0 0
\(437\) −80.3859 46.4108i −0.183949 0.106203i
\(438\) 0 0
\(439\) −582.157 + 336.109i −1.32610 + 0.765623i −0.984694 0.174293i \(-0.944236\pi\)
−0.341404 + 0.939916i \(0.610903\pi\)
\(440\) 0 0
\(441\) −145.401 21.6210i −0.329708 0.0490273i
\(442\) 0 0
\(443\) −360.071 623.662i −0.812802 1.40782i −0.910895 0.412638i \(-0.864608\pi\)
0.0980927 0.995177i \(-0.468726\pi\)
\(444\) 0 0
\(445\) −299.756 + 519.193i −0.673610 + 1.16673i
\(446\) 0 0
\(447\) 366.556i 0.820035i
\(448\) 0 0
\(449\) 414.577 0.923335 0.461668 0.887053i \(-0.347251\pi\)
0.461668 + 0.887053i \(0.347251\pi\)
\(450\) 0 0
\(451\) 152.334 + 87.9503i 0.337770 + 0.195012i
\(452\) 0 0
\(453\) −244.086 + 140.923i −0.538821 + 0.311088i
\(454\) 0 0
\(455\) −353.706 + 519.897i −0.777375 + 1.14263i
\(456\) 0 0
\(457\) −253.059 438.311i −0.553740 0.959106i −0.998000 0.0632080i \(-0.979867\pi\)
0.444260 0.895898i \(-0.353466\pi\)
\(458\) 0 0
\(459\) −32.7098 + 56.6550i −0.0712632 + 0.123431i
\(460\) 0 0
\(461\) 219.010i 0.475076i −0.971378 0.237538i \(-0.923660\pi\)
0.971378 0.237538i \(-0.0763405\pi\)
\(462\) 0 0
\(463\) −388.150 −0.838336 −0.419168 0.907909i \(-0.637678\pi\)
−0.419168 + 0.907909i \(0.637678\pi\)
\(464\) 0 0
\(465\) 263.806 + 152.309i 0.567325 + 0.327545i
\(466\) 0 0
\(467\) −644.058 + 371.847i −1.37914 + 0.796246i −0.992056 0.125799i \(-0.959851\pi\)
−0.387083 + 0.922045i \(0.626517\pi\)
\(468\) 0 0
\(469\) 790.234 + 58.4323i 1.68493 + 0.124589i
\(470\) 0 0
\(471\) 132.476 + 229.456i 0.281266 + 0.487167i
\(472\) 0 0
\(473\) −337.717 + 584.943i −0.713990 + 1.23667i
\(474\) 0 0
\(475\) 43.8231i 0.0922592i
\(476\) 0 0
\(477\) −44.6443 −0.0935940
\(478\) 0 0
\(479\) 230.319 + 132.975i 0.480834 + 0.277609i 0.720764 0.693181i \(-0.243791\pi\)
−0.239930 + 0.970790i \(0.577125\pi\)
\(480\) 0 0
\(481\) 730.340 421.662i 1.51838 0.876637i
\(482\) 0 0
\(483\) −191.270 + 92.3442i −0.396003 + 0.191189i
\(484\) 0 0
\(485\) −45.1537 78.2086i −0.0931005 0.161255i
\(486\) 0 0
\(487\) 400.464 693.625i 0.822309 1.42428i −0.0816502 0.996661i \(-0.526019\pi\)
0.903959 0.427619i \(-0.140648\pi\)
\(488\) 0 0
\(489\) 6.26445i 0.0128107i
\(490\) 0 0
\(491\) −427.294 −0.870253 −0.435127 0.900369i \(-0.643296\pi\)
−0.435127 + 0.900369i \(0.643296\pi\)
\(492\) 0 0
\(493\) −19.8056 11.4348i −0.0401736 0.0231943i
\(494\) 0 0
\(495\) −213.393 + 123.203i −0.431098 + 0.248895i
\(496\) 0 0
\(497\) 236.790 + 490.455i 0.476438 + 0.986830i
\(498\) 0 0
\(499\) −160.559 278.096i −0.321761 0.557306i 0.659091 0.752064i \(-0.270941\pi\)
−0.980851 + 0.194757i \(0.937608\pi\)
\(500\) 0 0
\(501\) −75.8705 + 131.412i −0.151438 + 0.262298i
\(502\) 0 0
\(503\) 641.788i 1.27592i 0.770069 + 0.637960i \(0.220222\pi\)
−0.770069 + 0.637960i \(0.779778\pi\)
\(504\) 0 0
\(505\) 749.615 1.48439
\(506\) 0 0
\(507\) 470.024 + 271.369i 0.927069 + 0.535244i
\(508\) 0 0
\(509\) −41.6196 + 24.0291i −0.0817674 + 0.0472084i −0.540326 0.841456i \(-0.681699\pi\)
0.458559 + 0.888664i \(0.348366\pi\)
\(510\) 0 0
\(511\) −67.5984 + 914.195i −0.132286 + 1.78903i
\(512\) 0 0
\(513\) 13.7663 + 23.8439i 0.0268348 + 0.0464793i
\(514\) 0 0
\(515\) −52.4636 + 90.8697i −0.101871 + 0.176446i
\(516\) 0 0
\(517\) 1050.26i 2.03145i
\(518\) 0 0
\(519\) −511.058 −0.984698
\(520\) 0 0
\(521\) −155.324 89.6762i −0.298126 0.172123i 0.343475 0.939162i \(-0.388396\pi\)
−0.641601 + 0.767039i \(0.721729\pi\)
\(522\) 0 0
\(523\) −110.310 + 63.6876i −0.210918 + 0.121774i −0.601738 0.798694i \(-0.705525\pi\)
0.390820 + 0.920467i \(0.372192\pi\)
\(524\) 0 0
\(525\) −82.9080 56.4054i −0.157920 0.107439i
\(526\) 0 0
\(527\) 270.676 + 468.825i 0.513617 + 0.889610i
\(528\) 0 0
\(529\) 111.060 192.361i 0.209943 0.363631i
\(530\) 0 0
\(531\) 56.1909i 0.105821i
\(532\) 0 0
\(533\) −192.379 −0.360937
\(534\) 0 0
\(535\) 61.3673 + 35.4304i 0.114705 + 0.0662251i
\(536\) 0 0
\(537\) −449.218 + 259.356i −0.836533 + 0.482973i
\(538\) 0 0
\(539\) −361.303 915.245i −0.670320 1.69804i
\(540\) 0 0
\(541\) −177.512 307.460i −0.328118 0.568318i 0.654020 0.756477i \(-0.273081\pi\)
−0.982139 + 0.188159i \(0.939748\pi\)
\(542\) 0 0
\(543\) 42.5233 73.6525i 0.0783117 0.135640i
\(544\) 0 0
\(545\) 582.510i 1.06882i
\(546\) 0 0
\(547\) 446.489 0.816250 0.408125 0.912926i \(-0.366183\pi\)
0.408125 + 0.912926i \(0.366183\pi\)
\(548\) 0 0
\(549\) −42.5536 24.5683i −0.0775110 0.0447510i
\(550\) 0 0
\(551\) −8.33540 + 4.81245i −0.0151278 + 0.00873402i
\(552\) 0 0
\(553\) −448.423 + 659.119i −0.810892 + 1.19190i
\(554\) 0 0
\(555\) −136.014 235.583i −0.245071 0.424475i
\(556\) 0 0
\(557\) −278.305 + 482.039i −0.499650 + 0.865419i −1.00000 0.000403899i \(-0.999871\pi\)
0.500350 + 0.865823i \(0.333205\pi\)
\(558\) 0 0
\(559\) 738.711i 1.32149i
\(560\) 0 0
\(561\) −437.901 −0.780572
\(562\) 0 0
\(563\) −112.631 65.0276i −0.200055 0.115502i 0.396626 0.917980i \(-0.370181\pi\)
−0.596681 + 0.802478i \(0.703514\pi\)
\(564\) 0 0
\(565\) 650.386 375.501i 1.15113 0.664603i
\(566\) 0 0
\(567\) 62.8285 + 4.64573i 0.110809 + 0.00819353i
\(568\) 0 0
\(569\) −375.545 650.462i −0.660008 1.14317i −0.980613 0.195955i \(-0.937219\pi\)
0.320605 0.947213i \(-0.396114\pi\)
\(570\) 0 0
\(571\) 68.4870 118.623i 0.119942 0.207746i −0.799802 0.600263i \(-0.795062\pi\)
0.919745 + 0.392517i \(0.128396\pi\)
\(572\) 0 0
\(573\) 256.587i 0.447796i
\(574\) 0 0
\(575\) −144.885 −0.251974
\(576\) 0 0
\(577\) −296.585 171.233i −0.514012 0.296765i 0.220469 0.975394i \(-0.429241\pi\)
−0.734481 + 0.678629i \(0.762574\pi\)
\(578\) 0 0
\(579\) 260.494 150.396i 0.449903 0.259751i
\(580\) 0 0
\(581\) −446.224 + 215.435i −0.768028 + 0.370801i
\(582\) 0 0
\(583\) −149.419 258.801i −0.256293 0.443912i
\(584\) 0 0
\(585\) 134.745 233.385i 0.230333 0.398948i
\(586\) 0 0
\(587\) 375.727i 0.640080i 0.947404 + 0.320040i \(0.103696\pi\)
−0.947404 + 0.320040i \(0.896304\pi\)
\(588\) 0 0
\(589\) 227.834 0.386815
\(590\) 0 0
\(591\) −88.5512 51.1251i −0.149833 0.0865061i
\(592\) 0 0
\(593\) 439.393 253.684i 0.740967 0.427797i −0.0814540 0.996677i \(-0.525956\pi\)
0.822421 + 0.568880i \(0.192623\pi\)
\(594\) 0 0
\(595\) 156.722 + 324.613i 0.263398 + 0.545568i
\(596\) 0 0
\(597\) −7.52989 13.0422i −0.0126129 0.0218462i
\(598\) 0 0
\(599\) 367.805 637.057i 0.614031 1.06353i −0.376522 0.926408i \(-0.622880\pi\)
0.990554 0.137126i \(-0.0437865\pi\)
\(600\) 0 0
\(601\) 963.641i 1.60340i 0.597729 + 0.801698i \(0.296070\pi\)
−0.597729 + 0.801698i \(0.703930\pi\)
\(602\) 0 0
\(603\) −339.596 −0.563178
\(604\) 0 0
\(605\) −999.795 577.232i −1.65255 0.954103i
\(606\) 0 0
\(607\) 151.792 87.6374i 0.250070 0.144378i −0.369726 0.929141i \(-0.620549\pi\)
0.619796 + 0.784763i \(0.287215\pi\)
\(608\) 0 0
\(609\) −1.62406 + 21.9637i −0.00266677 + 0.0360652i
\(610\) 0 0
\(611\) 574.326 + 994.762i 0.939977 + 1.62809i
\(612\) 0 0
\(613\) −184.106 + 318.881i −0.300336 + 0.520198i −0.976212 0.216818i \(-0.930432\pi\)
0.675876 + 0.737016i \(0.263766\pi\)
\(614\) 0 0
\(615\) 62.0552i 0.100903i
\(616\) 0 0
\(617\) −332.534 −0.538952 −0.269476 0.963007i \(-0.586851\pi\)
−0.269476 + 0.963007i \(0.586851\pi\)
\(618\) 0 0
\(619\) −831.973 480.340i −1.34406 0.775994i −0.356660 0.934234i \(-0.616085\pi\)
−0.987401 + 0.158241i \(0.949418\pi\)
\(620\) 0 0
\(621\) 78.8311 45.5131i 0.126942 0.0732901i
\(622\) 0 0
\(623\) 848.312 + 577.139i 1.36166 + 0.926386i
\(624\) 0 0
\(625\) 174.915 + 302.962i 0.279865 + 0.484740i
\(626\) 0 0
\(627\) −92.1478 + 159.605i −0.146966 + 0.254553i
\(628\) 0 0
\(629\) 483.437i 0.768580i
\(630\) 0 0
\(631\) 659.689 1.04547 0.522733 0.852496i \(-0.324912\pi\)
0.522733 + 0.852496i \(0.324912\pi\)
\(632\) 0 0
\(633\) −586.927 338.862i −0.927214 0.535327i
\(634\) 0 0
\(635\) 232.866 134.445i 0.366718 0.211725i
\(636\) 0 0
\(637\) 842.704 + 669.306i 1.32293 + 1.05072i
\(638\) 0 0
\(639\) −116.705 202.139i −0.182637 0.316337i
\(640\) 0 0
\(641\) 91.1878 157.942i 0.142259 0.246399i −0.786088 0.618114i \(-0.787897\pi\)
0.928347 + 0.371715i \(0.121230\pi\)
\(642\) 0 0
\(643\) 640.479i 0.996080i 0.867154 + 0.498040i \(0.165947\pi\)
−0.867154 + 0.498040i \(0.834053\pi\)
\(644\) 0 0
\(645\) −238.283 −0.369432
\(646\) 0 0
\(647\) 203.913 + 117.729i 0.315168 + 0.181962i 0.649237 0.760587i \(-0.275089\pi\)
−0.334069 + 0.942549i \(0.608422\pi\)
\(648\) 0 0
\(649\) 325.735 188.063i 0.501904 0.289774i
\(650\) 0 0
\(651\) 293.248 431.034i 0.450458 0.662110i
\(652\) 0 0
\(653\) 534.325 + 925.477i 0.818261 + 1.41727i 0.906962 + 0.421212i \(0.138395\pi\)
−0.0887013 + 0.996058i \(0.528272\pi\)
\(654\) 0 0
\(655\) 23.3906 40.5138i 0.0357109 0.0618531i
\(656\) 0 0
\(657\) 392.867i 0.597972i
\(658\) 0 0
\(659\) 683.671 1.03744 0.518719 0.854945i \(-0.326409\pi\)
0.518719 + 0.854945i \(0.326409\pi\)
\(660\) 0 0
\(661\) 651.096 + 375.911i 0.985017 + 0.568700i 0.903781 0.427995i \(-0.140780\pi\)
0.0812359 + 0.996695i \(0.474113\pi\)
\(662\) 0 0
\(663\) 414.761 239.462i 0.625582 0.361180i
\(664\) 0 0
\(665\) 151.293 + 11.1871i 0.227508 + 0.0168226i
\(666\) 0 0
\(667\) 15.9106 + 27.5579i 0.0238540 + 0.0413163i
\(668\) 0 0
\(669\) −186.006 + 322.172i −0.278036 + 0.481572i
\(670\) 0 0
\(671\) 328.907i 0.490175i
\(672\) 0 0
\(673\) 954.727 1.41861 0.709307 0.704900i \(-0.249008\pi\)
0.709307 + 0.704900i \(0.249008\pi\)
\(674\) 0 0
\(675\) 37.2179 + 21.4877i 0.0551376 + 0.0318337i
\(676\) 0 0
\(677\) −243.840 + 140.781i −0.360177 + 0.207948i −0.669158 0.743120i \(-0.733345\pi\)
0.308981 + 0.951068i \(0.400012\pi\)
\(678\) 0 0
\(679\) −139.182 + 67.1967i −0.204981 + 0.0989643i
\(680\) 0 0
\(681\) 157.877 + 273.451i 0.231831 + 0.401543i
\(682\) 0 0
\(683\) −436.291 + 755.678i −0.638786 + 1.10641i 0.346914 + 0.937897i \(0.387230\pi\)
−0.985700 + 0.168512i \(0.946104\pi\)
\(684\) 0 0
\(685\) 113.115i 0.165132i
\(686\) 0 0
\(687\) −345.144 −0.502394
\(688\) 0 0
\(689\) 283.046 + 163.417i 0.410807 + 0.237179i
\(690\) 0 0
\(691\) −1055.16 + 609.195i −1.52700 + 0.881613i −0.527513 + 0.849547i \(0.676875\pi\)
−0.999486 + 0.0320660i \(0.989791\pi\)
\(692\) 0 0
\(693\) 183.347 + 379.762i 0.264571 + 0.547997i
\(694\) 0 0
\(695\) −184.310 319.233i −0.265194 0.459329i
\(696\) 0 0
\(697\) −55.1409 + 95.5068i −0.0791118 + 0.137026i
\(698\) 0 0
\(699\) 109.697i 0.156934i
\(700\) 0 0
\(701\) −415.806 −0.593161 −0.296581 0.955008i \(-0.595846\pi\)
−0.296581 + 0.955008i \(0.595846\pi\)
\(702\) 0 0
\(703\) −176.201 101.730i −0.250642 0.144708i
\(704\) 0 0
\(705\) 320.877 185.258i 0.455145 0.262778i
\(706\) 0 0
\(707\) 94.6040 1279.42i 0.133811 1.80964i
\(708\) 0 0
\(709\) 403.674 + 699.184i 0.569357 + 0.986155i 0.996630 + 0.0820319i \(0.0261410\pi\)
−0.427273 + 0.904123i \(0.640526\pi\)
\(710\) 0 0
\(711\) 170.828 295.882i 0.240264 0.416149i
\(712\) 0 0
\(713\) 753.249i 1.05645i
\(714\) 0 0
\(715\) 1803.89 2.52292
\(716\) 0 0
\(717\) −339.560 196.045i −0.473584 0.273424i
\(718\) 0 0
\(719\) 278.233 160.638i 0.386972 0.223418i −0.293875 0.955844i \(-0.594945\pi\)
0.680847 + 0.732425i \(0.261612\pi\)
\(720\) 0 0
\(721\) 148.472 + 101.011i 0.205926 + 0.140099i
\(722\) 0 0
\(723\) 237.975 + 412.185i 0.329149 + 0.570103i
\(724\) 0 0
\(725\) −7.51174 + 13.0107i −0.0103610 + 0.0179458i
\(726\) 0 0
\(727\) 488.836i 0.672402i −0.941790 0.336201i \(-0.890858\pi\)
0.941790 0.336201i \(-0.109142\pi\)
\(728\) 0 0
\(729\) −27.0000 −0.0370370
\(730\) 0 0
\(731\) −366.733 211.733i −0.501687 0.289649i
\(732\) 0 0
\(733\) 337.597 194.912i 0.460569 0.265910i −0.251714 0.967802i \(-0.580994\pi\)
0.712284 + 0.701892i \(0.247661\pi\)
\(734\) 0 0
\(735\) 215.896 271.828i 0.293736 0.369834i
\(736\) 0 0
\(737\) −1136.58 1968.62i −1.54218 2.67113i
\(738\) 0 0
\(739\) 261.924 453.666i 0.354430 0.613891i −0.632590 0.774487i \(-0.718008\pi\)
0.987020 + 0.160596i \(0.0513415\pi\)
\(740\) 0 0
\(741\) 201.561i 0.272012i
\(742\) 0 0
\(743\) −575.858 −0.775044 −0.387522 0.921860i \(-0.626669\pi\)
−0.387522 + 0.921860i \(0.626669\pi\)
\(744\) 0 0
\(745\) −749.635 432.802i −1.00622 0.580942i
\(746\) 0 0
\(747\) 183.910 106.180i 0.246198 0.142142i
\(748\) 0 0
\(749\) 68.2162 100.268i 0.0910764 0.133869i
\(750\) 0 0
\(751\) −10.0940 17.4834i −0.0134408 0.0232801i 0.859227 0.511595i \(-0.170945\pi\)
−0.872668 + 0.488315i \(0.837612\pi\)
\(752\) 0 0
\(753\) 31.1423 53.9401i 0.0413577 0.0716336i
\(754\) 0 0
\(755\) 665.566i 0.881544i
\(756\) 0 0
\(757\) 809.002 1.06870 0.534348 0.845265i \(-0.320557\pi\)
0.534348 + 0.845265i \(0.320557\pi\)
\(758\) 0 0
\(759\) 527.674 + 304.653i 0.695223 + 0.401387i
\(760\) 0 0
\(761\) −408.446 + 235.816i −0.536723 + 0.309877i −0.743750 0.668458i \(-0.766955\pi\)
0.207027 + 0.978335i \(0.433621\pi\)
\(762\) 0 0
\(763\) 994.208 + 73.5148i 1.30303 + 0.0963497i
\(764\) 0 0
\(765\) −77.2426 133.788i −0.100971 0.174886i
\(766\) 0 0
\(767\) −205.682 + 356.251i −0.268164 + 0.464474i
\(768\) 0 0
\(769\) 977.857i 1.27160i −0.771856 0.635798i \(-0.780671\pi\)
0.771856 0.635798i \(-0.219329\pi\)
\(770\) 0 0
\(771\) −588.094 −0.762767
\(772\) 0 0
\(773\) 155.942 + 90.0329i 0.201736 + 0.116472i 0.597465 0.801895i \(-0.296175\pi\)
−0.395729 + 0.918367i \(0.629508\pi\)
\(774\) 0 0
\(775\) 307.981 177.813i 0.397394 0.229436i
\(776\) 0 0
\(777\) −419.252 + 202.413i −0.539577 + 0.260506i
\(778\) 0 0
\(779\) 23.2067 + 40.1951i 0.0297903 + 0.0515983i
\(780\) 0 0
\(781\) 781.193 1353.07i 1.00025 1.73248i
\(782\) 0 0
\(783\) 9.43872i 0.0120546i
\(784\) 0 0
\(785\) −625.673 −0.797036
\(786\) 0 0
\(787\) −1256.76 725.590i −1.59690 0.921969i −0.992080 0.125605i \(-0.959913\pi\)
−0.604817 0.796364i \(-0.706754\pi\)
\(788\) 0 0
\(789\) 186.189 107.496i 0.235981 0.136244i
\(790\) 0 0
\(791\) −558.811 1157.45i −0.706461 1.46327i
\(792\) 0 0
\(793\) 179.860 + 311.527i 0.226810 + 0.392846i
\(794\) 0 0
\(795\) 52.7127 91.3011i 0.0663053 0.114844i
\(796\) 0 0
\(797\) 29.2237i 0.0366671i 0.999832 + 0.0183336i \(0.00583608\pi\)
−0.999832 + 0.0183336i \(0.994164\pi\)
\(798\) 0 0
\(799\) 658.466 0.824113
\(800\) 0 0
\(801\) −380.812 219.862i −0.475421 0.274484i
\(802\) 0 0
\(803\) 2277.43 1314.87i 2.83615 1.63745i
\(804\) 0 0
\(805\) 36.9859 500.194i 0.0459452 0.621359i
\(806\) 0 0
\(807\) 306.478 + 530.836i 0.379775 + 0.657789i
\(808\) 0 0
\(809\) −584.425 + 1012.25i −0.722404 + 1.25124i 0.237630 + 0.971356i \(0.423629\pi\)
−0.960034 + 0.279884i \(0.909704\pi\)
\(810\) 0 0
\(811\) 538.766i 0.664323i 0.943222 + 0.332162i \(0.107778\pi\)
−0.943222 + 0.332162i \(0.892222\pi\)
\(812\) 0 0
\(813\) 379.099 0.466296
\(814\) 0 0
\(815\) 12.8113 + 7.39660i 0.0157194 + 0.00907558i
\(816\) 0 0
\(817\) −154.344 + 89.1104i −0.188915 + 0.109070i
\(818\) 0 0
\(819\) −381.328 259.432i −0.465602 0.316767i
\(820\) 0 0
\(821\) −641.644 1111.36i −0.781540 1.35367i −0.931045 0.364905i \(-0.881101\pi\)
0.149505 0.988761i \(-0.452232\pi\)
\(822\) 0 0
\(823\) −532.531 + 922.371i −0.647061 + 1.12074i 0.336761 + 0.941590i \(0.390669\pi\)
−0.983821 + 0.179152i \(0.942665\pi\)
\(824\) 0 0
\(825\) 287.666i 0.348687i
\(826\) 0 0
\(827\) 645.796 0.780890 0.390445 0.920626i \(-0.372321\pi\)
0.390445 + 0.920626i \(0.372321\pi\)
\(828\) 0 0
\(829\) 426.417 + 246.192i 0.514375 + 0.296975i 0.734630 0.678468i \(-0.237356\pi\)
−0.220255 + 0.975442i \(0.570689\pi\)
\(830\) 0 0
\(831\) −87.6609 + 50.6111i −0.105488 + 0.0609038i
\(832\) 0 0
\(833\) 573.818 226.520i 0.688857 0.271933i
\(834\) 0 0
\(835\) −179.164 310.322i −0.214568 0.371643i
\(836\) 0 0
\(837\) −111.714 + 193.493i −0.133469 + 0.231175i
\(838\) 0 0
\(839\) 72.1244i 0.0859647i −0.999076 0.0429823i \(-0.986314\pi\)
0.999076 0.0429823i \(-0.0136859\pi\)
\(840\) 0 0
\(841\) −837.700 −0.996077
\(842\) 0 0
\(843\) 727.540 + 420.045i 0.863037 + 0.498274i
\(844\) 0 0
\(845\) −1109.94 + 640.824i −1.31354 + 0.758371i
\(846\) 0 0
\(847\) −1111.38 + 1633.57i −1.31214 + 1.92865i
\(848\) 0 0
\(849\) 195.507 + 338.628i 0.230279 + 0.398855i
\(850\) 0 0
\(851\) −336.332 + 582.545i −0.395220 + 0.684541i
\(852\) 0 0
\(853\) 620.734i 0.727707i 0.931456 + 0.363854i \(0.118539\pi\)
−0.931456 + 0.363854i \(0.881461\pi\)
\(854\) 0 0
\(855\) −65.0168 −0.0760430
\(856\) 0 0
\(857\) 490.638 + 283.270i 0.572506 + 0.330536i 0.758150 0.652081i \(-0.226104\pi\)
−0.185644 + 0.982617i \(0.559437\pi\)
\(858\) 0 0
\(859\) 843.713 487.118i 0.982204 0.567076i 0.0792691 0.996853i \(-0.474741\pi\)
0.902935 + 0.429778i \(0.141408\pi\)
\(860\) 0 0
\(861\) 105.914 + 7.83159i 0.123013 + 0.00909592i
\(862\) 0 0
\(863\) −34.5370 59.8198i −0.0400197 0.0693161i 0.845322 0.534258i \(-0.179409\pi\)
−0.885341 + 0.464941i \(0.846075\pi\)
\(864\) 0 0
\(865\) 603.420 1045.15i 0.697595 1.20827i
\(866\) 0 0
\(867\) 226.018i 0.260690i
\(868\) 0 0
\(869\) 2286.95 2.63170
\(870\) 0 0
\(871\) 2153.05 + 1243.06i 2.47192 + 1.42717i
\(872\) 0 0
\(873\) 57.3635 33.1189i 0.0657085 0.0379368i
\(874\) 0 0
\(875\) 857.830 414.157i 0.980377 0.473322i
\(876\) 0 0
\(877\) 89.0528 + 154.244i 0.101543 + 0.175877i 0.912320 0.409477i \(-0.134289\pi\)
−0.810778 + 0.585354i \(0.800956\pi\)
\(878\) 0 0
\(879\) 270.946 469.292i 0.308244 0.533894i
\(880\) 0 0
\(881\) 1205.99i 1.36889i 0.729065 + 0.684445i \(0.239955\pi\)
−0.729065 + 0.684445i \(0.760045\pi\)
\(882\) 0 0
\(883\) 1610.13 1.82348 0.911740 0.410767i \(-0.134739\pi\)
0.911740 + 0.410767i \(0.134739\pi\)
\(884\) 0 0
\(885\) 114.915 + 66.3461i 0.129847 + 0.0749673i
\(886\) 0 0
\(887\) 87.7294 50.6506i 0.0989058 0.0571033i −0.449731 0.893164i \(-0.648480\pi\)
0.548637 + 0.836061i \(0.315147\pi\)
\(888\) 0 0
\(889\) −200.078 414.415i −0.225060 0.466159i
\(890\) 0 0
\(891\) −90.3654 156.517i −0.101420 0.175665i
\(892\) 0 0
\(893\) 138.561 239.995i 0.155164 0.268752i
\(894\) 0 0
\(895\) 1224.91i 1.36862i
\(896\) 0 0
\(897\) −666.387 −0.742906
\(898\) 0 0
\(899\) −67.6419 39.0531i −0.0752413 0.0434406i
\(900\) 0 0
\(901\) 162.256 93.6787i 0.180085 0.103972i
\(902\) 0 0
\(903\) −30.0722 + 406.694i −0.0333026 + 0.450381i
\(904\) 0 0
\(905\) 100.417 + 173.927i 0.110958 + 0.192184i
\(906\) 0 0
\(907\) 184.357 319.315i 0.203260 0.352056i −0.746317 0.665591i \(-0.768180\pi\)
0.949577 + 0.313534i \(0.101513\pi\)
\(908\) 0 0
\(909\) 549.819i 0.604861i
\(910\) 0 0
\(911\) −128.901 −0.141494 −0.0707470 0.997494i \(-0.522538\pi\)
−0.0707470 + 0.997494i \(0.522538\pi\)
\(912\) 0 0
\(913\) 1231.04 + 710.743i 1.34835 + 0.778470i
\(914\) 0 0
\(915\) 100.488 58.0169i 0.109823 0.0634064i
\(916\) 0 0
\(917\) −66.1956 45.0353i −0.0721871 0.0491116i
\(918\) 0 0
\(919\) −861.173 1491.59i −0.937076 1.62306i −0.770890 0.636968i \(-0.780188\pi\)
−0.166186 0.986094i \(-0.553145\pi\)
\(920\) 0 0
\(921\) −228.285 + 395.401i −0.247867 + 0.429318i
\(922\) 0 0
\(923\) 1708.75i 1.85130i
\(924\) 0 0
\(925\) −317.580 −0.343329
\(926\) 0 0
\(927\) −66.6501 38.4804i −0.0718987 0.0415107i
\(928\) 0 0
\(929\) −1109.63 + 640.642i −1.19443 + 0.689604i −0.959308 0.282362i \(-0.908882\pi\)
−0.235122 + 0.971966i \(0.575549\pi\)
\(930\) 0 0
\(931\) 38.1874 256.810i 0.0410176 0.275843i
\(932\) 0 0
\(933\) −273.433 473.599i −0.293068 0.507609i
\(934\) 0 0
\(935\) 517.041 895.542i 0.552985 0.957799i
\(936\) 0 0
\(937\) 996.293i 1.06328i −0.846971 0.531640i \(-0.821576\pi\)
0.846971 0.531640i \(-0.178424\pi\)
\(938\) 0 0
\(939\) −275.652 −0.293559
\(940\) 0 0
\(941\) 1531.28 + 884.086i 1.62729 + 0.939517i 0.984897 + 0.173144i \(0.0553925\pi\)
0.642395 + 0.766374i \(0.277941\pi\)
\(942\) 0 0
\(943\) 132.890 76.7243i 0.140923 0.0813619i
\(944\) 0 0
\(945\) −83.6841 + 123.004i −0.0885546 + 0.130163i
\(946\) 0 0
\(947\) 479.865 + 831.150i 0.506721 + 0.877667i 0.999970 + 0.00777830i \(0.00247593\pi\)
−0.493249 + 0.869888i \(0.664191\pi\)
\(948\) 0 0
\(949\) −1438.06 + 2490.79i −1.51534 + 2.62464i
\(950\) 0 0
\(951\) 405.407i 0.426295i
\(952\) 0 0
\(953\) −881.308 −0.924772 −0.462386 0.886679i \(-0.653007\pi\)
−0.462386 + 0.886679i \(0.653007\pi\)
\(954\) 0 0
\(955\) −524.741 302.959i −0.549467 0.317235i
\(956\) 0 0
\(957\) 54.7157 31.5901i 0.0571742 0.0330096i
\(958\) 0 0
\(959\) 193.061 + 14.2755i 0.201315 + 0.0148859i
\(960\) 0 0
\(961\) 443.938 + 768.923i 0.461954 + 0.800128i
\(962\) 0 0
\(963\) −25.9871 + 45.0110i −0.0269856 + 0.0467404i
\(964\) 0 0
\(965\) 710.306i 0.736068i
\(966\) 0 0
\(967\) 513.785 0.531319 0.265659 0.964067i \(-0.414410\pi\)
0.265659 + 0.964067i \(0.414410\pi\)
\(968\) 0 0
\(969\) −100.065 57.7725i −0.103266 0.0596207i
\(970\) 0 0
\(971\) −1637.84 + 945.609i −1.68676 + 0.973851i −0.729785 + 0.683677i \(0.760380\pi\)
−0.956974 + 0.290174i \(0.906287\pi\)
\(972\) 0 0
\(973\) −568.118 + 274.285i −0.583883 + 0.281896i
\(974\) 0 0
\(975\) −157.308 272.465i −0.161341 0.279452i
\(976\) 0 0
\(977\) −144.973 + 251.100i −0.148386 + 0.257012i −0.930631 0.365959i \(-0.880741\pi\)
0.782245 + 0.622971i \(0.214074\pi\)
\(978\) 0 0
\(979\) 2943.39i 3.00653i
\(980\) 0 0
\(981\) −427.253 −0.435528
\(982\) 0 0
\(983\) −82.7372 47.7683i −0.0841680 0.0485944i 0.457325 0.889299i \(-0.348808\pi\)
−0.541493 + 0.840705i \(0.682141\pi\)
\(984\) 0 0
\(985\) 209.109 120.729i 0.212294 0.122568i
\(986\) 0 0
\(987\) −275.697 571.043i −0.279328 0.578564i
\(988\) 0 0
\(989\) 294.611 + 510.281i 0.297887 + 0.515956i
\(990\) 0 0
\(991\) 237.242 410.915i 0.239396 0.414647i −0.721145 0.692784i \(-0.756384\pi\)
0.960541 + 0.278138i \(0.0897171\pi\)
\(992\) 0 0
\(993\) 936.304i 0.942904i
\(994\) 0 0
\(995\) 35.5629 0.0357417
\(996\) 0 0
\(997\) −520.989 300.793i −0.522557 0.301698i 0.215423 0.976521i \(-0.430887\pi\)
−0.737980 + 0.674822i \(0.764220\pi\)
\(998\) 0 0
\(999\) 172.793 99.7621i 0.172966 0.0998620i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 672.3.bh.a.577.5 yes 16
4.3 odd 2 672.3.bh.c.577.5 yes 16
7.5 odd 6 inner 672.3.bh.a.481.5 16
28.19 even 6 672.3.bh.c.481.5 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
672.3.bh.a.481.5 16 7.5 odd 6 inner
672.3.bh.a.577.5 yes 16 1.1 even 1 trivial
672.3.bh.c.481.5 yes 16 28.19 even 6
672.3.bh.c.577.5 yes 16 4.3 odd 2