Properties

Label 2-672-7.3-c2-0-31
Degree $2$
Conductor $672$
Sign $-0.891 - 0.453i$
Analytic cond. $18.3106$
Root an. cond. $4.27909$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.5 − 0.866i)3-s + (3.54 − 2.04i)5-s + (−3.04 − 6.30i)7-s + (1.5 + 2.59i)9-s + (−10.0 + 17.3i)11-s − 21.9i·13-s − 7.08·15-s + (−10.9 − 6.29i)17-s + (−4.58 + 2.64i)19-s + (−0.894 + 12.0i)21-s + (8.75 + 15.1i)23-s + (−4.13 + 7.16i)25-s − 5.19i·27-s + 1.81·29-s + (−37.2 − 21.4i)31-s + ⋯
L(s)  = 1  + (−0.5 − 0.288i)3-s + (0.708 − 0.409i)5-s + (−0.434 − 0.900i)7-s + (0.166 + 0.288i)9-s + (−0.912 + 1.58i)11-s − 1.68i·13-s − 0.472·15-s + (−0.641 − 0.370i)17-s + (−0.241 + 0.139i)19-s + (−0.0425 + 0.575i)21-s + (0.380 + 0.659i)23-s + (−0.165 + 0.286i)25-s − 0.192i·27-s + 0.0626·29-s + (−1.20 − 0.693i)31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 672 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.891 - 0.453i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 672 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.891 - 0.453i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(672\)    =    \(2^{5} \cdot 3 \cdot 7\)
Sign: $-0.891 - 0.453i$
Analytic conductor: \(18.3106\)
Root analytic conductor: \(4.27909\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{672} (577, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 672,\ (\ :1),\ -0.891 - 0.453i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.1648159464\)
\(L(\frac12)\) \(\approx\) \(0.1648159464\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + (1.5 + 0.866i)T \)
7 \( 1 + (3.04 + 6.30i)T \)
good5 \( 1 + (-3.54 + 2.04i)T + (12.5 - 21.6i)T^{2} \)
11 \( 1 + (10.0 - 17.3i)T + (-60.5 - 104. i)T^{2} \)
13 \( 1 + 21.9iT - 169T^{2} \)
17 \( 1 + (10.9 + 6.29i)T + (144.5 + 250. i)T^{2} \)
19 \( 1 + (4.58 - 2.64i)T + (180.5 - 312. i)T^{2} \)
23 \( 1 + (-8.75 - 15.1i)T + (-264.5 + 458. i)T^{2} \)
29 \( 1 - 1.81T + 841T^{2} \)
31 \( 1 + (37.2 + 21.4i)T + (480.5 + 832. i)T^{2} \)
37 \( 1 + (-19.1 - 33.2i)T + (-684.5 + 1.18e3i)T^{2} \)
41 \( 1 + 8.75iT - 1.68e3T^{2} \)
43 \( 1 - 33.6T + 1.84e3T^{2} \)
47 \( 1 + (45.2 - 26.1i)T + (1.10e3 - 1.91e3i)T^{2} \)
53 \( 1 + (7.44 - 12.8i)T + (-1.40e3 - 2.43e3i)T^{2} \)
59 \( 1 + (16.2 + 9.36i)T + (1.74e3 + 3.01e3i)T^{2} \)
61 \( 1 + (14.1 - 8.18i)T + (1.86e3 - 3.22e3i)T^{2} \)
67 \( 1 + (56.5 - 98.0i)T + (-2.24e3 - 3.88e3i)T^{2} \)
71 \( 1 + 77.8T + 5.04e3T^{2} \)
73 \( 1 + (113. + 65.4i)T + (2.66e3 + 4.61e3i)T^{2} \)
79 \( 1 + (56.9 + 98.6i)T + (-3.12e3 + 5.40e3i)T^{2} \)
83 \( 1 + 70.7iT - 6.88e3T^{2} \)
89 \( 1 + (126. - 73.2i)T + (3.96e3 - 6.85e3i)T^{2} \)
97 \( 1 + 22.0iT - 9.40e3T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.05462427188326987489593766130, −9.142789698909876165978874033093, −7.64524854468102297882523703484, −7.38061440866008713660486886204, −6.10877318483012376627000461492, −5.27778333963273283216085945706, −4.42804328739582793726820136525, −2.88356204959067200797023680350, −1.53910286087499362410519512019, −0.05973899386544489583686108973, 2.03522777088293019726830701054, 3.08683585290118084981077886983, 4.43965986236550904558884579575, 5.65684802397119631760591937014, 6.15252431372983239234759308185, 6.98193554922033425220636891406, 8.538008739560580899670444129661, 9.040107528675377893090502189068, 9.969644752741419803663439944088, 10.94859586559791066448418956627

Graph of the $Z$-function along the critical line