Properties

Label 672.2.k.b.545.5
Level $672$
Weight $2$
Character 672.545
Analytic conductor $5.366$
Analytic rank $0$
Dimension $8$
CM discriminant -84
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [672,2,Mod(545,672)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(672, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("672.545"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 672 = 2^{5} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 672.k (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,0,0,-24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.36594701583\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.49787136.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 3x^{6} + 5x^{4} + 12x^{2} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{12} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

Embedding invariants

Embedding label 545.5
Root \(1.09445 - 0.895644i\) of defining polynomial
Character \(\chi\) \(=\) 672.545
Dual form 672.2.k.b.545.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.73205i q^{3} -4.37780 q^{5} +2.64575i q^{7} -3.00000 q^{9} -3.58258i q^{11} -7.58258i q^{15} +2.55040 q^{17} -5.29150i q^{19} -4.58258 q^{21} +0.417424i q^{23} +14.1652 q^{25} -5.19615i q^{27} -3.46410i q^{31} +6.20520 q^{33} -11.5826i q^{35} -9.16515 q^{37} -11.3060 q^{41} +13.1334 q^{45} -7.00000 q^{49} +4.41742i q^{51} +15.6838i q^{55} +9.16515 q^{57} -7.93725i q^{63} -0.723000 q^{69} -15.5826i q^{71} +24.5348i q^{75} +9.47860 q^{77} +9.00000 q^{81} -11.1652 q^{85} -14.9608 q^{89} +6.00000 q^{93} +23.1652i q^{95} +10.7477i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 24 q^{9} + 40 q^{25} - 56 q^{49} + 72 q^{81} - 16 q^{85} + 48 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/672\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(421\) \(449\) \(577\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.73205i 1.00000i
\(4\) 0 0
\(5\) −4.37780 −1.95781 −0.978906 0.204310i \(-0.934505\pi\)
−0.978906 + 0.204310i \(0.934505\pi\)
\(6\) 0 0
\(7\) 2.64575i 1.00000i
\(8\) 0 0
\(9\) −3.00000 −1.00000
\(10\) 0 0
\(11\) − 3.58258i − 1.08019i −0.841605 0.540094i \(-0.818389\pi\)
0.841605 0.540094i \(-0.181611\pi\)
\(12\) 0 0
\(13\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(14\) 0 0
\(15\) − 7.58258i − 1.95781i
\(16\) 0 0
\(17\) 2.55040 0.618563 0.309282 0.950971i \(-0.399911\pi\)
0.309282 + 0.950971i \(0.399911\pi\)
\(18\) 0 0
\(19\) − 5.29150i − 1.21395i −0.794719 0.606977i \(-0.792382\pi\)
0.794719 0.606977i \(-0.207618\pi\)
\(20\) 0 0
\(21\) −4.58258 −1.00000
\(22\) 0 0
\(23\) 0.417424i 0.0870390i 0.999053 + 0.0435195i \(0.0138571\pi\)
−0.999053 + 0.0435195i \(0.986143\pi\)
\(24\) 0 0
\(25\) 14.1652 2.83303
\(26\) 0 0
\(27\) − 5.19615i − 1.00000i
\(28\) 0 0
\(29\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(30\) 0 0
\(31\) − 3.46410i − 0.622171i −0.950382 0.311086i \(-0.899307\pi\)
0.950382 0.311086i \(-0.100693\pi\)
\(32\) 0 0
\(33\) 6.20520 1.08019
\(34\) 0 0
\(35\) − 11.5826i − 1.95781i
\(36\) 0 0
\(37\) −9.16515 −1.50674 −0.753371 0.657596i \(-0.771573\pi\)
−0.753371 + 0.657596i \(0.771573\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −11.3060 −1.76570 −0.882851 0.469654i \(-0.844379\pi\)
−0.882851 + 0.469654i \(0.844379\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(44\) 0 0
\(45\) 13.1334 1.95781
\(46\) 0 0
\(47\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(48\) 0 0
\(49\) −7.00000 −1.00000
\(50\) 0 0
\(51\) 4.41742i 0.618563i
\(52\) 0 0
\(53\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(54\) 0 0
\(55\) 15.6838i 2.11480i
\(56\) 0 0
\(57\) 9.16515 1.21395
\(58\) 0 0
\(59\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(62\) 0 0
\(63\) − 7.93725i − 1.00000i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(68\) 0 0
\(69\) −0.723000 −0.0870390
\(70\) 0 0
\(71\) − 15.5826i − 1.84931i −0.380804 0.924656i \(-0.624353\pi\)
0.380804 0.924656i \(-0.375647\pi\)
\(72\) 0 0
\(73\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(74\) 0 0
\(75\) 24.5348i 2.83303i
\(76\) 0 0
\(77\) 9.47860 1.08019
\(78\) 0 0
\(79\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(80\) 0 0
\(81\) 9.00000 1.00000
\(82\) 0 0
\(83\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(84\) 0 0
\(85\) −11.1652 −1.21103
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −14.9608 −1.58584 −0.792921 0.609324i \(-0.791441\pi\)
−0.792921 + 0.609324i \(0.791441\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 6.00000 0.622171
\(94\) 0 0
\(95\) 23.1652i 2.37669i
\(96\) 0 0
\(97\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(98\) 0 0
\(99\) 10.7477i 1.08019i
\(100\) 0 0
\(101\) −8.03260 −0.799274 −0.399637 0.916673i \(-0.630864\pi\)
−0.399637 + 0.916673i \(0.630864\pi\)
\(102\) 0 0
\(103\) − 17.3205i − 1.70664i −0.521387 0.853320i \(-0.674585\pi\)
0.521387 0.853320i \(-0.325415\pi\)
\(104\) 0 0
\(105\) 20.0616 1.95781
\(106\) 0 0
\(107\) 18.7477i 1.81241i 0.422837 + 0.906206i \(0.361034\pi\)
−0.422837 + 0.906206i \(0.638966\pi\)
\(108\) 0 0
\(109\) −10.0000 −0.957826 −0.478913 0.877862i \(-0.658969\pi\)
−0.478913 + 0.877862i \(0.658969\pi\)
\(110\) 0 0
\(111\) − 15.8745i − 1.50674i
\(112\) 0 0
\(113\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(114\) 0 0
\(115\) − 1.82740i − 0.170406i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 6.74773i 0.618563i
\(120\) 0 0
\(121\) −1.83485 −0.166804
\(122\) 0 0
\(123\) − 19.5826i − 1.76570i
\(124\) 0 0
\(125\) −40.1232 −3.58873
\(126\) 0 0
\(127\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(132\) 0 0
\(133\) 14.0000 1.21395
\(134\) 0 0
\(135\) 22.7477i 1.95781i
\(136\) 0 0
\(137\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(138\) 0 0
\(139\) − 10.3923i − 0.881464i −0.897639 0.440732i \(-0.854719\pi\)
0.897639 0.440732i \(-0.145281\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) − 12.1244i − 1.00000i
\(148\) 0 0
\(149\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(152\) 0 0
\(153\) −7.65120 −0.618563
\(154\) 0 0
\(155\) 15.1652i 1.21809i
\(156\) 0 0
\(157\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −1.10440 −0.0870390
\(162\) 0 0
\(163\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(164\) 0 0
\(165\) −27.1652 −2.11480
\(166\) 0 0
\(167\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(168\) 0 0
\(169\) 13.0000 1.00000
\(170\) 0 0
\(171\) 15.8745i 1.21395i
\(172\) 0 0
\(173\) 16.7882 1.27638 0.638192 0.769877i \(-0.279683\pi\)
0.638192 + 0.769877i \(0.279683\pi\)
\(174\) 0 0
\(175\) 37.4775i 2.83303i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 26.7477i 1.99922i 0.0279439 + 0.999609i \(0.491104\pi\)
−0.0279439 + 0.999609i \(0.508896\pi\)
\(180\) 0 0
\(181\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 40.1232 2.94992
\(186\) 0 0
\(187\) − 9.13701i − 0.668164i
\(188\) 0 0
\(189\) 13.7477 1.00000
\(190\) 0 0
\(191\) − 23.5826i − 1.70638i −0.521604 0.853188i \(-0.674666\pi\)
0.521604 0.853188i \(-0.325334\pi\)
\(192\) 0 0
\(193\) −27.4955 −1.97917 −0.989583 0.143963i \(-0.954015\pi\)
−0.989583 + 0.143963i \(0.954015\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(198\) 0 0
\(199\) 5.29150i 0.375105i 0.982255 + 0.187552i \(0.0600554\pi\)
−0.982255 + 0.187552i \(0.939945\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 49.4955 3.45691
\(206\) 0 0
\(207\) − 1.25227i − 0.0870390i
\(208\) 0 0
\(209\) −18.9572 −1.31130
\(210\) 0 0
\(211\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(212\) 0 0
\(213\) 26.9898 1.84931
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 9.16515 0.622171
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 26.4575i 1.77173i 0.463947 + 0.885863i \(0.346433\pi\)
−0.463947 + 0.885863i \(0.653567\pi\)
\(224\) 0 0
\(225\) −42.4955 −2.83303
\(226\) 0 0
\(227\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(228\) 0 0
\(229\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(230\) 0 0
\(231\) 16.4174i 1.08019i
\(232\) 0 0
\(233\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 30.7477i 1.98891i 0.105186 + 0.994453i \(0.466456\pi\)
−0.105186 + 0.994453i \(0.533544\pi\)
\(240\) 0 0
\(241\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(242\) 0 0
\(243\) 15.5885i 1.00000i
\(244\) 0 0
\(245\) 30.6446 1.95781
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(252\) 0 0
\(253\) 1.49545 0.0940184
\(254\) 0 0
\(255\) − 19.3386i − 1.21103i
\(256\) 0 0
\(257\) −25.1624 −1.56959 −0.784794 0.619757i \(-0.787231\pi\)
−0.784794 + 0.619757i \(0.787231\pi\)
\(258\) 0 0
\(259\) − 24.2487i − 1.50674i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) − 21.9129i − 1.35121i −0.737266 0.675603i \(-0.763883\pi\)
0.737266 0.675603i \(-0.236117\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) − 25.9129i − 1.58584i
\(268\) 0 0
\(269\) 5.82380 0.355083 0.177542 0.984113i \(-0.443186\pi\)
0.177542 + 0.984113i \(0.443186\pi\)
\(270\) 0 0
\(271\) − 31.1769i − 1.89386i −0.321436 0.946931i \(-0.604165\pi\)
0.321436 0.946931i \(-0.395835\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) − 50.7477i − 3.06020i
\(276\) 0 0
\(277\) −9.16515 −0.550681 −0.275340 0.961347i \(-0.588791\pi\)
−0.275340 + 0.961347i \(0.588791\pi\)
\(278\) 0 0
\(279\) 10.3923i 0.622171i
\(280\) 0 0
\(281\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(282\) 0 0
\(283\) − 26.4575i − 1.57274i −0.617758 0.786368i \(-0.711959\pi\)
0.617758 0.786368i \(-0.288041\pi\)
\(284\) 0 0
\(285\) −40.1232 −2.37669
\(286\) 0 0
\(287\) − 29.9129i − 1.76570i
\(288\) 0 0
\(289\) −10.4955 −0.617380
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 2.93180 0.171278 0.0856388 0.996326i \(-0.472707\pi\)
0.0856388 + 0.996326i \(0.472707\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −18.6156 −1.08019
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) − 13.9129i − 0.799274i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) − 5.29150i − 0.302002i −0.988534 0.151001i \(-0.951750\pi\)
0.988534 0.151001i \(-0.0482497\pi\)
\(308\) 0 0
\(309\) 30.0000 1.70664
\(310\) 0 0
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) 0 0
\(313\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(314\) 0 0
\(315\) 34.7477i 1.95781i
\(316\) 0 0
\(317\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) −32.4720 −1.81241
\(322\) 0 0
\(323\) − 13.4955i − 0.750907i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) − 17.3205i − 0.957826i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(332\) 0 0
\(333\) 27.4955 1.50674
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 2.00000 0.108947 0.0544735 0.998515i \(-0.482652\pi\)
0.0544735 + 0.998515i \(0.482652\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −12.4104 −0.672061
\(342\) 0 0
\(343\) − 18.5203i − 1.00000i
\(344\) 0 0
\(345\) 3.16515 0.170406
\(346\) 0 0
\(347\) − 9.91288i − 0.532151i −0.963952 0.266076i \(-0.914273\pi\)
0.963952 0.266076i \(-0.0857271\pi\)
\(348\) 0 0
\(349\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 37.5728 1.99980 0.999900 0.0141657i \(-0.00450924\pi\)
0.999900 + 0.0141657i \(0.00450924\pi\)
\(354\) 0 0
\(355\) 68.2174i 3.62061i
\(356\) 0 0
\(357\) −11.6874 −0.618563
\(358\) 0 0
\(359\) − 9.25227i − 0.488316i −0.969735 0.244158i \(-0.921488\pi\)
0.969735 0.244158i \(-0.0785116\pi\)
\(360\) 0 0
\(361\) −9.00000 −0.473684
\(362\) 0 0
\(363\) − 3.17805i − 0.166804i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 26.4575i 1.38107i 0.723299 + 0.690535i \(0.242625\pi\)
−0.723299 + 0.690535i \(0.757375\pi\)
\(368\) 0 0
\(369\) 33.9180 1.76570
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −34.0000 −1.76045 −0.880227 0.474554i \(-0.842610\pi\)
−0.880227 + 0.474554i \(0.842610\pi\)
\(374\) 0 0
\(375\) − 69.4955i − 3.58873i
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(384\) 0 0
\(385\) −41.4955 −2.11480
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(390\) 0 0
\(391\) 1.06460i 0.0538391i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(398\) 0 0
\(399\) 24.2487i 1.21395i
\(400\) 0 0
\(401\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) −39.4002 −1.95781
\(406\) 0 0
\(407\) 32.8348i 1.62756i
\(408\) 0 0
\(409\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 18.0000 0.881464
\(418\) 0 0
\(419\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(420\) 0 0
\(421\) −9.16515 −0.446682 −0.223341 0.974740i \(-0.571696\pi\)
−0.223341 + 0.974740i \(0.571696\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 36.1268 1.75241
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 24.4174i 1.17615i 0.808808 + 0.588073i \(0.200113\pi\)
−0.808808 + 0.588073i \(0.799887\pi\)
\(432\) 0 0
\(433\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 2.20880 0.105661
\(438\) 0 0
\(439\) 5.29150i 0.252550i 0.991995 + 0.126275i \(0.0403021\pi\)
−0.991995 + 0.126275i \(0.959698\pi\)
\(440\) 0 0
\(441\) 21.0000 1.00000
\(442\) 0 0
\(443\) − 41.9129i − 1.99134i −0.0929532 0.995670i \(-0.529631\pi\)
0.0929532 0.995670i \(-0.470369\pi\)
\(444\) 0 0
\(445\) 65.4955 3.10478
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(450\) 0 0
\(451\) 40.5046i 1.90729i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −22.0000 −1.02912 −0.514558 0.857455i \(-0.672044\pi\)
−0.514558 + 0.857455i \(0.672044\pi\)
\(458\) 0 0
\(459\) − 13.2523i − 0.618563i
\(460\) 0 0
\(461\) 20.4430 0.952126 0.476063 0.879411i \(-0.342063\pi\)
0.476063 + 0.879411i \(0.342063\pi\)
\(462\) 0 0
\(463\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(464\) 0 0
\(465\) −26.2668 −1.21809
\(466\) 0 0
\(467\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) − 74.9549i − 3.43917i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) − 1.91288i − 0.0870390i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) − 35.5826i − 1.60582i −0.596101 0.802910i \(-0.703284\pi\)
0.596101 0.802910i \(-0.296716\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) − 47.0514i − 2.11480i
\(496\) 0 0
\(497\) 41.2276 1.84931
\(498\) 0 0
\(499\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(504\) 0 0
\(505\) 35.1652 1.56483
\(506\) 0 0
\(507\) 22.5167i 1.00000i
\(508\) 0 0
\(509\) 44.5010 1.97247 0.986237 0.165340i \(-0.0528723\pi\)
0.986237 + 0.165340i \(0.0528723\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) −27.4955 −1.21395
\(514\) 0 0
\(515\) 75.8258i 3.34128i
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 29.0780i 1.27638i
\(520\) 0 0
\(521\) −42.6736 −1.86957 −0.934783 0.355220i \(-0.884406\pi\)
−0.934783 + 0.355220i \(0.884406\pi\)
\(522\) 0 0
\(523\) 17.3205i 0.757373i 0.925525 + 0.378686i \(0.123624\pi\)
−0.925525 + 0.378686i \(0.876376\pi\)
\(524\) 0 0
\(525\) −64.9129 −2.83303
\(526\) 0 0
\(527\) − 8.83485i − 0.384852i
\(528\) 0 0
\(529\) 22.8258 0.992424
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) − 82.0738i − 3.54836i
\(536\) 0 0
\(537\) −46.3284 −1.99922
\(538\) 0 0
\(539\) 25.0780i 1.08019i
\(540\) 0 0
\(541\) −45.8258 −1.97020 −0.985102 0.171973i \(-0.944986\pi\)
−0.985102 + 0.171973i \(0.944986\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 43.7780 1.87524
\(546\) 0 0
\(547\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 69.4955i 2.94992i
\(556\) 0 0
\(557\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 15.8258 0.668164
\(562\) 0 0
\(563\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 23.8118i 1.00000i
\(568\) 0 0
\(569\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(570\) 0 0
\(571\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(572\) 0 0
\(573\) 40.8462 1.70638
\(574\) 0 0
\(575\) 5.91288i 0.246584i
\(576\) 0 0
\(577\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(578\) 0 0
\(579\) − 47.6235i − 1.97917i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(588\) 0 0
\(589\) −18.3303 −0.755287
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −36.1268 −1.48355 −0.741775 0.670648i \(-0.766016\pi\)
−0.741775 + 0.670648i \(0.766016\pi\)
\(594\) 0 0
\(595\) − 29.5402i − 1.21103i
\(596\) 0 0
\(597\) −9.16515 −0.375105
\(598\) 0 0
\(599\) 45.0780i 1.84184i 0.389754 + 0.920919i \(0.372560\pi\)
−0.389754 + 0.920919i \(0.627440\pi\)
\(600\) 0 0
\(601\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 8.03260 0.326572
\(606\) 0 0
\(607\) 26.4575i 1.07388i 0.843621 + 0.536939i \(0.180419\pi\)
−0.843621 + 0.536939i \(0.819581\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 46.0000 1.85792 0.928961 0.370177i \(-0.120703\pi\)
0.928961 + 0.370177i \(0.120703\pi\)
\(614\) 0 0
\(615\) 85.7286i 3.45691i
\(616\) 0 0
\(617\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(618\) 0 0
\(619\) 45.0333i 1.81004i 0.425367 + 0.905021i \(0.360145\pi\)
−0.425367 + 0.905021i \(0.639855\pi\)
\(620\) 0 0
\(621\) 2.16900 0.0870390
\(622\) 0 0
\(623\) − 39.5826i − 1.58584i
\(624\) 0 0
\(625\) 104.826 4.19303
\(626\) 0 0
\(627\) − 32.8348i − 1.31130i
\(628\) 0 0
\(629\) −23.3748 −0.932015
\(630\) 0 0
\(631\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 46.7477i 1.84931i
\(640\) 0 0
\(641\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(642\) 0 0
\(643\) 37.0405i 1.46074i 0.683054 + 0.730368i \(0.260651\pi\)
−0.683054 + 0.730368i \(0.739349\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 15.8745i 0.622171i
\(652\) 0 0
\(653\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 49.0780i 1.91181i 0.293678 + 0.955904i \(0.405121\pi\)
−0.293678 + 0.955904i \(0.594879\pi\)
\(660\) 0 0
\(661\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −61.2892 −2.37669
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) −45.8258 −1.77173
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −27.4955 −1.05987 −0.529936 0.848038i \(-0.677784\pi\)
−0.529936 + 0.848038i \(0.677784\pi\)
\(674\) 0 0
\(675\) − 73.6043i − 2.83303i
\(676\) 0 0
\(677\) 6.58660 0.253144 0.126572 0.991957i \(-0.459603\pi\)
0.126572 + 0.991957i \(0.459603\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 6.08712i 0.232917i 0.993196 + 0.116459i \(0.0371542\pi\)
−0.993196 + 0.116459i \(0.962846\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 31.1769i 1.18603i 0.805193 + 0.593013i \(0.202062\pi\)
−0.805193 + 0.593013i \(0.797938\pi\)
\(692\) 0 0
\(693\) −28.4358 −1.08019
\(694\) 0 0
\(695\) 45.4955i 1.72574i
\(696\) 0 0
\(697\) −28.8348 −1.09220
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(702\) 0 0
\(703\) 48.4974i 1.82911i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) − 21.2523i − 0.799274i
\(708\) 0 0
\(709\) −50.0000 −1.87779 −0.938895 0.344204i \(-0.888149\pi\)
−0.938895 + 0.344204i \(0.888149\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 1.44600 0.0541531
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −53.2566 −1.98891
\(718\) 0 0
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 0 0
\(721\) 45.8258 1.70664
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 10.3923i 0.385429i 0.981255 + 0.192715i \(0.0617292\pi\)
−0.981255 + 0.192715i \(0.938271\pi\)
\(728\) 0 0
\(729\) −27.0000 −1.00000
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(734\) 0 0
\(735\) 53.0780i 1.95781i
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) − 53.9129i − 1.97787i −0.148344 0.988936i \(-0.547394\pi\)
0.148344 0.988936i \(-0.452606\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −49.6018 −1.81241
\(750\) 0 0
\(751\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −2.00000 −0.0726912 −0.0363456 0.999339i \(-0.511572\pi\)
−0.0363456 + 0.999339i \(0.511572\pi\)
\(758\) 0 0
\(759\) 2.59020i 0.0940184i
\(760\) 0 0
\(761\) 55.0840 1.99679 0.998397 0.0565953i \(-0.0180245\pi\)
0.998397 + 0.0565953i \(0.0180245\pi\)
\(762\) 0 0
\(763\) − 26.4575i − 0.957826i
\(764\) 0 0
\(765\) 33.4955 1.21103
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(770\) 0 0
\(771\) − 43.5826i − 1.56959i
\(772\) 0 0
\(773\) −15.3422 −0.551821 −0.275910 0.961183i \(-0.588979\pi\)
−0.275910 + 0.961183i \(0.588979\pi\)
\(774\) 0 0
\(775\) − 49.0695i − 1.76263i
\(776\) 0 0
\(777\) 42.0000 1.50674
\(778\) 0 0
\(779\) 59.8258i 2.14348i
\(780\) 0 0
\(781\) −55.8258 −1.99760
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) − 51.9615i − 1.85223i −0.377243 0.926114i \(-0.623128\pi\)
0.377243 0.926114i \(-0.376872\pi\)
\(788\) 0 0
\(789\) 37.9542 1.35121
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 37.1914 1.31739 0.658694 0.752411i \(-0.271109\pi\)
0.658694 + 0.752411i \(0.271109\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 44.8824 1.58584
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 4.83485 0.170406
\(806\) 0 0
\(807\) 10.0871i 0.355083i
\(808\) 0 0
\(809\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(810\) 0 0
\(811\) − 38.1051i − 1.33805i −0.743239 0.669026i \(-0.766712\pi\)
0.743239 0.669026i \(-0.233288\pi\)
\(812\) 0 0
\(813\) 54.0000 1.89386
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(822\) 0 0
\(823\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(824\) 0 0
\(825\) 87.8976 3.06020
\(826\) 0 0
\(827\) 57.0780i 1.98480i 0.123064 + 0.992399i \(0.460728\pi\)
−0.123064 + 0.992399i \(0.539272\pi\)
\(828\) 0 0
\(829\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(830\) 0 0
\(831\) − 15.8745i − 0.550681i
\(832\) 0 0
\(833\) −17.8528 −0.618563
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −18.0000 −0.622171
\(838\) 0 0
\(839\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(840\) 0 0
\(841\) 29.0000 1.00000
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −56.9114 −1.95781
\(846\) 0 0
\(847\) − 4.85455i − 0.166804i
\(848\) 0 0
\(849\) 45.8258 1.57274
\(850\) 0 0
\(851\) − 3.82576i − 0.131145i
\(852\) 0 0
\(853\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(854\) 0 0
\(855\) − 69.4955i − 2.37669i
\(856\) 0 0
\(857\) −0.341599 −0.0116688 −0.00583441 0.999983i \(-0.501857\pi\)
−0.00583441 + 0.999983i \(0.501857\pi\)
\(858\) 0 0
\(859\) 58.2065i 1.98598i 0.118194 + 0.992991i \(0.462290\pi\)
−0.118194 + 0.992991i \(0.537710\pi\)
\(860\) 0 0
\(861\) 51.8106 1.76570
\(862\) 0 0
\(863\) − 36.2432i − 1.23373i −0.787068 0.616866i \(-0.788402\pi\)
0.787068 0.616866i \(-0.211598\pi\)
\(864\) 0 0
\(865\) −73.4955 −2.49892
\(866\) 0 0
\(867\) − 18.1787i − 0.617380i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) − 106.156i − 3.58873i
\(876\) 0 0
\(877\) 22.0000 0.742887 0.371444 0.928456i \(-0.378863\pi\)
0.371444 + 0.928456i \(0.378863\pi\)
\(878\) 0 0
\(879\) 5.07803i 0.171278i
\(880\) 0 0
\(881\) 26.6084 0.896460 0.448230 0.893918i \(-0.352055\pi\)
0.448230 + 0.893918i \(0.352055\pi\)
\(882\) 0 0
\(883\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) − 32.2432i − 1.08019i
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) − 117.096i − 3.91410i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(908\) 0 0
\(909\) 24.0978 0.799274
\(910\) 0 0
\(911\) − 52.2432i − 1.73089i −0.501001 0.865447i \(-0.667035\pi\)
0.501001 0.865447i \(-0.332965\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(920\) 0 0
\(921\) 9.16515 0.302002
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) −129.826 −4.26864
\(926\) 0 0
\(927\) 51.9615i 1.70664i
\(928\) 0 0
\(929\) −8.41400 −0.276055 −0.138027 0.990428i \(-0.544076\pi\)
−0.138027 + 0.990428i \(0.544076\pi\)
\(930\) 0 0
\(931\) 37.0405i 1.21395i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 40.0000i 1.30814i
\(936\) 0 0
\(937\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −45.9470 −1.49783 −0.748915 0.662666i \(-0.769425\pi\)
−0.748915 + 0.662666i \(0.769425\pi\)
\(942\) 0 0
\(943\) − 4.71940i − 0.153685i
\(944\) 0 0
\(945\) −60.1848 −1.95781
\(946\) 0 0
\(947\) 14.0871i 0.457770i 0.973453 + 0.228885i \(0.0735080\pi\)
−0.973453 + 0.228885i \(0.926492\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(954\) 0 0
\(955\) 103.240i 3.34076i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 19.0000 0.612903
\(962\) 0 0
\(963\) − 56.2432i − 1.81241i
\(964\) 0 0
\(965\) 120.370 3.87484
\(966\) 0 0
\(967\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(968\) 0 0
\(969\) 23.3748 0.750907
\(970\) 0 0
\(971\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(972\) 0 0
\(973\) 27.4955 0.881464
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(978\) 0 0
\(979\) 53.5982i 1.71301i
\(980\) 0 0
\(981\) 30.0000 0.957826
\(982\) 0 0
\(983\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) − 23.1652i − 0.734385i
\(996\) 0 0
\(997\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(998\) 0 0
\(999\) 47.6235i 1.50674i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 672.2.k.b.545.5 yes 8
3.2 odd 2 inner 672.2.k.b.545.8 yes 8
4.3 odd 2 inner 672.2.k.b.545.1 8
7.6 odd 2 inner 672.2.k.b.545.4 yes 8
8.3 odd 2 1344.2.k.g.1217.8 8
8.5 even 2 1344.2.k.g.1217.4 8
12.11 even 2 inner 672.2.k.b.545.4 yes 8
21.20 even 2 inner 672.2.k.b.545.1 8
24.5 odd 2 1344.2.k.g.1217.1 8
24.11 even 2 1344.2.k.g.1217.5 8
28.27 even 2 inner 672.2.k.b.545.8 yes 8
56.13 odd 2 1344.2.k.g.1217.5 8
56.27 even 2 1344.2.k.g.1217.1 8
84.83 odd 2 CM 672.2.k.b.545.5 yes 8
168.83 odd 2 1344.2.k.g.1217.4 8
168.125 even 2 1344.2.k.g.1217.8 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
672.2.k.b.545.1 8 4.3 odd 2 inner
672.2.k.b.545.1 8 21.20 even 2 inner
672.2.k.b.545.4 yes 8 7.6 odd 2 inner
672.2.k.b.545.4 yes 8 12.11 even 2 inner
672.2.k.b.545.5 yes 8 1.1 even 1 trivial
672.2.k.b.545.5 yes 8 84.83 odd 2 CM
672.2.k.b.545.8 yes 8 3.2 odd 2 inner
672.2.k.b.545.8 yes 8 28.27 even 2 inner
1344.2.k.g.1217.1 8 24.5 odd 2
1344.2.k.g.1217.1 8 56.27 even 2
1344.2.k.g.1217.4 8 8.5 even 2
1344.2.k.g.1217.4 8 168.83 odd 2
1344.2.k.g.1217.5 8 24.11 even 2
1344.2.k.g.1217.5 8 56.13 odd 2
1344.2.k.g.1217.8 8 8.3 odd 2
1344.2.k.g.1217.8 8 168.125 even 2