Properties

Label 672.2.bi.c.593.21
Level $672$
Weight $2$
Character 672.593
Analytic conductor $5.366$
Analytic rank $0$
Dimension $48$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [672,2,Mod(17,672)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("672.17"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(672, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 3, 3, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 672 = 2^{5} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 672.bi (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.36594701583\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 168)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 593.21
Character \(\chi\) \(=\) 672.593
Dual form 672.2.bi.c.17.21

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.52791 + 0.815778i) q^{3} +(0.461663 + 0.266541i) q^{5} +(-0.489180 + 2.60014i) q^{7} +(1.66901 + 2.49287i) q^{9} +(2.28733 + 3.96177i) q^{11} -4.97924 q^{13} +(0.487941 + 0.783866i) q^{15} +(-2.16139 - 3.74363i) q^{17} +(-0.921087 + 1.59537i) q^{19} +(-2.86856 + 3.57371i) q^{21} +(-0.103387 - 0.0596907i) q^{23} +(-2.35791 - 4.08402i) q^{25} +(0.516471 + 5.17042i) q^{27} +7.74542 q^{29} +(1.93668 - 1.11814i) q^{31} +(0.262906 + 7.91918i) q^{33} +(-0.918880 + 1.07000i) q^{35} +(7.02261 + 4.05451i) q^{37} +(-7.60783 - 4.06195i) q^{39} +2.60914 q^{41} +1.87217i q^{43} +(0.106069 + 1.59573i) q^{45} +(2.91482 - 5.04861i) q^{47} +(-6.52141 - 2.54387i) q^{49} +(-0.248430 - 7.48314i) q^{51} +(2.29287 + 3.97137i) q^{53} +2.43867i q^{55} +(-2.70880 + 1.68618i) q^{57} +(5.71492 - 3.29951i) q^{59} +(1.07564 - 1.86306i) q^{61} +(-7.29824 + 3.12020i) q^{63} +(-2.29873 - 1.32717i) q^{65} +(-10.4812 + 6.05131i) q^{67} +(-0.109272 - 0.175543i) q^{69} -6.20627i q^{71} +(8.35520 - 4.82388i) q^{73} +(-0.271018 - 8.16355i) q^{75} +(-11.4201 + 4.00935i) q^{77} +(0.0228792 - 0.0396280i) q^{79} +(-3.42880 + 8.32126i) q^{81} +3.86459i q^{83} -2.30440i q^{85} +(11.8343 + 6.31854i) q^{87} +(8.23362 - 14.2610i) q^{89} +(2.43575 - 12.9467i) q^{91} +(3.87123 - 0.128520i) q^{93} +(-0.850463 + 0.491015i) q^{95} +7.18828i q^{97} +(-6.05860 + 12.3143i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 4 q^{7} - 14 q^{9} - 4 q^{15} - 8 q^{25} - 48 q^{31} - 42 q^{33} + 8 q^{39} - 36 q^{49} + 4 q^{57} + 6 q^{63} - 36 q^{73} + 56 q^{79} + 42 q^{81} + 132 q^{87}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/672\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(421\) \(449\) \(577\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.52791 + 0.815778i 0.882139 + 0.470990i
\(4\) 0 0
\(5\) 0.461663 + 0.266541i 0.206462 + 0.119201i 0.599666 0.800250i \(-0.295300\pi\)
−0.393204 + 0.919451i \(0.628633\pi\)
\(6\) 0 0
\(7\) −0.489180 + 2.60014i −0.184893 + 0.982759i
\(8\) 0 0
\(9\) 1.66901 + 2.49287i 0.556337 + 0.830956i
\(10\) 0 0
\(11\) 2.28733 + 3.96177i 0.689656 + 1.19452i 0.971949 + 0.235191i \(0.0755716\pi\)
−0.282293 + 0.959328i \(0.591095\pi\)
\(12\) 0 0
\(13\) −4.97924 −1.38099 −0.690496 0.723336i \(-0.742608\pi\)
−0.690496 + 0.723336i \(0.742608\pi\)
\(14\) 0 0
\(15\) 0.487941 + 0.783866i 0.125986 + 0.202393i
\(16\) 0 0
\(17\) −2.16139 3.74363i −0.524213 0.907964i −0.999603 0.0281884i \(-0.991026\pi\)
0.475389 0.879775i \(-0.342307\pi\)
\(18\) 0 0
\(19\) −0.921087 + 1.59537i −0.211312 + 0.366003i −0.952125 0.305708i \(-0.901107\pi\)
0.740814 + 0.671711i \(0.234440\pi\)
\(20\) 0 0
\(21\) −2.86856 + 3.57371i −0.625970 + 0.779847i
\(22\) 0 0
\(23\) −0.103387 0.0596907i −0.0215577 0.0124464i 0.489182 0.872182i \(-0.337295\pi\)
−0.510740 + 0.859735i \(0.670629\pi\)
\(24\) 0 0
\(25\) −2.35791 4.08402i −0.471582 0.816804i
\(26\) 0 0
\(27\) 0.516471 + 5.17042i 0.0993949 + 0.995048i
\(28\) 0 0
\(29\) 7.74542 1.43829 0.719144 0.694861i \(-0.244534\pi\)
0.719144 + 0.694861i \(0.244534\pi\)
\(30\) 0 0
\(31\) 1.93668 1.11814i 0.347838 0.200825i −0.315894 0.948794i \(-0.602305\pi\)
0.663733 + 0.747970i \(0.268971\pi\)
\(32\) 0 0
\(33\) 0.262906 + 7.91918i 0.0457660 + 1.37855i
\(34\) 0 0
\(35\) −0.918880 + 1.07000i −0.155319 + 0.180863i
\(36\) 0 0
\(37\) 7.02261 + 4.05451i 1.15451 + 0.666557i 0.949982 0.312304i \(-0.101101\pi\)
0.204528 + 0.978861i \(0.434434\pi\)
\(38\) 0 0
\(39\) −7.60783 4.06195i −1.21823 0.650433i
\(40\) 0 0
\(41\) 2.60914 0.407479 0.203740 0.979025i \(-0.434690\pi\)
0.203740 + 0.979025i \(0.434690\pi\)
\(42\) 0 0
\(43\) 1.87217i 0.285503i 0.989759 + 0.142752i \(0.0455950\pi\)
−0.989759 + 0.142752i \(0.954405\pi\)
\(44\) 0 0
\(45\) 0.106069 + 1.59573i 0.0158118 + 0.237877i
\(46\) 0 0
\(47\) 2.91482 5.04861i 0.425170 0.736415i −0.571267 0.820764i \(-0.693548\pi\)
0.996436 + 0.0843492i \(0.0268811\pi\)
\(48\) 0 0
\(49\) −6.52141 2.54387i −0.931629 0.363410i
\(50\) 0 0
\(51\) −0.248430 7.48314i −0.0347871 1.04785i
\(52\) 0 0
\(53\) 2.29287 + 3.97137i 0.314950 + 0.545510i 0.979427 0.201799i \(-0.0646788\pi\)
−0.664476 + 0.747309i \(0.731345\pi\)
\(54\) 0 0
\(55\) 2.43867i 0.328830i
\(56\) 0 0
\(57\) −2.70880 + 1.68618i −0.358790 + 0.223339i
\(58\) 0 0
\(59\) 5.71492 3.29951i 0.744019 0.429559i −0.0795100 0.996834i \(-0.525336\pi\)
0.823529 + 0.567275i \(0.192002\pi\)
\(60\) 0 0
\(61\) 1.07564 1.86306i 0.137722 0.238541i −0.788912 0.614506i \(-0.789355\pi\)
0.926634 + 0.375965i \(0.122689\pi\)
\(62\) 0 0
\(63\) −7.29824 + 3.12020i −0.919492 + 0.393108i
\(64\) 0 0
\(65\) −2.29873 1.32717i −0.285123 0.164616i
\(66\) 0 0
\(67\) −10.4812 + 6.05131i −1.28048 + 0.739285i −0.976936 0.213532i \(-0.931503\pi\)
−0.303544 + 0.952817i \(0.598170\pi\)
\(68\) 0 0
\(69\) −0.109272 0.175543i −0.0131548 0.0211329i
\(70\) 0 0
\(71\) 6.20627i 0.736549i −0.929717 0.368275i \(-0.879949\pi\)
0.929717 0.368275i \(-0.120051\pi\)
\(72\) 0 0
\(73\) 8.35520 4.82388i 0.977902 0.564592i 0.0762659 0.997088i \(-0.475700\pi\)
0.901636 + 0.432496i \(0.142367\pi\)
\(74\) 0 0
\(75\) −0.271018 8.16355i −0.0312945 0.942645i
\(76\) 0 0
\(77\) −11.4201 + 4.00935i −1.30144 + 0.456908i
\(78\) 0 0
\(79\) 0.0228792 0.0396280i 0.00257411 0.00445849i −0.864735 0.502228i \(-0.832514\pi\)
0.867310 + 0.497769i \(0.165847\pi\)
\(80\) 0 0
\(81\) −3.42880 + 8.32126i −0.380977 + 0.924584i
\(82\) 0 0
\(83\) 3.86459i 0.424194i 0.977249 + 0.212097i \(0.0680292\pi\)
−0.977249 + 0.212097i \(0.931971\pi\)
\(84\) 0 0
\(85\) 2.30440i 0.249947i
\(86\) 0 0
\(87\) 11.8343 + 6.31854i 1.26877 + 0.677419i
\(88\) 0 0
\(89\) 8.23362 14.2610i 0.872762 1.51167i 0.0136336 0.999907i \(-0.495660\pi\)
0.859128 0.511761i \(-0.171007\pi\)
\(90\) 0 0
\(91\) 2.43575 12.9467i 0.255335 1.35718i
\(92\) 0 0
\(93\) 3.87123 0.128520i 0.401428 0.0133269i
\(94\) 0 0
\(95\) −0.850463 + 0.491015i −0.0872557 + 0.0503771i
\(96\) 0 0
\(97\) 7.18828i 0.729859i 0.931035 + 0.364930i \(0.118907\pi\)
−0.931035 + 0.364930i \(0.881093\pi\)
\(98\) 0 0
\(99\) −6.05860 + 12.3143i −0.608912 + 1.23763i
\(100\) 0 0
\(101\) −3.33419 + 1.92499i −0.331764 + 0.191544i −0.656624 0.754218i \(-0.728016\pi\)
0.324860 + 0.945762i \(0.394683\pi\)
\(102\) 0 0
\(103\) 4.61020 + 2.66170i 0.454256 + 0.262265i 0.709626 0.704578i \(-0.248864\pi\)
−0.255370 + 0.966843i \(0.582197\pi\)
\(104\) 0 0
\(105\) −2.27685 + 0.885260i −0.222198 + 0.0863926i
\(106\) 0 0
\(107\) 4.60634 7.97842i 0.445312 0.771303i −0.552762 0.833339i \(-0.686426\pi\)
0.998074 + 0.0620363i \(0.0197594\pi\)
\(108\) 0 0
\(109\) 4.24194 2.44909i 0.406304 0.234580i −0.282896 0.959151i \(-0.591295\pi\)
0.689201 + 0.724571i \(0.257962\pi\)
\(110\) 0 0
\(111\) 7.42233 + 11.9238i 0.704497 + 1.13176i
\(112\) 0 0
\(113\) 3.87615i 0.364637i 0.983240 + 0.182319i \(0.0583602\pi\)
−0.983240 + 0.182319i \(0.941640\pi\)
\(114\) 0 0
\(115\) −0.0318201 0.0551140i −0.00296724 0.00513941i
\(116\) 0 0
\(117\) −8.31041 12.4126i −0.768298 1.14754i
\(118\) 0 0
\(119\) 10.7913 3.78859i 0.989233 0.347299i
\(120\) 0 0
\(121\) −4.96376 + 8.59748i −0.451251 + 0.781589i
\(122\) 0 0
\(123\) 3.98653 + 2.12848i 0.359453 + 0.191918i
\(124\) 0 0
\(125\) 5.17934i 0.463254i
\(126\) 0 0
\(127\) −8.19005 −0.726750 −0.363375 0.931643i \(-0.618376\pi\)
−0.363375 + 0.931643i \(0.618376\pi\)
\(128\) 0 0
\(129\) −1.52728 + 2.86051i −0.134469 + 0.251854i
\(130\) 0 0
\(131\) −18.5565 10.7136i −1.62129 0.936053i −0.986575 0.163306i \(-0.947784\pi\)
−0.634715 0.772746i \(-0.718883\pi\)
\(132\) 0 0
\(133\) −3.69760 3.17537i −0.320622 0.275340i
\(134\) 0 0
\(135\) −1.13970 + 2.52465i −0.0980894 + 0.217288i
\(136\) 0 0
\(137\) 3.91533 2.26052i 0.334509 0.193129i −0.323332 0.946286i \(-0.604803\pi\)
0.657841 + 0.753157i \(0.271470\pi\)
\(138\) 0 0
\(139\) 14.8300 1.25786 0.628931 0.777461i \(-0.283493\pi\)
0.628931 + 0.777461i \(0.283493\pi\)
\(140\) 0 0
\(141\) 8.57212 5.33597i 0.721903 0.449370i
\(142\) 0 0
\(143\) −11.3892 19.7266i −0.952410 1.64962i
\(144\) 0 0
\(145\) 3.57577 + 2.06447i 0.296952 + 0.171445i
\(146\) 0 0
\(147\) −7.88888 9.20682i −0.650664 0.759366i
\(148\) 0 0
\(149\) 10.7714 18.6566i 0.882425 1.52841i 0.0337890 0.999429i \(-0.489243\pi\)
0.848636 0.528977i \(-0.177424\pi\)
\(150\) 0 0
\(151\) −1.40767 2.43816i −0.114555 0.198415i 0.803047 0.595916i \(-0.203211\pi\)
−0.917602 + 0.397501i \(0.869878\pi\)
\(152\) 0 0
\(153\) 5.72500 11.6362i 0.462839 0.940733i
\(154\) 0 0
\(155\) 1.19213 0.0957539
\(156\) 0 0
\(157\) 3.54427 + 6.13885i 0.282863 + 0.489933i 0.972089 0.234613i \(-0.0753824\pi\)
−0.689226 + 0.724547i \(0.742049\pi\)
\(158\) 0 0
\(159\) 0.263543 + 7.93838i 0.0209003 + 0.629554i
\(160\) 0 0
\(161\) 0.205779 0.239622i 0.0162176 0.0188848i
\(162\) 0 0
\(163\) 5.64257 + 3.25774i 0.441960 + 0.255166i 0.704429 0.709775i \(-0.251203\pi\)
−0.262469 + 0.964941i \(0.584537\pi\)
\(164\) 0 0
\(165\) −1.98942 + 3.72607i −0.154876 + 0.290074i
\(166\) 0 0
\(167\) −17.2470 −1.33462 −0.667308 0.744782i \(-0.732553\pi\)
−0.667308 + 0.744782i \(0.732553\pi\)
\(168\) 0 0
\(169\) 11.7928 0.907141
\(170\) 0 0
\(171\) −5.51435 + 0.366542i −0.421693 + 0.0280301i
\(172\) 0 0
\(173\) −14.5387 8.39395i −1.10536 0.638180i −0.167737 0.985832i \(-0.553646\pi\)
−0.937624 + 0.347652i \(0.886979\pi\)
\(174\) 0 0
\(175\) 11.7725 4.13307i 0.889914 0.312430i
\(176\) 0 0
\(177\) 11.4235 0.379246i 0.858646 0.0285058i
\(178\) 0 0
\(179\) −2.00982 3.48110i −0.150221 0.260190i 0.781088 0.624421i \(-0.214665\pi\)
−0.931309 + 0.364231i \(0.881332\pi\)
\(180\) 0 0
\(181\) −14.8596 −1.10451 −0.552253 0.833676i \(-0.686232\pi\)
−0.552253 + 0.833676i \(0.686232\pi\)
\(182\) 0 0
\(183\) 3.16332 1.96911i 0.233840 0.145561i
\(184\) 0 0
\(185\) 2.16139 + 3.74363i 0.158908 + 0.275237i
\(186\) 0 0
\(187\) 9.88761 17.1258i 0.723053 1.25237i
\(188\) 0 0
\(189\) −13.6964 1.18637i −0.996270 0.0862959i
\(190\) 0 0
\(191\) 17.1154 + 9.88159i 1.23843 + 0.715006i 0.968773 0.247951i \(-0.0797570\pi\)
0.269655 + 0.962957i \(0.413090\pi\)
\(192\) 0 0
\(193\) −6.29229 10.8986i −0.452929 0.784496i 0.545638 0.838021i \(-0.316287\pi\)
−0.998566 + 0.0535255i \(0.982954\pi\)
\(194\) 0 0
\(195\) −2.42957 3.90305i −0.173985 0.279504i
\(196\) 0 0
\(197\) −8.41804 −0.599761 −0.299880 0.953977i \(-0.596947\pi\)
−0.299880 + 0.953977i \(0.596947\pi\)
\(198\) 0 0
\(199\) −12.3980 + 7.15800i −0.878873 + 0.507417i −0.870287 0.492546i \(-0.836066\pi\)
−0.00858618 + 0.999963i \(0.502733\pi\)
\(200\) 0 0
\(201\) −20.9508 + 0.695538i −1.47776 + 0.0490595i
\(202\) 0 0
\(203\) −3.78890 + 20.1391i −0.265929 + 1.41349i
\(204\) 0 0
\(205\) 1.20454 + 0.695443i 0.0841290 + 0.0485719i
\(206\) 0 0
\(207\) −0.0237536 0.357356i −0.00165099 0.0248379i
\(208\) 0 0
\(209\) −8.42732 −0.582930
\(210\) 0 0
\(211\) 9.62315i 0.662485i 0.943546 + 0.331243i \(0.107468\pi\)
−0.943546 + 0.331243i \(0.892532\pi\)
\(212\) 0 0
\(213\) 5.06294 9.48262i 0.346907 0.649739i
\(214\) 0 0
\(215\) −0.499011 + 0.864312i −0.0340323 + 0.0589456i
\(216\) 0 0
\(217\) 1.95994 + 5.58261i 0.133049 + 0.378972i
\(218\) 0 0
\(219\) 16.7012 0.554457i 1.12856 0.0374667i
\(220\) 0 0
\(221\) 10.7621 + 18.6404i 0.723935 + 1.25389i
\(222\) 0 0
\(223\) 20.1840i 1.35162i −0.737076 0.675810i \(-0.763794\pi\)
0.737076 0.675810i \(-0.236206\pi\)
\(224\) 0 0
\(225\) 6.24555 12.6942i 0.416370 0.846283i
\(226\) 0 0
\(227\) 1.03403 0.597000i 0.0686313 0.0396243i −0.465292 0.885157i \(-0.654051\pi\)
0.533923 + 0.845533i \(0.320717\pi\)
\(228\) 0 0
\(229\) 11.4021 19.7490i 0.753472 1.30505i −0.192658 0.981266i \(-0.561711\pi\)
0.946130 0.323786i \(-0.104956\pi\)
\(230\) 0 0
\(231\) −20.7195 3.19031i −1.36325 0.209907i
\(232\) 0 0
\(233\) −14.1080 8.14528i −0.924249 0.533615i −0.0392607 0.999229i \(-0.512500\pi\)
−0.884988 + 0.465614i \(0.845834\pi\)
\(234\) 0 0
\(235\) 2.69133 1.55384i 0.175563 0.101361i
\(236\) 0 0
\(237\) 0.0672850 0.0418836i 0.00437063 0.00272063i
\(238\) 0 0
\(239\) 20.2417i 1.30933i 0.755920 + 0.654664i \(0.227190\pi\)
−0.755920 + 0.654664i \(0.772810\pi\)
\(240\) 0 0
\(241\) −7.99312 + 4.61483i −0.514882 + 0.297267i −0.734838 0.678242i \(-0.762742\pi\)
0.219956 + 0.975510i \(0.429409\pi\)
\(242\) 0 0
\(243\) −12.0272 + 9.91699i −0.771545 + 0.636175i
\(244\) 0 0
\(245\) −2.33265 2.91263i −0.149027 0.186081i
\(246\) 0 0
\(247\) 4.58631 7.94372i 0.291820 0.505447i
\(248\) 0 0
\(249\) −3.15265 + 5.90474i −0.199791 + 0.374198i
\(250\) 0 0
\(251\) 8.22152i 0.518938i 0.965751 + 0.259469i \(0.0835475\pi\)
−0.965751 + 0.259469i \(0.916452\pi\)
\(252\) 0 0
\(253\) 0.546129i 0.0343349i
\(254\) 0 0
\(255\) 1.87987 3.52091i 0.117722 0.220488i
\(256\) 0 0
\(257\) 6.71468 11.6302i 0.418850 0.725470i −0.576974 0.816763i \(-0.695767\pi\)
0.995824 + 0.0912928i \(0.0290999\pi\)
\(258\) 0 0
\(259\) −13.9776 + 16.2763i −0.868525 + 1.01136i
\(260\) 0 0
\(261\) 12.9272 + 19.3083i 0.800174 + 1.19515i
\(262\) 0 0
\(263\) 13.0415 7.52949i 0.804170 0.464288i −0.0407569 0.999169i \(-0.512977\pi\)
0.844927 + 0.534881i \(0.179644\pi\)
\(264\) 0 0
\(265\) 2.44458i 0.150170i
\(266\) 0 0
\(267\) 24.2141 15.0728i 1.48188 0.922439i
\(268\) 0 0
\(269\) 11.5014 6.64035i 0.701254 0.404869i −0.106560 0.994306i \(-0.533984\pi\)
0.807814 + 0.589437i \(0.200650\pi\)
\(270\) 0 0
\(271\) −16.2954 9.40818i −0.989878 0.571506i −0.0846401 0.996412i \(-0.526974\pi\)
−0.905238 + 0.424905i \(0.860307\pi\)
\(272\) 0 0
\(273\) 14.2832 17.7943i 0.864460 1.07696i
\(274\) 0 0
\(275\) 10.7866 18.6830i 0.650459 1.12663i
\(276\) 0 0
\(277\) −20.1344 + 11.6246i −1.20976 + 0.698454i −0.962706 0.270548i \(-0.912795\pi\)
−0.247052 + 0.969002i \(0.579462\pi\)
\(278\) 0 0
\(279\) 6.01973 + 2.96170i 0.360392 + 0.177312i
\(280\) 0 0
\(281\) 21.2736i 1.26908i 0.772892 + 0.634538i \(0.218810\pi\)
−0.772892 + 0.634538i \(0.781190\pi\)
\(282\) 0 0
\(283\) −4.31186 7.46836i −0.256314 0.443948i 0.708938 0.705271i \(-0.249175\pi\)
−0.965251 + 0.261323i \(0.915841\pi\)
\(284\) 0 0
\(285\) −1.69999 + 0.0564373i −0.100699 + 0.00334306i
\(286\) 0 0
\(287\) −1.27634 + 6.78411i −0.0753399 + 0.400454i
\(288\) 0 0
\(289\) −0.843181 + 1.46043i −0.0495989 + 0.0859078i
\(290\) 0 0
\(291\) −5.86404 + 10.9830i −0.343756 + 0.643837i
\(292\) 0 0
\(293\) 22.7441i 1.32872i 0.747411 + 0.664362i \(0.231297\pi\)
−0.747411 + 0.664362i \(0.768703\pi\)
\(294\) 0 0
\(295\) 3.51782 0.204815
\(296\) 0 0
\(297\) −19.3027 + 13.8726i −1.12006 + 0.804970i
\(298\) 0 0
\(299\) 0.514790 + 0.297214i 0.0297711 + 0.0171883i
\(300\) 0 0
\(301\) −4.86790 0.915828i −0.280581 0.0527875i
\(302\) 0 0
\(303\) −6.66470 + 0.221259i −0.382877 + 0.0127110i
\(304\) 0 0
\(305\) 0.993166 0.573405i 0.0568685 0.0328331i
\(306\) 0 0
\(307\) −22.8169 −1.30223 −0.651114 0.758980i \(-0.725698\pi\)
−0.651114 + 0.758980i \(0.725698\pi\)
\(308\) 0 0
\(309\) 4.87261 + 7.82773i 0.277193 + 0.445304i
\(310\) 0 0
\(311\) 11.9871 + 20.7622i 0.679725 + 1.17732i 0.975064 + 0.221925i \(0.0712341\pi\)
−0.295339 + 0.955393i \(0.595433\pi\)
\(312\) 0 0
\(313\) 19.4419 + 11.2248i 1.09892 + 0.634463i 0.935938 0.352166i \(-0.114555\pi\)
0.162984 + 0.986629i \(0.447888\pi\)
\(314\) 0 0
\(315\) −4.20099 0.504805i −0.236699 0.0284425i
\(316\) 0 0
\(317\) 1.06072 1.83723i 0.0595762 0.103189i −0.834699 0.550706i \(-0.814358\pi\)
0.894275 + 0.447517i \(0.147692\pi\)
\(318\) 0 0
\(319\) 17.7163 + 30.6856i 0.991924 + 1.71806i
\(320\) 0 0
\(321\) 13.5467 8.43255i 0.756103 0.470659i
\(322\) 0 0
\(323\) 7.96330 0.443090
\(324\) 0 0
\(325\) 11.7406 + 20.3353i 0.651252 + 1.12800i
\(326\) 0 0
\(327\) 8.47921 0.281498i 0.468902 0.0155669i
\(328\) 0 0
\(329\) 11.7012 + 10.0486i 0.645108 + 0.553997i
\(330\) 0 0
\(331\) 1.25478 + 0.724448i 0.0689689 + 0.0398192i 0.534088 0.845429i \(-0.320655\pi\)
−0.465119 + 0.885248i \(0.653988\pi\)
\(332\) 0 0
\(333\) 1.61347 + 24.2735i 0.0884176 + 1.33018i
\(334\) 0 0
\(335\) −6.45170 −0.352494
\(336\) 0 0
\(337\) −21.6680 −1.18033 −0.590165 0.807282i \(-0.700937\pi\)
−0.590165 + 0.807282i \(0.700937\pi\)
\(338\) 0 0
\(339\) −3.16208 + 5.92240i −0.171740 + 0.321661i
\(340\) 0 0
\(341\) 8.85966 + 5.11513i 0.479778 + 0.277000i
\(342\) 0 0
\(343\) 9.80454 15.7121i 0.529396 0.848375i
\(344\) 0 0
\(345\) −0.00365740 0.110167i −0.000196908 0.00593121i
\(346\) 0 0
\(347\) 13.7374 + 23.7939i 0.737463 + 1.27732i 0.953634 + 0.300969i \(0.0973099\pi\)
−0.216171 + 0.976356i \(0.569357\pi\)
\(348\) 0 0
\(349\) 15.6203 0.836134 0.418067 0.908416i \(-0.362708\pi\)
0.418067 + 0.908416i \(0.362708\pi\)
\(350\) 0 0
\(351\) −2.57163 25.7448i −0.137264 1.37415i
\(352\) 0 0
\(353\) 6.72613 + 11.6500i 0.357996 + 0.620067i 0.987626 0.156828i \(-0.0501268\pi\)
−0.629630 + 0.776895i \(0.716793\pi\)
\(354\) 0 0
\(355\) 1.65423 2.86521i 0.0877973 0.152069i
\(356\) 0 0
\(357\) 19.5787 + 3.01465i 1.03621 + 0.159552i
\(358\) 0 0
\(359\) −19.9816 11.5364i −1.05459 0.608867i −0.130658 0.991428i \(-0.541709\pi\)
−0.923930 + 0.382561i \(0.875042\pi\)
\(360\) 0 0
\(361\) 7.80320 + 13.5155i 0.410695 + 0.711344i
\(362\) 0 0
\(363\) −14.5978 + 9.08684i −0.766186 + 0.476936i
\(364\) 0 0
\(365\) 5.14305 0.269200
\(366\) 0 0
\(367\) −18.6893 + 10.7903i −0.975574 + 0.563248i −0.900931 0.433963i \(-0.857115\pi\)
−0.0746427 + 0.997210i \(0.523782\pi\)
\(368\) 0 0
\(369\) 4.35469 + 6.50424i 0.226696 + 0.338597i
\(370\) 0 0
\(371\) −11.4477 + 4.01907i −0.594337 + 0.208659i
\(372\) 0 0
\(373\) 0.158888 + 0.0917338i 0.00822689 + 0.00474980i 0.504108 0.863641i \(-0.331821\pi\)
−0.495881 + 0.868391i \(0.665155\pi\)
\(374\) 0 0
\(375\) 4.22519 7.91356i 0.218188 0.408654i
\(376\) 0 0
\(377\) −38.5663 −1.98627
\(378\) 0 0
\(379\) 2.93359i 0.150688i 0.997158 + 0.0753441i \(0.0240055\pi\)
−0.997158 + 0.0753441i \(0.975994\pi\)
\(380\) 0 0
\(381\) −12.5137 6.68127i −0.641094 0.342292i
\(382\) 0 0
\(383\) 7.67488 13.2933i 0.392168 0.679255i −0.600567 0.799574i \(-0.705058\pi\)
0.992735 + 0.120319i \(0.0383918\pi\)
\(384\) 0 0
\(385\) −6.34088 1.19295i −0.323161 0.0607983i
\(386\) 0 0
\(387\) −4.66708 + 3.12468i −0.237241 + 0.158836i
\(388\) 0 0
\(389\) −2.00060 3.46513i −0.101434 0.175689i 0.810842 0.585266i \(-0.199010\pi\)
−0.912276 + 0.409577i \(0.865676\pi\)
\(390\) 0 0
\(391\) 0.516059i 0.0260982i
\(392\) 0 0
\(393\) −19.6127 31.5074i −0.989332 1.58934i
\(394\) 0 0
\(395\) 0.0211250 0.0121965i 0.00106291 0.000613673i
\(396\) 0 0
\(397\) −11.7195 + 20.2987i −0.588183 + 1.01876i 0.406288 + 0.913745i \(0.366823\pi\)
−0.994470 + 0.105017i \(0.966510\pi\)
\(398\) 0 0
\(399\) −3.05919 7.86810i −0.153151 0.393898i
\(400\) 0 0
\(401\) 14.5441 + 8.39703i 0.726297 + 0.419328i 0.817066 0.576544i \(-0.195599\pi\)
−0.0907689 + 0.995872i \(0.528932\pi\)
\(402\) 0 0
\(403\) −9.64320 + 5.56751i −0.480362 + 0.277337i
\(404\) 0 0
\(405\) −3.80091 + 2.92770i −0.188869 + 0.145479i
\(406\) 0 0
\(407\) 37.0960i 1.83878i
\(408\) 0 0
\(409\) 11.9749 6.91372i 0.592121 0.341861i −0.173815 0.984778i \(-0.555609\pi\)
0.765936 + 0.642917i \(0.222276\pi\)
\(410\) 0 0
\(411\) 7.82635 0.259824i 0.386045 0.0128162i
\(412\) 0 0
\(413\) 5.78354 + 16.4736i 0.284590 + 0.810613i
\(414\) 0 0
\(415\) −1.03007 + 1.78414i −0.0505643 + 0.0875799i
\(416\) 0 0
\(417\) 22.6588 + 12.0980i 1.10961 + 0.592440i
\(418\) 0 0
\(419\) 17.5573i 0.857728i −0.903369 0.428864i \(-0.858914\pi\)
0.903369 0.428864i \(-0.141086\pi\)
\(420\) 0 0
\(421\) 19.8896i 0.969362i 0.874691 + 0.484681i \(0.161064\pi\)
−0.874691 + 0.484681i \(0.838936\pi\)
\(422\) 0 0
\(423\) 17.4504 1.15994i 0.848467 0.0563980i
\(424\) 0 0
\(425\) −10.1927 + 17.6543i −0.494419 + 0.856359i
\(426\) 0 0
\(427\) 4.31803 + 3.70818i 0.208964 + 0.179451i
\(428\) 0 0
\(429\) −1.30907 39.4315i −0.0632026 1.90377i
\(430\) 0 0
\(431\) −25.3821 + 14.6544i −1.22261 + 0.705876i −0.965474 0.260498i \(-0.916113\pi\)
−0.257139 + 0.966374i \(0.582780\pi\)
\(432\) 0 0
\(433\) 12.5427i 0.602763i −0.953504 0.301381i \(-0.902552\pi\)
0.953504 0.301381i \(-0.0974477\pi\)
\(434\) 0 0
\(435\) 3.77930 + 6.07137i 0.181204 + 0.291100i
\(436\) 0 0
\(437\) 0.190457 0.109961i 0.00911081 0.00526013i
\(438\) 0 0
\(439\) −11.7921 6.80818i −0.562807 0.324937i 0.191464 0.981500i \(-0.438676\pi\)
−0.754271 + 0.656563i \(0.772010\pi\)
\(440\) 0 0
\(441\) −4.54277 20.5028i −0.216323 0.976322i
\(442\) 0 0
\(443\) −6.72205 + 11.6429i −0.319374 + 0.553172i −0.980358 0.197228i \(-0.936806\pi\)
0.660984 + 0.750400i \(0.270139\pi\)
\(444\) 0 0
\(445\) 7.60232 4.38920i 0.360384 0.208068i
\(446\) 0 0
\(447\) 31.6773 19.7185i 1.49828 0.932653i
\(448\) 0 0
\(449\) 16.3428i 0.771266i 0.922652 + 0.385633i \(0.126017\pi\)
−0.922652 + 0.385633i \(0.873983\pi\)
\(450\) 0 0
\(451\) 5.96796 + 10.3368i 0.281020 + 0.486742i
\(452\) 0 0
\(453\) −0.161798 4.87364i −0.00760194 0.228984i
\(454\) 0 0
\(455\) 4.57532 5.32779i 0.214494 0.249770i
\(456\) 0 0
\(457\) 14.6395 25.3564i 0.684808 1.18612i −0.288689 0.957423i \(-0.593219\pi\)
0.973497 0.228699i \(-0.0734472\pi\)
\(458\) 0 0
\(459\) 18.2399 13.1088i 0.851364 0.611864i
\(460\) 0 0
\(461\) 6.06975i 0.282696i −0.989960 0.141348i \(-0.954856\pi\)
0.989960 0.141348i \(-0.0451437\pi\)
\(462\) 0 0
\(463\) 3.30400 0.153550 0.0767750 0.997048i \(-0.475538\pi\)
0.0767750 + 0.997048i \(0.475538\pi\)
\(464\) 0 0
\(465\) 1.82146 + 0.972510i 0.0844682 + 0.0450991i
\(466\) 0 0
\(467\) 7.03895 + 4.06394i 0.325724 + 0.188057i 0.653941 0.756546i \(-0.273114\pi\)
−0.328217 + 0.944602i \(0.606448\pi\)
\(468\) 0 0
\(469\) −10.6070 30.2127i −0.489788 1.39509i
\(470\) 0 0
\(471\) 0.407378 + 12.2709i 0.0187710 + 0.565415i
\(472\) 0 0
\(473\) −7.41711 + 4.28227i −0.341039 + 0.196899i
\(474\) 0 0
\(475\) 8.68736 0.398604
\(476\) 0 0
\(477\) −6.07328 + 12.3441i −0.278076 + 0.565198i
\(478\) 0 0
\(479\) 0.425876 + 0.737638i 0.0194588 + 0.0337035i 0.875591 0.483054i \(-0.160472\pi\)
−0.856132 + 0.516757i \(0.827139\pi\)
\(480\) 0 0
\(481\) −34.9673 20.1884i −1.59437 0.920510i
\(482\) 0 0
\(483\) 0.509889 0.198250i 0.0232008 0.00902069i
\(484\) 0 0
\(485\) −1.91597 + 3.31856i −0.0869999 + 0.150688i
\(486\) 0 0
\(487\) 2.45804 + 4.25745i 0.111384 + 0.192923i 0.916329 0.400427i \(-0.131138\pi\)
−0.804944 + 0.593350i \(0.797805\pi\)
\(488\) 0 0
\(489\) 5.96374 + 9.58062i 0.269690 + 0.433250i
\(490\) 0 0
\(491\) 5.07434 0.229002 0.114501 0.993423i \(-0.463473\pi\)
0.114501 + 0.993423i \(0.463473\pi\)
\(492\) 0 0
\(493\) −16.7408 28.9960i −0.753970 1.30591i
\(494\) 0 0
\(495\) −6.07929 + 4.07017i −0.273244 + 0.182941i
\(496\) 0 0
\(497\) 16.1372 + 3.03599i 0.723850 + 0.136183i
\(498\) 0 0
\(499\) 17.6743 + 10.2042i 0.791209 + 0.456805i 0.840388 0.541985i \(-0.182327\pi\)
−0.0491790 + 0.998790i \(0.515660\pi\)
\(500\) 0 0
\(501\) −26.3519 14.0697i −1.17732 0.628590i
\(502\) 0 0
\(503\) −26.6102 −1.18649 −0.593245 0.805022i \(-0.702153\pi\)
−0.593245 + 0.805022i \(0.702153\pi\)
\(504\) 0 0
\(505\) −2.05236 −0.0913289
\(506\) 0 0
\(507\) 18.0184 + 9.62033i 0.800224 + 0.427254i
\(508\) 0 0
\(509\) −24.9978 14.4325i −1.10801 0.639710i −0.169697 0.985496i \(-0.554279\pi\)
−0.938313 + 0.345787i \(0.887612\pi\)
\(510\) 0 0
\(511\) 8.45553 + 24.0844i 0.374051 + 1.06543i
\(512\) 0 0
\(513\) −8.72444 3.93844i −0.385194 0.173887i
\(514\) 0 0
\(515\) 1.41891 + 2.45762i 0.0625245 + 0.108296i
\(516\) 0 0
\(517\) 26.6686 1.17288
\(518\) 0 0
\(519\) −15.3663 24.6856i −0.674505 1.08358i
\(520\) 0 0
\(521\) −12.5564 21.7483i −0.550105 0.952811i −0.998266 0.0588577i \(-0.981254\pi\)
0.448161 0.893953i \(-0.352079\pi\)
\(522\) 0 0
\(523\) 1.54754 2.68042i 0.0676692 0.117206i −0.830206 0.557457i \(-0.811777\pi\)
0.897875 + 0.440251i \(0.145110\pi\)
\(524\) 0 0
\(525\) 21.3589 + 3.28876i 0.932179 + 0.143533i
\(526\) 0 0
\(527\) −8.37183 4.83348i −0.364683 0.210550i
\(528\) 0 0
\(529\) −11.4929 19.9062i −0.499690 0.865489i
\(530\) 0 0
\(531\) 17.7635 + 8.73962i 0.770871 + 0.379267i
\(532\) 0 0
\(533\) −12.9915 −0.562726
\(534\) 0 0
\(535\) 4.25316 2.45556i 0.183880 0.106163i
\(536\) 0 0
\(537\) −0.231008 6.95837i −0.00996875 0.300276i
\(538\) 0 0
\(539\) −4.83838 31.6550i −0.208404 1.36348i
\(540\) 0 0
\(541\) −23.8925 13.7944i −1.02722 0.593066i −0.111033 0.993817i \(-0.535416\pi\)
−0.916187 + 0.400751i \(0.868749\pi\)
\(542\) 0 0
\(543\) −22.7041 12.1221i −0.974328 0.520211i
\(544\) 0 0
\(545\) 2.61113 0.111849
\(546\) 0 0
\(547\) 32.0757i 1.37146i −0.727856 0.685730i \(-0.759483\pi\)
0.727856 0.685730i \(-0.240517\pi\)
\(548\) 0 0
\(549\) 6.43963 0.428045i 0.274837 0.0182685i
\(550\) 0 0
\(551\) −7.13420 + 12.3568i −0.303927 + 0.526417i
\(552\) 0 0
\(553\) 0.0918460 + 0.0788743i 0.00390569 + 0.00335407i
\(554\) 0 0
\(555\) 0.248430 + 7.48314i 0.0105453 + 0.317642i
\(556\) 0 0
\(557\) −8.23577 14.2648i −0.348961 0.604417i 0.637104 0.770777i \(-0.280132\pi\)
−0.986065 + 0.166360i \(0.946799\pi\)
\(558\) 0 0
\(559\) 9.32199i 0.394278i
\(560\) 0 0
\(561\) 29.0782 18.1006i 1.22768 0.764209i
\(562\) 0 0
\(563\) −14.5542 + 8.40290i −0.613388 + 0.354140i −0.774290 0.632830i \(-0.781893\pi\)
0.160902 + 0.986970i \(0.448560\pi\)
\(564\) 0 0
\(565\) −1.03315 + 1.78947i −0.0434651 + 0.0752837i
\(566\) 0 0
\(567\) −19.9591 12.9859i −0.838203 0.545358i
\(568\) 0 0
\(569\) 32.1947 + 18.5876i 1.34967 + 0.779235i 0.988203 0.153149i \(-0.0489414\pi\)
0.361471 + 0.932383i \(0.382275\pi\)
\(570\) 0 0
\(571\) −6.80801 + 3.93061i −0.284906 + 0.164491i −0.635642 0.771984i \(-0.719265\pi\)
0.350736 + 0.936474i \(0.385931\pi\)
\(572\) 0 0
\(573\) 18.0896 + 29.0605i 0.755704 + 1.21402i
\(574\) 0 0
\(575\) 0.562982i 0.0234780i
\(576\) 0 0
\(577\) 14.7236 8.50067i 0.612951 0.353888i −0.161168 0.986927i \(-0.551526\pi\)
0.774120 + 0.633039i \(0.218193\pi\)
\(578\) 0 0
\(579\) −0.723236 21.7851i −0.0300567 0.905359i
\(580\) 0 0
\(581\) −10.0484 1.89048i −0.416880 0.0784303i
\(582\) 0 0
\(583\) −10.4891 + 18.1677i −0.434415 + 0.752429i
\(584\) 0 0
\(585\) −0.528142 7.94551i −0.0218360 0.328506i
\(586\) 0 0
\(587\) 24.3750i 1.00606i −0.864268 0.503032i \(-0.832218\pi\)
0.864268 0.503032i \(-0.167782\pi\)
\(588\) 0 0
\(589\) 4.11963i 0.169746i
\(590\) 0 0
\(591\) −12.8620 6.86725i −0.529072 0.282481i
\(592\) 0 0
\(593\) −0.0286004 + 0.0495374i −0.00117448 + 0.00203426i −0.866612 0.498983i \(-0.833707\pi\)
0.865438 + 0.501017i \(0.167041\pi\)
\(594\) 0 0
\(595\) 5.99174 + 1.12726i 0.245637 + 0.0462133i
\(596\) 0 0
\(597\) −24.7824 + 0.822741i −1.01428 + 0.0336726i
\(598\) 0 0
\(599\) 35.8620 20.7049i 1.46528 0.845980i 0.466033 0.884768i \(-0.345683\pi\)
0.999247 + 0.0387877i \(0.0123496\pi\)
\(600\) 0 0
\(601\) 23.8559i 0.973104i 0.873652 + 0.486552i \(0.161746\pi\)
−0.873652 + 0.486552i \(0.838254\pi\)
\(602\) 0 0
\(603\) −32.5783 16.0285i −1.32669 0.652731i
\(604\) 0 0
\(605\) −4.58317 + 2.64609i −0.186332 + 0.107579i
\(606\) 0 0
\(607\) 33.6542 + 19.4303i 1.36598 + 0.788650i 0.990412 0.138144i \(-0.0441136\pi\)
0.375570 + 0.926794i \(0.377447\pi\)
\(608\) 0 0
\(609\) −22.2182 + 27.6799i −0.900325 + 1.12164i
\(610\) 0 0
\(611\) −14.5136 + 25.1382i −0.587156 + 1.01698i
\(612\) 0 0
\(613\) 16.8751 9.74286i 0.681580 0.393510i −0.118870 0.992910i \(-0.537927\pi\)
0.800450 + 0.599400i \(0.204594\pi\)
\(614\) 0 0
\(615\) 1.27311 + 2.04521i 0.0513366 + 0.0824710i
\(616\) 0 0
\(617\) 21.5819i 0.868854i 0.900707 + 0.434427i \(0.143049\pi\)
−0.900707 + 0.434427i \(0.856951\pi\)
\(618\) 0 0
\(619\) −5.60757 9.71259i −0.225387 0.390382i 0.731048 0.682326i \(-0.239031\pi\)
−0.956436 + 0.291944i \(0.905698\pi\)
\(620\) 0 0
\(621\) 0.255230 0.565385i 0.0102420 0.0226881i
\(622\) 0 0
\(623\) 33.0529 + 28.3847i 1.32424 + 1.13721i
\(624\) 0 0
\(625\) −10.4090 + 18.0290i −0.416362 + 0.721160i
\(626\) 0 0
\(627\) −12.8762 6.87482i −0.514225 0.274554i
\(628\) 0 0
\(629\) 35.0534i 1.39767i
\(630\) 0 0
\(631\) 22.3220 0.888626 0.444313 0.895872i \(-0.353448\pi\)
0.444313 + 0.895872i \(0.353448\pi\)
\(632\) 0 0
\(633\) −7.85036 + 14.7033i −0.312024 + 0.584404i
\(634\) 0 0
\(635\) −3.78105 2.18299i −0.150046 0.0866292i
\(636\) 0 0
\(637\) 32.4716 + 12.6665i 1.28657 + 0.501866i
\(638\) 0 0
\(639\) 15.4714 10.3583i 0.612040 0.409770i
\(640\) 0 0
\(641\) 10.9414 6.31703i 0.432160 0.249508i −0.268107 0.963389i \(-0.586398\pi\)
0.700266 + 0.713882i \(0.253065\pi\)
\(642\) 0 0
\(643\) −25.9092 −1.02176 −0.510879 0.859652i \(-0.670680\pi\)
−0.510879 + 0.859652i \(0.670680\pi\)
\(644\) 0 0
\(645\) −1.46753 + 0.913508i −0.0577839 + 0.0359693i
\(646\) 0 0
\(647\) −8.29783 14.3723i −0.326221 0.565032i 0.655538 0.755163i \(-0.272442\pi\)
−0.981759 + 0.190131i \(0.939109\pi\)
\(648\) 0 0
\(649\) 26.1438 + 15.0941i 1.02623 + 0.592496i
\(650\) 0 0
\(651\) −1.55956 + 10.1286i −0.0611240 + 0.396971i
\(652\) 0 0
\(653\) 2.57443 4.45904i 0.100745 0.174496i −0.811247 0.584704i \(-0.801211\pi\)
0.911992 + 0.410208i \(0.134544\pi\)
\(654\) 0 0
\(655\) −5.71124 9.89216i −0.223157 0.386519i
\(656\) 0 0
\(657\) 25.9702 + 12.7773i 1.01319 + 0.498490i
\(658\) 0 0
\(659\) −20.6891 −0.805934 −0.402967 0.915214i \(-0.632021\pi\)
−0.402967 + 0.915214i \(0.632021\pi\)
\(660\) 0 0
\(661\) −12.3911 21.4621i −0.481960 0.834779i 0.517826 0.855486i \(-0.326742\pi\)
−0.999786 + 0.0207072i \(0.993408\pi\)
\(662\) 0 0
\(663\) 1.23699 + 37.2603i 0.0480408 + 1.44707i
\(664\) 0 0
\(665\) −0.860676 2.45151i −0.0333756 0.0950657i
\(666\) 0 0
\(667\) −0.800778 0.462329i −0.0310063 0.0179015i
\(668\) 0 0
\(669\) 16.4657 30.8393i 0.636599 1.19232i
\(670\) 0 0
\(671\) 9.84137 0.379922
\(672\) 0 0
\(673\) 0.492833 0.0189973 0.00949866 0.999955i \(-0.496976\pi\)
0.00949866 + 0.999955i \(0.496976\pi\)
\(674\) 0 0
\(675\) 19.8983 14.3007i 0.765887 0.550433i
\(676\) 0 0
\(677\) 35.2987 + 20.3797i 1.35664 + 0.783256i 0.989169 0.146779i \(-0.0468905\pi\)
0.367471 + 0.930035i \(0.380224\pi\)
\(678\) 0 0
\(679\) −18.6905 3.51636i −0.717276 0.134946i
\(680\) 0 0
\(681\) 2.06693 0.0686192i 0.0792049 0.00262949i
\(682\) 0 0
\(683\) −14.8402 25.7039i −0.567843 0.983532i −0.996779 0.0801976i \(-0.974445\pi\)
0.428936 0.903335i \(-0.358888\pi\)
\(684\) 0 0
\(685\) 2.41009 0.0920846
\(686\) 0 0
\(687\) 33.5322 20.8731i 1.27933 0.796360i
\(688\) 0 0
\(689\) −11.4168 19.7744i −0.434944 0.753346i
\(690\) 0 0
\(691\) −3.83116 + 6.63576i −0.145744 + 0.252436i −0.929650 0.368443i \(-0.879891\pi\)
0.783906 + 0.620879i \(0.213224\pi\)
\(692\) 0 0
\(693\) −29.0550 21.7771i −1.10371 0.827242i
\(694\) 0 0
\(695\) 6.84645 + 3.95280i 0.259701 + 0.149938i
\(696\) 0 0
\(697\) −5.63936 9.76765i −0.213606 0.369976i
\(698\) 0 0
\(699\) −14.9111 23.9543i −0.563988 0.906034i
\(700\) 0 0
\(701\) −6.75507 −0.255136 −0.127568 0.991830i \(-0.540717\pi\)
−0.127568 + 0.991830i \(0.540717\pi\)
\(702\) 0 0
\(703\) −12.9369 + 7.46910i −0.487923 + 0.281702i
\(704\) 0 0
\(705\) 5.37969 0.178598i 0.202611 0.00672640i
\(706\) 0 0
\(707\) −3.37423 9.61100i −0.126901 0.361459i
\(708\) 0 0
\(709\) 36.0884 + 20.8357i 1.35533 + 0.782499i 0.988990 0.147982i \(-0.0472778\pi\)
0.366339 + 0.930482i \(0.380611\pi\)
\(710\) 0 0
\(711\) 0.136973 0.00910466i 0.00513689 0.000341452i
\(712\) 0 0
\(713\) −0.266971 −0.00999815
\(714\) 0 0
\(715\) 12.1427i 0.454112i
\(716\) 0 0
\(717\) −16.5127 + 30.9275i −0.616680 + 1.15501i
\(718\) 0 0
\(719\) 23.2782 40.3190i 0.868131 1.50365i 0.00422645 0.999991i \(-0.498655\pi\)
0.863904 0.503656i \(-0.168012\pi\)
\(720\) 0 0
\(721\) −9.17600 + 10.6851i −0.341732 + 0.397934i
\(722\) 0 0
\(723\) −15.9774 + 0.530429i −0.594208 + 0.0197269i
\(724\) 0 0
\(725\) −18.2630 31.6325i −0.678271 1.17480i
\(726\) 0 0
\(727\) 10.7218i 0.397651i 0.980035 + 0.198825i \(0.0637127\pi\)
−0.980035 + 0.198825i \(0.936287\pi\)
\(728\) 0 0
\(729\) −26.4665 + 5.34075i −0.980241 + 0.197805i
\(730\) 0 0
\(731\) 7.00871 4.04648i 0.259227 0.149665i
\(732\) 0 0
\(733\) −12.5202 + 21.6857i −0.462445 + 0.800979i −0.999082 0.0428345i \(-0.986361\pi\)
0.536637 + 0.843813i \(0.319695\pi\)
\(734\) 0 0
\(735\) −1.18801 6.35316i −0.0438203 0.234340i
\(736\) 0 0
\(737\) −47.9478 27.6827i −1.76618 1.01971i
\(738\) 0 0
\(739\) 45.0173 25.9908i 1.65599 0.956086i 0.681452 0.731863i \(-0.261349\pi\)
0.974538 0.224224i \(-0.0719846\pi\)
\(740\) 0 0
\(741\) 13.4878 8.39588i 0.495486 0.308430i
\(742\) 0 0
\(743\) 26.4603i 0.970735i 0.874310 + 0.485367i \(0.161314\pi\)
−0.874310 + 0.485367i \(0.838686\pi\)
\(744\) 0 0
\(745\) 9.94549 5.74203i 0.364375 0.210372i
\(746\) 0 0
\(747\) −9.63391 + 6.45004i −0.352486 + 0.235995i
\(748\) 0 0
\(749\) 18.4916 + 15.8800i 0.675670 + 0.580242i
\(750\) 0 0
\(751\) 9.69510 16.7924i 0.353779 0.612763i −0.633129 0.774046i \(-0.718230\pi\)
0.986908 + 0.161283i \(0.0515631\pi\)
\(752\) 0 0
\(753\) −6.70694 + 12.5617i −0.244414 + 0.457775i
\(754\) 0 0
\(755\) 1.50081i 0.0546202i
\(756\) 0 0
\(757\) 5.19772i 0.188914i 0.995529 + 0.0944572i \(0.0301115\pi\)
−0.995529 + 0.0944572i \(0.969888\pi\)
\(758\) 0 0
\(759\) 0.445520 0.834436i 0.0161714 0.0302881i
\(760\) 0 0
\(761\) 18.8681 32.6805i 0.683969 1.18467i −0.289791 0.957090i \(-0.593586\pi\)
0.973760 0.227578i \(-0.0730808\pi\)
\(762\) 0 0
\(763\) 4.29288 + 12.2277i 0.155413 + 0.442671i
\(764\) 0 0
\(765\) 5.74456 3.84606i 0.207695 0.139055i
\(766\) 0 0
\(767\) −28.4559 + 16.4290i −1.02748 + 0.593218i
\(768\) 0 0
\(769\) 13.9517i 0.503110i 0.967843 + 0.251555i \(0.0809419\pi\)
−0.967843 + 0.251555i \(0.919058\pi\)
\(770\) 0 0
\(771\) 19.7471 12.2921i 0.711173 0.442691i
\(772\) 0 0
\(773\) −21.5519 + 12.4430i −0.775169 + 0.447544i −0.834715 0.550682i \(-0.814368\pi\)
0.0595465 + 0.998226i \(0.481035\pi\)
\(774\) 0 0
\(775\) −9.13305 5.27297i −0.328069 0.189411i
\(776\) 0 0
\(777\) −34.6344 + 13.4662i −1.24250 + 0.483096i
\(778\) 0 0
\(779\) −2.40324 + 4.16254i −0.0861051 + 0.149138i
\(780\) 0 0
\(781\) 24.5878 14.1958i 0.879822 0.507966i
\(782\) 0 0
\(783\) 4.00028 + 40.0471i 0.142958 + 1.43117i
\(784\) 0 0
\(785\) 3.77877i 0.134870i
\(786\) 0 0
\(787\) −4.90837 8.50154i −0.174964 0.303047i 0.765185 0.643811i \(-0.222648\pi\)
−0.940149 + 0.340764i \(0.889314\pi\)
\(788\) 0 0
\(789\) 26.0685 0.865440i 0.928065 0.0308105i
\(790\) 0 0
\(791\) −10.0785 1.89613i −0.358350 0.0674188i
\(792\) 0 0
\(793\) −5.35587 + 9.27663i −0.190192 + 0.329423i
\(794\) 0 0
\(795\) −1.99424 + 3.73510i −0.0707283 + 0.132470i
\(796\) 0 0
\(797\) 11.3322i 0.401406i 0.979652 + 0.200703i \(0.0643226\pi\)
−0.979652 + 0.200703i \(0.935677\pi\)
\(798\) 0 0
\(799\) −25.2002 −0.891518
\(800\) 0 0
\(801\) 49.2929 3.27653i 1.74168 0.115770i
\(802\) 0 0
\(803\) 38.2222 + 22.0676i 1.34883 + 0.778748i
\(804\) 0 0
\(805\) 0.158870 0.0557758i 0.00559942 0.00196584i
\(806\) 0 0
\(807\) 22.9902 0.763242i 0.809292 0.0268674i
\(808\) 0 0
\(809\) 19.0031 10.9714i 0.668113 0.385735i −0.127248 0.991871i \(-0.540615\pi\)
0.795361 + 0.606136i \(0.207281\pi\)
\(810\) 0 0
\(811\) −12.2220 −0.429171 −0.214586 0.976705i \(-0.568840\pi\)
−0.214586 + 0.976705i \(0.568840\pi\)
\(812\) 0 0
\(813\) −17.2230 27.6683i −0.604036 0.970370i
\(814\) 0 0
\(815\) 1.73664 + 3.00796i 0.0608320 + 0.105364i
\(816\) 0 0
\(817\) −2.98680 1.72443i −0.104495 0.0603302i
\(818\) 0 0
\(819\) 36.3397 15.5362i 1.26981 0.542879i
\(820\) 0 0
\(821\) −22.2720 + 38.5763i −0.777299 + 1.34632i 0.156195 + 0.987726i \(0.450077\pi\)
−0.933493 + 0.358595i \(0.883256\pi\)
\(822\) 0 0
\(823\) −13.6219 23.5938i −0.474830 0.822429i 0.524755 0.851254i \(-0.324157\pi\)
−0.999584 + 0.0288241i \(0.990824\pi\)
\(824\) 0 0
\(825\) 31.7222 19.7464i 1.10443 0.687483i
\(826\) 0 0
\(827\) −10.2913 −0.357864 −0.178932 0.983861i \(-0.557264\pi\)
−0.178932 + 0.983861i \(0.557264\pi\)
\(828\) 0 0
\(829\) 16.2859 + 28.2081i 0.565634 + 0.979707i 0.996990 + 0.0775252i \(0.0247018\pi\)
−0.431356 + 0.902182i \(0.641965\pi\)
\(830\) 0 0
\(831\) −40.2466 + 1.33613i −1.39614 + 0.0463499i
\(832\) 0 0
\(833\) 4.57197 + 29.9120i 0.158409 + 1.03639i
\(834\) 0 0
\(835\) −7.96232 4.59705i −0.275547 0.159087i
\(836\) 0 0
\(837\) 6.78151 + 9.43597i 0.234403 + 0.326155i
\(838\) 0 0
\(839\) 4.55619 0.157297 0.0786486 0.996902i \(-0.474939\pi\)
0.0786486 + 0.996902i \(0.474939\pi\)
\(840\) 0 0
\(841\) 30.9915 1.06867
\(842\) 0 0
\(843\) −17.3545 + 32.5041i −0.597722 + 1.11950i
\(844\) 0 0
\(845\) 5.44432 + 3.14328i 0.187290 + 0.108132i
\(846\) 0 0
\(847\) −19.9264 17.1122i −0.684681 0.587981i
\(848\) 0 0
\(849\) −0.495606 14.9285i −0.0170091 0.512345i
\(850\) 0 0
\(851\) −0.484032 0.838369i −0.0165924 0.0287389i
\(852\) 0 0
\(853\) −50.6930 −1.73570 −0.867848 0.496830i \(-0.834497\pi\)
−0.867848 + 0.496830i \(0.834497\pi\)
\(854\) 0 0
\(855\) −2.64347 1.30058i −0.0904048 0.0444790i
\(856\) 0 0
\(857\) −3.66887 6.35467i −0.125326 0.217071i 0.796534 0.604594i \(-0.206664\pi\)
−0.921860 + 0.387522i \(0.873331\pi\)
\(858\) 0 0
\(859\) −28.8455 + 49.9619i −0.984195 + 1.70468i −0.338737 + 0.940881i \(0.610000\pi\)
−0.645458 + 0.763795i \(0.723334\pi\)
\(860\) 0 0
\(861\) −7.48446 + 9.32430i −0.255070 + 0.317771i
\(862\) 0 0
\(863\) −31.1345 17.9755i −1.05983 0.611894i −0.134445 0.990921i \(-0.542925\pi\)
−0.925385 + 0.379027i \(0.876259\pi\)
\(864\) 0 0
\(865\) −4.47467 7.75035i −0.152143 0.263520i
\(866\) 0 0
\(867\) −2.47969 + 1.54356i −0.0842148 + 0.0524220i
\(868\) 0 0
\(869\) 0.209329 0.00710101
\(870\) 0 0
\(871\) 52.1883 30.1309i 1.76833 1.02095i
\(872\) 0 0
\(873\) −17.9194 + 11.9973i −0.606481 + 0.406048i
\(874\) 0 0
\(875\) 13.4670 + 2.53363i 0.455267 + 0.0856523i
\(876\) 0 0
\(877\) −43.3964 25.0550i −1.46539 0.846046i −0.466142 0.884710i \(-0.654356\pi\)
−0.999252 + 0.0386646i \(0.987690\pi\)
\(878\) 0 0
\(879\) −18.5541 + 34.7509i −0.625815 + 1.17212i
\(880\) 0 0
\(881\) −47.9585 −1.61576 −0.807882 0.589344i \(-0.799386\pi\)
−0.807882 + 0.589344i \(0.799386\pi\)
\(882\) 0 0
\(883\) 0.345258i 0.0116188i −0.999983 0.00580942i \(-0.998151\pi\)
0.999983 0.00580942i \(-0.00184921\pi\)
\(884\) 0 0
\(885\) 5.37491 + 2.86976i 0.180676 + 0.0964660i
\(886\) 0 0
\(887\) 13.7032 23.7346i 0.460109 0.796931i −0.538857 0.842397i \(-0.681144\pi\)
0.998966 + 0.0454656i \(0.0144771\pi\)
\(888\) 0 0
\(889\) 4.00641 21.2952i 0.134371 0.714220i
\(890\) 0 0
\(891\) −40.8097 + 5.44936i −1.36718 + 0.182560i
\(892\) 0 0
\(893\) 5.36959 + 9.30041i 0.179687 + 0.311226i
\(894\) 0 0
\(895\) 2.14280i 0.0716258i
\(896\) 0 0
\(897\) 0.544092 + 0.874071i 0.0181667 + 0.0291844i
\(898\) 0 0
\(899\) 15.0004 8.66049i 0.500292 0.288844i
\(900\) 0 0
\(901\) 9.91157 17.1673i 0.330202 0.571927i
\(902\) 0 0
\(903\) −6.69059 5.37043i −0.222649 0.178717i
\(904\) 0 0
\(905\) −6.86014 3.96070i −0.228039 0.131658i
\(906\) 0 0
\(907\) −7.67380 + 4.43047i −0.254804 + 0.147111i −0.621962 0.783047i \(-0.713664\pi\)
0.367158 + 0.930159i \(0.380331\pi\)
\(908\) 0 0
\(909\) −10.3636 5.09885i −0.343737 0.169118i
\(910\) 0 0
\(911\) 17.2124i 0.570272i −0.958487 0.285136i \(-0.907961\pi\)
0.958487 0.285136i \(-0.0920388\pi\)
\(912\) 0 0
\(913\) −15.3106 + 8.83959i −0.506707 + 0.292548i
\(914\) 0 0
\(915\) 1.98524 0.0659072i 0.0656300 0.00217882i
\(916\) 0 0
\(917\) 36.9343 43.0086i 1.21968 1.42027i
\(918\) 0 0
\(919\) −2.91012 + 5.04048i −0.0959961 + 0.166270i −0.910024 0.414556i \(-0.863937\pi\)
0.814028 + 0.580826i \(0.197270\pi\)
\(920\) 0 0
\(921\) −34.8621 18.6135i −1.14875 0.613336i
\(922\) 0 0
\(923\) 30.9025i 1.01717i
\(924\) 0 0
\(925\) 38.2407i 1.25734i
\(926\) 0 0
\(927\) 1.05921 + 15.9350i 0.0347890 + 0.523375i
\(928\) 0 0
\(929\) 3.36170 5.82263i 0.110294 0.191034i −0.805595 0.592467i \(-0.798154\pi\)
0.915889 + 0.401432i \(0.131488\pi\)
\(930\) 0 0
\(931\) 10.0652 8.06092i 0.329873 0.264186i
\(932\) 0 0
\(933\) 1.37780 + 41.5016i 0.0451070 + 1.35870i
\(934\) 0 0
\(935\) 9.12949 5.27091i 0.298566 0.172377i
\(936\) 0 0
\(937\) 5.64519i 0.184420i −0.995740 0.0922102i \(-0.970607\pi\)
0.995740 0.0922102i \(-0.0293932\pi\)
\(938\) 0 0
\(939\) 20.5485 + 33.0107i 0.670576 + 1.07726i
\(940\) 0 0
\(941\) 39.2739 22.6748i 1.28029 0.739177i 0.303391 0.952866i \(-0.401881\pi\)
0.976902 + 0.213689i \(0.0685479\pi\)
\(942\) 0 0
\(943\) −0.269752 0.155741i −0.00878433 0.00507164i
\(944\) 0 0
\(945\) −6.00692 4.19837i −0.195405 0.136573i
\(946\) 0 0
\(947\) −0.0324938 + 0.0562810i −0.00105591 + 0.00182889i −0.866553 0.499085i \(-0.833669\pi\)
0.865497 + 0.500914i \(0.167003\pi\)
\(948\) 0 0
\(949\) −41.6025 + 24.0192i −1.35048 + 0.779697i
\(950\) 0 0
\(951\) 3.11946 1.94180i 0.101155 0.0629672i
\(952\) 0 0
\(953\) 33.3269i 1.07956i −0.841805 0.539781i \(-0.818507\pi\)
0.841805 0.539781i \(-0.181493\pi\)
\(954\) 0 0
\(955\) 5.26770 + 9.12393i 0.170459 + 0.295243i
\(956\) 0 0
\(957\) 2.03632 + 61.3374i 0.0658247 + 1.98276i
\(958\) 0 0
\(959\) 3.96235 + 11.2862i 0.127951 + 0.364450i
\(960\) 0 0
\(961\) −12.9995 + 22.5158i −0.419339 + 0.726316i
\(962\) 0 0
\(963\) 27.5772 1.83307i 0.888663 0.0590699i
\(964\) 0 0
\(965\) 6.70862i 0.215958i
\(966\) 0 0
\(967\) −8.68323 −0.279234 −0.139617 0.990206i \(-0.544587\pi\)
−0.139617 + 0.990206i \(0.544587\pi\)
\(968\) 0 0
\(969\) 12.1672 + 6.49628i 0.390867 + 0.208691i
\(970\) 0 0
\(971\) 37.7352 + 21.7864i 1.21098 + 0.699159i 0.962973 0.269599i \(-0.0868912\pi\)
0.248007 + 0.968758i \(0.420225\pi\)
\(972\) 0 0
\(973\) −7.25453 + 38.5599i −0.232569 + 1.23617i
\(974\) 0 0
\(975\) 1.34947 + 40.6483i 0.0432175 + 1.30179i
\(976\) 0 0
\(977\) −16.6770 + 9.62846i −0.533544 + 0.308042i −0.742458 0.669892i \(-0.766340\pi\)
0.208914 + 0.977934i \(0.433007\pi\)
\(978\) 0 0
\(979\) 75.3320 2.40762
\(980\) 0 0
\(981\) 13.1851 + 6.48705i 0.420968 + 0.207116i
\(982\) 0 0
\(983\) −12.6512 21.9125i −0.403510 0.698900i 0.590637 0.806938i \(-0.298877\pi\)
−0.994147 + 0.108037i \(0.965543\pi\)
\(984\) 0 0
\(985\) −3.88630 2.24376i −0.123828 0.0714920i
\(986\) 0 0
\(987\) 9.68094 + 24.8989i 0.308148 + 0.792541i
\(988\) 0 0
\(989\) 0.111751 0.193559i 0.00355348 0.00615481i
\(990\) 0 0
\(991\) −6.86308 11.8872i −0.218013 0.377609i 0.736187 0.676778i \(-0.236624\pi\)
−0.954200 + 0.299168i \(0.903291\pi\)
\(992\) 0 0
\(993\) 1.32620 + 2.13051i 0.0420857 + 0.0676098i
\(994\) 0 0
\(995\) −7.63161 −0.241938
\(996\) 0 0
\(997\) 1.12122 + 1.94201i 0.0355094 + 0.0615041i 0.883234 0.468933i \(-0.155361\pi\)
−0.847725 + 0.530437i \(0.822028\pi\)
\(998\) 0 0
\(999\) −17.3365 + 38.4039i −0.548503 + 1.21505i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 672.2.bi.c.593.21 48
3.2 odd 2 inner 672.2.bi.c.593.12 48
4.3 odd 2 168.2.ba.c.5.3 48
7.3 odd 6 inner 672.2.bi.c.17.13 48
8.3 odd 2 168.2.ba.c.5.6 yes 48
8.5 even 2 inner 672.2.bi.c.593.4 48
12.11 even 2 168.2.ba.c.5.22 yes 48
21.17 even 6 inner 672.2.bi.c.17.4 48
24.5 odd 2 inner 672.2.bi.c.593.13 48
24.11 even 2 168.2.ba.c.5.19 yes 48
28.3 even 6 168.2.ba.c.101.19 yes 48
56.3 even 6 168.2.ba.c.101.22 yes 48
56.45 odd 6 inner 672.2.bi.c.17.12 48
84.59 odd 6 168.2.ba.c.101.6 yes 48
168.59 odd 6 168.2.ba.c.101.3 yes 48
168.101 even 6 inner 672.2.bi.c.17.21 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
168.2.ba.c.5.3 48 4.3 odd 2
168.2.ba.c.5.6 yes 48 8.3 odd 2
168.2.ba.c.5.19 yes 48 24.11 even 2
168.2.ba.c.5.22 yes 48 12.11 even 2
168.2.ba.c.101.3 yes 48 168.59 odd 6
168.2.ba.c.101.6 yes 48 84.59 odd 6
168.2.ba.c.101.19 yes 48 28.3 even 6
168.2.ba.c.101.22 yes 48 56.3 even 6
672.2.bi.c.17.4 48 21.17 even 6 inner
672.2.bi.c.17.12 48 56.45 odd 6 inner
672.2.bi.c.17.13 48 7.3 odd 6 inner
672.2.bi.c.17.21 48 168.101 even 6 inner
672.2.bi.c.593.4 48 8.5 even 2 inner
672.2.bi.c.593.12 48 3.2 odd 2 inner
672.2.bi.c.593.13 48 24.5 odd 2 inner
672.2.bi.c.593.21 48 1.1 even 1 trivial