Properties

Label 672.2.bd.a.527.9
Level $672$
Weight $2$
Character 672.527
Analytic conductor $5.366$
Analytic rank $0$
Dimension $56$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [672,2,Mod(431,672)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(672, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 3, 3, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("672.431"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 672 = 2^{5} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 672.bd (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.36594701583\)
Analytic rank: \(0\)
Dimension: \(56\)
Relative dimension: \(28\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 168)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 527.9
Character \(\chi\) \(=\) 672.527
Dual form 672.2.bd.a.431.9

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.996948 - 1.41637i) q^{3} +(-1.00081 + 1.73346i) q^{5} +(-2.50986 + 0.837013i) q^{7} +(-1.01219 + 2.82409i) q^{9} +(3.33711 - 1.92668i) q^{11} -2.05924i q^{13} +(3.45297 - 0.310649i) q^{15} +(4.92484 - 2.84336i) q^{17} +(0.232846 - 0.403301i) q^{19} +(3.68772 + 2.72043i) q^{21} +(-0.711115 + 1.23169i) q^{23} +(0.496746 + 0.860389i) q^{25} +(5.00905 - 1.38183i) q^{27} +9.25829 q^{29} +(4.99699 - 2.88502i) q^{31} +(-6.05580 - 2.80577i) q^{33} +(1.06098 - 5.18844i) q^{35} +(0.569094 + 0.328567i) q^{37} +(-2.91663 + 2.05295i) q^{39} -8.42924i q^{41} -6.77074 q^{43} +(-3.88243 - 4.58098i) q^{45} +(-1.79536 + 3.10966i) q^{47} +(5.59882 - 4.20157i) q^{49} +(-8.93705 - 4.14070i) q^{51} +(1.50566 + 2.60789i) q^{53} +7.71298i q^{55} +(-0.803357 + 0.0722746i) q^{57} +(5.72041 - 3.30268i) q^{59} +(-8.50530 - 4.91054i) q^{61} +(0.176663 - 7.93529i) q^{63} +(3.56960 + 2.06091i) q^{65} +(3.78271 + 6.55184i) q^{67} +(2.45347 - 0.220728i) q^{69} +14.0426 q^{71} +(-2.02113 - 3.50071i) q^{73} +(0.723397 - 1.56134i) q^{75} +(-6.76302 + 7.62890i) q^{77} +(0.00488142 + 0.00281829i) q^{79} +(-6.95094 - 5.71703i) q^{81} +8.56466i q^{83} +11.3827i q^{85} +(-9.23003 - 13.1131i) q^{87} +(8.14017 + 4.69973i) q^{89} +(1.72361 + 5.16840i) q^{91} +(-9.06798 - 4.20137i) q^{93} +(0.466070 + 0.807257i) q^{95} -4.17304 q^{97} +(2.06332 + 11.3744i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q + 2 q^{3} - 2 q^{9} + 4 q^{19} - 16 q^{25} + 8 q^{27} - 14 q^{33} + 16 q^{43} - 16 q^{49} + 34 q^{51} + 4 q^{57} + 36 q^{67} + 4 q^{73} - 10 q^{81} - 72 q^{91} - 32 q^{97} + 44 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/672\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(421\) \(449\) \(577\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.996948 1.41637i −0.575588 0.817740i
\(4\) 0 0
\(5\) −1.00081 + 1.73346i −0.447577 + 0.775227i −0.998228 0.0595094i \(-0.981046\pi\)
0.550650 + 0.834736i \(0.314380\pi\)
\(6\) 0 0
\(7\) −2.50986 + 0.837013i −0.948639 + 0.316361i
\(8\) 0 0
\(9\) −1.01219 + 2.82409i −0.337397 + 0.941362i
\(10\) 0 0
\(11\) 3.33711 1.92668i 1.00618 0.580916i 0.0961058 0.995371i \(-0.469361\pi\)
0.910070 + 0.414455i \(0.136028\pi\)
\(12\) 0 0
\(13\) 2.05924i 0.571129i −0.958359 0.285565i \(-0.907819\pi\)
0.958359 0.285565i \(-0.0921811\pi\)
\(14\) 0 0
\(15\) 3.45297 0.310649i 0.891554 0.0802093i
\(16\) 0 0
\(17\) 4.92484 2.84336i 1.19445 0.689616i 0.235137 0.971962i \(-0.424446\pi\)
0.959313 + 0.282346i \(0.0911127\pi\)
\(18\) 0 0
\(19\) 0.232846 0.403301i 0.0534185 0.0925235i −0.838080 0.545548i \(-0.816322\pi\)
0.891498 + 0.453024i \(0.149655\pi\)
\(20\) 0 0
\(21\) 3.68772 + 2.72043i 0.804726 + 0.593646i
\(22\) 0 0
\(23\) −0.711115 + 1.23169i −0.148278 + 0.256825i −0.930591 0.366061i \(-0.880706\pi\)
0.782313 + 0.622885i \(0.214040\pi\)
\(24\) 0 0
\(25\) 0.496746 + 0.860389i 0.0993492 + 0.172078i
\(26\) 0 0
\(27\) 5.00905 1.38183i 0.963991 0.265934i
\(28\) 0 0
\(29\) 9.25829 1.71922 0.859611 0.510949i \(-0.170706\pi\)
0.859611 + 0.510949i \(0.170706\pi\)
\(30\) 0 0
\(31\) 4.99699 2.88502i 0.897486 0.518164i 0.0211026 0.999777i \(-0.493282\pi\)
0.876384 + 0.481613i \(0.159949\pi\)
\(32\) 0 0
\(33\) −6.05580 2.80577i −1.05418 0.488422i
\(34\) 0 0
\(35\) 1.06098 5.18844i 0.179338 0.877006i
\(36\) 0 0
\(37\) 0.569094 + 0.328567i 0.0935586 + 0.0540161i 0.546049 0.837753i \(-0.316131\pi\)
−0.452491 + 0.891769i \(0.649464\pi\)
\(38\) 0 0
\(39\) −2.91663 + 2.05295i −0.467035 + 0.328735i
\(40\) 0 0
\(41\) 8.42924i 1.31643i −0.752832 0.658213i \(-0.771313\pi\)
0.752832 0.658213i \(-0.228687\pi\)
\(42\) 0 0
\(43\) −6.77074 −1.03253 −0.516264 0.856430i \(-0.672678\pi\)
−0.516264 + 0.856430i \(0.672678\pi\)
\(44\) 0 0
\(45\) −3.88243 4.58098i −0.578758 0.682892i
\(46\) 0 0
\(47\) −1.79536 + 3.10966i −0.261881 + 0.453590i −0.966742 0.255755i \(-0.917676\pi\)
0.704861 + 0.709345i \(0.251009\pi\)
\(48\) 0 0
\(49\) 5.59882 4.20157i 0.799831 0.600225i
\(50\) 0 0
\(51\) −8.93705 4.14070i −1.25144 0.579815i
\(52\) 0 0
\(53\) 1.50566 + 2.60789i 0.206819 + 0.358221i 0.950711 0.310079i \(-0.100356\pi\)
−0.743892 + 0.668300i \(0.767022\pi\)
\(54\) 0 0
\(55\) 7.71298i 1.04002i
\(56\) 0 0
\(57\) −0.803357 + 0.0722746i −0.106407 + 0.00957300i
\(58\) 0 0
\(59\) 5.72041 3.30268i 0.744735 0.429973i −0.0790537 0.996870i \(-0.525190\pi\)
0.823788 + 0.566898i \(0.191857\pi\)
\(60\) 0 0
\(61\) −8.50530 4.91054i −1.08899 0.628730i −0.155684 0.987807i \(-0.549758\pi\)
−0.933308 + 0.359077i \(0.883092\pi\)
\(62\) 0 0
\(63\) 0.176663 7.93529i 0.0222575 0.999752i
\(64\) 0 0
\(65\) 3.56960 + 2.06091i 0.442755 + 0.255624i
\(66\) 0 0
\(67\) 3.78271 + 6.55184i 0.462131 + 0.800435i 0.999067 0.0431883i \(-0.0137515\pi\)
−0.536936 + 0.843623i \(0.680418\pi\)
\(68\) 0 0
\(69\) 2.45347 0.220728i 0.295363 0.0265725i
\(70\) 0 0
\(71\) 14.0426 1.66655 0.833274 0.552861i \(-0.186464\pi\)
0.833274 + 0.552861i \(0.186464\pi\)
\(72\) 0 0
\(73\) −2.02113 3.50071i −0.236556 0.409727i 0.723168 0.690672i \(-0.242685\pi\)
−0.959724 + 0.280946i \(0.909352\pi\)
\(74\) 0 0
\(75\) 0.723397 1.56134i 0.0835307 0.180288i
\(76\) 0 0
\(77\) −6.76302 + 7.62890i −0.770718 + 0.869394i
\(78\) 0 0
\(79\) 0.00488142 + 0.00281829i 0.000549203 + 0.000317082i 0.500275 0.865867i \(-0.333232\pi\)
−0.499725 + 0.866184i \(0.666566\pi\)
\(80\) 0 0
\(81\) −6.95094 5.71703i −0.772327 0.635226i
\(82\) 0 0
\(83\) 8.56466i 0.940093i 0.882642 + 0.470047i \(0.155763\pi\)
−0.882642 + 0.470047i \(0.844237\pi\)
\(84\) 0 0
\(85\) 11.3827i 1.23463i
\(86\) 0 0
\(87\) −9.23003 13.1131i −0.989564 1.40588i
\(88\) 0 0
\(89\) 8.14017 + 4.69973i 0.862857 + 0.498170i 0.864968 0.501827i \(-0.167339\pi\)
−0.00211125 + 0.999998i \(0.500672\pi\)
\(90\) 0 0
\(91\) 1.72361 + 5.16840i 0.180683 + 0.541795i
\(92\) 0 0
\(93\) −9.06798 4.20137i −0.940306 0.435661i
\(94\) 0 0
\(95\) 0.466070 + 0.807257i 0.0478178 + 0.0828228i
\(96\) 0 0
\(97\) −4.17304 −0.423708 −0.211854 0.977301i \(-0.567950\pi\)
−0.211854 + 0.977301i \(0.567950\pi\)
\(98\) 0 0
\(99\) 2.06332 + 11.3744i 0.207372 + 1.14317i
\(100\) 0 0
\(101\) −5.27692 9.13990i −0.525073 0.909454i −0.999574 0.0291983i \(-0.990705\pi\)
0.474500 0.880255i \(-0.342629\pi\)
\(102\) 0 0
\(103\) 9.20735 + 5.31587i 0.907227 + 0.523788i 0.879538 0.475829i \(-0.157852\pi\)
0.0276894 + 0.999617i \(0.491185\pi\)
\(104\) 0 0
\(105\) −8.40647 + 3.66987i −0.820387 + 0.358143i
\(106\) 0 0
\(107\) 4.86572 + 2.80922i 0.470386 + 0.271578i 0.716401 0.697688i \(-0.245788\pi\)
−0.246015 + 0.969266i \(0.579121\pi\)
\(108\) 0 0
\(109\) 9.15046 5.28302i 0.876456 0.506022i 0.00696746 0.999976i \(-0.497782\pi\)
0.869488 + 0.493954i \(0.164449\pi\)
\(110\) 0 0
\(111\) −0.101986 1.13361i −0.00968009 0.107598i
\(112\) 0 0
\(113\) 15.9104i 1.49673i 0.663288 + 0.748364i \(0.269160\pi\)
−0.663288 + 0.748364i \(0.730840\pi\)
\(114\) 0 0
\(115\) −1.42339 2.46538i −0.132731 0.229898i
\(116\) 0 0
\(117\) 5.81546 + 2.08434i 0.537640 + 0.192697i
\(118\) 0 0
\(119\) −9.98075 + 11.2586i −0.914934 + 1.03207i
\(120\) 0 0
\(121\) 1.92419 3.33279i 0.174926 0.302981i
\(122\) 0 0
\(123\) −11.9389 + 8.40351i −1.07649 + 0.757719i
\(124\) 0 0
\(125\) −11.9967 −1.07302
\(126\) 0 0
\(127\) 17.8415i 1.58317i −0.611056 0.791587i \(-0.709255\pi\)
0.611056 0.791587i \(-0.290745\pi\)
\(128\) 0 0
\(129\) 6.75007 + 9.58985i 0.594311 + 0.844339i
\(130\) 0 0
\(131\) 2.10794 + 1.21702i 0.184172 + 0.106332i 0.589251 0.807950i \(-0.299423\pi\)
−0.405080 + 0.914281i \(0.632756\pi\)
\(132\) 0 0
\(133\) −0.246843 + 1.20712i −0.0214040 + 0.104671i
\(134\) 0 0
\(135\) −2.61777 + 10.0659i −0.225302 + 0.866338i
\(136\) 0 0
\(137\) −2.69513 + 1.55603i −0.230260 + 0.132941i −0.610692 0.791868i \(-0.709109\pi\)
0.380432 + 0.924809i \(0.375775\pi\)
\(138\) 0 0
\(139\) −7.95494 −0.674729 −0.337364 0.941374i \(-0.609535\pi\)
−0.337364 + 0.941374i \(0.609535\pi\)
\(140\) 0 0
\(141\) 6.19430 0.557275i 0.521654 0.0469310i
\(142\) 0 0
\(143\) −3.96749 6.87189i −0.331778 0.574656i
\(144\) 0 0
\(145\) −9.26582 + 16.0489i −0.769485 + 1.33279i
\(146\) 0 0
\(147\) −11.5327 3.74123i −0.951201 0.308572i
\(148\) 0 0
\(149\) −5.27692 + 9.13990i −0.432302 + 0.748769i −0.997071 0.0764797i \(-0.975632\pi\)
0.564769 + 0.825249i \(0.308965\pi\)
\(150\) 0 0
\(151\) −15.2482 + 8.80356i −1.24088 + 0.716424i −0.969274 0.245984i \(-0.920889\pi\)
−0.271608 + 0.962408i \(0.587556\pi\)
\(152\) 0 0
\(153\) 3.04501 + 16.7862i 0.246175 + 1.35708i
\(154\) 0 0
\(155\) 11.5494i 0.927674i
\(156\) 0 0
\(157\) 2.13267 1.23130i 0.170206 0.0982682i −0.412477 0.910968i \(-0.635336\pi\)
0.582683 + 0.812700i \(0.302003\pi\)
\(158\) 0 0
\(159\) 2.19266 4.73250i 0.173889 0.375312i
\(160\) 0 0
\(161\) 0.753863 3.68658i 0.0594127 0.290543i
\(162\) 0 0
\(163\) 4.83382 8.37243i 0.378614 0.655779i −0.612247 0.790667i \(-0.709734\pi\)
0.990861 + 0.134888i \(0.0430674\pi\)
\(164\) 0 0
\(165\) 10.9244 7.68944i 0.850465 0.598622i
\(166\) 0 0
\(167\) −12.7380 −0.985699 −0.492850 0.870114i \(-0.664045\pi\)
−0.492850 + 0.870114i \(0.664045\pi\)
\(168\) 0 0
\(169\) 8.75955 0.673811
\(170\) 0 0
\(171\) 0.903272 + 1.06579i 0.0690749 + 0.0815033i
\(172\) 0 0
\(173\) 5.87501 10.1758i 0.446668 0.773652i −0.551498 0.834176i \(-0.685944\pi\)
0.998167 + 0.0605236i \(0.0192770\pi\)
\(174\) 0 0
\(175\) −1.96692 1.74368i −0.148685 0.131810i
\(176\) 0 0
\(177\) −10.3808 4.80960i −0.780266 0.361512i
\(178\) 0 0
\(179\) 8.89943 5.13809i 0.665175 0.384039i −0.129071 0.991635i \(-0.541200\pi\)
0.794246 + 0.607597i \(0.207866\pi\)
\(180\) 0 0
\(181\) 4.76352i 0.354070i −0.984205 0.177035i \(-0.943349\pi\)
0.984205 0.177035i \(-0.0566505\pi\)
\(182\) 0 0
\(183\) 1.52422 + 16.9422i 0.112673 + 1.25240i
\(184\) 0 0
\(185\) −1.13911 + 0.657668i −0.0837494 + 0.0483527i
\(186\) 0 0
\(187\) 10.9565 18.9772i 0.801217 1.38775i
\(188\) 0 0
\(189\) −11.4154 + 7.66085i −0.830348 + 0.557245i
\(190\) 0 0
\(191\) −1.19496 + 2.06973i −0.0864644 + 0.149761i −0.906014 0.423247i \(-0.860890\pi\)
0.819550 + 0.573008i \(0.194224\pi\)
\(192\) 0 0
\(193\) −3.18130 5.51018i −0.228995 0.396631i 0.728515 0.685029i \(-0.240211\pi\)
−0.957511 + 0.288398i \(0.906877\pi\)
\(194\) 0 0
\(195\) −0.639700 7.11049i −0.0458099 0.509192i
\(196\) 0 0
\(197\) 16.9051 1.20444 0.602219 0.798331i \(-0.294284\pi\)
0.602219 + 0.798331i \(0.294284\pi\)
\(198\) 0 0
\(199\) −11.2472 + 6.49358i −0.797293 + 0.460318i −0.842524 0.538659i \(-0.818931\pi\)
0.0452304 + 0.998977i \(0.485598\pi\)
\(200\) 0 0
\(201\) 5.50865 11.8895i 0.388550 0.838624i
\(202\) 0 0
\(203\) −23.2370 + 7.74931i −1.63092 + 0.543895i
\(204\) 0 0
\(205\) 14.6117 + 8.43610i 1.02053 + 0.589202i
\(206\) 0 0
\(207\) −2.75861 3.25495i −0.191737 0.226235i
\(208\) 0 0
\(209\) 1.79448i 0.124127i
\(210\) 0 0
\(211\) 4.34903 0.299400 0.149700 0.988731i \(-0.452169\pi\)
0.149700 + 0.988731i \(0.452169\pi\)
\(212\) 0 0
\(213\) −13.9997 19.8894i −0.959244 1.36280i
\(214\) 0 0
\(215\) 6.77624 11.7368i 0.462136 0.800443i
\(216\) 0 0
\(217\) −10.1270 + 11.4235i −0.687464 + 0.775480i
\(218\) 0 0
\(219\) −2.94332 + 6.35269i −0.198891 + 0.429275i
\(220\) 0 0
\(221\) −5.85515 10.1414i −0.393860 0.682185i
\(222\) 0 0
\(223\) 25.7814i 1.72645i −0.504820 0.863225i \(-0.668441\pi\)
0.504820 0.863225i \(-0.331559\pi\)
\(224\) 0 0
\(225\) −2.93262 + 0.531976i −0.195508 + 0.0354651i
\(226\) 0 0
\(227\) −1.40958 + 0.813824i −0.0935574 + 0.0540154i −0.546049 0.837753i \(-0.683869\pi\)
0.452491 + 0.891769i \(0.350535\pi\)
\(228\) 0 0
\(229\) −12.1735 7.02837i −0.804448 0.464448i 0.0405764 0.999176i \(-0.487081\pi\)
−0.845024 + 0.534728i \(0.820414\pi\)
\(230\) 0 0
\(231\) 17.5477 + 1.97331i 1.15455 + 0.129834i
\(232\) 0 0
\(233\) −15.5827 8.99668i −1.02086 0.589392i −0.106505 0.994312i \(-0.533966\pi\)
−0.914352 + 0.404920i \(0.867299\pi\)
\(234\) 0 0
\(235\) −3.59364 6.22438i −0.234424 0.406033i
\(236\) 0 0
\(237\) −0.000874789 0.00972357i −5.68236e−5 0.000631614i
\(238\) 0 0
\(239\) 16.0533 1.03840 0.519200 0.854653i \(-0.326230\pi\)
0.519200 + 0.854653i \(0.326230\pi\)
\(240\) 0 0
\(241\) 3.64298 + 6.30983i 0.234665 + 0.406452i 0.959175 0.282812i \(-0.0912673\pi\)
−0.724510 + 0.689264i \(0.757934\pi\)
\(242\) 0 0
\(243\) −1.16769 + 15.5447i −0.0749075 + 0.997190i
\(244\) 0 0
\(245\) 1.67988 + 13.9103i 0.107324 + 0.888697i
\(246\) 0 0
\(247\) −0.830491 0.479484i −0.0528429 0.0305089i
\(248\) 0 0
\(249\) 12.1307 8.53852i 0.768752 0.541106i
\(250\) 0 0
\(251\) 22.3471i 1.41053i −0.708942 0.705267i \(-0.750827\pi\)
0.708942 0.705267i \(-0.249173\pi\)
\(252\) 0 0
\(253\) 5.48036i 0.344547i
\(254\) 0 0
\(255\) 16.1221 11.3479i 1.00960 0.710636i
\(256\) 0 0
\(257\) 2.61954 + 1.51239i 0.163402 + 0.0943404i 0.579471 0.814993i \(-0.303259\pi\)
−0.416069 + 0.909333i \(0.636592\pi\)
\(258\) 0 0
\(259\) −1.70336 0.348318i −0.105842 0.0216434i
\(260\) 0 0
\(261\) −9.37116 + 26.1462i −0.580060 + 1.61841i
\(262\) 0 0
\(263\) −10.7454 18.6116i −0.662590 1.14764i −0.979933 0.199329i \(-0.936124\pi\)
0.317342 0.948311i \(-0.397210\pi\)
\(264\) 0 0
\(265\) −6.02755 −0.370270
\(266\) 0 0
\(267\) −1.45878 16.2149i −0.0892760 0.992333i
\(268\) 0 0
\(269\) 10.9385 + 18.9460i 0.666929 + 1.15516i 0.978758 + 0.205017i \(0.0657250\pi\)
−0.311829 + 0.950138i \(0.600942\pi\)
\(270\) 0 0
\(271\) 9.03323 + 5.21534i 0.548729 + 0.316809i 0.748609 0.663011i \(-0.230722\pi\)
−0.199880 + 0.979820i \(0.564055\pi\)
\(272\) 0 0
\(273\) 5.60200 7.59388i 0.339049 0.459603i
\(274\) 0 0
\(275\) 3.31539 + 1.91414i 0.199925 + 0.115427i
\(276\) 0 0
\(277\) −18.7719 + 10.8380i −1.12790 + 0.651191i −0.943405 0.331643i \(-0.892397\pi\)
−0.184492 + 0.982834i \(0.559064\pi\)
\(278\) 0 0
\(279\) 3.08962 + 17.0321i 0.184971 + 1.01969i
\(280\) 0 0
\(281\) 8.35022i 0.498132i 0.968487 + 0.249066i \(0.0801236\pi\)
−0.968487 + 0.249066i \(0.919876\pi\)
\(282\) 0 0
\(283\) 11.3999 + 19.7453i 0.677656 + 1.17374i 0.975685 + 0.219178i \(0.0703376\pi\)
−0.298028 + 0.954557i \(0.596329\pi\)
\(284\) 0 0
\(285\) 0.678725 1.46492i 0.0402042 0.0867743i
\(286\) 0 0
\(287\) 7.05538 + 21.1562i 0.416466 + 1.24881i
\(288\) 0 0
\(289\) 7.66938 13.2838i 0.451140 0.781398i
\(290\) 0 0
\(291\) 4.16030 + 5.91056i 0.243881 + 0.346483i
\(292\) 0 0
\(293\) −6.51811 −0.380792 −0.190396 0.981707i \(-0.560977\pi\)
−0.190396 + 0.981707i \(0.560977\pi\)
\(294\) 0 0
\(295\) 13.2215i 0.769784i
\(296\) 0 0
\(297\) 14.0534 14.2621i 0.815459 0.827574i
\(298\) 0 0
\(299\) 2.53633 + 1.46435i 0.146680 + 0.0846858i
\(300\) 0 0
\(301\) 16.9936 5.66719i 0.979496 0.326652i
\(302\) 0 0
\(303\) −7.68463 + 16.5861i −0.441471 + 0.952844i
\(304\) 0 0
\(305\) 17.0244 9.82906i 0.974817 0.562811i
\(306\) 0 0
\(307\) 12.7577 0.728122 0.364061 0.931375i \(-0.381390\pi\)
0.364061 + 0.931375i \(0.381390\pi\)
\(308\) 0 0
\(309\) −1.65003 18.3406i −0.0938669 1.04336i
\(310\) 0 0
\(311\) 4.72369 + 8.18167i 0.267856 + 0.463940i 0.968308 0.249760i \(-0.0803516\pi\)
−0.700452 + 0.713699i \(0.747018\pi\)
\(312\) 0 0
\(313\) 2.87628 4.98187i 0.162577 0.281592i −0.773215 0.634144i \(-0.781353\pi\)
0.935792 + 0.352552i \(0.114686\pi\)
\(314\) 0 0
\(315\) 13.5787 + 8.24798i 0.765073 + 0.464721i
\(316\) 0 0
\(317\) 6.69015 11.5877i 0.375756 0.650829i −0.614684 0.788774i \(-0.710716\pi\)
0.990440 + 0.137945i \(0.0440496\pi\)
\(318\) 0 0
\(319\) 30.8959 17.8378i 1.72984 0.998723i
\(320\) 0 0
\(321\) −0.871974 9.69229i −0.0486688 0.540971i
\(322\) 0 0
\(323\) 2.64826i 0.147353i
\(324\) 0 0
\(325\) 1.77174 1.02292i 0.0982787 0.0567412i
\(326\) 0 0
\(327\) −16.6052 7.69352i −0.918272 0.425453i
\(328\) 0 0
\(329\) 1.90329 9.30756i 0.104932 0.513142i
\(330\) 0 0
\(331\) −2.24337 + 3.88563i −0.123307 + 0.213573i −0.921070 0.389398i \(-0.872683\pi\)
0.797763 + 0.602971i \(0.206017\pi\)
\(332\) 0 0
\(333\) −1.50393 + 1.27460i −0.0824151 + 0.0698477i
\(334\) 0 0
\(335\) −15.1431 −0.827358
\(336\) 0 0
\(337\) −9.02628 −0.491693 −0.245846 0.969309i \(-0.579066\pi\)
−0.245846 + 0.969309i \(0.579066\pi\)
\(338\) 0 0
\(339\) 22.5350 15.8619i 1.22393 0.861499i
\(340\) 0 0
\(341\) 11.1170 19.2552i 0.602019 1.04273i
\(342\) 0 0
\(343\) −10.5355 + 15.2317i −0.568863 + 0.822432i
\(344\) 0 0
\(345\) −2.07284 + 4.47389i −0.111598 + 0.240866i
\(346\) 0 0
\(347\) 0.882015 0.509232i 0.0473491 0.0273370i −0.476139 0.879370i \(-0.657964\pi\)
0.523488 + 0.852033i \(0.324631\pi\)
\(348\) 0 0
\(349\) 9.91220i 0.530588i 0.964168 + 0.265294i \(0.0854690\pi\)
−0.964168 + 0.265294i \(0.914531\pi\)
\(350\) 0 0
\(351\) −2.84552 10.3148i −0.151883 0.550564i
\(352\) 0 0
\(353\) −20.6381 + 11.9154i −1.09845 + 0.634192i −0.935814 0.352494i \(-0.885334\pi\)
−0.162638 + 0.986686i \(0.552000\pi\)
\(354\) 0 0
\(355\) −14.0540 + 24.3422i −0.745909 + 1.29195i
\(356\) 0 0
\(357\) 25.8966 + 2.91217i 1.37059 + 0.154129i
\(358\) 0 0
\(359\) −1.66057 + 2.87619i −0.0876414 + 0.151799i −0.906514 0.422176i \(-0.861266\pi\)
0.818872 + 0.573976i \(0.194600\pi\)
\(360\) 0 0
\(361\) 9.39157 + 16.2667i 0.494293 + 0.856140i
\(362\) 0 0
\(363\) −6.63876 + 0.597261i −0.348445 + 0.0313481i
\(364\) 0 0
\(365\) 8.09111 0.423508
\(366\) 0 0
\(367\) −6.76756 + 3.90725i −0.353264 + 0.203957i −0.666122 0.745843i \(-0.732047\pi\)
0.312858 + 0.949800i \(0.398714\pi\)
\(368\) 0 0
\(369\) 23.8049 + 8.53200i 1.23923 + 0.444158i
\(370\) 0 0
\(371\) −5.96184 5.28518i −0.309524 0.274393i
\(372\) 0 0
\(373\) −27.0847 15.6374i −1.40239 0.809673i −0.407756 0.913091i \(-0.633689\pi\)
−0.994638 + 0.103418i \(0.967022\pi\)
\(374\) 0 0
\(375\) 11.9601 + 16.9918i 0.617618 + 0.877451i
\(376\) 0 0
\(377\) 19.0650i 0.981898i
\(378\) 0 0
\(379\) −19.1714 −0.984768 −0.492384 0.870378i \(-0.663874\pi\)
−0.492384 + 0.870378i \(0.663874\pi\)
\(380\) 0 0
\(381\) −25.2701 + 17.7870i −1.29463 + 0.911256i
\(382\) 0 0
\(383\) 13.9774 24.2095i 0.714209 1.23705i −0.249054 0.968490i \(-0.580120\pi\)
0.963264 0.268558i \(-0.0865469\pi\)
\(384\) 0 0
\(385\) −6.45587 19.3585i −0.329021 0.986602i
\(386\) 0 0
\(387\) 6.85328 19.1212i 0.348372 0.971983i
\(388\) 0 0
\(389\) −7.27120 12.5941i −0.368664 0.638545i 0.620693 0.784054i \(-0.286851\pi\)
−0.989357 + 0.145509i \(0.953518\pi\)
\(390\) 0 0
\(391\) 8.08782i 0.409019i
\(392\) 0 0
\(393\) −0.377759 4.19892i −0.0190554 0.211808i
\(394\) 0 0
\(395\) −0.00977078 + 0.00564117i −0.000491622 + 0.000283838i
\(396\) 0 0
\(397\) 31.2547 + 18.0449i 1.56863 + 0.905647i 0.996330 + 0.0856008i \(0.0272810\pi\)
0.572297 + 0.820046i \(0.306052\pi\)
\(398\) 0 0
\(399\) 1.95582 0.853819i 0.0979135 0.0427444i
\(400\) 0 0
\(401\) −2.65616 1.53353i −0.132642 0.0765811i 0.432211 0.901773i \(-0.357734\pi\)
−0.564853 + 0.825192i \(0.691067\pi\)
\(402\) 0 0
\(403\) −5.94093 10.2900i −0.295939 0.512581i
\(404\) 0 0
\(405\) 16.8668 6.32749i 0.838120 0.314415i
\(406\) 0 0
\(407\) 2.53217 0.125515
\(408\) 0 0
\(409\) −13.6122 23.5770i −0.673080 1.16581i −0.977026 0.213119i \(-0.931638\pi\)
0.303947 0.952689i \(-0.401696\pi\)
\(410\) 0 0
\(411\) 4.89081 + 2.26601i 0.241246 + 0.111774i
\(412\) 0 0
\(413\) −11.5931 + 13.0773i −0.570457 + 0.643494i
\(414\) 0 0
\(415\) −14.8465 8.57162i −0.728785 0.420764i
\(416\) 0 0
\(417\) 7.93066 + 11.2671i 0.388366 + 0.551753i
\(418\) 0 0
\(419\) 8.16587i 0.398929i −0.979905 0.199465i \(-0.936080\pi\)
0.979905 0.199465i \(-0.0639203\pi\)
\(420\) 0 0
\(421\) 7.30698i 0.356121i −0.984020 0.178060i \(-0.943018\pi\)
0.984020 0.178060i \(-0.0569822\pi\)
\(422\) 0 0
\(423\) −6.96470 8.21783i −0.338635 0.399564i
\(424\) 0 0
\(425\) 4.89279 + 2.82485i 0.237335 + 0.137026i
\(426\) 0 0
\(427\) 25.4573 + 5.20573i 1.23197 + 0.251923i
\(428\) 0 0
\(429\) −5.77774 + 12.4703i −0.278952 + 0.602073i
\(430\) 0 0
\(431\) 1.44464 + 2.50219i 0.0695858 + 0.120526i 0.898719 0.438525i \(-0.144499\pi\)
−0.829133 + 0.559051i \(0.811166\pi\)
\(432\) 0 0
\(433\) 23.0768 1.10900 0.554499 0.832184i \(-0.312910\pi\)
0.554499 + 0.832184i \(0.312910\pi\)
\(434\) 0 0
\(435\) 31.9686 2.87608i 1.53278 0.137898i
\(436\) 0 0
\(437\) 0.331160 + 0.573586i 0.0158415 + 0.0274384i
\(438\) 0 0
\(439\) 2.57178 + 1.48482i 0.122744 + 0.0708664i 0.560115 0.828415i \(-0.310757\pi\)
−0.437371 + 0.899281i \(0.644090\pi\)
\(440\) 0 0
\(441\) 6.19854 + 20.0644i 0.295168 + 0.955445i
\(442\) 0 0
\(443\) −17.0338 9.83448i −0.809301 0.467250i 0.0374121 0.999300i \(-0.488089\pi\)
−0.846713 + 0.532050i \(0.821422\pi\)
\(444\) 0 0
\(445\) −16.2936 + 9.40711i −0.772390 + 0.445940i
\(446\) 0 0
\(447\) 18.2063 1.63794i 0.861127 0.0774719i
\(448\) 0 0
\(449\) 36.3243i 1.71425i −0.515111 0.857124i \(-0.672249\pi\)
0.515111 0.857124i \(-0.327751\pi\)
\(450\) 0 0
\(451\) −16.2404 28.1293i −0.764733 1.32456i
\(452\) 0 0
\(453\) 27.6707 + 12.8204i 1.30009 + 0.602354i
\(454\) 0 0
\(455\) −10.6842 2.18480i −0.500884 0.102425i
\(456\) 0 0
\(457\) −13.7632 + 23.8385i −0.643814 + 1.11512i 0.340760 + 0.940150i \(0.389316\pi\)
−0.984574 + 0.174968i \(0.944018\pi\)
\(458\) 0 0
\(459\) 20.7397 21.0478i 0.968047 0.982428i
\(460\) 0 0
\(461\) −19.4067 −0.903861 −0.451931 0.892053i \(-0.649265\pi\)
−0.451931 + 0.892053i \(0.649265\pi\)
\(462\) 0 0
\(463\) 8.27807i 0.384715i 0.981325 + 0.192357i \(0.0616132\pi\)
−0.981325 + 0.192357i \(0.938387\pi\)
\(464\) 0 0
\(465\) 16.3583 11.5142i 0.758596 0.533958i
\(466\) 0 0
\(467\) −13.6618 7.88767i −0.632194 0.364998i 0.149407 0.988776i \(-0.452264\pi\)
−0.781601 + 0.623778i \(0.785597\pi\)
\(468\) 0 0
\(469\) −14.9781 13.2780i −0.691622 0.613123i
\(470\) 0 0
\(471\) −3.87013 1.79310i −0.178326 0.0826218i
\(472\) 0 0
\(473\) −22.5947 + 13.0450i −1.03890 + 0.599812i
\(474\) 0 0
\(475\) 0.462661 0.0212283
\(476\) 0 0
\(477\) −8.88892 + 1.61245i −0.406996 + 0.0738289i
\(478\) 0 0
\(479\) 6.21288 + 10.7610i 0.283874 + 0.491684i 0.972335 0.233589i \(-0.0750470\pi\)
−0.688462 + 0.725273i \(0.741714\pi\)
\(480\) 0 0
\(481\) 0.676597 1.17190i 0.0308502 0.0534340i
\(482\) 0 0
\(483\) −5.97311 + 2.60758i −0.271786 + 0.118649i
\(484\) 0 0
\(485\) 4.17643 7.23379i 0.189642 0.328470i
\(486\) 0 0
\(487\) 13.8846 8.01628i 0.629172 0.363252i −0.151260 0.988494i \(-0.548333\pi\)
0.780431 + 0.625242i \(0.215000\pi\)
\(488\) 0 0
\(489\) −16.6775 + 1.50040i −0.754183 + 0.0678506i
\(490\) 0 0
\(491\) 9.44091i 0.426062i 0.977045 + 0.213031i \(0.0683336\pi\)
−0.977045 + 0.213031i \(0.931666\pi\)
\(492\) 0 0
\(493\) 45.5956 26.3247i 2.05352 1.18560i
\(494\) 0 0
\(495\) −21.7821 7.80701i −0.979034 0.350899i
\(496\) 0 0
\(497\) −35.2449 + 11.7538i −1.58095 + 0.527231i
\(498\) 0 0
\(499\) −15.9322 + 27.5954i −0.713225 + 1.23534i 0.250415 + 0.968139i \(0.419433\pi\)
−0.963640 + 0.267203i \(0.913900\pi\)
\(500\) 0 0
\(501\) 12.6992 + 18.0417i 0.567357 + 0.806046i
\(502\) 0 0
\(503\) 5.16274 0.230195 0.115098 0.993354i \(-0.463282\pi\)
0.115098 + 0.993354i \(0.463282\pi\)
\(504\) 0 0
\(505\) 21.1248 0.940043
\(506\) 0 0
\(507\) −8.73281 12.4067i −0.387838 0.551002i
\(508\) 0 0
\(509\) 1.78554 3.09264i 0.0791426 0.137079i −0.823738 0.566971i \(-0.808115\pi\)
0.902880 + 0.429892i \(0.141448\pi\)
\(510\) 0 0
\(511\) 8.00290 + 7.09458i 0.354028 + 0.313846i
\(512\) 0 0
\(513\) 0.609041 2.34191i 0.0268898 0.103398i
\(514\) 0 0
\(515\) −18.4297 + 10.6404i −0.812109 + 0.468871i
\(516\) 0 0
\(517\) 13.8363i 0.608522i
\(518\) 0 0
\(519\) −20.2698 + 1.82358i −0.889743 + 0.0800464i
\(520\) 0 0
\(521\) −5.95306 + 3.43700i −0.260808 + 0.150578i −0.624703 0.780862i \(-0.714780\pi\)
0.363895 + 0.931440i \(0.381447\pi\)
\(522\) 0 0
\(523\) 6.59397 11.4211i 0.288334 0.499410i −0.685078 0.728470i \(-0.740232\pi\)
0.973412 + 0.229060i \(0.0735652\pi\)
\(524\) 0 0
\(525\) −0.508768 + 4.52424i −0.0222045 + 0.197454i
\(526\) 0 0
\(527\) 16.4063 28.4165i 0.714668 1.23784i
\(528\) 0 0
\(529\) 10.4886 + 18.1668i 0.456027 + 0.789863i
\(530\) 0 0
\(531\) 3.53691 + 19.4979i 0.153489 + 0.846137i
\(532\) 0 0
\(533\) −17.3578 −0.751850
\(534\) 0 0
\(535\) −9.73934 + 5.62301i −0.421069 + 0.243104i
\(536\) 0 0
\(537\) −16.1497 7.48245i −0.696910 0.322892i
\(538\) 0 0
\(539\) 10.5888 24.8082i 0.456091 1.06857i
\(540\) 0 0
\(541\) 2.61534 + 1.50996i 0.112442 + 0.0649185i 0.555166 0.831739i \(-0.312655\pi\)
−0.442724 + 0.896658i \(0.645988\pi\)
\(542\) 0 0
\(543\) −6.74689 + 4.74898i −0.289537 + 0.203798i
\(544\) 0 0
\(545\) 21.1493i 0.905936i
\(546\) 0 0
\(547\) 8.67520 0.370925 0.185462 0.982651i \(-0.440622\pi\)
0.185462 + 0.982651i \(0.440622\pi\)
\(548\) 0 0
\(549\) 22.4768 19.0493i 0.959286 0.813005i
\(550\) 0 0
\(551\) 2.15575 3.73388i 0.0918382 0.159068i
\(552\) 0 0
\(553\) −0.0146106 0.00298771i −0.000621308 0.000127050i
\(554\) 0 0
\(555\) 2.06714 + 0.957744i 0.0877451 + 0.0406539i
\(556\) 0 0
\(557\) −3.73163 6.46337i −0.158114 0.273862i 0.776075 0.630641i \(-0.217208\pi\)
−0.934189 + 0.356780i \(0.883875\pi\)
\(558\) 0 0
\(559\) 13.9425i 0.589707i
\(560\) 0 0
\(561\) −37.8017 + 3.40086i −1.59599 + 0.143584i
\(562\) 0 0
\(563\) −35.8665 + 20.7076i −1.51159 + 0.872720i −0.511687 + 0.859172i \(0.670979\pi\)
−0.999908 + 0.0135474i \(0.995688\pi\)
\(564\) 0 0
\(565\) −27.5801 15.9234i −1.16030 0.669901i
\(566\) 0 0
\(567\) 22.2311 + 8.53094i 0.933620 + 0.358266i
\(568\) 0 0
\(569\) 29.0674 + 16.7821i 1.21857 + 0.703541i 0.964612 0.263674i \(-0.0849343\pi\)
0.253958 + 0.967215i \(0.418268\pi\)
\(570\) 0 0
\(571\) −11.7720 20.3898i −0.492645 0.853286i 0.507319 0.861758i \(-0.330636\pi\)
−0.999964 + 0.00847253i \(0.997303\pi\)
\(572\) 0 0
\(573\) 4.12282 0.370912i 0.172233 0.0154951i
\(574\) 0 0
\(575\) −1.41297 −0.0589251
\(576\) 0 0
\(577\) 11.5230 + 19.9584i 0.479708 + 0.830879i 0.999729 0.0232743i \(-0.00740910\pi\)
−0.520021 + 0.854154i \(0.674076\pi\)
\(578\) 0 0
\(579\) −4.63284 + 9.99925i −0.192534 + 0.415554i
\(580\) 0 0
\(581\) −7.16873 21.4961i −0.297409 0.891809i
\(582\) 0 0
\(583\) 10.0491 + 5.80186i 0.416192 + 0.240289i
\(584\) 0 0
\(585\) −9.43331 + 7.99483i −0.390019 + 0.330546i
\(586\) 0 0
\(587\) 35.2560i 1.45517i 0.686017 + 0.727585i \(0.259358\pi\)
−0.686017 + 0.727585i \(0.740642\pi\)
\(588\) 0 0
\(589\) 2.68705i 0.110718i
\(590\) 0 0
\(591\) −16.8535 23.9438i −0.693260 0.984916i
\(592\) 0 0
\(593\) −15.9344 9.19971i −0.654346 0.377787i 0.135773 0.990740i \(-0.456648\pi\)
−0.790119 + 0.612953i \(0.789981\pi\)
\(594\) 0 0
\(595\) −9.52745 28.5690i −0.390587 1.17121i
\(596\) 0 0
\(597\) 20.4102 + 9.45642i 0.835333 + 0.387025i
\(598\) 0 0
\(599\) −3.46929 6.00898i −0.141751 0.245520i 0.786405 0.617711i \(-0.211940\pi\)
−0.928156 + 0.372191i \(0.878607\pi\)
\(600\) 0 0
\(601\) 17.3861 0.709194 0.354597 0.935019i \(-0.384618\pi\)
0.354597 + 0.935019i \(0.384618\pi\)
\(602\) 0 0
\(603\) −22.3318 + 4.05098i −0.909421 + 0.164969i
\(604\) 0 0
\(605\) 3.85150 + 6.67099i 0.156586 + 0.271214i
\(606\) 0 0
\(607\) −21.1329 12.2011i −0.857757 0.495226i 0.00550324 0.999985i \(-0.498248\pi\)
−0.863261 + 0.504758i \(0.831582\pi\)
\(608\) 0 0
\(609\) 34.1420 + 25.1865i 1.38350 + 1.02061i
\(610\) 0 0
\(611\) 6.40352 + 3.69707i 0.259059 + 0.149568i
\(612\) 0 0
\(613\) −7.71712 + 4.45548i −0.311692 + 0.179955i −0.647683 0.761910i \(-0.724262\pi\)
0.335992 + 0.941865i \(0.390929\pi\)
\(614\) 0 0
\(615\) −2.61854 29.1059i −0.105590 1.17366i
\(616\) 0 0
\(617\) 43.3713i 1.74606i 0.487664 + 0.873031i \(0.337849\pi\)
−0.487664 + 0.873031i \(0.662151\pi\)
\(618\) 0 0
\(619\) 18.4061 + 31.8804i 0.739806 + 1.28138i 0.952583 + 0.304280i \(0.0984159\pi\)
−0.212777 + 0.977101i \(0.568251\pi\)
\(620\) 0 0
\(621\) −1.86002 + 7.15222i −0.0746401 + 0.287009i
\(622\) 0 0
\(623\) −24.3644 4.98225i −0.976141 0.199610i
\(624\) 0 0
\(625\) 9.52276 16.4939i 0.380910 0.659756i
\(626\) 0 0
\(627\) −2.54164 + 1.78900i −0.101503 + 0.0714457i
\(628\) 0 0
\(629\) 3.73693 0.149001
\(630\) 0 0
\(631\) 23.1113i 0.920045i −0.887907 0.460023i \(-0.847841\pi\)
0.887907 0.460023i \(-0.152159\pi\)
\(632\) 0 0
\(633\) −4.33576 6.15983i −0.172331 0.244831i
\(634\) 0 0
\(635\) 30.9275 + 17.8560i 1.22732 + 0.708593i
\(636\) 0 0
\(637\) −8.65203 11.5293i −0.342806 0.456807i
\(638\) 0 0
\(639\) −14.2138 + 39.6575i −0.562288 + 1.56882i
\(640\) 0 0
\(641\) −12.0471 + 6.95538i −0.475831 + 0.274721i −0.718677 0.695344i \(-0.755252\pi\)
0.242847 + 0.970065i \(0.421919\pi\)
\(642\) 0 0
\(643\) −13.6551 −0.538505 −0.269252 0.963070i \(-0.586777\pi\)
−0.269252 + 0.963070i \(0.586777\pi\)
\(644\) 0 0
\(645\) −23.3792 + 2.10332i −0.920554 + 0.0828183i
\(646\) 0 0
\(647\) 15.7948 + 27.3574i 0.620958 + 1.07553i 0.989308 + 0.145843i \(0.0465895\pi\)
−0.368350 + 0.929687i \(0.620077\pi\)
\(648\) 0 0
\(649\) 12.7264 22.0428i 0.499556 0.865256i
\(650\) 0 0
\(651\) 26.2760 + 2.95484i 1.02984 + 0.115809i
\(652\) 0 0
\(653\) 15.3505 26.5879i 0.600713 1.04047i −0.392000 0.919965i \(-0.628217\pi\)
0.992713 0.120500i \(-0.0384498\pi\)
\(654\) 0 0
\(655\) −4.21931 + 2.43602i −0.164862 + 0.0951832i
\(656\) 0 0
\(657\) 11.9321 2.16447i 0.465514 0.0844442i
\(658\) 0 0
\(659\) 20.0419i 0.780720i 0.920662 + 0.390360i \(0.127649\pi\)
−0.920662 + 0.390360i \(0.872351\pi\)
\(660\) 0 0
\(661\) −27.8066 + 16.0541i −1.08155 + 0.624434i −0.931314 0.364216i \(-0.881337\pi\)
−0.150237 + 0.988650i \(0.548004\pi\)
\(662\) 0 0
\(663\) −8.52669 + 18.4035i −0.331149 + 0.714733i
\(664\) 0 0
\(665\) −1.84546 1.63600i −0.0715637 0.0634413i
\(666\) 0 0
\(667\) −6.58371 + 11.4033i −0.254922 + 0.441538i
\(668\) 0 0
\(669\) −36.5159 + 25.7027i −1.41179 + 0.993724i
\(670\) 0 0
\(671\) −37.8441 −1.46096
\(672\) 0 0
\(673\) −39.5520 −1.52462 −0.762308 0.647214i \(-0.775934\pi\)
−0.762308 + 0.647214i \(0.775934\pi\)
\(674\) 0 0
\(675\) 3.67714 + 3.62331i 0.141533 + 0.139461i
\(676\) 0 0
\(677\) −20.5606 + 35.6119i −0.790206 + 1.36868i 0.135633 + 0.990759i \(0.456693\pi\)
−0.925839 + 0.377918i \(0.876640\pi\)
\(678\) 0 0
\(679\) 10.4738 3.49289i 0.401946 0.134045i
\(680\) 0 0
\(681\) 2.55795 + 1.18515i 0.0980210 + 0.0454150i
\(682\) 0 0
\(683\) −1.63043 + 0.941329i −0.0623866 + 0.0360189i −0.530869 0.847454i \(-0.678134\pi\)
0.468482 + 0.883473i \(0.344801\pi\)
\(684\) 0 0
\(685\) 6.22919i 0.238005i
\(686\) 0 0
\(687\) 2.18159 + 24.2491i 0.0832327 + 0.925159i
\(688\) 0 0
\(689\) 5.37025 3.10052i 0.204590 0.118120i
\(690\) 0 0
\(691\) −4.71705 + 8.17016i −0.179445 + 0.310808i −0.941691 0.336480i \(-0.890763\pi\)
0.762246 + 0.647288i \(0.224097\pi\)
\(692\) 0 0
\(693\) −14.6992 26.8213i −0.558377 1.01886i
\(694\) 0 0
\(695\) 7.96141 13.7896i 0.301993 0.523068i
\(696\) 0 0
\(697\) −23.9674 41.5127i −0.907829 1.57241i
\(698\) 0 0
\(699\) 2.79254 + 31.0401i 0.105624 + 1.17404i
\(700\) 0 0
\(701\) 23.3839 0.883197 0.441598 0.897213i \(-0.354412\pi\)
0.441598 + 0.897213i \(0.354412\pi\)
\(702\) 0 0
\(703\) 0.265022 0.153011i 0.00999551 0.00577091i
\(704\) 0 0
\(705\) −5.23332 + 11.2953i −0.197098 + 0.425405i
\(706\) 0 0
\(707\) 20.8946 + 18.5230i 0.785821 + 0.696630i
\(708\) 0 0
\(709\) 19.2646 + 11.1224i 0.723496 + 0.417711i 0.816038 0.577998i \(-0.196166\pi\)
−0.0925419 + 0.995709i \(0.529499\pi\)
\(710\) 0 0
\(711\) −0.0129000 + 0.0109329i −0.000483789 + 0.000410016i
\(712\) 0 0
\(713\) 8.20631i 0.307329i
\(714\) 0 0
\(715\) 15.8829 0.593985
\(716\) 0 0
\(717\) −16.0043 22.7373i −0.597690 0.849141i
\(718\) 0 0
\(719\) −21.5877 + 37.3910i −0.805086 + 1.39445i 0.111148 + 0.993804i \(0.464547\pi\)
−0.916233 + 0.400645i \(0.868786\pi\)
\(720\) 0 0
\(721\) −27.5586 5.63543i −1.02634 0.209874i
\(722\) 0 0
\(723\) 5.30518 11.4504i 0.197302 0.425844i
\(724\) 0 0
\(725\) 4.59902 + 7.96574i 0.170803 + 0.295840i
\(726\) 0 0
\(727\) 18.5349i 0.687423i −0.939075 0.343712i \(-0.888316\pi\)
0.939075 0.343712i \(-0.111684\pi\)
\(728\) 0 0
\(729\) 23.1811 13.8433i 0.858558 0.512716i
\(730\) 0 0
\(731\) −33.3448 + 19.2516i −1.23330 + 0.712048i
\(732\) 0 0
\(733\) −7.89497 4.55816i −0.291607 0.168360i 0.347059 0.937843i \(-0.387180\pi\)
−0.638666 + 0.769484i \(0.720514\pi\)
\(734\) 0 0
\(735\) 18.0274 16.2472i 0.664949 0.599287i
\(736\) 0 0
\(737\) 25.2466 + 14.5761i 0.929970 + 0.536919i
\(738\) 0 0
\(739\) 16.9014 + 29.2741i 0.621728 + 1.07686i 0.989164 + 0.146815i \(0.0469023\pi\)
−0.367436 + 0.930049i \(0.619764\pi\)
\(740\) 0 0
\(741\) 0.148830 + 1.65430i 0.00546742 + 0.0607723i
\(742\) 0 0
\(743\) −19.4548 −0.713726 −0.356863 0.934157i \(-0.616154\pi\)
−0.356863 + 0.934157i \(0.616154\pi\)
\(744\) 0 0
\(745\) −10.5624 18.2947i −0.386977 0.670264i
\(746\) 0 0
\(747\) −24.1873 8.66907i −0.884969 0.317185i
\(748\) 0 0
\(749\) −14.5636 2.97810i −0.532143 0.108817i
\(750\) 0 0
\(751\) 10.6440 + 6.14534i 0.388407 + 0.224247i 0.681470 0.731847i \(-0.261341\pi\)
−0.293063 + 0.956093i \(0.594675\pi\)
\(752\) 0 0
\(753\) −31.6516 + 22.2788i −1.15345 + 0.811886i
\(754\) 0 0
\(755\) 35.2429i 1.28262i
\(756\) 0 0
\(757\) 10.4294i 0.379064i −0.981875 0.189532i \(-0.939303\pi\)
0.981875 0.189532i \(-0.0606970\pi\)
\(758\) 0 0
\(759\) 7.76220 5.46363i 0.281750 0.198317i
\(760\) 0 0
\(761\) −21.5087 12.4181i −0.779691 0.450155i 0.0566301 0.998395i \(-0.481964\pi\)
−0.836321 + 0.548241i \(0.815298\pi\)
\(762\) 0 0
\(763\) −18.5445 + 20.9187i −0.671354 + 0.757308i
\(764\) 0 0
\(765\) −32.1457 11.5215i −1.16223 0.416559i
\(766\) 0 0
\(767\) −6.80100 11.7797i −0.245570 0.425340i
\(768\) 0 0
\(769\) 0.929396 0.0335149 0.0167574 0.999860i \(-0.494666\pi\)
0.0167574 + 0.999860i \(0.494666\pi\)
\(770\) 0 0
\(771\) −0.469442 5.21800i −0.0169065 0.187922i
\(772\) 0 0
\(773\) 15.9577 + 27.6396i 0.573959 + 0.994127i 0.996154 + 0.0876213i \(0.0279265\pi\)
−0.422195 + 0.906505i \(0.638740\pi\)
\(774\) 0 0
\(775\) 4.96447 + 2.86624i 0.178329 + 0.102958i
\(776\) 0 0
\(777\) 1.20482 + 2.75984i 0.0432226 + 0.0990088i
\(778\) 0 0
\(779\) −3.39952 1.96271i −0.121800 0.0703215i
\(780\) 0 0
\(781\) 46.8616 27.0555i 1.67684 0.968123i
\(782\) 0 0
\(783\) 46.3752 12.7934i 1.65732 0.457200i
\(784\) 0 0
\(785\) 4.92919i 0.175930i
\(786\) 0 0
\(787\) 3.93891 + 6.82240i 0.140407 + 0.243192i 0.927650 0.373451i \(-0.121826\pi\)
−0.787243 + 0.616643i \(0.788492\pi\)
\(788\) 0 0
\(789\) −15.6482 + 33.7742i −0.557092 + 1.20239i
\(790\) 0 0
\(791\) −13.3172 39.9330i −0.473506 1.41985i
\(792\) 0 0
\(793\) −10.1120 + 17.5144i −0.359086 + 0.621956i
\(794\) 0 0
\(795\) 6.00916 + 8.53723i 0.213123 + 0.302784i
\(796\) 0 0
\(797\) −5.89418 −0.208782 −0.104391 0.994536i \(-0.533289\pi\)
−0.104391 + 0.994536i \(0.533289\pi\)
\(798\) 0 0
\(799\) 20.4194i 0.722388i
\(800\) 0 0
\(801\) −21.5119 + 18.2315i −0.760084 + 0.644180i
\(802\) 0 0
\(803\) −13.4895 7.78815i −0.476033 0.274838i
\(804\) 0 0
\(805\) 5.63606 + 4.99637i 0.198645 + 0.176099i
\(806\) 0 0
\(807\) 15.9294 34.3810i 0.560740 1.21027i
\(808\) 0 0
\(809\) 35.6151 20.5624i 1.25216 0.722936i 0.280623 0.959818i \(-0.409459\pi\)
0.971538 + 0.236882i \(0.0761256\pi\)
\(810\) 0 0
\(811\) −17.5373 −0.615819 −0.307909 0.951416i \(-0.599629\pi\)
−0.307909 + 0.951416i \(0.599629\pi\)
\(812\) 0 0
\(813\) −1.61882 17.9938i −0.0567746 0.631069i
\(814\) 0 0
\(815\) 9.67551 + 16.7585i 0.338918 + 0.587024i
\(816\) 0 0
\(817\) −1.57654 + 2.73064i −0.0551561 + 0.0955331i
\(818\) 0 0
\(819\) −16.3406 0.363791i −0.570988 0.0127119i
\(820\) 0 0
\(821\) 13.1411 22.7610i 0.458626 0.794364i −0.540262 0.841497i \(-0.681675\pi\)
0.998889 + 0.0471324i \(0.0150083\pi\)
\(822\) 0 0
\(823\) 10.8805 6.28189i 0.379272 0.218973i −0.298229 0.954494i \(-0.596396\pi\)
0.677502 + 0.735521i \(0.263063\pi\)
\(824\) 0 0
\(825\) −0.594143 6.60410i −0.0206854 0.229925i
\(826\) 0 0
\(827\) 27.2104i 0.946197i −0.881010 0.473098i \(-0.843136\pi\)
0.881010 0.473098i \(-0.156864\pi\)
\(828\) 0 0
\(829\) −37.1390 + 21.4422i −1.28989 + 0.744718i −0.978634 0.205608i \(-0.934083\pi\)
−0.311255 + 0.950326i \(0.600749\pi\)
\(830\) 0 0
\(831\) 34.0652 + 15.7831i 1.18171 + 0.547508i
\(832\) 0 0
\(833\) 15.6267 36.6115i 0.541434 1.26851i
\(834\) 0 0
\(835\) 12.7484 22.0809i 0.441177 0.764140i
\(836\) 0 0
\(837\) 21.0436 21.3562i 0.727372 0.738178i
\(838\) 0 0
\(839\) 43.8842 1.51505 0.757526 0.652805i \(-0.226408\pi\)
0.757526 + 0.652805i \(0.226408\pi\)
\(840\) 0 0
\(841\) 56.7160 1.95572
\(842\) 0 0
\(843\) 11.8270 8.32473i 0.407342 0.286719i
\(844\) 0 0
\(845\) −8.76667 + 15.1843i −0.301583 + 0.522356i
\(846\) 0 0
\(847\) −2.03986 + 9.97540i −0.0700903 + 0.342759i
\(848\) 0 0
\(849\) 16.6014 35.8315i 0.569759 1.22973i
\(850\) 0 0
\(851\) −0.809383 + 0.467298i −0.0277453 + 0.0160188i
\(852\) 0 0
\(853\) 45.0262i 1.54167i 0.637036 + 0.770834i \(0.280160\pi\)
−0.637036 + 0.770834i \(0.719840\pi\)
\(854\) 0 0
\(855\) −2.75152 + 0.499124i −0.0940999 + 0.0170697i
\(856\) 0 0
\(857\) −2.63945 + 1.52389i −0.0901621 + 0.0520551i −0.544403 0.838824i \(-0.683244\pi\)
0.454241 + 0.890879i \(0.349910\pi\)
\(858\) 0 0
\(859\) 18.4182 31.9013i 0.628421 1.08846i −0.359447 0.933165i \(-0.617035\pi\)
0.987869 0.155292i \(-0.0496320\pi\)
\(860\) 0 0
\(861\) 22.9311 31.0847i 0.781491 1.05936i
\(862\) 0 0
\(863\) 23.1013 40.0125i 0.786376 1.36204i −0.141798 0.989896i \(-0.545288\pi\)
0.928174 0.372147i \(-0.121378\pi\)
\(864\) 0 0
\(865\) 11.7596 + 20.3682i 0.399837 + 0.692538i
\(866\) 0 0
\(867\) −26.4607 + 2.38055i −0.898651 + 0.0808478i
\(868\) 0 0
\(869\) 0.0217198 0.000736793
\(870\) 0 0
\(871\) 13.4918 7.78949i 0.457152 0.263937i
\(872\) 0 0
\(873\) 4.22391 11.7850i 0.142958 0.398863i
\(874\) 0 0
\(875\) 30.1101 10.0414i 1.01791 0.339462i
\(876\) 0 0
\(877\) 20.3134 + 11.7280i 0.685935 + 0.396025i 0.802087 0.597207i \(-0.203723\pi\)
−0.116152 + 0.993231i \(0.537056\pi\)
\(878\) 0 0
\(879\) 6.49821 + 9.23203i 0.219179 + 0.311389i
\(880\) 0 0
\(881\) 16.7672i 0.564900i −0.959282 0.282450i \(-0.908853\pi\)
0.959282 0.282450i \(-0.0911471\pi\)
\(882\) 0 0
\(883\) 18.5641 0.624731 0.312365 0.949962i \(-0.398879\pi\)
0.312365 + 0.949962i \(0.398879\pi\)
\(884\) 0 0
\(885\) 18.7265 13.1811i 0.629483 0.443078i
\(886\) 0 0
\(887\) −19.6635 + 34.0581i −0.660234 + 1.14356i 0.320320 + 0.947309i \(0.396210\pi\)
−0.980554 + 0.196250i \(0.937124\pi\)
\(888\) 0 0
\(889\) 14.9335 + 44.7796i 0.500855 + 1.50186i
\(890\) 0 0
\(891\) −34.2109 5.68611i −1.14611 0.190492i
\(892\) 0 0
\(893\) 0.836085 + 1.44814i 0.0279785 + 0.0484602i
\(894\) 0 0
\(895\) 20.5691i 0.687548i
\(896\) 0 0
\(897\) −0.454531 5.05226i −0.0151763 0.168690i
\(898\) 0 0
\(899\) 46.2636 26.7103i 1.54298 0.890839i
\(900\) 0 0
\(901\) 14.8303 + 8.56229i 0.494070 + 0.285251i
\(902\) 0 0
\(903\) −24.9686 18.4193i −0.830902 0.612956i
\(904\) 0 0
\(905\) 8.25737 + 4.76740i 0.274484 + 0.158474i
\(906\) 0 0
\(907\) −12.8800 22.3088i −0.427674 0.740753i 0.568992 0.822343i \(-0.307333\pi\)
−0.996666 + 0.0815902i \(0.974000\pi\)
\(908\) 0 0
\(909\) 31.1531 5.65117i 1.03328 0.187437i
\(910\) 0 0
\(911\) 0.887972 0.0294198 0.0147099 0.999892i \(-0.495318\pi\)
0.0147099 + 0.999892i \(0.495318\pi\)
\(912\) 0 0
\(913\) 16.5014 + 28.5812i 0.546115 + 0.945899i
\(914\) 0 0
\(915\) −30.8940 14.3138i −1.02133 0.473199i
\(916\) 0 0
\(917\) −6.30930 1.29018i −0.208352 0.0426055i
\(918\) 0 0
\(919\) −37.8224 21.8368i −1.24764 0.720328i −0.277006 0.960868i \(-0.589342\pi\)
−0.970639 + 0.240540i \(0.922675\pi\)
\(920\) 0 0
\(921\) −12.7188 18.0696i −0.419098 0.595414i
\(922\) 0 0
\(923\) 28.9170i 0.951814i
\(924\) 0 0
\(925\) 0.652857i 0.0214658i
\(926\) 0 0
\(927\) −24.3321 + 20.6217i −0.799170 + 0.677305i
\(928\) 0 0
\(929\) −10.6999 6.17761i −0.351053 0.202681i 0.314096 0.949391i \(-0.398299\pi\)
−0.665149 + 0.746711i \(0.731632\pi\)
\(930\) 0 0
\(931\) −0.390836 3.23633i −0.0128091 0.106066i
\(932\) 0 0
\(933\) 6.87897 14.8472i 0.225207 0.486074i
\(934\) 0 0
\(935\) 21.9308 + 37.9852i 0.717213 + 1.24225i
\(936\) 0 0
\(937\) −60.8875 −1.98911 −0.994553 0.104228i \(-0.966763\pi\)
−0.994553 + 0.104228i \(0.966763\pi\)
\(938\) 0 0
\(939\) −9.92366 + 0.892790i −0.323847 + 0.0291351i
\(940\) 0 0
\(941\) 20.1874 + 34.9656i 0.658090 + 1.13985i 0.981109 + 0.193453i \(0.0619688\pi\)
−0.323019 + 0.946392i \(0.604698\pi\)
\(942\) 0 0
\(943\) 10.3822 + 5.99416i 0.338091 + 0.195197i
\(944\) 0 0
\(945\) −1.85508 27.4552i −0.0603457 0.893118i
\(946\) 0 0
\(947\) 49.1278 + 28.3640i 1.59644 + 0.921705i 0.992166 + 0.124928i \(0.0398699\pi\)
0.604273 + 0.796777i \(0.293463\pi\)
\(948\) 0 0
\(949\) −7.20878 + 4.16199i −0.234007 + 0.135104i
\(950\) 0 0
\(951\) −23.0821 + 2.07660i −0.748490 + 0.0673385i
\(952\) 0 0
\(953\) 57.3370i 1.85733i −0.370922 0.928664i \(-0.620958\pi\)
0.370922 0.928664i \(-0.379042\pi\)
\(954\) 0 0
\(955\) −2.39187 4.14283i −0.0773990 0.134059i
\(956\) 0 0
\(957\) −56.0664 25.9766i −1.81237 0.839705i
\(958\) 0 0
\(959\) 5.46198 6.16128i 0.176376 0.198958i
\(960\) 0 0
\(961\) 1.14663 1.98602i 0.0369880 0.0640651i
\(962\) 0 0
\(963\) −12.8585 + 10.8977i −0.414360 + 0.351175i
\(964\) 0 0
\(965\) 12.7356 0.409972
\(966\) 0 0
\(967\) 8.50633i 0.273545i −0.990602 0.136773i \(-0.956327\pi\)
0.990602 0.136773i \(-0.0436729\pi\)
\(968\) 0 0
\(969\) −3.75090 + 2.64017i −0.120496 + 0.0848146i
\(970\) 0 0
\(971\) −19.5026 11.2598i −0.625867 0.361344i 0.153283 0.988182i \(-0.451015\pi\)
−0.779150 + 0.626838i \(0.784349\pi\)
\(972\) 0 0
\(973\) 19.9658 6.65838i 0.640074 0.213458i
\(974\) 0 0
\(975\) −3.21516 1.48965i −0.102968 0.0477068i
\(976\) 0 0
\(977\) 28.7960 16.6254i 0.921267 0.531894i 0.0372277 0.999307i \(-0.488147\pi\)
0.884039 + 0.467413i \(0.154814\pi\)
\(978\) 0 0
\(979\) 36.2195 1.15758
\(980\) 0 0
\(981\) 5.65770 + 31.1891i 0.180637 + 0.995793i
\(982\) 0 0
\(983\) 5.17748 + 8.96766i 0.165136 + 0.286024i 0.936704 0.350123i \(-0.113860\pi\)
−0.771568 + 0.636147i \(0.780527\pi\)
\(984\) 0 0
\(985\) −16.9188 + 29.3043i −0.539079 + 0.933712i
\(986\) 0 0
\(987\) −15.0804 + 6.58339i −0.480014 + 0.209552i
\(988\) 0 0
\(989\) 4.81477 8.33943i 0.153101 0.265178i
\(990\) 0 0
\(991\) −49.0627 + 28.3264i −1.55853 + 0.899817i −0.561130 + 0.827728i \(0.689633\pi\)
−0.997398 + 0.0720892i \(0.977033\pi\)
\(992\) 0 0
\(993\) 7.74000 0.696335i 0.245621 0.0220975i
\(994\) 0 0
\(995\) 25.9954i 0.824111i
\(996\) 0 0
\(997\) −12.1911 + 7.03856i −0.386097 + 0.222913i −0.680468 0.732778i \(-0.738223\pi\)
0.294370 + 0.955691i \(0.404890\pi\)
\(998\) 0 0
\(999\) 3.30464 + 0.859413i 0.104554 + 0.0271906i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 672.2.bd.a.527.9 56
3.2 odd 2 inner 672.2.bd.a.527.12 56
4.3 odd 2 168.2.v.a.107.14 yes 56
7.4 even 3 inner 672.2.bd.a.431.11 56
8.3 odd 2 inner 672.2.bd.a.527.10 56
8.5 even 2 168.2.v.a.107.24 yes 56
12.11 even 2 168.2.v.a.107.15 yes 56
21.11 odd 6 inner 672.2.bd.a.431.10 56
24.5 odd 2 168.2.v.a.107.5 yes 56
24.11 even 2 inner 672.2.bd.a.527.11 56
28.11 odd 6 168.2.v.a.11.5 56
56.11 odd 6 inner 672.2.bd.a.431.12 56
56.53 even 6 168.2.v.a.11.15 yes 56
84.11 even 6 168.2.v.a.11.24 yes 56
168.11 even 6 inner 672.2.bd.a.431.9 56
168.53 odd 6 168.2.v.a.11.14 yes 56
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
168.2.v.a.11.5 56 28.11 odd 6
168.2.v.a.11.14 yes 56 168.53 odd 6
168.2.v.a.11.15 yes 56 56.53 even 6
168.2.v.a.11.24 yes 56 84.11 even 6
168.2.v.a.107.5 yes 56 24.5 odd 2
168.2.v.a.107.14 yes 56 4.3 odd 2
168.2.v.a.107.15 yes 56 12.11 even 2
168.2.v.a.107.24 yes 56 8.5 even 2
672.2.bd.a.431.9 56 168.11 even 6 inner
672.2.bd.a.431.10 56 21.11 odd 6 inner
672.2.bd.a.431.11 56 7.4 even 3 inner
672.2.bd.a.431.12 56 56.11 odd 6 inner
672.2.bd.a.527.9 56 1.1 even 1 trivial
672.2.bd.a.527.10 56 8.3 odd 2 inner
672.2.bd.a.527.11 56 24.11 even 2 inner
672.2.bd.a.527.12 56 3.2 odd 2 inner