Properties

Label 672.2.bd.a.527.26
Level $672$
Weight $2$
Character 672.527
Analytic conductor $5.366$
Analytic rank $0$
Dimension $56$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [672,2,Mod(431,672)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("672.431"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(672, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 3, 3, 4])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 672 = 2^{5} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 672.bd (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.36594701583\)
Analytic rank: \(0\)
Dimension: \(56\)
Relative dimension: \(28\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 168)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 527.26
Character \(\chi\) \(=\) 672.527
Dual form 672.2.bd.a.431.26

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.64844 - 0.531631i) q^{3} +(0.646402 - 1.11960i) q^{5} +(-2.42742 - 1.05244i) q^{7} +(2.43474 - 1.75273i) q^{9} +(1.60004 - 0.923782i) q^{11} -2.25432i q^{13} +(0.470342 - 2.18925i) q^{15} +(-3.89580 + 2.24924i) q^{17} +(2.80851 - 4.86448i) q^{19} +(-4.56098 - 0.444404i) q^{21} +(0.519880 - 0.900459i) q^{23} +(1.66433 + 2.88270i) q^{25} +(3.08172 - 4.18366i) q^{27} +1.32085 q^{29} +(3.69700 - 2.13446i) q^{31} +(2.14646 - 2.37343i) q^{33} +(-2.74740 + 2.03744i) q^{35} +(-8.18394 - 4.72500i) q^{37} +(-1.19846 - 3.71611i) q^{39} -1.39634i q^{41} +6.02578 q^{43} +(-0.388538 - 3.85890i) q^{45} +(-5.90249 + 10.2234i) q^{47} +(4.78472 + 5.10944i) q^{49} +(-5.22625 + 5.77888i) q^{51} +(6.02901 + 10.4425i) q^{53} -2.38854i q^{55} +(2.04356 - 9.51192i) q^{57} +(-9.57732 + 5.52947i) q^{59} +(7.65220 + 4.41800i) q^{61} +(-7.75477 + 1.69218i) q^{63} +(-2.52393 - 1.45719i) q^{65} +(-3.05545 - 5.29219i) q^{67} +(0.378281 - 1.76074i) q^{69} +14.0121 q^{71} +(-4.38664 - 7.59788i) q^{73} +(4.27609 + 3.86717i) q^{75} +(-4.85619 + 0.558456i) q^{77} +(-2.37061 - 1.36867i) q^{79} +(2.85588 - 8.53487i) q^{81} +4.74366i q^{83} +5.81566i q^{85} +(2.17736 - 0.702207i) q^{87} +(8.31219 + 4.79904i) q^{89} +(-2.37254 + 5.47217i) q^{91} +(4.95955 - 5.48398i) q^{93} +(-3.63085 - 6.28882i) q^{95} -8.73466 q^{97} +(2.27653 - 5.05360i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q + 2 q^{3} - 2 q^{9} + 4 q^{19} - 16 q^{25} + 8 q^{27} - 14 q^{33} + 16 q^{43} - 16 q^{49} + 34 q^{51} + 4 q^{57} + 36 q^{67} + 4 q^{73} - 10 q^{81} - 72 q^{91} - 32 q^{97} + 44 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/672\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(421\) \(449\) \(577\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.64844 0.531631i 0.951730 0.306937i
\(4\) 0 0
\(5\) 0.646402 1.11960i 0.289080 0.500700i −0.684511 0.729003i \(-0.739984\pi\)
0.973590 + 0.228302i \(0.0733175\pi\)
\(6\) 0 0
\(7\) −2.42742 1.05244i −0.917478 0.397786i
\(8\) 0 0
\(9\) 2.43474 1.75273i 0.811579 0.584243i
\(10\) 0 0
\(11\) 1.60004 0.923782i 0.482430 0.278531i −0.238999 0.971020i \(-0.576819\pi\)
0.721428 + 0.692489i \(0.243486\pi\)
\(12\) 0 0
\(13\) 2.25432i 0.625235i −0.949879 0.312617i \(-0.898794\pi\)
0.949879 0.312617i \(-0.101206\pi\)
\(14\) 0 0
\(15\) 0.470342 2.18925i 0.121442 0.565261i
\(16\) 0 0
\(17\) −3.89580 + 2.24924i −0.944871 + 0.545522i −0.891484 0.453052i \(-0.850335\pi\)
−0.0533874 + 0.998574i \(0.517002\pi\)
\(18\) 0 0
\(19\) 2.80851 4.86448i 0.644317 1.11599i −0.340142 0.940374i \(-0.610475\pi\)
0.984459 0.175615i \(-0.0561914\pi\)
\(20\) 0 0
\(21\) −4.56098 0.444404i −0.995287 0.0969769i
\(22\) 0 0
\(23\) 0.519880 0.900459i 0.108402 0.187759i −0.806721 0.590933i \(-0.798760\pi\)
0.915123 + 0.403174i \(0.132093\pi\)
\(24\) 0 0
\(25\) 1.66433 + 2.88270i 0.332866 + 0.576541i
\(26\) 0 0
\(27\) 3.08172 4.18366i 0.593078 0.805145i
\(28\) 0 0
\(29\) 1.32085 0.245277 0.122638 0.992451i \(-0.460865\pi\)
0.122638 + 0.992451i \(0.460865\pi\)
\(30\) 0 0
\(31\) 3.69700 2.13446i 0.664000 0.383361i −0.129799 0.991540i \(-0.541433\pi\)
0.793800 + 0.608179i \(0.208100\pi\)
\(32\) 0 0
\(33\) 2.14646 2.37343i 0.373651 0.413162i
\(34\) 0 0
\(35\) −2.74740 + 2.03744i −0.464396 + 0.344390i
\(36\) 0 0
\(37\) −8.18394 4.72500i −1.34543 0.776786i −0.357834 0.933785i \(-0.616484\pi\)
−0.987599 + 0.157000i \(0.949818\pi\)
\(38\) 0 0
\(39\) −1.19846 3.71611i −0.191908 0.595055i
\(40\) 0 0
\(41\) 1.39634i 0.218072i −0.994038 0.109036i \(-0.965224\pi\)
0.994038 0.109036i \(-0.0347764\pi\)
\(42\) 0 0
\(43\) 6.02578 0.918922 0.459461 0.888198i \(-0.348043\pi\)
0.459461 + 0.888198i \(0.348043\pi\)
\(44\) 0 0
\(45\) −0.388538 3.85890i −0.0579198 0.575251i
\(46\) 0 0
\(47\) −5.90249 + 10.2234i −0.860966 + 1.49124i 0.0100312 + 0.999950i \(0.496807\pi\)
−0.870997 + 0.491288i \(0.836526\pi\)
\(48\) 0 0
\(49\) 4.78472 + 5.10944i 0.683532 + 0.729921i
\(50\) 0 0
\(51\) −5.22625 + 5.77888i −0.731821 + 0.809206i
\(52\) 0 0
\(53\) 6.02901 + 10.4425i 0.828148 + 1.43439i 0.899489 + 0.436943i \(0.143939\pi\)
−0.0713414 + 0.997452i \(0.522728\pi\)
\(54\) 0 0
\(55\) 2.38854i 0.322070i
\(56\) 0 0
\(57\) 2.04356 9.51192i 0.270676 1.25988i
\(58\) 0 0
\(59\) −9.57732 + 5.52947i −1.24686 + 0.719875i −0.970482 0.241174i \(-0.922468\pi\)
−0.276378 + 0.961049i \(0.589134\pi\)
\(60\) 0 0
\(61\) 7.65220 + 4.41800i 0.979764 + 0.565667i 0.902199 0.431320i \(-0.141952\pi\)
0.0775652 + 0.996987i \(0.475285\pi\)
\(62\) 0 0
\(63\) −7.75477 + 1.69218i −0.977010 + 0.213195i
\(64\) 0 0
\(65\) −2.52393 1.45719i −0.313055 0.180743i
\(66\) 0 0
\(67\) −3.05545 5.29219i −0.373283 0.646544i 0.616786 0.787131i \(-0.288434\pi\)
−0.990068 + 0.140587i \(0.955101\pi\)
\(68\) 0 0
\(69\) 0.378281 1.76074i 0.0455397 0.211968i
\(70\) 0 0
\(71\) 14.0121 1.66293 0.831464 0.555578i \(-0.187503\pi\)
0.831464 + 0.555578i \(0.187503\pi\)
\(72\) 0 0
\(73\) −4.38664 7.59788i −0.513417 0.889264i −0.999879 0.0155626i \(-0.995046\pi\)
0.486462 0.873702i \(-0.338287\pi\)
\(74\) 0 0
\(75\) 4.27609 + 3.86717i 0.493760 + 0.446542i
\(76\) 0 0
\(77\) −4.85619 + 0.558456i −0.553414 + 0.0636420i
\(78\) 0 0
\(79\) −2.37061 1.36867i −0.266714 0.153987i 0.360679 0.932690i \(-0.382545\pi\)
−0.627393 + 0.778702i \(0.715878\pi\)
\(80\) 0 0
\(81\) 2.85588 8.53487i 0.317320 0.948318i
\(82\) 0 0
\(83\) 4.74366i 0.520685i 0.965516 + 0.260342i \(0.0838354\pi\)
−0.965516 + 0.260342i \(0.916165\pi\)
\(84\) 0 0
\(85\) 5.81566i 0.630797i
\(86\) 0 0
\(87\) 2.17736 0.702207i 0.233437 0.0752845i
\(88\) 0 0
\(89\) 8.31219 + 4.79904i 0.881090 + 0.508697i 0.871018 0.491252i \(-0.163461\pi\)
0.0100723 + 0.999949i \(0.496794\pi\)
\(90\) 0 0
\(91\) −2.37254 + 5.47217i −0.248710 + 0.573639i
\(92\) 0 0
\(93\) 4.95955 5.48398i 0.514281 0.568662i
\(94\) 0 0
\(95\) −3.63085 6.28882i −0.372517 0.645219i
\(96\) 0 0
\(97\) −8.73466 −0.886871 −0.443435 0.896306i \(-0.646240\pi\)
−0.443435 + 0.896306i \(0.646240\pi\)
\(98\) 0 0
\(99\) 2.27653 5.05360i 0.228800 0.507906i
\(100\) 0 0
\(101\) −3.42033 5.92419i −0.340336 0.589479i 0.644159 0.764891i \(-0.277207\pi\)
−0.984495 + 0.175413i \(0.943874\pi\)
\(102\) 0 0
\(103\) 3.88733 + 2.24435i 0.383030 + 0.221143i 0.679136 0.734013i \(-0.262355\pi\)
−0.296106 + 0.955155i \(0.595688\pi\)
\(104\) 0 0
\(105\) −3.44578 + 4.81921i −0.336273 + 0.470306i
\(106\) 0 0
\(107\) 6.27888 + 3.62511i 0.607002 + 0.350453i 0.771791 0.635876i \(-0.219361\pi\)
−0.164789 + 0.986329i \(0.552694\pi\)
\(108\) 0 0
\(109\) 10.6680 6.15916i 1.02181 0.589941i 0.107180 0.994240i \(-0.465818\pi\)
0.914627 + 0.404299i \(0.132484\pi\)
\(110\) 0 0
\(111\) −16.0027 3.43806i −1.51891 0.326326i
\(112\) 0 0
\(113\) 7.27566i 0.684437i 0.939620 + 0.342218i \(0.111178\pi\)
−0.939620 + 0.342218i \(0.888822\pi\)
\(114\) 0 0
\(115\) −0.672102 1.16412i −0.0626739 0.108554i
\(116\) 0 0
\(117\) −3.95120 5.48867i −0.365289 0.507427i
\(118\) 0 0
\(119\) 11.8240 1.35974i 1.08390 0.124647i
\(120\) 0 0
\(121\) −3.79325 + 6.57011i −0.344841 + 0.597282i
\(122\) 0 0
\(123\) −0.742339 2.30179i −0.0669344 0.207546i
\(124\) 0 0
\(125\) 10.7673 0.963058
\(126\) 0 0
\(127\) 21.7722i 1.93197i 0.258595 + 0.965986i \(0.416740\pi\)
−0.258595 + 0.965986i \(0.583260\pi\)
\(128\) 0 0
\(129\) 9.93316 3.20349i 0.874566 0.282052i
\(130\) 0 0
\(131\) −4.65916 2.68997i −0.407073 0.235024i 0.282458 0.959280i \(-0.408850\pi\)
−0.689531 + 0.724256i \(0.742183\pi\)
\(132\) 0 0
\(133\) −11.9370 + 8.85234i −1.03507 + 0.767595i
\(134\) 0 0
\(135\) −2.69199 6.15462i −0.231690 0.529705i
\(136\) 0 0
\(137\) −11.3713 + 6.56523i −0.971517 + 0.560905i −0.899698 0.436512i \(-0.856214\pi\)
−0.0718185 + 0.997418i \(0.522880\pi\)
\(138\) 0 0
\(139\) −12.9760 −1.10061 −0.550307 0.834963i \(-0.685489\pi\)
−0.550307 + 0.834963i \(0.685489\pi\)
\(140\) 0 0
\(141\) −4.29484 + 19.9907i −0.361691 + 1.68352i
\(142\) 0 0
\(143\) −2.08250 3.60699i −0.174147 0.301632i
\(144\) 0 0
\(145\) 0.853802 1.47883i 0.0709044 0.122810i
\(146\) 0 0
\(147\) 10.6037 + 5.87893i 0.874578 + 0.484886i
\(148\) 0 0
\(149\) −3.42033 + 5.92419i −0.280205 + 0.485328i −0.971435 0.237306i \(-0.923736\pi\)
0.691230 + 0.722634i \(0.257069\pi\)
\(150\) 0 0
\(151\) −3.16245 + 1.82584i −0.257356 + 0.148585i −0.623128 0.782120i \(-0.714138\pi\)
0.365772 + 0.930705i \(0.380805\pi\)
\(152\) 0 0
\(153\) −5.54294 + 12.3046i −0.448120 + 0.994768i
\(154\) 0 0
\(155\) 5.51888i 0.443287i
\(156\) 0 0
\(157\) 2.34584 1.35437i 0.187219 0.108091i −0.403461 0.914997i \(-0.632193\pi\)
0.590680 + 0.806906i \(0.298860\pi\)
\(158\) 0 0
\(159\) 15.4901 + 14.0088i 1.22844 + 1.11097i
\(160\) 0 0
\(161\) −2.20965 + 1.63865i −0.174145 + 0.129143i
\(162\) 0 0
\(163\) −4.41842 + 7.65293i −0.346078 + 0.599424i −0.985549 0.169391i \(-0.945820\pi\)
0.639471 + 0.768815i \(0.279153\pi\)
\(164\) 0 0
\(165\) −1.26982 3.93737i −0.0988554 0.306524i
\(166\) 0 0
\(167\) 11.8815 0.919417 0.459709 0.888070i \(-0.347954\pi\)
0.459709 + 0.888070i \(0.347954\pi\)
\(168\) 0 0
\(169\) 7.91806 0.609081
\(170\) 0 0
\(171\) −1.68814 16.7663i −0.129095 1.28215i
\(172\) 0 0
\(173\) 3.12500 5.41265i 0.237589 0.411516i −0.722433 0.691441i \(-0.756976\pi\)
0.960022 + 0.279925i \(0.0903095\pi\)
\(174\) 0 0
\(175\) −1.00614 8.74915i −0.0760571 0.661373i
\(176\) 0 0
\(177\) −12.8480 + 14.2066i −0.965717 + 1.06783i
\(178\) 0 0
\(179\) 1.43978 0.831255i 0.107614 0.0621309i −0.445227 0.895418i \(-0.646877\pi\)
0.552841 + 0.833287i \(0.313544\pi\)
\(180\) 0 0
\(181\) 4.46877i 0.332161i 0.986112 + 0.166081i \(0.0531112\pi\)
−0.986112 + 0.166081i \(0.946889\pi\)
\(182\) 0 0
\(183\) 14.9630 + 3.21468i 1.10609 + 0.237636i
\(184\) 0 0
\(185\) −10.5802 + 6.10850i −0.777874 + 0.449106i
\(186\) 0 0
\(187\) −4.15562 + 7.19775i −0.303889 + 0.526352i
\(188\) 0 0
\(189\) −11.8837 + 6.91215i −0.864412 + 0.502785i
\(190\) 0 0
\(191\) −11.2771 + 19.5325i −0.815982 + 1.41332i 0.0926380 + 0.995700i \(0.470470\pi\)
−0.908620 + 0.417623i \(0.862863\pi\)
\(192\) 0 0
\(193\) −2.90298 5.02810i −0.208961 0.361931i 0.742427 0.669927i \(-0.233675\pi\)
−0.951387 + 0.307997i \(0.900341\pi\)
\(194\) 0 0
\(195\) −4.93525 1.06030i −0.353421 0.0759297i
\(196\) 0 0
\(197\) −3.15873 −0.225050 −0.112525 0.993649i \(-0.535894\pi\)
−0.112525 + 0.993649i \(0.535894\pi\)
\(198\) 0 0
\(199\) 12.2352 7.06397i 0.867327 0.500751i 0.000867851 1.00000i \(-0.499724\pi\)
0.866459 + 0.499248i \(0.166390\pi\)
\(200\) 0 0
\(201\) −7.85023 7.09951i −0.553713 0.500761i
\(202\) 0 0
\(203\) −3.20627 1.39013i −0.225036 0.0975677i
\(204\) 0 0
\(205\) −1.56334 0.902597i −0.109189 0.0630401i
\(206\) 0 0
\(207\) −0.312489 3.10359i −0.0217195 0.215714i
\(208\) 0 0
\(209\) 10.3778i 0.717848i
\(210\) 0 0
\(211\) −1.95410 −0.134526 −0.0672629 0.997735i \(-0.521427\pi\)
−0.0672629 + 0.997735i \(0.521427\pi\)
\(212\) 0 0
\(213\) 23.0981 7.44926i 1.58266 0.510415i
\(214\) 0 0
\(215\) 3.89507 6.74646i 0.265642 0.460105i
\(216\) 0 0
\(217\) −11.2206 + 1.29035i −0.761702 + 0.0875948i
\(218\) 0 0
\(219\) −11.2704 10.1926i −0.761583 0.688753i
\(220\) 0 0
\(221\) 5.07051 + 8.78238i 0.341079 + 0.590766i
\(222\) 0 0
\(223\) 3.59985i 0.241064i 0.992709 + 0.120532i \(0.0384600\pi\)
−0.992709 + 0.120532i \(0.961540\pi\)
\(224\) 0 0
\(225\) 9.10480 + 4.10151i 0.606987 + 0.273434i
\(226\) 0 0
\(227\) 5.05015 2.91571i 0.335190 0.193522i −0.322953 0.946415i \(-0.604675\pi\)
0.658143 + 0.752893i \(0.271342\pi\)
\(228\) 0 0
\(229\) 11.2803 + 6.51269i 0.745424 + 0.430371i 0.824038 0.566535i \(-0.191716\pi\)
−0.0786144 + 0.996905i \(0.525050\pi\)
\(230\) 0 0
\(231\) −7.70827 + 3.50229i −0.507167 + 0.230433i
\(232\) 0 0
\(233\) 13.6565 + 7.88458i 0.894667 + 0.516536i 0.875466 0.483279i \(-0.160554\pi\)
0.0192009 + 0.999816i \(0.493888\pi\)
\(234\) 0 0
\(235\) 7.63075 + 13.2169i 0.497775 + 0.862172i
\(236\) 0 0
\(237\) −4.63544 0.995889i −0.301104 0.0646899i
\(238\) 0 0
\(239\) −22.7458 −1.47130 −0.735651 0.677361i \(-0.763124\pi\)
−0.735651 + 0.677361i \(0.763124\pi\)
\(240\) 0 0
\(241\) −6.82067 11.8137i −0.439358 0.760990i 0.558282 0.829651i \(-0.311461\pi\)
−0.997640 + 0.0686608i \(0.978127\pi\)
\(242\) 0 0
\(243\) 0.170365 15.5875i 0.0109289 0.999940i
\(244\) 0 0
\(245\) 8.81339 2.05422i 0.563067 0.131240i
\(246\) 0 0
\(247\) −10.9661 6.33127i −0.697755 0.402849i
\(248\) 0 0
\(249\) 2.52188 + 7.81966i 0.159818 + 0.495551i
\(250\) 0 0
\(251\) 5.33090i 0.336484i 0.985746 + 0.168242i \(0.0538089\pi\)
−0.985746 + 0.168242i \(0.946191\pi\)
\(252\) 0 0
\(253\) 1.92102i 0.120774i
\(254\) 0 0
\(255\) 3.09179 + 9.58679i 0.193615 + 0.600348i
\(256\) 0 0
\(257\) −7.26678 4.19547i −0.453289 0.261707i 0.255929 0.966696i \(-0.417619\pi\)
−0.709218 + 0.704989i \(0.750952\pi\)
\(258\) 0 0
\(259\) 14.8931 + 20.0827i 0.925410 + 1.24788i
\(260\) 0 0
\(261\) 3.21593 2.31510i 0.199061 0.143301i
\(262\) 0 0
\(263\) 1.58410 + 2.74375i 0.0976800 + 0.169187i 0.910724 0.413016i \(-0.135525\pi\)
−0.813044 + 0.582202i \(0.802191\pi\)
\(264\) 0 0
\(265\) 15.5886 0.957603
\(266\) 0 0
\(267\) 16.2535 + 3.49194i 0.994698 + 0.213703i
\(268\) 0 0
\(269\) −7.81827 13.5416i −0.476689 0.825649i 0.522955 0.852361i \(-0.324830\pi\)
−0.999643 + 0.0267117i \(0.991496\pi\)
\(270\) 0 0
\(271\) −12.4371 7.18058i −0.755502 0.436189i 0.0721766 0.997392i \(-0.477005\pi\)
−0.827678 + 0.561203i \(0.810339\pi\)
\(272\) 0 0
\(273\) −1.00183 + 10.2819i −0.0606333 + 0.622288i
\(274\) 0 0
\(275\) 5.32598 + 3.07496i 0.321169 + 0.185427i
\(276\) 0 0
\(277\) −3.23202 + 1.86601i −0.194193 + 0.112117i −0.593944 0.804506i \(-0.702430\pi\)
0.399751 + 0.916624i \(0.369097\pi\)
\(278\) 0 0
\(279\) 5.26008 11.6767i 0.314913 0.699065i
\(280\) 0 0
\(281\) 18.8375i 1.12375i −0.827223 0.561874i \(-0.810080\pi\)
0.827223 0.561874i \(-0.189920\pi\)
\(282\) 0 0
\(283\) −10.7726 18.6586i −0.640362 1.10914i −0.985352 0.170534i \(-0.945451\pi\)
0.344989 0.938607i \(-0.387883\pi\)
\(284\) 0 0
\(285\) −9.32859 8.43649i −0.552578 0.499735i
\(286\) 0 0
\(287\) −1.46957 + 3.38951i −0.0867460 + 0.200076i
\(288\) 0 0
\(289\) 1.61820 2.80280i 0.0951880 0.164870i
\(290\) 0 0
\(291\) −14.3986 + 4.64362i −0.844061 + 0.272214i
\(292\) 0 0
\(293\) −4.13814 −0.241753 −0.120876 0.992668i \(-0.538570\pi\)
−0.120876 + 0.992668i \(0.538570\pi\)
\(294\) 0 0
\(295\) 14.2970i 0.832405i
\(296\) 0 0
\(297\) 1.06608 9.54085i 0.0618604 0.553616i
\(298\) 0 0
\(299\) −2.02992 1.17197i −0.117393 0.0677770i
\(300\) 0 0
\(301\) −14.6271 6.34179i −0.843091 0.365535i
\(302\) 0 0
\(303\) −8.78771 7.94734i −0.504841 0.456563i
\(304\) 0 0
\(305\) 9.89279 5.71160i 0.566459 0.327046i
\(306\) 0 0
\(307\) 4.63154 0.264336 0.132168 0.991227i \(-0.457806\pi\)
0.132168 + 0.991227i \(0.457806\pi\)
\(308\) 0 0
\(309\) 7.60122 + 1.63306i 0.432418 + 0.0929017i
\(310\) 0 0
\(311\) −7.04878 12.2088i −0.399700 0.692300i 0.593989 0.804473i \(-0.297552\pi\)
−0.993689 + 0.112173i \(0.964219\pi\)
\(312\) 0 0
\(313\) 6.95418 12.0450i 0.393074 0.680824i −0.599780 0.800165i \(-0.704745\pi\)
0.992853 + 0.119342i \(0.0380784\pi\)
\(314\) 0 0
\(315\) −3.11813 + 9.77608i −0.175687 + 0.550819i
\(316\) 0 0
\(317\) −8.34364 + 14.4516i −0.468625 + 0.811683i −0.999357 0.0358569i \(-0.988584\pi\)
0.530731 + 0.847540i \(0.321917\pi\)
\(318\) 0 0
\(319\) 2.11342 1.22018i 0.118329 0.0683171i
\(320\) 0 0
\(321\) 12.2776 + 2.63775i 0.685269 + 0.147225i
\(322\) 0 0
\(323\) 25.2681i 1.40595i
\(324\) 0 0
\(325\) 6.49853 3.75193i 0.360473 0.208119i
\(326\) 0 0
\(327\) 14.3112 15.8245i 0.791410 0.875095i
\(328\) 0 0
\(329\) 25.0874 18.6045i 1.38311 1.02570i
\(330\) 0 0
\(331\) 4.82148 8.35105i 0.265012 0.459015i −0.702554 0.711630i \(-0.747957\pi\)
0.967567 + 0.252615i \(0.0812906\pi\)
\(332\) 0 0
\(333\) −28.2074 + 2.84010i −1.54576 + 0.155636i
\(334\) 0 0
\(335\) −7.90019 −0.431633
\(336\) 0 0
\(337\) 29.4886 1.60635 0.803173 0.595746i \(-0.203144\pi\)
0.803173 + 0.595746i \(0.203144\pi\)
\(338\) 0 0
\(339\) 3.86797 + 11.9935i 0.210079 + 0.651399i
\(340\) 0 0
\(341\) 3.94356 6.83044i 0.213556 0.369889i
\(342\) 0 0
\(343\) −6.23712 17.4384i −0.336773 0.941586i
\(344\) 0 0
\(345\) −1.72680 1.56167i −0.0929680 0.0840774i
\(346\) 0 0
\(347\) 10.8911 6.28800i 0.584667 0.337558i −0.178319 0.983973i \(-0.557066\pi\)
0.762986 + 0.646415i \(0.223733\pi\)
\(348\) 0 0
\(349\) 34.5012i 1.84681i −0.383830 0.923404i \(-0.625395\pi\)
0.383830 0.923404i \(-0.374605\pi\)
\(350\) 0 0
\(351\) −9.43129 6.94718i −0.503405 0.370813i
\(352\) 0 0
\(353\) 9.10737 5.25815i 0.484737 0.279863i −0.237652 0.971350i \(-0.576378\pi\)
0.722388 + 0.691488i \(0.243044\pi\)
\(354\) 0 0
\(355\) 9.05743 15.6879i 0.480719 0.832629i
\(356\) 0 0
\(357\) 18.7682 8.52744i 0.993321 0.451320i
\(358\) 0 0
\(359\) 8.02903 13.9067i 0.423756 0.733967i −0.572547 0.819872i \(-0.694045\pi\)
0.996303 + 0.0859047i \(0.0273780\pi\)
\(360\) 0 0
\(361\) −6.27547 10.8694i −0.330288 0.572075i
\(362\) 0 0
\(363\) −2.76009 + 12.8471i −0.144867 + 0.674296i
\(364\) 0 0
\(365\) −11.3421 −0.593673
\(366\) 0 0
\(367\) 20.8250 12.0233i 1.08706 0.627613i 0.154266 0.988029i \(-0.450699\pi\)
0.932791 + 0.360417i \(0.117366\pi\)
\(368\) 0 0
\(369\) −2.44741 3.39972i −0.127407 0.176983i
\(370\) 0 0
\(371\) −3.64473 31.6936i −0.189225 1.64545i
\(372\) 0 0
\(373\) −12.5120 7.22381i −0.647847 0.374035i 0.139784 0.990182i \(-0.455359\pi\)
−0.787631 + 0.616147i \(0.788693\pi\)
\(374\) 0 0
\(375\) 17.7493 5.72424i 0.916571 0.295599i
\(376\) 0 0
\(377\) 2.97762i 0.153355i
\(378\) 0 0
\(379\) 29.8048 1.53097 0.765485 0.643453i \(-0.222499\pi\)
0.765485 + 0.643453i \(0.222499\pi\)
\(380\) 0 0
\(381\) 11.5748 + 35.8903i 0.592994 + 1.83871i
\(382\) 0 0
\(383\) 5.62806 9.74809i 0.287581 0.498104i −0.685651 0.727930i \(-0.740482\pi\)
0.973232 + 0.229826i \(0.0738158\pi\)
\(384\) 0 0
\(385\) −2.51380 + 5.79798i −0.128115 + 0.295492i
\(386\) 0 0
\(387\) 14.6712 10.5616i 0.745778 0.536874i
\(388\) 0 0
\(389\) −13.4807 23.3492i −0.683498 1.18385i −0.973906 0.226950i \(-0.927124\pi\)
0.290408 0.956903i \(-0.406209\pi\)
\(390\) 0 0
\(391\) 4.67735i 0.236544i
\(392\) 0 0
\(393\) −9.11045 1.95731i −0.459561 0.0987331i
\(394\) 0 0
\(395\) −3.06473 + 1.76942i −0.154203 + 0.0890293i
\(396\) 0 0
\(397\) 6.75185 + 3.89818i 0.338866 + 0.195644i 0.659770 0.751467i \(-0.270654\pi\)
−0.320905 + 0.947111i \(0.603987\pi\)
\(398\) 0 0
\(399\) −14.9713 + 20.9387i −0.749505 + 1.04825i
\(400\) 0 0
\(401\) 2.98430 + 1.72299i 0.149029 + 0.0860420i 0.572660 0.819793i \(-0.305911\pi\)
−0.423631 + 0.905835i \(0.639245\pi\)
\(402\) 0 0
\(403\) −4.81175 8.33420i −0.239691 0.415156i
\(404\) 0 0
\(405\) −7.70959 8.71440i −0.383093 0.433022i
\(406\) 0 0
\(407\) −17.4595 −0.865435
\(408\) 0 0
\(409\) 9.79039 + 16.9575i 0.484104 + 0.838492i 0.999833 0.0182590i \(-0.00581236\pi\)
−0.515729 + 0.856752i \(0.672479\pi\)
\(410\) 0 0
\(411\) −15.2547 + 16.8678i −0.752459 + 0.832025i
\(412\) 0 0
\(413\) 29.0676 3.34274i 1.43032 0.164485i
\(414\) 0 0
\(415\) 5.31101 + 3.06631i 0.260707 + 0.150519i
\(416\) 0 0
\(417\) −21.3903 + 6.89847i −1.04749 + 0.337819i
\(418\) 0 0
\(419\) 27.6189i 1.34927i −0.738150 0.674637i \(-0.764300\pi\)
0.738150 0.674637i \(-0.235700\pi\)
\(420\) 0 0
\(421\) 9.36226i 0.456289i 0.973627 + 0.228144i \(0.0732658\pi\)
−0.973627 + 0.228144i \(0.926734\pi\)
\(422\) 0 0
\(423\) 3.54786 + 35.2368i 0.172503 + 1.71327i
\(424\) 0 0
\(425\) −12.9678 7.48697i −0.629031 0.363171i
\(426\) 0 0
\(427\) −13.9254 18.7779i −0.673897 0.908724i
\(428\) 0 0
\(429\) −5.35047 4.83880i −0.258323 0.233620i
\(430\) 0 0
\(431\) 4.22951 + 7.32573i 0.203729 + 0.352868i 0.949727 0.313080i \(-0.101361\pi\)
−0.745998 + 0.665948i \(0.768027\pi\)
\(432\) 0 0
\(433\) −10.9191 −0.524737 −0.262369 0.964968i \(-0.584504\pi\)
−0.262369 + 0.964968i \(0.584504\pi\)
\(434\) 0 0
\(435\) 0.621254 2.89168i 0.0297868 0.138645i
\(436\) 0 0
\(437\) −2.92018 5.05790i −0.139691 0.241952i
\(438\) 0 0
\(439\) −20.2600 11.6971i −0.966959 0.558274i −0.0686510 0.997641i \(-0.521869\pi\)
−0.898308 + 0.439367i \(0.855203\pi\)
\(440\) 0 0
\(441\) 20.6050 + 4.05383i 0.981191 + 0.193040i
\(442\) 0 0
\(443\) 5.31199 + 3.06688i 0.252380 + 0.145712i 0.620854 0.783926i \(-0.286786\pi\)
−0.368473 + 0.929638i \(0.620119\pi\)
\(444\) 0 0
\(445\) 10.7460 6.20422i 0.509410 0.294108i
\(446\) 0 0
\(447\) −2.48874 + 11.5840i −0.117713 + 0.547907i
\(448\) 0 0
\(449\) 35.8658i 1.69261i 0.532696 + 0.846307i \(0.321179\pi\)
−0.532696 + 0.846307i \(0.678821\pi\)
\(450\) 0 0
\(451\) −1.28992 2.23420i −0.0607397 0.105204i
\(452\) 0 0
\(453\) −4.24244 + 4.69105i −0.199327 + 0.220405i
\(454\) 0 0
\(455\) 4.59303 + 6.19352i 0.215324 + 0.290357i
\(456\) 0 0
\(457\) −1.51987 + 2.63249i −0.0710964 + 0.123143i −0.899382 0.437163i \(-0.855983\pi\)
0.828286 + 0.560306i \(0.189316\pi\)
\(458\) 0 0
\(459\) −2.59572 + 23.2303i −0.121158 + 1.08430i
\(460\) 0 0
\(461\) −30.7564 −1.43247 −0.716233 0.697861i \(-0.754135\pi\)
−0.716233 + 0.697861i \(0.754135\pi\)
\(462\) 0 0
\(463\) 9.54146i 0.443429i 0.975112 + 0.221715i \(0.0711653\pi\)
−0.975112 + 0.221715i \(0.928835\pi\)
\(464\) 0 0
\(465\) −2.93401 9.09756i −0.136061 0.421889i
\(466\) 0 0
\(467\) 4.36437 + 2.51977i 0.201959 + 0.116601i 0.597569 0.801818i \(-0.296133\pi\)
−0.395610 + 0.918419i \(0.629467\pi\)
\(468\) 0 0
\(469\) 1.84712 + 16.0621i 0.0852920 + 0.741677i
\(470\) 0 0
\(471\) 3.14697 3.47973i 0.145004 0.160338i
\(472\) 0 0
\(473\) 9.64147 5.56650i 0.443315 0.255948i
\(474\) 0 0
\(475\) 18.6972 0.857884
\(476\) 0 0
\(477\) 32.9820 + 14.8576i 1.51014 + 0.680285i
\(478\) 0 0
\(479\) −13.6307 23.6091i −0.622804 1.07873i −0.988961 0.148175i \(-0.952660\pi\)
0.366157 0.930553i \(-0.380673\pi\)
\(480\) 0 0
\(481\) −10.6516 + 18.4492i −0.485673 + 0.841211i
\(482\) 0 0
\(483\) −2.77133 + 3.87593i −0.126100 + 0.176361i
\(484\) 0 0
\(485\) −5.64610 + 9.77933i −0.256376 + 0.444057i
\(486\) 0 0
\(487\) −0.905513 + 0.522798i −0.0410327 + 0.0236902i −0.520376 0.853937i \(-0.674208\pi\)
0.479343 + 0.877627i \(0.340875\pi\)
\(488\) 0 0
\(489\) −3.21499 + 14.9644i −0.145387 + 0.676714i
\(490\) 0 0
\(491\) 29.3101i 1.32275i −0.750057 0.661373i \(-0.769974\pi\)
0.750057 0.661373i \(-0.230026\pi\)
\(492\) 0 0
\(493\) −5.14579 + 2.97092i −0.231755 + 0.133804i
\(494\) 0 0
\(495\) −4.18646 5.81546i −0.188167 0.261385i
\(496\) 0 0
\(497\) −34.0132 14.7469i −1.52570 0.661490i
\(498\) 0 0
\(499\) −14.3749 + 24.8981i −0.643510 + 1.11459i 0.341133 + 0.940015i \(0.389189\pi\)
−0.984643 + 0.174578i \(0.944144\pi\)
\(500\) 0 0
\(501\) 19.5860 6.31657i 0.875037 0.282204i
\(502\) 0 0
\(503\) 19.8016 0.882910 0.441455 0.897283i \(-0.354462\pi\)
0.441455 + 0.897283i \(0.354462\pi\)
\(504\) 0 0
\(505\) −8.84363 −0.393536
\(506\) 0 0
\(507\) 13.0525 4.20949i 0.579681 0.186950i
\(508\) 0 0
\(509\) −14.1795 + 24.5596i −0.628494 + 1.08858i 0.359360 + 0.933199i \(0.382995\pi\)
−0.987854 + 0.155385i \(0.950338\pi\)
\(510\) 0 0
\(511\) 2.65186 + 23.0599i 0.117312 + 1.02011i
\(512\) 0 0
\(513\) −11.6963 26.7408i −0.516403 1.18064i
\(514\) 0 0
\(515\) 5.02555 2.90151i 0.221452 0.127856i
\(516\) 0 0
\(517\) 21.8104i 0.959222i
\(518\) 0 0
\(519\) 2.27385 10.5838i 0.0998108 0.464577i
\(520\) 0 0
\(521\) −27.4943 + 15.8738i −1.20455 + 0.695445i −0.961563 0.274585i \(-0.911460\pi\)
−0.242984 + 0.970030i \(0.578126\pi\)
\(522\) 0 0
\(523\) −3.11470 + 5.39482i −0.136196 + 0.235899i −0.926054 0.377392i \(-0.876821\pi\)
0.789858 + 0.613290i \(0.210154\pi\)
\(524\) 0 0
\(525\) −6.30989 13.8876i −0.275386 0.606104i
\(526\) 0 0
\(527\) −9.60185 + 16.6309i −0.418263 + 0.724453i
\(528\) 0 0
\(529\) 10.9594 + 18.9823i 0.476498 + 0.825318i
\(530\) 0 0
\(531\) −13.6266 + 30.2492i −0.591344 + 1.31270i
\(532\) 0 0
\(533\) −3.14780 −0.136346
\(534\) 0 0
\(535\) 8.11735 4.68656i 0.350944 0.202618i
\(536\) 0 0
\(537\) 1.93147 2.13571i 0.0833491 0.0921626i
\(538\) 0 0
\(539\) 12.3758 + 3.75526i 0.533061 + 0.161751i
\(540\) 0 0
\(541\) 1.99979 + 1.15458i 0.0859776 + 0.0496392i 0.542372 0.840138i \(-0.317526\pi\)
−0.456395 + 0.889777i \(0.650860\pi\)
\(542\) 0 0
\(543\) 2.37574 + 7.36652i 0.101953 + 0.316128i
\(544\) 0 0
\(545\) 15.9252i 0.682159i
\(546\) 0 0
\(547\) −32.5136 −1.39018 −0.695090 0.718922i \(-0.744636\pi\)
−0.695090 + 0.718922i \(0.744636\pi\)
\(548\) 0 0
\(549\) 26.3747 2.65557i 1.12564 0.113337i
\(550\) 0 0
\(551\) 3.70963 6.42528i 0.158036 0.273726i
\(552\) 0 0
\(553\) 4.31401 + 5.81727i 0.183450 + 0.247375i
\(554\) 0 0
\(555\) −14.1934 + 15.6943i −0.602478 + 0.666186i
\(556\) 0 0
\(557\) −16.5711 28.7020i −0.702140 1.21614i −0.967714 0.252052i \(-0.918895\pi\)
0.265574 0.964091i \(-0.414439\pi\)
\(558\) 0 0
\(559\) 13.5840i 0.574542i
\(560\) 0 0
\(561\) −3.02376 + 14.0743i −0.127663 + 0.594219i
\(562\) 0 0
\(563\) −13.6362 + 7.87286i −0.574697 + 0.331801i −0.759023 0.651064i \(-0.774323\pi\)
0.184326 + 0.982865i \(0.440990\pi\)
\(564\) 0 0
\(565\) 8.14583 + 4.70300i 0.342698 + 0.197857i
\(566\) 0 0
\(567\) −15.9149 + 17.7120i −0.668363 + 0.743835i
\(568\) 0 0
\(569\) 20.1971 + 11.6608i 0.846706 + 0.488846i 0.859538 0.511072i \(-0.170751\pi\)
−0.0128319 + 0.999918i \(0.504085\pi\)
\(570\) 0 0
\(571\) −12.0030 20.7898i −0.502311 0.870027i −0.999996 0.00267009i \(-0.999150\pi\)
0.497686 0.867357i \(-0.334183\pi\)
\(572\) 0 0
\(573\) −8.20558 + 38.1935i −0.342793 + 1.59556i
\(574\) 0 0
\(575\) 3.46101 0.144334
\(576\) 0 0
\(577\) −2.69246 4.66349i −0.112089 0.194143i 0.804523 0.593921i \(-0.202421\pi\)
−0.916612 + 0.399777i \(0.869087\pi\)
\(578\) 0 0
\(579\) −7.45849 6.74524i −0.309964 0.280322i
\(580\) 0 0
\(581\) 4.99244 11.5149i 0.207121 0.477717i
\(582\) 0 0
\(583\) 19.2933 + 11.1390i 0.799046 + 0.461329i
\(584\) 0 0
\(585\) −8.69918 + 0.875888i −0.359667 + 0.0362135i
\(586\) 0 0
\(587\) 20.8871i 0.862104i −0.902327 0.431052i \(-0.858143\pi\)
0.902327 0.431052i \(-0.141857\pi\)
\(588\) 0 0
\(589\) 23.9786i 0.988023i
\(590\) 0 0
\(591\) −5.20699 + 1.67928i −0.214187 + 0.0690763i
\(592\) 0 0
\(593\) 31.7953 + 18.3570i 1.30567 + 0.753832i 0.981371 0.192122i \(-0.0615368\pi\)
0.324303 + 0.945953i \(0.394870\pi\)
\(594\) 0 0
\(595\) 6.12065 14.1170i 0.250922 0.578742i
\(596\) 0 0
\(597\) 16.4135 18.1491i 0.671761 0.742795i
\(598\) 0 0
\(599\) 12.0639 + 20.8953i 0.492918 + 0.853760i 0.999967 0.00815783i \(-0.00259675\pi\)
−0.507048 + 0.861918i \(0.669263\pi\)
\(600\) 0 0
\(601\) −30.7421 −1.25399 −0.626997 0.779021i \(-0.715716\pi\)
−0.626997 + 0.779021i \(0.715716\pi\)
\(602\) 0 0
\(603\) −16.7150 7.52972i −0.680687 0.306634i
\(604\) 0 0
\(605\) 4.90393 + 8.49385i 0.199373 + 0.345324i
\(606\) 0 0
\(607\) 3.75552 + 2.16825i 0.152432 + 0.0880066i 0.574276 0.818662i \(-0.305284\pi\)
−0.421844 + 0.906668i \(0.638617\pi\)
\(608\) 0 0
\(609\) −6.02439 0.586993i −0.244120 0.0237861i
\(610\) 0 0
\(611\) 23.0468 + 13.3061i 0.932373 + 0.538306i
\(612\) 0 0
\(613\) −26.2945 + 15.1812i −1.06203 + 0.613161i −0.925992 0.377543i \(-0.876769\pi\)
−0.136034 + 0.990704i \(0.543436\pi\)
\(614\) 0 0
\(615\) −3.05693 0.656759i −0.123268 0.0264831i
\(616\) 0 0
\(617\) 11.5709i 0.465827i −0.972497 0.232913i \(-0.925174\pi\)
0.972497 0.232913i \(-0.0748259\pi\)
\(618\) 0 0
\(619\) 8.62076 + 14.9316i 0.346497 + 0.600151i 0.985625 0.168950i \(-0.0540376\pi\)
−0.639127 + 0.769101i \(0.720704\pi\)
\(620\) 0 0
\(621\) −2.16508 4.94996i −0.0868818 0.198635i
\(622\) 0 0
\(623\) −15.1264 20.3974i −0.606028 0.817204i
\(624\) 0 0
\(625\) −1.36164 + 2.35843i −0.0544656 + 0.0943372i
\(626\) 0 0
\(627\) −5.51717 17.1072i −0.220334 0.683197i
\(628\) 0 0
\(629\) 42.5107 1.69501
\(630\) 0 0
\(631\) 4.91146i 0.195522i 0.995210 + 0.0977611i \(0.0311681\pi\)
−0.995210 + 0.0977611i \(0.968832\pi\)
\(632\) 0 0
\(633\) −3.22123 + 1.03886i −0.128032 + 0.0412910i
\(634\) 0 0
\(635\) 24.3762 + 14.0736i 0.967339 + 0.558493i
\(636\) 0 0
\(637\) 11.5183 10.7863i 0.456372 0.427368i
\(638\) 0 0
\(639\) 34.1157 24.5594i 1.34960 0.971554i
\(640\) 0 0
\(641\) 34.7916 20.0870i 1.37419 0.793387i 0.382735 0.923858i \(-0.374982\pi\)
0.991452 + 0.130471i \(0.0416488\pi\)
\(642\) 0 0
\(643\) −12.5997 −0.496884 −0.248442 0.968647i \(-0.579919\pi\)
−0.248442 + 0.968647i \(0.579919\pi\)
\(644\) 0 0
\(645\) 2.83418 13.1919i 0.111596 0.519431i
\(646\) 0 0
\(647\) −9.55483 16.5495i −0.375639 0.650626i 0.614783 0.788696i \(-0.289243\pi\)
−0.990422 + 0.138070i \(0.955910\pi\)
\(648\) 0 0
\(649\) −10.2160 + 17.6947i −0.401015 + 0.694578i
\(650\) 0 0
\(651\) −17.8105 + 8.09227i −0.698048 + 0.317161i
\(652\) 0 0
\(653\) 4.01546 6.95497i 0.157137 0.272169i −0.776698 0.629873i \(-0.783107\pi\)
0.933835 + 0.357704i \(0.116440\pi\)
\(654\) 0 0
\(655\) −6.02338 + 3.47760i −0.235353 + 0.135881i
\(656\) 0 0
\(657\) −23.9973 10.8102i −0.936225 0.421748i
\(658\) 0 0
\(659\) 5.21061i 0.202977i 0.994837 + 0.101488i \(0.0323604\pi\)
−0.994837 + 0.101488i \(0.967640\pi\)
\(660\) 0 0
\(661\) −33.5498 + 19.3700i −1.30494 + 0.753406i −0.981246 0.192757i \(-0.938257\pi\)
−0.323690 + 0.946163i \(0.604924\pi\)
\(662\) 0 0
\(663\) 13.0274 + 11.7816i 0.505944 + 0.457560i
\(664\) 0 0
\(665\) 2.19497 + 19.0869i 0.0851171 + 0.740157i
\(666\) 0 0
\(667\) 0.686686 1.18937i 0.0265886 0.0460528i
\(668\) 0 0
\(669\) 1.91379 + 5.93416i 0.0739915 + 0.229428i
\(670\) 0 0
\(671\) 16.3251 0.630223
\(672\) 0 0
\(673\) −33.1783 −1.27893 −0.639465 0.768821i \(-0.720844\pi\)
−0.639465 + 0.768821i \(0.720844\pi\)
\(674\) 0 0
\(675\) 17.1893 + 1.92071i 0.661615 + 0.0739280i
\(676\) 0 0
\(677\) −15.7573 + 27.2925i −0.605602 + 1.04893i 0.386354 + 0.922351i \(0.373734\pi\)
−0.991956 + 0.126583i \(0.959599\pi\)
\(678\) 0 0
\(679\) 21.2027 + 9.19274i 0.813684 + 0.352785i
\(680\) 0 0
\(681\) 6.77481 7.49120i 0.259611 0.287063i
\(682\) 0 0
\(683\) −19.4038 + 11.2028i −0.742465 + 0.428663i −0.822965 0.568092i \(-0.807682\pi\)
0.0804996 + 0.996755i \(0.474348\pi\)
\(684\) 0 0
\(685\) 16.9751i 0.648585i
\(686\) 0 0
\(687\) 22.0573 + 4.73884i 0.841539 + 0.180798i
\(688\) 0 0
\(689\) 23.5408 13.5913i 0.896833 0.517787i
\(690\) 0 0
\(691\) 7.24483 12.5484i 0.275606 0.477364i −0.694682 0.719317i \(-0.744455\pi\)
0.970288 + 0.241953i \(0.0777880\pi\)
\(692\) 0 0
\(693\) −10.8447 + 9.87128i −0.411957 + 0.374979i
\(694\) 0 0
\(695\) −8.38773 + 14.5280i −0.318165 + 0.551077i
\(696\) 0 0
\(697\) 3.14071 + 5.43987i 0.118963 + 0.206050i
\(698\) 0 0
\(699\) 26.7037 + 5.73708i 1.01003 + 0.216996i
\(700\) 0 0
\(701\) 21.9950 0.830738 0.415369 0.909653i \(-0.363652\pi\)
0.415369 + 0.909653i \(0.363652\pi\)
\(702\) 0 0
\(703\) −45.9694 + 26.5404i −1.73377 + 1.00099i
\(704\) 0 0
\(705\) 19.6054 + 17.7305i 0.738381 + 0.667769i
\(706\) 0 0
\(707\) 2.06770 + 17.9802i 0.0777639 + 0.676215i
\(708\) 0 0
\(709\) 17.2122 + 9.93745i 0.646416 + 0.373209i 0.787082 0.616849i \(-0.211591\pi\)
−0.140666 + 0.990057i \(0.544924\pi\)
\(710\) 0 0
\(711\) −8.17071 + 0.822679i −0.306426 + 0.0308529i
\(712\) 0 0
\(713\) 4.43866i 0.166229i
\(714\) 0 0
\(715\) −5.38452 −0.201370
\(716\) 0 0
\(717\) −37.4951 + 12.0924i −1.40028 + 0.451598i
\(718\) 0 0
\(719\) 4.05138 7.01719i 0.151091 0.261697i −0.780538 0.625108i \(-0.785055\pi\)
0.931629 + 0.363411i \(0.118388\pi\)
\(720\) 0 0
\(721\) −7.07413 9.53918i −0.263454 0.355258i
\(722\) 0 0
\(723\) −17.5241 15.8482i −0.651726 0.589402i
\(724\) 0 0
\(725\) 2.19834 + 3.80763i 0.0816442 + 0.141412i
\(726\) 0 0
\(727\) 1.56460i 0.0580278i −0.999579 0.0290139i \(-0.990763\pi\)
0.999579 0.0290139i \(-0.00923671\pi\)
\(728\) 0 0
\(729\) −8.00598 25.7857i −0.296518 0.955027i
\(730\) 0 0
\(731\) −23.4752 + 13.5534i −0.868263 + 0.501292i
\(732\) 0 0
\(733\) 10.2679 + 5.92818i 0.379254 + 0.218962i 0.677493 0.735529i \(-0.263066\pi\)
−0.298240 + 0.954491i \(0.596400\pi\)
\(734\) 0 0
\(735\) 13.4363 8.07175i 0.495605 0.297731i
\(736\) 0 0
\(737\) −9.77767 5.64514i −0.360165 0.207941i
\(738\) 0 0
\(739\) 6.94639 + 12.0315i 0.255527 + 0.442586i 0.965039 0.262108i \(-0.0844176\pi\)
−0.709511 + 0.704694i \(0.751084\pi\)
\(740\) 0 0
\(741\) −21.4429 4.60684i −0.787724 0.169236i
\(742\) 0 0
\(743\) −25.3287 −0.929221 −0.464611 0.885515i \(-0.653806\pi\)
−0.464611 + 0.885515i \(0.653806\pi\)
\(744\) 0 0
\(745\) 4.42182 + 7.65881i 0.162003 + 0.280597i
\(746\) 0 0
\(747\) 8.31435 + 11.5496i 0.304206 + 0.422577i
\(748\) 0 0
\(749\) −11.4262 15.4078i −0.417506 0.562990i
\(750\) 0 0
\(751\) 10.4902 + 6.05653i 0.382793 + 0.221006i 0.679033 0.734108i \(-0.262399\pi\)
−0.296240 + 0.955114i \(0.595733\pi\)
\(752\) 0 0
\(753\) 2.83407 + 8.78770i 0.103279 + 0.320241i
\(754\) 0 0
\(755\) 4.72090i 0.171811i
\(756\) 0 0
\(757\) 21.6528i 0.786983i −0.919328 0.393491i \(-0.871267\pi\)
0.919328 0.393491i \(-0.128733\pi\)
\(758\) 0 0
\(759\) −1.02128 3.16670i −0.0370700 0.114944i
\(760\) 0 0
\(761\) −33.4532 19.3142i −1.21268 0.700141i −0.249337 0.968417i \(-0.580213\pi\)
−0.963342 + 0.268276i \(0.913546\pi\)
\(762\) 0 0
\(763\) −32.3778 + 3.72341i −1.17216 + 0.134797i
\(764\) 0 0
\(765\) 10.1933 + 14.1596i 0.368539 + 0.511941i
\(766\) 0 0
\(767\) 12.4652 + 21.5903i 0.450091 + 0.779580i
\(768\) 0 0
\(769\) 32.8604 1.18498 0.592489 0.805579i \(-0.298145\pi\)
0.592489 + 0.805579i \(0.298145\pi\)
\(770\) 0 0
\(771\) −14.2093 3.05276i −0.511736 0.109943i
\(772\) 0 0
\(773\) −14.2511 24.6836i −0.512576 0.887808i −0.999894 0.0145830i \(-0.995358\pi\)
0.487318 0.873225i \(-0.337975\pi\)
\(774\) 0 0
\(775\) 12.3061 + 7.10490i 0.442046 + 0.255216i
\(776\) 0 0
\(777\) 35.2270 + 25.1876i 1.26376 + 0.903600i
\(778\) 0 0
\(779\) −6.79248 3.92164i −0.243366 0.140507i
\(780\) 0 0
\(781\) 22.4199 12.9441i 0.802246 0.463177i
\(782\) 0 0
\(783\) 4.07051 5.52600i 0.145468 0.197483i
\(784\) 0 0
\(785\) 3.50188i 0.124987i
\(786\) 0 0
\(787\) 18.8558 + 32.6593i 0.672138 + 1.16418i 0.977297 + 0.211875i \(0.0679571\pi\)
−0.305159 + 0.952301i \(0.598710\pi\)
\(788\) 0 0
\(789\) 4.06997 + 3.68076i 0.144895 + 0.131038i
\(790\) 0 0
\(791\) 7.65723 17.6611i 0.272260 0.627956i
\(792\) 0 0
\(793\) 9.95957 17.2505i 0.353675 0.612583i
\(794\) 0 0
\(795\) 25.6970 8.28741i 0.911379 0.293924i
\(796\) 0 0
\(797\) 46.8382 1.65910 0.829548 0.558436i \(-0.188598\pi\)
0.829548 + 0.558436i \(0.188598\pi\)
\(798\) 0 0
\(799\) 53.1045i 1.87870i
\(800\) 0 0
\(801\) 28.6494 2.88460i 1.01228 0.101922i
\(802\) 0 0
\(803\) −14.0376 8.10460i −0.495375 0.286005i
\(804\) 0 0
\(805\) 0.406308 + 3.53315i 0.0143205 + 0.124527i
\(806\) 0 0
\(807\) −20.0872 18.1662i −0.707101 0.639481i
\(808\) 0 0
\(809\) −0.943718 + 0.544856i −0.0331794 + 0.0191561i −0.516498 0.856288i \(-0.672765\pi\)
0.483319 + 0.875445i \(0.339431\pi\)
\(810\) 0 0
\(811\) 10.7828 0.378634 0.189317 0.981916i \(-0.439373\pi\)
0.189317 + 0.981916i \(0.439373\pi\)
\(812\) 0 0
\(813\) −24.3193 5.22482i −0.852916 0.183242i
\(814\) 0 0
\(815\) 5.71215 + 9.89373i 0.200088 + 0.346562i
\(816\) 0 0
\(817\) 16.9235 29.3123i 0.592077 1.02551i
\(818\) 0 0
\(819\) 3.81471 + 17.4817i 0.133297 + 0.610860i
\(820\) 0 0
\(821\) −8.63020 + 14.9479i −0.301196 + 0.521687i −0.976407 0.215938i \(-0.930719\pi\)
0.675211 + 0.737625i \(0.264053\pi\)
\(822\) 0 0
\(823\) −31.7271 + 18.3176i −1.10594 + 0.638513i −0.937774 0.347246i \(-0.887117\pi\)
−0.168163 + 0.985759i \(0.553783\pi\)
\(824\) 0 0
\(825\) 10.4143 + 2.23744i 0.362580 + 0.0778976i
\(826\) 0 0
\(827\) 46.5193i 1.61764i 0.588060 + 0.808818i \(0.299892\pi\)
−0.588060 + 0.808818i \(0.700108\pi\)
\(828\) 0 0
\(829\) 29.9474 17.2901i 1.04011 0.600511i 0.120249 0.992744i \(-0.461631\pi\)
0.919866 + 0.392233i \(0.128297\pi\)
\(830\) 0 0
\(831\) −4.33577 + 4.79425i −0.150406 + 0.166311i
\(832\) 0 0
\(833\) −30.1327 9.14339i −1.04404 0.316800i
\(834\) 0 0
\(835\) 7.68021 13.3025i 0.265785 0.460353i
\(836\) 0 0
\(837\) 2.46326 22.0448i 0.0851427 0.761980i
\(838\) 0 0
\(839\) −39.6383 −1.36847 −0.684233 0.729264i \(-0.739863\pi\)
−0.684233 + 0.729264i \(0.739863\pi\)
\(840\) 0 0
\(841\) −27.2553 −0.939839
\(842\) 0 0
\(843\) −10.0146 31.0525i −0.344920 1.06950i
\(844\) 0 0
\(845\) 5.11825 8.86506i 0.176073 0.304967i
\(846\) 0 0
\(847\) 16.1225 11.9562i 0.553975 0.410820i
\(848\) 0 0
\(849\) −27.6775 25.0307i −0.949889 0.859051i
\(850\) 0 0
\(851\) −8.50934 + 4.91287i −0.291696 + 0.168411i
\(852\) 0 0
\(853\) 10.8810i 0.372557i 0.982497 + 0.186279i \(0.0596427\pi\)
−0.982497 + 0.186279i \(0.940357\pi\)
\(854\) 0 0
\(855\) −19.8628 8.94772i −0.679292 0.306006i
\(856\) 0 0
\(857\) −39.8564 + 23.0111i −1.36147 + 0.786045i −0.989820 0.142328i \(-0.954541\pi\)
−0.371650 + 0.928373i \(0.621208\pi\)
\(858\) 0 0
\(859\) −11.4205 + 19.7808i −0.389661 + 0.674912i −0.992404 0.123023i \(-0.960741\pi\)
0.602743 + 0.797935i \(0.294074\pi\)
\(860\) 0 0
\(861\) −0.620539 + 6.36868i −0.0211479 + 0.217044i
\(862\) 0 0
\(863\) 2.49061 4.31386i 0.0847813 0.146846i −0.820517 0.571623i \(-0.806314\pi\)
0.905298 + 0.424777i \(0.139647\pi\)
\(864\) 0 0
\(865\) −4.04001 6.99750i −0.137364 0.237922i
\(866\) 0 0
\(867\) 1.17745 5.48054i 0.0399883 0.186129i
\(868\) 0 0
\(869\) −5.05741 −0.171561
\(870\) 0 0
\(871\) −11.9303 + 6.88795i −0.404242 + 0.233389i
\(872\) 0 0
\(873\) −21.2666 + 15.3095i −0.719765 + 0.518148i
\(874\) 0 0
\(875\) −26.1368 11.3320i −0.883585 0.383091i
\(876\) 0 0
\(877\) 25.7564 + 14.8705i 0.869731 + 0.502139i 0.867259 0.497857i \(-0.165880\pi\)
0.00247223 + 0.999997i \(0.499213\pi\)
\(878\) 0 0
\(879\) −6.82150 + 2.19997i −0.230083 + 0.0742030i
\(880\) 0 0
\(881\) 34.5022i 1.16241i 0.813757 + 0.581205i \(0.197419\pi\)
−0.813757 + 0.581205i \(0.802581\pi\)
\(882\) 0 0
\(883\) −34.9022 −1.17455 −0.587276 0.809387i \(-0.699800\pi\)
−0.587276 + 0.809387i \(0.699800\pi\)
\(884\) 0 0
\(885\) 7.60074 + 23.5678i 0.255496 + 0.792224i
\(886\) 0 0
\(887\) −20.1225 + 34.8531i −0.675646 + 1.17025i 0.300634 + 0.953740i \(0.402802\pi\)
−0.976280 + 0.216513i \(0.930532\pi\)
\(888\) 0 0
\(889\) 22.9140 52.8503i 0.768512 1.77254i
\(890\) 0 0
\(891\) −3.31483 16.2943i −0.111051 0.545880i
\(892\) 0 0
\(893\) 33.1544 + 57.4251i 1.10947 + 1.92166i
\(894\) 0 0
\(895\) 2.14930i 0.0718431i
\(896\) 0 0
\(897\) −3.96926 0.852766i −0.132530 0.0284730i
\(898\) 0 0
\(899\) 4.88320 2.81931i 0.162864 0.0940294i
\(900\) 0 0
\(901\) −46.9757 27.1214i −1.56499 0.903546i
\(902\) 0 0
\(903\) −27.4834 2.67788i −0.914591 0.0891142i
\(904\) 0 0
\(905\) 5.00324 + 2.88862i 0.166313 + 0.0960210i
\(906\) 0 0
\(907\) 3.79336 + 6.57028i 0.125956 + 0.218163i 0.922106 0.386937i \(-0.126467\pi\)
−0.796150 + 0.605099i \(0.793133\pi\)
\(908\) 0 0
\(909\) −18.7111 8.42892i −0.620608 0.279570i
\(910\) 0 0
\(911\) 34.9091 1.15659 0.578294 0.815828i \(-0.303719\pi\)
0.578294 + 0.815828i \(0.303719\pi\)
\(912\) 0 0
\(913\) 4.38211 + 7.59004i 0.145027 + 0.251194i
\(914\) 0 0
\(915\) 13.2712 14.6746i 0.438734 0.485127i
\(916\) 0 0
\(917\) 8.47870 + 11.4332i 0.279991 + 0.377557i
\(918\) 0 0
\(919\) 14.5134 + 8.37933i 0.478754 + 0.276409i 0.719897 0.694081i \(-0.244189\pi\)
−0.241143 + 0.970490i \(0.577522\pi\)
\(920\) 0 0
\(921\) 7.63484 2.46227i 0.251577 0.0811347i
\(922\) 0 0
\(923\) 31.5877i 1.03972i
\(924\) 0 0
\(925\) 31.4559i 1.03426i
\(926\) 0 0
\(927\) 13.3984 1.34903i 0.440060 0.0443080i
\(928\) 0 0
\(929\) 18.0406 + 10.4157i 0.591892 + 0.341729i 0.765845 0.643025i \(-0.222321\pi\)
−0.173953 + 0.984754i \(0.555654\pi\)
\(930\) 0 0
\(931\) 38.2928 8.92528i 1.25499 0.292514i
\(932\) 0 0
\(933\) −18.1101 16.3782i −0.592899 0.536200i
\(934\) 0 0
\(935\) 5.37240 + 9.30527i 0.175696 + 0.304315i
\(936\) 0 0
\(937\) 43.8738 1.43329 0.716647 0.697437i \(-0.245676\pi\)
0.716647 + 0.697437i \(0.245676\pi\)
\(938\) 0 0
\(939\) 5.06009 23.5526i 0.165130 0.768609i
\(940\) 0 0
\(941\) −25.3064 43.8320i −0.824966 1.42888i −0.901945 0.431850i \(-0.857861\pi\)
0.0769795 0.997033i \(-0.475472\pi\)
\(942\) 0 0
\(943\) −1.25735 0.725930i −0.0409449 0.0236395i
\(944\) 0 0
\(945\) 0.0572043 + 17.7730i 0.00186086 + 0.578156i
\(946\) 0 0
\(947\) −31.6220 18.2569i −1.02758 0.593271i −0.111286 0.993788i \(-0.535497\pi\)
−0.916289 + 0.400517i \(0.868830\pi\)
\(948\) 0 0
\(949\) −17.1280 + 9.88887i −0.555999 + 0.321006i
\(950\) 0 0
\(951\) −6.07110 + 28.2584i −0.196869 + 0.916342i
\(952\) 0 0
\(953\) 19.5458i 0.633151i −0.948567 0.316576i \(-0.897467\pi\)
0.948567 0.316576i \(-0.102533\pi\)
\(954\) 0 0
\(955\) 14.5791 + 25.2517i 0.471768 + 0.817125i
\(956\) 0 0
\(957\) 2.83516 3.13496i 0.0916478 0.101339i
\(958\) 0 0
\(959\) 34.5125 3.96889i 1.11447 0.128162i
\(960\) 0 0
\(961\) −6.38814 + 11.0646i −0.206069 + 0.356922i
\(962\) 0 0
\(963\) 21.6413 2.17898i 0.697380 0.0702166i
\(964\) 0 0
\(965\) −7.50596 −0.241625
\(966\) 0 0
\(967\) 43.0521i 1.38446i −0.721675 0.692232i \(-0.756628\pi\)
0.721675 0.692232i \(-0.243372\pi\)
\(968\) 0 0
\(969\) 13.4333 + 41.6531i 0.431540 + 1.33809i
\(970\) 0 0
\(971\) 27.2617 + 15.7395i 0.874868 + 0.505105i 0.868963 0.494877i \(-0.164787\pi\)
0.00590513 + 0.999983i \(0.498120\pi\)
\(972\) 0 0
\(973\) 31.4983 + 13.6566i 1.00979 + 0.437809i
\(974\) 0 0
\(975\) 8.71782 9.63966i 0.279194 0.308716i
\(976\) 0 0
\(977\) −35.4465 + 20.4650i −1.13403 + 0.654734i −0.944946 0.327226i \(-0.893886\pi\)
−0.189087 + 0.981960i \(0.560553\pi\)
\(978\) 0 0
\(979\) 17.7331 0.566752
\(980\) 0 0
\(981\) 15.1784 33.6940i 0.484609 1.07577i
\(982\) 0 0
\(983\) −4.13945 7.16974i −0.132028 0.228679i 0.792430 0.609963i \(-0.208816\pi\)
−0.924458 + 0.381283i \(0.875482\pi\)
\(984\) 0 0
\(985\) −2.04181 + 3.53652i −0.0650574 + 0.112683i
\(986\) 0 0
\(987\) 31.4644 44.0056i 1.00152 1.40071i
\(988\) 0 0
\(989\) 3.13268 5.42596i 0.0996135 0.172536i
\(990\) 0 0
\(991\) 27.2946 15.7586i 0.867043 0.500587i 0.000678305 1.00000i \(-0.499784\pi\)
0.866364 + 0.499412i \(0.166451\pi\)
\(992\) 0 0
\(993\) 3.50826 16.3295i 0.111331 0.518201i
\(994\) 0 0
\(995\) 18.2646i 0.579028i
\(996\) 0 0
\(997\) −46.6045 + 26.9071i −1.47598 + 0.852157i −0.999633 0.0271004i \(-0.991373\pi\)
−0.476347 + 0.879258i \(0.658039\pi\)
\(998\) 0 0
\(999\) −44.9884 + 19.6777i −1.42337 + 0.622574i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 672.2.bd.a.527.26 56
3.2 odd 2 inner 672.2.bd.a.527.5 56
4.3 odd 2 168.2.v.a.107.25 yes 56
7.4 even 3 inner 672.2.bd.a.431.6 56
8.3 odd 2 inner 672.2.bd.a.527.25 56
8.5 even 2 168.2.v.a.107.16 yes 56
12.11 even 2 168.2.v.a.107.4 yes 56
21.11 odd 6 inner 672.2.bd.a.431.25 56
24.5 odd 2 168.2.v.a.107.13 yes 56
24.11 even 2 inner 672.2.bd.a.527.6 56
28.11 odd 6 168.2.v.a.11.13 yes 56
56.11 odd 6 inner 672.2.bd.a.431.5 56
56.53 even 6 168.2.v.a.11.4 56
84.11 even 6 168.2.v.a.11.16 yes 56
168.11 even 6 inner 672.2.bd.a.431.26 56
168.53 odd 6 168.2.v.a.11.25 yes 56
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
168.2.v.a.11.4 56 56.53 even 6
168.2.v.a.11.13 yes 56 28.11 odd 6
168.2.v.a.11.16 yes 56 84.11 even 6
168.2.v.a.11.25 yes 56 168.53 odd 6
168.2.v.a.107.4 yes 56 12.11 even 2
168.2.v.a.107.13 yes 56 24.5 odd 2
168.2.v.a.107.16 yes 56 8.5 even 2
168.2.v.a.107.25 yes 56 4.3 odd 2
672.2.bd.a.431.5 56 56.11 odd 6 inner
672.2.bd.a.431.6 56 7.4 even 3 inner
672.2.bd.a.431.25 56 21.11 odd 6 inner
672.2.bd.a.431.26 56 168.11 even 6 inner
672.2.bd.a.527.5 56 3.2 odd 2 inner
672.2.bd.a.527.6 56 24.11 even 2 inner
672.2.bd.a.527.25 56 8.3 odd 2 inner
672.2.bd.a.527.26 56 1.1 even 1 trivial