Properties

Label 672.2.bd.a.431.18
Level $672$
Weight $2$
Character 672.431
Analytic conductor $5.366$
Analytic rank $0$
Dimension $56$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [672,2,Mod(431,672)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(672, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 3, 3, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("672.431"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 672 = 2^{5} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 672.bd (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.36594701583\)
Analytic rank: \(0\)
Dimension: \(56\)
Relative dimension: \(28\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 168)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 431.18
Character \(\chi\) \(=\) 672.431
Dual form 672.2.bd.a.527.18

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.402456 + 1.68465i) q^{3} +(1.09212 + 1.89161i) q^{5} +(-0.451847 + 2.60688i) q^{7} +(-2.67606 + 1.35599i) q^{9} +(-1.45052 - 0.837460i) q^{11} +1.56085i q^{13} +(-2.74716 + 2.60112i) q^{15} +(0.278795 + 0.160963i) q^{17} +(-2.87437 - 4.97856i) q^{19} +(-4.57352 + 0.287952i) q^{21} +(3.26717 + 5.65891i) q^{23} +(0.114544 - 0.198397i) q^{25} +(-3.36136 - 3.96248i) q^{27} +7.04205 q^{29} +(-7.76983 - 4.48591i) q^{31} +(0.827052 - 2.78066i) q^{33} +(-5.42467 + 1.99231i) q^{35} +(-0.946173 + 0.546273i) q^{37} +(-2.62949 + 0.628175i) q^{39} +3.44933i q^{41} +11.6570 q^{43} +(-5.48758 - 3.58115i) q^{45} +(2.25371 + 3.90354i) q^{47} +(-6.59167 - 2.35583i) q^{49} +(-0.158962 + 0.534452i) q^{51} +(-4.42876 + 7.67084i) q^{53} -3.65843i q^{55} +(7.23030 - 6.84595i) q^{57} +(5.37016 + 3.10046i) q^{59} +(-3.80578 + 2.19727i) q^{61} +(-2.32574 - 7.58887i) q^{63} +(-2.95253 + 1.70464i) q^{65} +(-0.716072 + 1.24027i) q^{67} +(-8.21836 + 7.78149i) q^{69} +6.37080 q^{71} +(-4.49012 + 7.77711i) q^{73} +(0.380327 + 0.113121i) q^{75} +(2.83858 - 3.40294i) q^{77} +(-3.58799 + 2.07153i) q^{79} +(5.32258 - 7.25742i) q^{81} +9.06459i q^{83} +0.703162i q^{85} +(2.83411 + 11.8634i) q^{87} +(-4.57586 + 2.64187i) q^{89} +(-4.06896 - 0.705268i) q^{91} +(4.43016 - 14.8948i) q^{93} +(6.27833 - 10.8744i) q^{95} +4.23153 q^{97} +(5.01728 + 0.274197i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q + 2 q^{3} - 2 q^{9} + 4 q^{19} - 16 q^{25} + 8 q^{27} - 14 q^{33} + 16 q^{43} - 16 q^{49} + 34 q^{51} + 4 q^{57} + 36 q^{67} + 4 q^{73} - 10 q^{81} - 72 q^{91} - 32 q^{97} + 44 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/672\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(421\) \(449\) \(577\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.402456 + 1.68465i 0.232358 + 0.972630i
\(4\) 0 0
\(5\) 1.09212 + 1.89161i 0.488411 + 0.845953i 0.999911 0.0133302i \(-0.00424327\pi\)
−0.511500 + 0.859283i \(0.670910\pi\)
\(6\) 0 0
\(7\) −0.451847 + 2.60688i −0.170782 + 0.985309i
\(8\) 0 0
\(9\) −2.67606 + 1.35599i −0.892020 + 0.451997i
\(10\) 0 0
\(11\) −1.45052 0.837460i −0.437349 0.252504i 0.265123 0.964215i \(-0.414587\pi\)
−0.702473 + 0.711711i \(0.747921\pi\)
\(12\) 0 0
\(13\) 1.56085i 0.432903i 0.976293 + 0.216452i \(0.0694483\pi\)
−0.976293 + 0.216452i \(0.930552\pi\)
\(14\) 0 0
\(15\) −2.74716 + 2.60112i −0.709313 + 0.671608i
\(16\) 0 0
\(17\) 0.278795 + 0.160963i 0.0676178 + 0.0390392i 0.533428 0.845846i \(-0.320904\pi\)
−0.465810 + 0.884885i \(0.654237\pi\)
\(18\) 0 0
\(19\) −2.87437 4.97856i −0.659427 1.14216i −0.980764 0.195196i \(-0.937466\pi\)
0.321337 0.946965i \(-0.395868\pi\)
\(20\) 0 0
\(21\) −4.57352 + 0.287952i −0.998024 + 0.0628364i
\(22\) 0 0
\(23\) 3.26717 + 5.65891i 0.681252 + 1.17996i 0.974599 + 0.223958i \(0.0718977\pi\)
−0.293346 + 0.956006i \(0.594769\pi\)
\(24\) 0 0
\(25\) 0.114544 0.198397i 0.0229089 0.0396793i
\(26\) 0 0
\(27\) −3.36136 3.96248i −0.646894 0.762580i
\(28\) 0 0
\(29\) 7.04205 1.30768 0.653838 0.756635i \(-0.273158\pi\)
0.653838 + 0.756635i \(0.273158\pi\)
\(30\) 0 0
\(31\) −7.76983 4.48591i −1.39550 0.805694i −0.401585 0.915822i \(-0.631541\pi\)
−0.993917 + 0.110128i \(0.964874\pi\)
\(32\) 0 0
\(33\) 0.827052 2.78066i 0.143971 0.484051i
\(34\) 0 0
\(35\) −5.42467 + 1.99231i −0.916937 + 0.336762i
\(36\) 0 0
\(37\) −0.946173 + 0.546273i −0.155550 + 0.0898068i −0.575755 0.817623i \(-0.695292\pi\)
0.420205 + 0.907429i \(0.361958\pi\)
\(38\) 0 0
\(39\) −2.62949 + 0.628175i −0.421055 + 0.100588i
\(40\) 0 0
\(41\) 3.44933i 0.538694i 0.963043 + 0.269347i \(0.0868079\pi\)
−0.963043 + 0.269347i \(0.913192\pi\)
\(42\) 0 0
\(43\) 11.6570 1.77768 0.888841 0.458215i \(-0.151511\pi\)
0.888841 + 0.458215i \(0.151511\pi\)
\(44\) 0 0
\(45\) −5.48758 3.58115i −0.818041 0.533846i
\(46\) 0 0
\(47\) 2.25371 + 3.90354i 0.328737 + 0.569390i 0.982262 0.187516i \(-0.0600436\pi\)
−0.653524 + 0.756906i \(0.726710\pi\)
\(48\) 0 0
\(49\) −6.59167 2.35583i −0.941667 0.336546i
\(50\) 0 0
\(51\) −0.158962 + 0.534452i −0.0222591 + 0.0748382i
\(52\) 0 0
\(53\) −4.42876 + 7.67084i −0.608337 + 1.05367i 0.383177 + 0.923675i \(0.374830\pi\)
−0.991515 + 0.129996i \(0.958504\pi\)
\(54\) 0 0
\(55\) 3.65843i 0.493303i
\(56\) 0 0
\(57\) 7.23030 6.84595i 0.957677 0.906769i
\(58\) 0 0
\(59\) 5.37016 + 3.10046i 0.699135 + 0.403646i 0.807025 0.590517i \(-0.201076\pi\)
−0.107890 + 0.994163i \(0.534409\pi\)
\(60\) 0 0
\(61\) −3.80578 + 2.19727i −0.487280 + 0.281331i −0.723445 0.690382i \(-0.757443\pi\)
0.236165 + 0.971713i \(0.424109\pi\)
\(62\) 0 0
\(63\) −2.32574 7.58887i −0.293015 0.956108i
\(64\) 0 0
\(65\) −2.95253 + 1.70464i −0.366216 + 0.211435i
\(66\) 0 0
\(67\) −0.716072 + 1.24027i −0.0874821 + 0.151523i −0.906446 0.422321i \(-0.861215\pi\)
0.818964 + 0.573845i \(0.194549\pi\)
\(68\) 0 0
\(69\) −8.21836 + 7.78149i −0.989374 + 0.936781i
\(70\) 0 0
\(71\) 6.37080 0.756074 0.378037 0.925790i \(-0.376599\pi\)
0.378037 + 0.925790i \(0.376599\pi\)
\(72\) 0 0
\(73\) −4.49012 + 7.77711i −0.525528 + 0.910242i 0.474030 + 0.880509i \(0.342799\pi\)
−0.999558 + 0.0297328i \(0.990534\pi\)
\(74\) 0 0
\(75\) 0.380327 + 0.113121i 0.0439164 + 0.0130621i
\(76\) 0 0
\(77\) 2.83858 3.40294i 0.323486 0.387801i
\(78\) 0 0
\(79\) −3.58799 + 2.07153i −0.403681 + 0.233065i −0.688071 0.725643i \(-0.741542\pi\)
0.284390 + 0.958709i \(0.408209\pi\)
\(80\) 0 0
\(81\) 5.32258 7.25742i 0.591398 0.806380i
\(82\) 0 0
\(83\) 9.06459i 0.994968i 0.867473 + 0.497484i \(0.165743\pi\)
−0.867473 + 0.497484i \(0.834257\pi\)
\(84\) 0 0
\(85\) 0.703162i 0.0762687i
\(86\) 0 0
\(87\) 2.83411 + 11.8634i 0.303849 + 1.27189i
\(88\) 0 0
\(89\) −4.57586 + 2.64187i −0.485040 + 0.280038i −0.722515 0.691356i \(-0.757014\pi\)
0.237474 + 0.971394i \(0.423680\pi\)
\(90\) 0 0
\(91\) −4.06896 0.705268i −0.426543 0.0739322i
\(92\) 0 0
\(93\) 4.43016 14.8948i 0.459386 1.54452i
\(94\) 0 0
\(95\) 6.27833 10.8744i 0.644143 1.11569i
\(96\) 0 0
\(97\) 4.23153 0.429647 0.214823 0.976653i \(-0.431082\pi\)
0.214823 + 0.976653i \(0.431082\pi\)
\(98\) 0 0
\(99\) 5.01728 + 0.274197i 0.504255 + 0.0275578i
\(100\) 0 0
\(101\) 2.47136 4.28052i 0.245909 0.425927i −0.716478 0.697610i \(-0.754247\pi\)
0.962387 + 0.271683i \(0.0875802\pi\)
\(102\) 0 0
\(103\) 15.8817 9.16928i 1.56487 0.903476i 0.568114 0.822950i \(-0.307673\pi\)
0.996752 0.0805264i \(-0.0256601\pi\)
\(104\) 0 0
\(105\) −5.53953 8.33683i −0.540603 0.813591i
\(106\) 0 0
\(107\) −3.83045 + 2.21151i −0.370303 + 0.213795i −0.673591 0.739104i \(-0.735249\pi\)
0.303288 + 0.952899i \(0.401916\pi\)
\(108\) 0 0
\(109\) 7.04986 + 4.07024i 0.675255 + 0.389858i 0.798065 0.602572i \(-0.205857\pi\)
−0.122810 + 0.992430i \(0.539191\pi\)
\(110\) 0 0
\(111\) −1.30107 1.37411i −0.123492 0.130425i
\(112\) 0 0
\(113\) 13.4000i 1.26056i −0.776367 0.630281i \(-0.782940\pi\)
0.776367 0.630281i \(-0.217060\pi\)
\(114\) 0 0
\(115\) −7.13629 + 12.3604i −0.665463 + 1.15262i
\(116\) 0 0
\(117\) −2.11650 4.17694i −0.195671 0.386158i
\(118\) 0 0
\(119\) −0.545583 + 0.654056i −0.0500136 + 0.0599572i
\(120\) 0 0
\(121\) −4.09732 7.09677i −0.372484 0.645161i
\(122\) 0 0
\(123\) −5.81089 + 1.38820i −0.523951 + 0.125170i
\(124\) 0 0
\(125\) 11.4216 1.02158
\(126\) 0 0
\(127\) 12.5356i 1.11236i 0.831063 + 0.556178i \(0.187733\pi\)
−0.831063 + 0.556178i \(0.812267\pi\)
\(128\) 0 0
\(129\) 4.69144 + 19.6380i 0.413059 + 1.72903i
\(130\) 0 0
\(131\) 14.8145 8.55318i 1.29435 0.747295i 0.314930 0.949115i \(-0.398019\pi\)
0.979423 + 0.201820i \(0.0646855\pi\)
\(132\) 0 0
\(133\) 14.2773 5.24361i 1.23800 0.454678i
\(134\) 0 0
\(135\) 3.82446 10.6859i 0.329157 0.919694i
\(136\) 0 0
\(137\) 17.9399 + 10.3576i 1.53271 + 0.884909i 0.999236 + 0.0390917i \(0.0124464\pi\)
0.533472 + 0.845818i \(0.320887\pi\)
\(138\) 0 0
\(139\) −1.27255 −0.107936 −0.0539682 0.998543i \(-0.517187\pi\)
−0.0539682 + 0.998543i \(0.517187\pi\)
\(140\) 0 0
\(141\) −5.66906 + 5.36770i −0.477421 + 0.452042i
\(142\) 0 0
\(143\) 1.30715 2.26406i 0.109310 0.189330i
\(144\) 0 0
\(145\) 7.69077 + 13.3208i 0.638684 + 1.10623i
\(146\) 0 0
\(147\) 1.31587 12.0527i 0.108532 0.994093i
\(148\) 0 0
\(149\) 2.47136 + 4.28052i 0.202461 + 0.350674i 0.949321 0.314308i \(-0.101773\pi\)
−0.746859 + 0.664982i \(0.768439\pi\)
\(150\) 0 0
\(151\) 5.48605 + 3.16737i 0.446448 + 0.257757i 0.706329 0.707884i \(-0.250350\pi\)
−0.259881 + 0.965641i \(0.583683\pi\)
\(152\) 0 0
\(153\) −0.964337 0.0527015i −0.0779620 0.00426066i
\(154\) 0 0
\(155\) 19.5966i 1.57404i
\(156\) 0 0
\(157\) −2.09256 1.20814i −0.167004 0.0964199i 0.414168 0.910200i \(-0.364072\pi\)
−0.581172 + 0.813780i \(0.697406\pi\)
\(158\) 0 0
\(159\) −14.7050 4.37372i −1.16618 0.346858i
\(160\) 0 0
\(161\) −16.2284 + 5.96017i −1.27897 + 0.469727i
\(162\) 0 0
\(163\) −4.46077 7.72628i −0.349395 0.605169i 0.636747 0.771072i \(-0.280279\pi\)
−0.986142 + 0.165903i \(0.946946\pi\)
\(164\) 0 0
\(165\) 6.16316 1.47236i 0.479801 0.114623i
\(166\) 0 0
\(167\) −7.01131 −0.542551 −0.271276 0.962502i \(-0.587445\pi\)
−0.271276 + 0.962502i \(0.587445\pi\)
\(168\) 0 0
\(169\) 10.5637 0.812595
\(170\) 0 0
\(171\) 14.4429 + 9.42530i 1.10447 + 0.720771i
\(172\) 0 0
\(173\) −7.11660 12.3263i −0.541065 0.937152i −0.998843 0.0480854i \(-0.984688\pi\)
0.457778 0.889066i \(-0.348645\pi\)
\(174\) 0 0
\(175\) 0.465440 + 0.388249i 0.0351840 + 0.0293488i
\(176\) 0 0
\(177\) −3.06193 + 10.2946i −0.230149 + 0.773790i
\(178\) 0 0
\(179\) 1.07613 + 0.621304i 0.0804338 + 0.0464384i 0.539677 0.841872i \(-0.318546\pi\)
−0.459244 + 0.888310i \(0.651880\pi\)
\(180\) 0 0
\(181\) 20.9487i 1.55710i −0.627580 0.778552i \(-0.715954\pi\)
0.627580 0.778552i \(-0.284046\pi\)
\(182\) 0 0
\(183\) −5.23327 5.52709i −0.386855 0.408574i
\(184\) 0 0
\(185\) −2.06667 1.19319i −0.151945 0.0877253i
\(186\) 0 0
\(187\) −0.269600 0.466960i −0.0197151 0.0341475i
\(188\) 0 0
\(189\) 11.8485 6.97223i 0.861855 0.507155i
\(190\) 0 0
\(191\) −12.2119 21.1516i −0.883621 1.53048i −0.847287 0.531136i \(-0.821765\pi\)
−0.0363339 0.999340i \(-0.511568\pi\)
\(192\) 0 0
\(193\) 0.00662606 0.0114767i 0.000476954 0.000826109i −0.865787 0.500413i \(-0.833182\pi\)
0.866264 + 0.499587i \(0.166515\pi\)
\(194\) 0 0
\(195\) −4.05998 4.28792i −0.290741 0.307064i
\(196\) 0 0
\(197\) 6.48422 0.461981 0.230991 0.972956i \(-0.425803\pi\)
0.230991 + 0.972956i \(0.425803\pi\)
\(198\) 0 0
\(199\) 4.47013 + 2.58083i 0.316879 + 0.182950i 0.650001 0.759934i \(-0.274769\pi\)
−0.333121 + 0.942884i \(0.608102\pi\)
\(200\) 0 0
\(201\) −2.37761 0.707172i −0.167703 0.0498801i
\(202\) 0 0
\(203\) −3.18193 + 18.3578i −0.223328 + 1.28846i
\(204\) 0 0
\(205\) −6.52478 + 3.76708i −0.455710 + 0.263104i
\(206\) 0 0
\(207\) −16.4166 10.7133i −1.14103 0.744627i
\(208\) 0 0
\(209\) 9.62870i 0.666031i
\(210\) 0 0
\(211\) 16.8357 1.15902 0.579509 0.814966i \(-0.303244\pi\)
0.579509 + 0.814966i \(0.303244\pi\)
\(212\) 0 0
\(213\) 2.56396 + 10.7325i 0.175680 + 0.735381i
\(214\) 0 0
\(215\) 12.7309 + 22.0506i 0.868240 + 1.50384i
\(216\) 0 0
\(217\) 15.2050 18.2281i 1.03218 1.23740i
\(218\) 0 0
\(219\) −14.9087 4.43431i −1.00744 0.299643i
\(220\) 0 0
\(221\) −0.251239 + 0.435159i −0.0169002 + 0.0292720i
\(222\) 0 0
\(223\) 1.80170i 0.120651i −0.998179 0.0603254i \(-0.980786\pi\)
0.998179 0.0603254i \(-0.0192138\pi\)
\(224\) 0 0
\(225\) −0.0375035 + 0.686242i −0.00250023 + 0.0457495i
\(226\) 0 0
\(227\) −10.0476 5.80096i −0.666879 0.385023i 0.128014 0.991772i \(-0.459140\pi\)
−0.794893 + 0.606749i \(0.792473\pi\)
\(228\) 0 0
\(229\) −8.50697 + 4.91150i −0.562156 + 0.324561i −0.754010 0.656862i \(-0.771883\pi\)
0.191854 + 0.981423i \(0.438550\pi\)
\(230\) 0 0
\(231\) 6.87515 + 3.41246i 0.452352 + 0.224523i
\(232\) 0 0
\(233\) 6.94161 4.00774i 0.454760 0.262556i −0.255079 0.966920i \(-0.582101\pi\)
0.709838 + 0.704365i \(0.248768\pi\)
\(234\) 0 0
\(235\) −4.92265 + 8.52627i −0.321118 + 0.556193i
\(236\) 0 0
\(237\) −4.93380 5.21080i −0.320485 0.338478i
\(238\) 0 0
\(239\) 6.02441 0.389686 0.194843 0.980834i \(-0.437580\pi\)
0.194843 + 0.980834i \(0.437580\pi\)
\(240\) 0 0
\(241\) 5.11917 8.86666i 0.329755 0.571152i −0.652708 0.757609i \(-0.726367\pi\)
0.982463 + 0.186457i \(0.0597006\pi\)
\(242\) 0 0
\(243\) 14.3683 + 6.04587i 0.921726 + 0.387843i
\(244\) 0 0
\(245\) −2.74260 15.0417i −0.175218 0.960979i
\(246\) 0 0
\(247\) 7.77081 4.48648i 0.494445 0.285468i
\(248\) 0 0
\(249\) −15.2706 + 3.64810i −0.967736 + 0.231189i
\(250\) 0 0
\(251\) 9.97684i 0.629733i 0.949136 + 0.314866i \(0.101960\pi\)
−0.949136 + 0.314866i \(0.898040\pi\)
\(252\) 0 0
\(253\) 10.9445i 0.688075i
\(254\) 0 0
\(255\) −1.18458 + 0.282992i −0.0741812 + 0.0177216i
\(256\) 0 0
\(257\) 17.1555 9.90475i 1.07013 0.617841i 0.141915 0.989879i \(-0.454674\pi\)
0.928218 + 0.372038i \(0.121341\pi\)
\(258\) 0 0
\(259\) −0.996544 2.71339i −0.0619222 0.168602i
\(260\) 0 0
\(261\) −18.8449 + 9.54895i −1.16647 + 0.591065i
\(262\) 0 0
\(263\) −3.41780 + 5.91981i −0.210751 + 0.365031i −0.951950 0.306254i \(-0.900924\pi\)
0.741199 + 0.671285i \(0.234258\pi\)
\(264\) 0 0
\(265\) −19.3470 −1.18847
\(266\) 0 0
\(267\) −6.29220 6.64546i −0.385077 0.406696i
\(268\) 0 0
\(269\) −12.0822 + 20.9270i −0.736665 + 1.27594i 0.217324 + 0.976099i \(0.430267\pi\)
−0.953989 + 0.299842i \(0.903066\pi\)
\(270\) 0 0
\(271\) −15.2835 + 8.82392i −0.928405 + 0.536015i −0.886307 0.463099i \(-0.846738\pi\)
−0.0420983 + 0.999113i \(0.513404\pi\)
\(272\) 0 0
\(273\) −0.449452 7.13860i −0.0272021 0.432048i
\(274\) 0 0
\(275\) −0.332299 + 0.191853i −0.0200384 + 0.0115692i
\(276\) 0 0
\(277\) −12.9250 7.46224i −0.776587 0.448363i 0.0586324 0.998280i \(-0.481326\pi\)
−0.835219 + 0.549917i \(0.814659\pi\)
\(278\) 0 0
\(279\) 26.8754 + 1.46875i 1.60899 + 0.0879320i
\(280\) 0 0
\(281\) 13.8890i 0.828547i −0.910152 0.414273i \(-0.864036\pi\)
0.910152 0.414273i \(-0.135964\pi\)
\(282\) 0 0
\(283\) −2.88865 + 5.00329i −0.171712 + 0.297415i −0.939019 0.343866i \(-0.888263\pi\)
0.767306 + 0.641281i \(0.221597\pi\)
\(284\) 0 0
\(285\) 20.8462 + 6.20030i 1.23482 + 0.367274i
\(286\) 0 0
\(287\) −8.99199 1.55857i −0.530780 0.0919994i
\(288\) 0 0
\(289\) −8.44818 14.6327i −0.496952 0.860746i
\(290\) 0 0
\(291\) 1.70300 + 7.12863i 0.0998319 + 0.417888i
\(292\) 0 0
\(293\) −15.6381 −0.913587 −0.456794 0.889573i \(-0.651002\pi\)
−0.456794 + 0.889573i \(0.651002\pi\)
\(294\) 0 0
\(295\) 13.5443i 0.788581i
\(296\) 0 0
\(297\) 1.55731 + 8.56268i 0.0903641 + 0.496857i
\(298\) 0 0
\(299\) −8.83273 + 5.09958i −0.510810 + 0.294916i
\(300\) 0 0
\(301\) −5.26720 + 30.3885i −0.303597 + 1.75157i
\(302\) 0 0
\(303\) 8.20576 + 2.44064i 0.471409 + 0.140211i
\(304\) 0 0
\(305\) −8.31274 4.79936i −0.475986 0.274811i
\(306\) 0 0
\(307\) −7.19887 −0.410861 −0.205430 0.978672i \(-0.565859\pi\)
−0.205430 + 0.978672i \(0.565859\pi\)
\(308\) 0 0
\(309\) 21.8387 + 23.0647i 1.24236 + 1.31211i
\(310\) 0 0
\(311\) −4.35089 + 7.53597i −0.246717 + 0.427326i −0.962613 0.270881i \(-0.912685\pi\)
0.715896 + 0.698207i \(0.246018\pi\)
\(312\) 0 0
\(313\) 9.57541 + 16.5851i 0.541234 + 0.937445i 0.998834 + 0.0482863i \(0.0153760\pi\)
−0.457600 + 0.889158i \(0.651291\pi\)
\(314\) 0 0
\(315\) 11.8152 12.6873i 0.665710 0.714851i
\(316\) 0 0
\(317\) 1.83178 + 3.17274i 0.102883 + 0.178199i 0.912871 0.408247i \(-0.133860\pi\)
−0.809988 + 0.586446i \(0.800527\pi\)
\(318\) 0 0
\(319\) −10.2147 5.89744i −0.571911 0.330193i
\(320\) 0 0
\(321\) −5.26720 5.56291i −0.293986 0.310491i
\(322\) 0 0
\(323\) 1.85067i 0.102974i
\(324\) 0 0
\(325\) 0.309668 + 0.178787i 0.0171773 + 0.00991732i
\(326\) 0 0
\(327\) −4.01965 + 13.5146i −0.222287 + 0.747360i
\(328\) 0 0
\(329\) −11.1944 + 4.11135i −0.617167 + 0.226666i
\(330\) 0 0
\(331\) −5.41365 9.37672i −0.297561 0.515391i 0.678016 0.735047i \(-0.262840\pi\)
−0.975577 + 0.219656i \(0.929507\pi\)
\(332\) 0 0
\(333\) 1.79127 2.74486i 0.0981612 0.150417i
\(334\) 0 0
\(335\) −3.12815 −0.170909
\(336\) 0 0
\(337\) −20.0426 −1.09179 −0.545894 0.837854i \(-0.683810\pi\)
−0.545894 + 0.837854i \(0.683810\pi\)
\(338\) 0 0
\(339\) 22.5742 5.39289i 1.22606 0.292901i
\(340\) 0 0
\(341\) 7.51355 + 13.0139i 0.406882 + 0.704740i
\(342\) 0 0
\(343\) 9.11979 16.1192i 0.492422 0.870357i
\(344\) 0 0
\(345\) −23.6950 7.04760i −1.27569 0.379430i
\(346\) 0 0
\(347\) 5.06136 + 2.92218i 0.271708 + 0.156871i 0.629664 0.776868i \(-0.283193\pi\)
−0.357955 + 0.933739i \(0.616526\pi\)
\(348\) 0 0
\(349\) 18.6166i 0.996526i 0.867026 + 0.498263i \(0.166029\pi\)
−0.867026 + 0.498263i \(0.833971\pi\)
\(350\) 0 0
\(351\) 6.18486 5.24659i 0.330123 0.280042i
\(352\) 0 0
\(353\) 5.78219 + 3.33835i 0.307755 + 0.177682i 0.645921 0.763404i \(-0.276473\pi\)
−0.338167 + 0.941086i \(0.609807\pi\)
\(354\) 0 0
\(355\) 6.95768 + 12.0511i 0.369275 + 0.639603i
\(356\) 0 0
\(357\) −1.32143 0.655886i −0.0699373 0.0347132i
\(358\) 0 0
\(359\) 12.1282 + 21.0067i 0.640102 + 1.10869i 0.985410 + 0.170200i \(0.0544414\pi\)
−0.345307 + 0.938490i \(0.612225\pi\)
\(360\) 0 0
\(361\) −7.02406 + 12.1660i −0.369687 + 0.640317i
\(362\) 0 0
\(363\) 10.3065 9.75866i 0.540953 0.512197i
\(364\) 0 0
\(365\) −19.6150 −1.02670
\(366\) 0 0
\(367\) −6.54864 3.78086i −0.341836 0.197359i 0.319248 0.947671i \(-0.396570\pi\)
−0.661084 + 0.750312i \(0.729903\pi\)
\(368\) 0 0
\(369\) −4.67725 9.23060i −0.243488 0.480526i
\(370\) 0 0
\(371\) −17.9958 15.0113i −0.934298 0.779348i
\(372\) 0 0
\(373\) 16.9620 9.79302i 0.878260 0.507063i 0.00817543 0.999967i \(-0.497398\pi\)
0.870084 + 0.492903i \(0.164064\pi\)
\(374\) 0 0
\(375\) 4.59669 + 19.2413i 0.237372 + 0.993618i
\(376\) 0 0
\(377\) 10.9916i 0.566097i
\(378\) 0 0
\(379\) −4.99759 −0.256709 −0.128354 0.991728i \(-0.540969\pi\)
−0.128354 + 0.991728i \(0.540969\pi\)
\(380\) 0 0
\(381\) −21.1181 + 5.04503i −1.08191 + 0.258465i
\(382\) 0 0
\(383\) −15.1532 26.2461i −0.774292 1.34111i −0.935192 0.354142i \(-0.884773\pi\)
0.160900 0.986971i \(-0.448560\pi\)
\(384\) 0 0
\(385\) 9.53710 + 1.65305i 0.486056 + 0.0842474i
\(386\) 0 0
\(387\) −31.1949 + 15.8068i −1.58573 + 0.803507i
\(388\) 0 0
\(389\) 2.13059 3.69030i 0.108025 0.187106i −0.806945 0.590627i \(-0.798881\pi\)
0.914970 + 0.403521i \(0.132214\pi\)
\(390\) 0 0
\(391\) 2.10357i 0.106382i
\(392\) 0 0
\(393\) 20.3713 + 21.5150i 1.02760 + 1.08529i
\(394\) 0 0
\(395\) −7.83704 4.52472i −0.394324 0.227663i
\(396\) 0 0
\(397\) −17.1398 + 9.89568i −0.860223 + 0.496650i −0.864087 0.503343i \(-0.832103\pi\)
0.00386406 + 0.999993i \(0.498770\pi\)
\(398\) 0 0
\(399\) 14.5796 + 21.9419i 0.729893 + 1.09847i
\(400\) 0 0
\(401\) 1.98773 1.14762i 0.0992627 0.0573094i −0.449547 0.893257i \(-0.648415\pi\)
0.548810 + 0.835947i \(0.315081\pi\)
\(402\) 0 0
\(403\) 7.00186 12.1276i 0.348787 0.604118i
\(404\) 0 0
\(405\) 19.5411 + 2.14226i 0.971005 + 0.106450i
\(406\) 0 0
\(407\) 1.82993 0.0907062
\(408\) 0 0
\(409\) −0.750621 + 1.30011i −0.0371158 + 0.0642865i −0.883987 0.467512i \(-0.845150\pi\)
0.846871 + 0.531799i \(0.178484\pi\)
\(410\) 0 0
\(411\) −10.2289 + 34.3908i −0.504553 + 1.69637i
\(412\) 0 0
\(413\) −10.5090 + 12.5984i −0.517116 + 0.619928i
\(414\) 0 0
\(415\) −17.1467 + 9.89963i −0.841696 + 0.485954i
\(416\) 0 0
\(417\) −0.512145 2.14380i −0.0250799 0.104982i
\(418\) 0 0
\(419\) 8.44514i 0.412572i 0.978492 + 0.206286i \(0.0661378\pi\)
−0.978492 + 0.206286i \(0.933862\pi\)
\(420\) 0 0
\(421\) 13.9326i 0.679032i −0.940600 0.339516i \(-0.889737\pi\)
0.940600 0.339516i \(-0.110263\pi\)
\(422\) 0 0
\(423\) −11.3242 7.39009i −0.550602 0.359319i
\(424\) 0 0
\(425\) 0.0638689 0.0368747i 0.00309809 0.00178869i
\(426\) 0 0
\(427\) −4.00839 10.9140i −0.193979 0.528168i
\(428\) 0 0
\(429\) 4.34020 + 1.29091i 0.209547 + 0.0623256i
\(430\) 0 0
\(431\) −16.9743 + 29.4004i −0.817624 + 1.41617i 0.0898039 + 0.995959i \(0.471376\pi\)
−0.907428 + 0.420207i \(0.861957\pi\)
\(432\) 0 0
\(433\) 4.44336 0.213534 0.106767 0.994284i \(-0.465950\pi\)
0.106767 + 0.994284i \(0.465950\pi\)
\(434\) 0 0
\(435\) −19.3456 + 18.3173i −0.927552 + 0.878245i
\(436\) 0 0
\(437\) 18.7822 32.5316i 0.898472 1.55620i
\(438\) 0 0
\(439\) −7.55680 + 4.36292i −0.360667 + 0.208231i −0.669373 0.742926i \(-0.733437\pi\)
0.308707 + 0.951157i \(0.400104\pi\)
\(440\) 0 0
\(441\) 20.8342 2.63391i 0.992103 0.125424i
\(442\) 0 0
\(443\) 32.0121 18.4822i 1.52094 0.878115i 0.521244 0.853407i \(-0.325468\pi\)
0.999695 0.0247072i \(-0.00786534\pi\)
\(444\) 0 0
\(445\) −9.99478 5.77049i −0.473798 0.273548i
\(446\) 0 0
\(447\) −6.21654 + 5.88608i −0.294032 + 0.278402i
\(448\) 0 0
\(449\) 23.4269i 1.10559i −0.833319 0.552793i \(-0.813562\pi\)
0.833319 0.552793i \(-0.186438\pi\)
\(450\) 0 0
\(451\) 2.88868 5.00333i 0.136022 0.235598i
\(452\) 0 0
\(453\) −3.12801 + 10.5168i −0.146967 + 0.494121i
\(454\) 0 0
\(455\) −3.10971 8.46712i −0.145785 0.396945i
\(456\) 0 0
\(457\) 0.661376 + 1.14554i 0.0309378 + 0.0535859i 0.881080 0.472968i \(-0.156817\pi\)
−0.850142 + 0.526554i \(0.823484\pi\)
\(458\) 0 0
\(459\) −0.299319 1.64577i −0.0139710 0.0768182i
\(460\) 0 0
\(461\) −23.5461 −1.09665 −0.548325 0.836266i \(-0.684734\pi\)
−0.548325 + 0.836266i \(0.684734\pi\)
\(462\) 0 0
\(463\) 14.4502i 0.671557i −0.941941 0.335778i \(-0.891001\pi\)
0.941941 0.335778i \(-0.108999\pi\)
\(464\) 0 0
\(465\) 33.0134 7.88678i 1.53096 0.365741i
\(466\) 0 0
\(467\) 13.0084 7.51039i 0.601956 0.347540i −0.167855 0.985812i \(-0.553684\pi\)
0.769811 + 0.638272i \(0.220351\pi\)
\(468\) 0 0
\(469\) −2.90969 2.42713i −0.134357 0.112074i
\(470\) 0 0
\(471\) 1.19312 4.01144i 0.0549762 0.184837i
\(472\) 0 0
\(473\) −16.9088 9.76231i −0.777468 0.448872i
\(474\) 0 0
\(475\) −1.31697 −0.0604269
\(476\) 0 0
\(477\) 1.45004 26.5330i 0.0663928 1.21486i
\(478\) 0 0
\(479\) 10.9550 18.9745i 0.500545 0.866969i −0.499455 0.866340i \(-0.666466\pi\)
1.00000 0.000629369i \(-0.000200335\pi\)
\(480\) 0 0
\(481\) −0.852653 1.47684i −0.0388776 0.0673380i
\(482\) 0 0
\(483\) −16.5720 24.9403i −0.754051 1.13482i
\(484\) 0 0
\(485\) 4.62134 + 8.00440i 0.209844 + 0.363461i
\(486\) 0 0
\(487\) 9.51388 + 5.49284i 0.431115 + 0.248904i 0.699821 0.714318i \(-0.253263\pi\)
−0.268707 + 0.963222i \(0.586596\pi\)
\(488\) 0 0
\(489\) 11.2208 10.6243i 0.507421 0.480448i
\(490\) 0 0
\(491\) 32.3525i 1.46005i −0.683422 0.730024i \(-0.739509\pi\)
0.683422 0.730024i \(-0.260491\pi\)
\(492\) 0 0
\(493\) 1.96329 + 1.13351i 0.0884222 + 0.0510506i
\(494\) 0 0
\(495\) 4.96080 + 9.79018i 0.222971 + 0.440036i
\(496\) 0 0
\(497\) −2.87863 + 16.6079i −0.129124 + 0.744967i
\(498\) 0 0
\(499\) 7.10372 + 12.3040i 0.318006 + 0.550803i 0.980072 0.198643i \(-0.0636534\pi\)
−0.662066 + 0.749446i \(0.730320\pi\)
\(500\) 0 0
\(501\) −2.82174 11.8116i −0.126066 0.527702i
\(502\) 0 0
\(503\) −33.4106 −1.48970 −0.744852 0.667229i \(-0.767480\pi\)
−0.744852 + 0.667229i \(0.767480\pi\)
\(504\) 0 0
\(505\) 10.7961 0.480419
\(506\) 0 0
\(507\) 4.25144 + 17.7961i 0.188813 + 0.790354i
\(508\) 0 0
\(509\) 8.44815 + 14.6326i 0.374458 + 0.648580i 0.990246 0.139332i \(-0.0444956\pi\)
−0.615788 + 0.787912i \(0.711162\pi\)
\(510\) 0 0
\(511\) −18.2452 15.2193i −0.807118 0.673261i
\(512\) 0 0
\(513\) −10.0657 + 28.1244i −0.444410 + 1.24172i
\(514\) 0 0
\(515\) 34.6894 + 20.0279i 1.52860 + 0.882536i
\(516\) 0 0
\(517\) 7.54957i 0.332030i
\(518\) 0 0
\(519\) 17.9013 16.9497i 0.785781 0.744011i
\(520\) 0 0
\(521\) −31.0684 17.9374i −1.36113 0.785850i −0.371358 0.928490i \(-0.621108\pi\)
−0.989775 + 0.142639i \(0.954441\pi\)
\(522\) 0 0
\(523\) 1.10840 + 1.91980i 0.0484669 + 0.0839471i 0.889241 0.457439i \(-0.151233\pi\)
−0.840774 + 0.541386i \(0.817900\pi\)
\(524\) 0 0
\(525\) −0.466742 + 0.940354i −0.0203703 + 0.0410404i
\(526\) 0 0
\(527\) −1.44413 2.50130i −0.0629072 0.108959i
\(528\) 0 0
\(529\) −9.84883 + 17.0587i −0.428210 + 0.741681i
\(530\) 0 0
\(531\) −18.5751 1.01514i −0.806089 0.0440532i
\(532\) 0 0
\(533\) −5.38390 −0.233202
\(534\) 0 0
\(535\) −8.36662 4.83047i −0.361721 0.208840i
\(536\) 0 0
\(537\) −0.613582 + 2.06295i −0.0264780 + 0.0890227i
\(538\) 0 0
\(539\) 7.58846 + 8.93744i 0.326858 + 0.384963i
\(540\) 0 0
\(541\) 32.2404 18.6140i 1.38612 0.800279i 0.393248 0.919432i \(-0.371351\pi\)
0.992876 + 0.119153i \(0.0380180\pi\)
\(542\) 0 0
\(543\) 35.2911 8.43092i 1.51449 0.361806i
\(544\) 0 0
\(545\) 17.7808i 0.761645i
\(546\) 0 0
\(547\) −12.2271 −0.522792 −0.261396 0.965232i \(-0.584183\pi\)
−0.261396 + 0.965232i \(0.584183\pi\)
\(548\) 0 0
\(549\) 7.20502 11.0406i 0.307503 0.471202i
\(550\) 0 0
\(551\) −20.2415 35.0593i −0.862317 1.49358i
\(552\) 0 0
\(553\) −3.77901 10.2895i −0.160700 0.437554i
\(554\) 0 0
\(555\) 1.17836 3.96181i 0.0500187 0.168170i
\(556\) 0 0
\(557\) 0.649106 1.12428i 0.0275035 0.0476375i −0.851946 0.523630i \(-0.824578\pi\)
0.879450 + 0.475992i \(0.157911\pi\)
\(558\) 0 0
\(559\) 18.1949i 0.769564i
\(560\) 0 0
\(561\) 0.678160 0.642111i 0.0286320 0.0271099i
\(562\) 0 0
\(563\) −24.2080 13.9765i −1.02024 0.589038i −0.106070 0.994359i \(-0.533827\pi\)
−0.914175 + 0.405320i \(0.867160\pi\)
\(564\) 0 0
\(565\) 25.3475 14.6344i 1.06638 0.615672i
\(566\) 0 0
\(567\) 16.5142 + 17.1546i 0.693533 + 0.720425i
\(568\) 0 0
\(569\) 26.1457 15.0952i 1.09608 0.632825i 0.160895 0.986972i \(-0.448562\pi\)
0.935190 + 0.354147i \(0.115229\pi\)
\(570\) 0 0
\(571\) 16.0016 27.7156i 0.669646 1.15986i −0.308357 0.951271i \(-0.599779\pi\)
0.978003 0.208591i \(-0.0668877\pi\)
\(572\) 0 0
\(573\) 30.7182 29.0853i 1.28327 1.21505i
\(574\) 0 0
\(575\) 1.49694 0.0624269
\(576\) 0 0
\(577\) 7.72204 13.3750i 0.321473 0.556807i −0.659319 0.751863i \(-0.729155\pi\)
0.980792 + 0.195056i \(0.0624888\pi\)
\(578\) 0 0
\(579\) 0.0220008 + 0.00654370i 0.000914322 + 0.000271947i
\(580\) 0 0
\(581\) −23.6303 4.09581i −0.980351 0.169923i
\(582\) 0 0
\(583\) 12.8480 7.41782i 0.532112 0.307215i
\(584\) 0 0
\(585\) 5.58965 8.56532i 0.231104 0.354132i
\(586\) 0 0
\(587\) 1.97510i 0.0815212i −0.999169 0.0407606i \(-0.987022\pi\)
0.999169 0.0407606i \(-0.0129781\pi\)
\(588\) 0 0
\(589\) 51.5768i 2.12518i
\(590\) 0 0
\(591\) 2.60961 + 10.9236i 0.107345 + 0.449337i
\(592\) 0 0
\(593\) 14.0265 8.09823i 0.576001 0.332554i −0.183542 0.983012i \(-0.558756\pi\)
0.759543 + 0.650458i \(0.225423\pi\)
\(594\) 0 0
\(595\) −1.83306 0.317722i −0.0751482 0.0130253i
\(596\) 0 0
\(597\) −2.54876 + 8.56926i −0.104314 + 0.350717i
\(598\) 0 0
\(599\) 7.00327 12.1300i 0.286146 0.495619i −0.686741 0.726903i \(-0.740959\pi\)
0.972886 + 0.231283i \(0.0742925\pi\)
\(600\) 0 0
\(601\) −15.5923 −0.636024 −0.318012 0.948087i \(-0.603015\pi\)
−0.318012 + 0.948087i \(0.603015\pi\)
\(602\) 0 0
\(603\) 0.234452 4.29003i 0.00954764 0.174704i
\(604\) 0 0
\(605\) 8.94954 15.5011i 0.363850 0.630207i
\(606\) 0 0
\(607\) 28.3416 16.3630i 1.15035 0.664155i 0.201378 0.979514i \(-0.435458\pi\)
0.948973 + 0.315359i \(0.102125\pi\)
\(608\) 0 0
\(609\) −32.2070 + 2.02778i −1.30509 + 0.0821696i
\(610\) 0 0
\(611\) −6.09286 + 3.51771i −0.246491 + 0.142311i
\(612\) 0 0
\(613\) 0.287887 + 0.166212i 0.0116277 + 0.00671323i 0.505803 0.862649i \(-0.331196\pi\)
−0.494175 + 0.869363i \(0.664530\pi\)
\(614\) 0 0
\(615\) −8.97213 9.47585i −0.361791 0.382103i
\(616\) 0 0
\(617\) 39.1386i 1.57566i 0.615893 + 0.787830i \(0.288795\pi\)
−0.615893 + 0.787830i \(0.711205\pi\)
\(618\) 0 0
\(619\) −1.61116 + 2.79062i −0.0647581 + 0.112164i −0.896587 0.442868i \(-0.853961\pi\)
0.831829 + 0.555033i \(0.187294\pi\)
\(620\) 0 0
\(621\) 11.4412 31.9677i 0.459119 1.28282i
\(622\) 0 0
\(623\) −4.81946 13.1225i −0.193088 0.525740i
\(624\) 0 0
\(625\) 11.9010 + 20.6132i 0.476042 + 0.824528i
\(626\) 0 0
\(627\) −16.2209 + 3.87513i −0.647802 + 0.154758i
\(628\) 0 0
\(629\) −0.351718 −0.0140239
\(630\) 0 0
\(631\) 10.2850i 0.409441i −0.978820 0.204721i \(-0.934371\pi\)
0.978820 0.204721i \(-0.0656286\pi\)
\(632\) 0 0
\(633\) 6.77563 + 28.3622i 0.269307 + 1.12730i
\(634\) 0 0
\(635\) −23.7125 + 13.6904i −0.941002 + 0.543287i
\(636\) 0 0
\(637\) 3.67710 10.2886i 0.145692 0.407650i
\(638\) 0 0
\(639\) −17.0486 + 8.63874i −0.674433 + 0.341743i
\(640\) 0 0
\(641\) 26.2428 + 15.1513i 1.03653 + 0.598439i 0.918848 0.394612i \(-0.129121\pi\)
0.117680 + 0.993052i \(0.462454\pi\)
\(642\) 0 0
\(643\) 37.4668 1.47755 0.738773 0.673955i \(-0.235406\pi\)
0.738773 + 0.673955i \(0.235406\pi\)
\(644\) 0 0
\(645\) −32.0238 + 30.3214i −1.26093 + 1.19390i
\(646\) 0 0
\(647\) −0.130900 + 0.226726i −0.00514622 + 0.00891351i −0.868587 0.495537i \(-0.834971\pi\)
0.863441 + 0.504450i \(0.168305\pi\)
\(648\) 0 0
\(649\) −5.19303 8.99459i −0.203844 0.353069i
\(650\) 0 0
\(651\) 36.8272 + 18.2791i 1.44337 + 0.716413i
\(652\) 0 0
\(653\) −22.1548 38.3732i −0.866984 1.50166i −0.865064 0.501662i \(-0.832722\pi\)
−0.00192051 0.999998i \(-0.500611\pi\)
\(654\) 0 0
\(655\) 32.3586 + 18.6822i 1.26435 + 0.729975i
\(656\) 0 0
\(657\) 1.47013 26.9006i 0.0573552 1.04949i
\(658\) 0 0
\(659\) 23.4513i 0.913534i 0.889586 + 0.456767i \(0.150993\pi\)
−0.889586 + 0.456767i \(0.849007\pi\)
\(660\) 0 0
\(661\) 29.3695 + 16.9565i 1.14234 + 0.659531i 0.947009 0.321206i \(-0.104088\pi\)
0.195332 + 0.980737i \(0.437422\pi\)
\(662\) 0 0
\(663\) −0.834201 0.248117i −0.0323977 0.00963605i
\(664\) 0 0
\(665\) 25.5114 + 21.2804i 0.989289 + 0.825219i
\(666\) 0 0
\(667\) 23.0076 + 39.8503i 0.890857 + 1.54301i
\(668\) 0 0
\(669\) 3.03523 0.725105i 0.117349 0.0280342i
\(670\) 0 0
\(671\) 7.36050 0.284149
\(672\) 0 0
\(673\) −13.3855 −0.515973 −0.257986 0.966149i \(-0.583059\pi\)
−0.257986 + 0.966149i \(0.583059\pi\)
\(674\) 0 0
\(675\) −1.17117 + 0.213002i −0.0450783 + 0.00819845i
\(676\) 0 0
\(677\) −13.0777 22.6513i −0.502618 0.870559i −0.999995 0.00302522i \(-0.999037\pi\)
0.497378 0.867534i \(-0.334296\pi\)
\(678\) 0 0
\(679\) −1.91201 + 11.0311i −0.0733761 + 0.423335i
\(680\) 0 0
\(681\) 5.72886 19.2612i 0.219530 0.738090i
\(682\) 0 0
\(683\) −19.0543 11.0010i −0.729092 0.420942i 0.0889978 0.996032i \(-0.471634\pi\)
−0.818090 + 0.575090i \(0.804967\pi\)
\(684\) 0 0
\(685\) 45.2470i 1.72880i
\(686\) 0 0
\(687\) −11.6978 12.3546i −0.446299 0.471356i
\(688\) 0 0
\(689\) −11.9731 6.91265i −0.456137 0.263351i
\(690\) 0 0
\(691\) −17.0852 29.5924i −0.649952 1.12575i −0.983134 0.182887i \(-0.941456\pi\)
0.333182 0.942862i \(-0.391878\pi\)
\(692\) 0 0
\(693\) −2.98184 + 12.9556i −0.113271 + 0.492141i
\(694\) 0 0
\(695\) −1.38978 2.40717i −0.0527173 0.0913091i
\(696\) 0 0
\(697\) −0.555213 + 0.961656i −0.0210302 + 0.0364253i
\(698\) 0 0
\(699\) 9.54531 + 10.0812i 0.361037 + 0.381306i
\(700\) 0 0
\(701\) 25.6168 0.967533 0.483767 0.875197i \(-0.339268\pi\)
0.483767 + 0.875197i \(0.339268\pi\)
\(702\) 0 0
\(703\) 5.43931 + 3.14039i 0.205147 + 0.118442i
\(704\) 0 0
\(705\) −16.3449 4.86146i −0.615584 0.183093i
\(706\) 0 0
\(707\) 10.0421 + 8.37668i 0.377673 + 0.315037i
\(708\) 0 0
\(709\) 0.228674 0.132025i 0.00858802 0.00495830i −0.495700 0.868494i \(-0.665088\pi\)
0.504288 + 0.863536i \(0.331755\pi\)
\(710\) 0 0
\(711\) 6.79271 10.4088i 0.254746 0.390361i
\(712\) 0 0
\(713\) 58.6250i 2.19552i
\(714\) 0 0
\(715\) 5.71028 0.213552
\(716\) 0 0
\(717\) 2.42456 + 10.1490i 0.0905467 + 0.379021i
\(718\) 0 0
\(719\) 19.9630 + 34.5770i 0.744496 + 1.28950i 0.950430 + 0.310939i \(0.100643\pi\)
−0.205934 + 0.978566i \(0.566023\pi\)
\(720\) 0 0
\(721\) 16.7271 + 45.5447i 0.622952 + 1.69617i
\(722\) 0 0
\(723\) 16.9974 + 5.05555i 0.632141 + 0.188018i
\(724\) 0 0
\(725\) 0.806627 1.39712i 0.0299574 0.0518877i
\(726\) 0 0
\(727\) 4.46181i 0.165479i −0.996571 0.0827397i \(-0.973633\pi\)
0.996571 0.0827397i \(-0.0263670\pi\)
\(728\) 0 0
\(729\) −4.40255 + 26.6386i −0.163057 + 0.986617i
\(730\) 0 0
\(731\) 3.24993 + 1.87635i 0.120203 + 0.0693992i
\(732\) 0 0
\(733\) 3.91514 2.26041i 0.144609 0.0834900i −0.425950 0.904747i \(-0.640060\pi\)
0.570559 + 0.821257i \(0.306727\pi\)
\(734\) 0 0
\(735\) 24.2362 10.6739i 0.893964 0.393714i
\(736\) 0 0
\(737\) 2.07736 1.19936i 0.0765205 0.0441791i
\(738\) 0 0
\(739\) 0.571921 0.990596i 0.0210384 0.0364397i −0.855315 0.518109i \(-0.826636\pi\)
0.876353 + 0.481670i \(0.159969\pi\)
\(740\) 0 0
\(741\) 10.6855 + 11.2854i 0.392543 + 0.414581i
\(742\) 0 0
\(743\) −13.5335 −0.496495 −0.248248 0.968697i \(-0.579855\pi\)
−0.248248 + 0.968697i \(0.579855\pi\)
\(744\) 0 0
\(745\) −5.39804 + 9.34968i −0.197769 + 0.342546i
\(746\) 0 0
\(747\) −12.2915 24.2574i −0.449722 0.887531i
\(748\) 0 0
\(749\) −4.03437 10.9848i −0.147413 0.401375i
\(750\) 0 0
\(751\) 13.7335 7.92906i 0.501144 0.289336i −0.228042 0.973651i \(-0.573232\pi\)
0.729186 + 0.684316i \(0.239899\pi\)
\(752\) 0 0
\(753\) −16.8074 + 4.01524i −0.612497 + 0.146323i
\(754\) 0 0
\(755\) 13.8366i 0.503566i
\(756\) 0 0
\(757\) 41.0141i 1.49068i −0.666683 0.745341i \(-0.732287\pi\)
0.666683 0.745341i \(-0.267713\pi\)
\(758\) 0 0
\(759\) 18.4376 4.40468i 0.669243 0.159880i
\(760\) 0 0
\(761\) 8.79472 5.07763i 0.318808 0.184064i −0.332053 0.943261i \(-0.607741\pi\)
0.650861 + 0.759197i \(0.274408\pi\)
\(762\) 0 0
\(763\) −13.7961 + 16.5390i −0.499452 + 0.598753i
\(764\) 0 0
\(765\) −0.953481 1.88170i −0.0344732 0.0680331i
\(766\) 0 0
\(767\) −4.83937 + 8.38203i −0.174740 + 0.302658i
\(768\) 0 0
\(769\) 15.2996 0.551719 0.275859 0.961198i \(-0.411038\pi\)
0.275859 + 0.961198i \(0.411038\pi\)
\(770\) 0 0
\(771\) 23.5903 + 24.9148i 0.849585 + 0.897283i
\(772\) 0 0
\(773\) −18.3453 + 31.7750i −0.659835 + 1.14287i 0.320823 + 0.947139i \(0.396040\pi\)
−0.980658 + 0.195728i \(0.937293\pi\)
\(774\) 0 0
\(775\) −1.77998 + 1.02767i −0.0639388 + 0.0369151i
\(776\) 0 0
\(777\) 4.17004 2.77084i 0.149599 0.0994035i
\(778\) 0 0
\(779\) 17.1727 9.91466i 0.615276 0.355230i
\(780\) 0 0
\(781\) −9.24099 5.33529i −0.330669 0.190912i
\(782\) 0 0
\(783\) −23.6709 27.9040i −0.845927 0.997208i
\(784\) 0 0
\(785\) 5.27773i 0.188370i
\(786\) 0 0
\(787\) −14.6430 + 25.3624i −0.521965 + 0.904071i 0.477708 + 0.878519i \(0.341468\pi\)
−0.999673 + 0.0255520i \(0.991866\pi\)
\(788\) 0 0
\(789\) −11.3483 3.37533i −0.404010 0.120165i
\(790\) 0 0
\(791\) 34.9321 + 6.05473i 1.24204 + 0.215281i
\(792\) 0 0
\(793\) −3.42962 5.94027i −0.121789 0.210945i
\(794\) 0 0
\(795\) −7.78630 32.5928i −0.276152 1.15595i
\(796\) 0 0
\(797\) 18.4577 0.653805 0.326903 0.945058i \(-0.393995\pi\)
0.326903 + 0.945058i \(0.393995\pi\)
\(798\) 0 0
\(799\) 1.45105i 0.0513345i
\(800\) 0 0
\(801\) 8.66291 13.2746i 0.306089 0.469036i
\(802\) 0 0
\(803\) 13.0260 7.52059i 0.459679 0.265396i
\(804\) 0 0
\(805\) −28.9976 24.1885i −1.02203 0.852533i
\(806\) 0 0
\(807\) −40.1171 11.9320i −1.41219 0.420028i
\(808\) 0 0
\(809\) −12.9060 7.45126i −0.453750 0.261972i 0.255663 0.966766i \(-0.417706\pi\)
−0.709412 + 0.704794i \(0.751040\pi\)
\(810\) 0 0
\(811\) −29.7496 −1.04465 −0.522325 0.852747i \(-0.674935\pi\)
−0.522325 + 0.852747i \(0.674935\pi\)
\(812\) 0 0
\(813\) −21.0161 22.1960i −0.737067 0.778448i
\(814\) 0 0
\(815\) 9.74341 16.8761i 0.341297 0.591143i
\(816\) 0 0
\(817\) −33.5067 58.0353i −1.17225 2.03040i
\(818\) 0 0
\(819\) 11.8451 3.63014i 0.413902 0.126847i
\(820\) 0 0
\(821\) 7.25813 + 12.5715i 0.253311 + 0.438747i 0.964435 0.264319i \(-0.0851472\pi\)
−0.711125 + 0.703066i \(0.751814\pi\)
\(822\) 0 0
\(823\) −42.5817 24.5846i −1.48431 0.856965i −0.484465 0.874810i \(-0.660986\pi\)
−0.999841 + 0.0178459i \(0.994319\pi\)
\(824\) 0 0
\(825\) −0.456939 0.482593i −0.0159086 0.0168017i
\(826\) 0 0
\(827\) 0.00653186i 0.000227135i −1.00000 0.000113567i \(-0.999964\pi\)
1.00000 0.000113567i \(-3.61496e-5\pi\)
\(828\) 0 0
\(829\) −7.61159 4.39455i −0.264361 0.152629i 0.361961 0.932193i \(-0.382107\pi\)
−0.626322 + 0.779564i \(0.715441\pi\)
\(830\) 0 0
\(831\) 7.36950 24.7772i 0.255645 0.859513i
\(832\) 0 0
\(833\) −1.45853 1.71781i −0.0505350 0.0595184i
\(834\) 0 0
\(835\) −7.65719 13.2626i −0.264988 0.458973i
\(836\) 0 0
\(837\) 8.34182 + 45.8666i 0.288336 + 1.58538i
\(838\) 0 0
\(839\) 35.4452 1.22371 0.611853 0.790972i \(-0.290425\pi\)
0.611853 + 0.790972i \(0.290425\pi\)
\(840\) 0 0
\(841\) 20.5905 0.710017
\(842\) 0 0
\(843\) 23.3980 5.58970i 0.805870 0.192519i
\(844\) 0 0
\(845\) 11.5369 + 19.9825i 0.396881 + 0.687417i
\(846\) 0 0
\(847\) 20.3518 7.47458i 0.699296 0.256829i
\(848\) 0 0
\(849\) −9.59132 2.85275i −0.329173 0.0979061i
\(850\) 0 0
\(851\) −6.18262 3.56954i −0.211937 0.122362i
\(852\) 0 0
\(853\) 23.8784i 0.817581i −0.912628 0.408791i \(-0.865951\pi\)
0.912628 0.408791i \(-0.134049\pi\)
\(854\) 0 0
\(855\) −2.05562 + 37.6138i −0.0703006 + 1.28637i
\(856\) 0 0
\(857\) −46.6784 26.9498i −1.59451 0.920588i −0.992520 0.122081i \(-0.961043\pi\)
−0.601985 0.798507i \(-0.705623\pi\)
\(858\) 0 0
\(859\) −9.18799 15.9141i −0.313490 0.542981i 0.665625 0.746286i \(-0.268165\pi\)
−0.979115 + 0.203305i \(0.934832\pi\)
\(860\) 0 0
\(861\) −0.993242 15.7756i −0.0338496 0.537630i
\(862\) 0 0
\(863\) 24.6737 + 42.7360i 0.839901 + 1.45475i 0.889977 + 0.456006i \(0.150721\pi\)
−0.0500753 + 0.998745i \(0.515946\pi\)
\(864\) 0 0
\(865\) 15.5444 26.9236i 0.528524 0.915431i
\(866\) 0 0
\(867\) 21.2509 20.1212i 0.721717 0.683352i
\(868\) 0 0
\(869\) 6.93929 0.235399
\(870\) 0 0
\(871\) −1.93589 1.11768i −0.0655950 0.0378713i
\(872\) 0 0
\(873\) −11.3238 + 5.73792i −0.383253 + 0.194199i
\(874\) 0 0
\(875\) −5.16082 + 29.7747i −0.174467 + 1.00657i
\(876\) 0 0
\(877\) −51.2316 + 29.5786i −1.72997 + 0.998797i −0.840467 + 0.541863i \(0.817719\pi\)
−0.889500 + 0.456935i \(0.848947\pi\)
\(878\) 0 0
\(879\) −6.29364 26.3446i −0.212279 0.888583i
\(880\) 0 0
\(881\) 51.0955i 1.72145i 0.509068 + 0.860726i \(0.329990\pi\)
−0.509068 + 0.860726i \(0.670010\pi\)
\(882\) 0 0
\(883\) −10.4148 −0.350486 −0.175243 0.984525i \(-0.556071\pi\)
−0.175243 + 0.984525i \(0.556071\pi\)
\(884\) 0 0
\(885\) −22.8174 + 5.45099i −0.766997 + 0.183233i
\(886\) 0 0
\(887\) −12.2631 21.2404i −0.411756 0.713183i 0.583326 0.812238i \(-0.301751\pi\)
−0.995082 + 0.0990557i \(0.968418\pi\)
\(888\) 0 0
\(889\) −32.6789 5.66419i −1.09601 0.189971i
\(890\) 0 0
\(891\) −13.7983 + 6.06961i −0.462262 + 0.203340i
\(892\) 0 0
\(893\) 12.9560 22.4405i 0.433556 0.750942i
\(894\) 0 0
\(895\) 2.71416i 0.0907242i
\(896\) 0 0
\(897\) −12.1458 12.8277i −0.405535 0.428303i
\(898\) 0 0
\(899\) −54.7155 31.5900i −1.82487 1.05359i
\(900\) 0 0
\(901\) −2.46944 + 1.42573i −0.0822688 + 0.0474979i
\(902\) 0 0
\(903\) −53.3137 + 3.35667i −1.77417 + 0.111703i
\(904\) 0 0
\(905\) 39.6267 22.8785i 1.31724 0.760507i
\(906\) 0 0
\(907\) −14.6718 + 25.4124i −0.487170 + 0.843803i −0.999891 0.0147518i \(-0.995304\pi\)
0.512721 + 0.858555i \(0.328638\pi\)
\(908\) 0 0
\(909\) −0.809158 + 14.8060i −0.0268381 + 0.491086i
\(910\) 0 0
\(911\) −21.9953 −0.728738 −0.364369 0.931255i \(-0.618715\pi\)
−0.364369 + 0.931255i \(0.618715\pi\)
\(912\) 0 0
\(913\) 7.59124 13.1484i 0.251233 0.435149i
\(914\) 0 0
\(915\) 4.73971 15.9356i 0.156690 0.526813i
\(916\) 0 0
\(917\) 15.6032 + 42.4845i 0.515264 + 1.40296i
\(918\) 0 0
\(919\) −32.9464 + 19.0216i −1.08680 + 0.627464i −0.932723 0.360594i \(-0.882574\pi\)
−0.154077 + 0.988059i \(0.549241\pi\)
\(920\) 0 0
\(921\) −2.89722 12.1275i −0.0954668 0.399616i
\(922\) 0 0
\(923\) 9.94388i 0.327307i
\(924\) 0 0
\(925\) 0.250290i 0.00822948i
\(926\) 0 0
\(927\) −30.0668 + 46.0729i −0.987523 + 1.51323i
\(928\) 0 0
\(929\) −26.6079 + 15.3621i −0.872978 + 0.504014i −0.868337 0.495975i \(-0.834811\pi\)
−0.00464125 + 0.999989i \(0.501477\pi\)
\(930\) 0 0
\(931\) 7.21830 + 39.5886i 0.236570 + 1.29746i
\(932\) 0 0
\(933\) −14.4465 4.29682i −0.472957 0.140672i
\(934\) 0 0
\(935\) 0.588871 1.01995i 0.0192581 0.0333561i
\(936\) 0 0
\(937\) 37.2804 1.21790 0.608949 0.793210i \(-0.291592\pi\)
0.608949 + 0.793210i \(0.291592\pi\)
\(938\) 0 0
\(939\) −24.0863 + 22.8059i −0.786027 + 0.744243i
\(940\) 0 0
\(941\) 16.0848 27.8596i 0.524348 0.908198i −0.475250 0.879851i \(-0.657642\pi\)
0.999598 0.0283471i \(-0.00902436\pi\)
\(942\) 0 0
\(943\) −19.5194 + 11.2695i −0.635640 + 0.366987i
\(944\) 0 0
\(945\) 26.1288 + 14.7983i 0.849969 + 0.481389i
\(946\) 0 0
\(947\) 33.3248 19.2401i 1.08291 0.625219i 0.151231 0.988498i \(-0.451676\pi\)
0.931680 + 0.363279i \(0.118343\pi\)
\(948\) 0 0
\(949\) −12.1389 7.00842i −0.394046 0.227503i
\(950\) 0 0
\(951\) −4.60773 + 4.36279i −0.149416 + 0.141473i
\(952\) 0 0
\(953\) 37.1213i 1.20248i 0.799070 + 0.601238i \(0.205326\pi\)
−0.799070 + 0.601238i \(0.794674\pi\)
\(954\) 0 0
\(955\) 26.6737 46.2002i 0.863140 1.49500i
\(956\) 0 0
\(957\) 5.82414 19.5815i 0.188268 0.632981i
\(958\) 0 0
\(959\) −35.1071 + 42.0871i −1.13367 + 1.35906i
\(960\) 0 0
\(961\) 24.7469 + 42.8628i 0.798286 + 1.38267i
\(962\) 0 0
\(963\) 7.25172 11.1122i 0.233683 0.358085i
\(964\) 0 0
\(965\) 0.0289458 0.000931799
\(966\) 0 0
\(967\) 28.7342i 0.924030i 0.886872 + 0.462015i \(0.152873\pi\)
−0.886872 + 0.462015i \(0.847127\pi\)
\(968\) 0 0
\(969\) 3.11772 0.744812i 0.100156 0.0239268i
\(970\) 0 0
\(971\) −17.2557 + 9.96261i −0.553763 + 0.319715i −0.750638 0.660713i \(-0.770254\pi\)
0.196875 + 0.980429i \(0.436921\pi\)
\(972\) 0 0
\(973\) 0.574998 3.31739i 0.0184336 0.106351i
\(974\) 0 0
\(975\) −0.176565 + 0.593635i −0.00565460 + 0.0190115i
\(976\) 0 0
\(977\) 11.6105 + 6.70332i 0.371453 + 0.214458i 0.674093 0.738647i \(-0.264535\pi\)
−0.302640 + 0.953105i \(0.597868\pi\)
\(978\) 0 0
\(979\) 8.84986 0.282843
\(980\) 0 0
\(981\) −24.3851 1.33266i −0.778555 0.0425484i
\(982\) 0 0
\(983\) 10.2774 17.8010i 0.327799 0.567765i −0.654276 0.756256i \(-0.727026\pi\)
0.982075 + 0.188491i \(0.0603597\pi\)
\(984\) 0 0
\(985\) 7.08155 + 12.2656i 0.225637 + 0.390814i
\(986\) 0 0
\(987\) −11.4314 17.2040i −0.363866 0.547608i
\(988\) 0 0
\(989\) 38.0856 + 65.9661i 1.21105 + 2.09760i
\(990\) 0 0
\(991\) −4.87181 2.81274i −0.154758 0.0893497i 0.420621 0.907236i \(-0.361812\pi\)
−0.575379 + 0.817887i \(0.695146\pi\)
\(992\) 0 0
\(993\) 13.6177 12.8938i 0.432144 0.409172i
\(994\) 0 0
\(995\) 11.2743i 0.357420i
\(996\) 0 0
\(997\) 2.03245 + 1.17343i 0.0643683 + 0.0371631i 0.531839 0.846846i \(-0.321501\pi\)
−0.467470 + 0.884009i \(0.654835\pi\)
\(998\) 0 0
\(999\) 5.34502 + 1.91297i 0.169109 + 0.0605238i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 672.2.bd.a.431.18 56
3.2 odd 2 inner 672.2.bd.a.431.3 56
4.3 odd 2 168.2.v.a.11.20 yes 56
7.2 even 3 inner 672.2.bd.a.527.4 56
8.3 odd 2 inner 672.2.bd.a.431.17 56
8.5 even 2 168.2.v.a.11.27 yes 56
12.11 even 2 168.2.v.a.11.9 yes 56
21.2 odd 6 inner 672.2.bd.a.527.17 56
24.5 odd 2 168.2.v.a.11.2 56
24.11 even 2 inner 672.2.bd.a.431.4 56
28.23 odd 6 168.2.v.a.107.2 yes 56
56.37 even 6 168.2.v.a.107.9 yes 56
56.51 odd 6 inner 672.2.bd.a.527.3 56
84.23 even 6 168.2.v.a.107.27 yes 56
168.107 even 6 inner 672.2.bd.a.527.18 56
168.149 odd 6 168.2.v.a.107.20 yes 56
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
168.2.v.a.11.2 56 24.5 odd 2
168.2.v.a.11.9 yes 56 12.11 even 2
168.2.v.a.11.20 yes 56 4.3 odd 2
168.2.v.a.11.27 yes 56 8.5 even 2
168.2.v.a.107.2 yes 56 28.23 odd 6
168.2.v.a.107.9 yes 56 56.37 even 6
168.2.v.a.107.20 yes 56 168.149 odd 6
168.2.v.a.107.27 yes 56 84.23 even 6
672.2.bd.a.431.3 56 3.2 odd 2 inner
672.2.bd.a.431.4 56 24.11 even 2 inner
672.2.bd.a.431.17 56 8.3 odd 2 inner
672.2.bd.a.431.18 56 1.1 even 1 trivial
672.2.bd.a.527.3 56 56.51 odd 6 inner
672.2.bd.a.527.4 56 7.2 even 3 inner
672.2.bd.a.527.17 56 21.2 odd 6 inner
672.2.bd.a.527.18 56 168.107 even 6 inner