Properties

Label 672.2.bd.a.431.16
Level $672$
Weight $2$
Character 672.431
Analytic conductor $5.366$
Analytic rank $0$
Dimension $56$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [672,2,Mod(431,672)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("672.431"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(672, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 3, 3, 4])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 672 = 2^{5} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 672.bd (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.36594701583\)
Analytic rank: \(0\)
Dimension: \(56\)
Relative dimension: \(28\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 168)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 431.16
Character \(\chi\) \(=\) 672.431
Dual form 672.2.bd.a.527.16

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.316681 - 1.70285i) q^{3} +(1.86088 + 3.22314i) q^{5} +(-2.46429 + 0.962962i) q^{7} +(-2.79943 - 1.07852i) q^{9} +(2.26958 + 1.31034i) q^{11} +3.57182i q^{13} +(6.07784 - 2.14810i) q^{15} +(0.186192 + 0.107498i) q^{17} +(1.14103 + 1.97631i) q^{19} +(0.859391 + 4.50127i) q^{21} +(2.33586 + 4.04583i) q^{23} +(-4.42574 + 7.66560i) q^{25} +(-2.72309 + 4.42547i) q^{27} +2.57415 q^{29} +(-4.26196 - 2.46064i) q^{31} +(2.95006 - 3.44980i) q^{33} +(-7.68949 - 6.15077i) q^{35} +(7.31104 - 4.22103i) q^{37} +(6.08229 + 1.13113i) q^{39} +0.909442i q^{41} -3.73541 q^{43} +(-1.73317 - 11.0299i) q^{45} +(0.586728 + 1.01624i) q^{47} +(5.14541 - 4.74603i) q^{49} +(0.242017 - 0.283015i) q^{51} +(-1.06171 + 1.83894i) q^{53} +9.75355i q^{55} +(3.72672 - 1.31714i) q^{57} +(6.79199 + 3.92136i) q^{59} +(-0.301301 + 0.173956i) q^{61} +(7.93716 - 0.0379510i) q^{63} +(-11.5125 + 6.64673i) q^{65} +(4.98736 - 8.63836i) q^{67} +(7.62919 - 2.69640i) q^{69} -10.0808 q^{71} +(4.45173 - 7.71062i) q^{73} +(11.6519 + 9.96394i) q^{75} +(-6.85470 - 1.04354i) q^{77} +(9.70950 - 5.60578i) q^{79} +(6.67358 + 6.03849i) q^{81} +1.73937i q^{83} +0.800163i q^{85} +(0.815185 - 4.38341i) q^{87} +(15.4694 - 8.93127i) q^{89} +(-3.43953 - 8.80199i) q^{91} +(-5.53980 + 6.47826i) q^{93} +(-4.24662 + 7.35536i) q^{95} -8.88553 q^{97} +(-4.94029 - 6.11600i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q + 2 q^{3} - 2 q^{9} + 4 q^{19} - 16 q^{25} + 8 q^{27} - 14 q^{33} + 16 q^{43} - 16 q^{49} + 34 q^{51} + 4 q^{57} + 36 q^{67} + 4 q^{73} - 10 q^{81} - 72 q^{91} - 32 q^{97} + 44 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/672\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(421\) \(449\) \(577\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.316681 1.70285i 0.182836 0.983143i
\(4\) 0 0
\(5\) 1.86088 + 3.22314i 0.832210 + 1.44143i 0.896282 + 0.443485i \(0.146258\pi\)
−0.0640716 + 0.997945i \(0.520409\pi\)
\(6\) 0 0
\(7\) −2.46429 + 0.962962i −0.931412 + 0.363965i
\(8\) 0 0
\(9\) −2.79943 1.07852i −0.933142 0.359508i
\(10\) 0 0
\(11\) 2.26958 + 1.31034i 0.684304 + 0.395083i 0.801475 0.598029i \(-0.204049\pi\)
−0.117171 + 0.993112i \(0.537382\pi\)
\(12\) 0 0
\(13\) 3.57182i 0.990645i 0.868709 + 0.495323i \(0.164950\pi\)
−0.868709 + 0.495323i \(0.835050\pi\)
\(14\) 0 0
\(15\) 6.07784 2.14810i 1.56929 0.554637i
\(16\) 0 0
\(17\) 0.186192 + 0.107498i 0.0451582 + 0.0260721i 0.522409 0.852695i \(-0.325033\pi\)
−0.477251 + 0.878767i \(0.658367\pi\)
\(18\) 0 0
\(19\) 1.14103 + 1.97631i 0.261769 + 0.453398i 0.966712 0.255866i \(-0.0823607\pi\)
−0.704943 + 0.709264i \(0.749027\pi\)
\(20\) 0 0
\(21\) 0.859391 + 4.50127i 0.187535 + 0.982258i
\(22\) 0 0
\(23\) 2.33586 + 4.04583i 0.487061 + 0.843615i 0.999889 0.0148767i \(-0.00473557\pi\)
−0.512828 + 0.858491i \(0.671402\pi\)
\(24\) 0 0
\(25\) −4.42574 + 7.66560i −0.885148 + 1.53312i
\(26\) 0 0
\(27\) −2.72309 + 4.42547i −0.524060 + 0.851682i
\(28\) 0 0
\(29\) 2.57415 0.478008 0.239004 0.971019i \(-0.423179\pi\)
0.239004 + 0.971019i \(0.423179\pi\)
\(30\) 0 0
\(31\) −4.26196 2.46064i −0.765471 0.441945i 0.0657857 0.997834i \(-0.479045\pi\)
−0.831257 + 0.555889i \(0.812378\pi\)
\(32\) 0 0
\(33\) 2.95006 3.44980i 0.513539 0.600534i
\(34\) 0 0
\(35\) −7.68949 6.15077i −1.29976 1.03967i
\(36\) 0 0
\(37\) 7.31104 4.22103i 1.20193 0.693933i 0.240944 0.970539i \(-0.422543\pi\)
0.960983 + 0.276606i \(0.0892098\pi\)
\(38\) 0 0
\(39\) 6.08229 + 1.13113i 0.973946 + 0.181125i
\(40\) 0 0
\(41\) 0.909442i 0.142031i 0.997475 + 0.0710155i \(0.0226240\pi\)
−0.997475 + 0.0710155i \(0.977376\pi\)
\(42\) 0 0
\(43\) −3.73541 −0.569644 −0.284822 0.958580i \(-0.591935\pi\)
−0.284822 + 0.958580i \(0.591935\pi\)
\(44\) 0 0
\(45\) −1.73317 11.0299i −0.258365 1.64425i
\(46\) 0 0
\(47\) 0.586728 + 1.01624i 0.0855831 + 0.148234i 0.905640 0.424048i \(-0.139391\pi\)
−0.820056 + 0.572283i \(0.806058\pi\)
\(48\) 0 0
\(49\) 5.14541 4.74603i 0.735058 0.678004i
\(50\) 0 0
\(51\) 0.242017 0.283015i 0.0338891 0.0396301i
\(52\) 0 0
\(53\) −1.06171 + 1.83894i −0.145837 + 0.252598i −0.929685 0.368355i \(-0.879921\pi\)
0.783848 + 0.620953i \(0.213254\pi\)
\(54\) 0 0
\(55\) 9.75355i 1.31517i
\(56\) 0 0
\(57\) 3.72672 1.31714i 0.493616 0.174459i
\(58\) 0 0
\(59\) 6.79199 + 3.92136i 0.884242 + 0.510517i 0.872055 0.489408i \(-0.162787\pi\)
0.0121872 + 0.999926i \(0.496121\pi\)
\(60\) 0 0
\(61\) −0.301301 + 0.173956i −0.0385776 + 0.0222728i −0.519165 0.854674i \(-0.673757\pi\)
0.480587 + 0.876947i \(0.340424\pi\)
\(62\) 0 0
\(63\) 7.93716 0.0379510i 0.999989 0.00478137i
\(64\) 0 0
\(65\) −11.5125 + 6.64673i −1.42795 + 0.824425i
\(66\) 0 0
\(67\) 4.98736 8.63836i 0.609303 1.05534i −0.382053 0.924140i \(-0.624783\pi\)
0.991356 0.131203i \(-0.0418839\pi\)
\(68\) 0 0
\(69\) 7.62919 2.69640i 0.918446 0.324608i
\(70\) 0 0
\(71\) −10.0808 −1.19637 −0.598183 0.801359i \(-0.704111\pi\)
−0.598183 + 0.801359i \(0.704111\pi\)
\(72\) 0 0
\(73\) 4.45173 7.71062i 0.521036 0.902460i −0.478665 0.877998i \(-0.658879\pi\)
0.999701 0.0244626i \(-0.00778746\pi\)
\(74\) 0 0
\(75\) 11.6519 + 9.96394i 1.34544 + 1.15054i
\(76\) 0 0
\(77\) −6.85470 1.04354i −0.781166 0.118922i
\(78\) 0 0
\(79\) 9.70950 5.60578i 1.09240 0.630700i 0.158189 0.987409i \(-0.449434\pi\)
0.934216 + 0.356709i \(0.116101\pi\)
\(80\) 0 0
\(81\) 6.67358 + 6.03849i 0.741508 + 0.670944i
\(82\) 0 0
\(83\) 1.73937i 0.190921i 0.995433 + 0.0954603i \(0.0304323\pi\)
−0.995433 + 0.0954603i \(0.969568\pi\)
\(84\) 0 0
\(85\) 0.800163i 0.0867898i
\(86\) 0 0
\(87\) 0.815185 4.38341i 0.0873970 0.469950i
\(88\) 0 0
\(89\) 15.4694 8.93127i 1.63975 0.946712i 0.658837 0.752286i \(-0.271049\pi\)
0.980917 0.194426i \(-0.0622845\pi\)
\(90\) 0 0
\(91\) −3.43953 8.80199i −0.360560 0.922699i
\(92\) 0 0
\(93\) −5.53980 + 6.47826i −0.574451 + 0.671764i
\(94\) 0 0
\(95\) −4.24662 + 7.35536i −0.435694 + 0.754644i
\(96\) 0 0
\(97\) −8.88553 −0.902189 −0.451094 0.892476i \(-0.648966\pi\)
−0.451094 + 0.892476i \(0.648966\pi\)
\(98\) 0 0
\(99\) −4.94029 6.11600i −0.496518 0.614681i
\(100\) 0 0
\(101\) −7.38721 + 12.7950i −0.735055 + 1.27315i 0.219644 + 0.975580i \(0.429510\pi\)
−0.954699 + 0.297573i \(0.903823\pi\)
\(102\) 0 0
\(103\) −6.50151 + 3.75365i −0.640613 + 0.369858i −0.784851 0.619685i \(-0.787260\pi\)
0.144238 + 0.989543i \(0.453927\pi\)
\(104\) 0 0
\(105\) −12.9090 + 11.1463i −1.25979 + 1.08776i
\(106\) 0 0
\(107\) −10.9396 + 6.31597i −1.05757 + 0.610588i −0.924759 0.380554i \(-0.875733\pi\)
−0.132810 + 0.991141i \(0.542400\pi\)
\(108\) 0 0
\(109\) −11.2275 6.48219i −1.07540 0.620881i −0.145747 0.989322i \(-0.546558\pi\)
−0.929651 + 0.368441i \(0.879892\pi\)
\(110\) 0 0
\(111\) −4.87253 13.7864i −0.462480 1.30854i
\(112\) 0 0
\(113\) 7.10498i 0.668380i −0.942506 0.334190i \(-0.891537\pi\)
0.942506 0.334190i \(-0.108463\pi\)
\(114\) 0 0
\(115\) −8.69351 + 15.0576i −0.810674 + 1.40413i
\(116\) 0 0
\(117\) 3.85229 9.99905i 0.356145 0.924413i
\(118\) 0 0
\(119\) −0.562347 0.0856100i −0.0515502 0.00784786i
\(120\) 0 0
\(121\) −2.06600 3.57842i −0.187819 0.325311i
\(122\) 0 0
\(123\) 1.54865 + 0.288003i 0.139637 + 0.0259684i
\(124\) 0 0
\(125\) −14.3343 −1.28210
\(126\) 0 0
\(127\) 2.53093i 0.224584i −0.993675 0.112292i \(-0.964181\pi\)
0.993675 0.112292i \(-0.0358192\pi\)
\(128\) 0 0
\(129\) −1.18293 + 6.36086i −0.104151 + 0.560042i
\(130\) 0 0
\(131\) 5.04824 2.91460i 0.441067 0.254650i −0.262983 0.964800i \(-0.584706\pi\)
0.704050 + 0.710150i \(0.251373\pi\)
\(132\) 0 0
\(133\) −4.71493 3.77144i −0.408836 0.327025i
\(134\) 0 0
\(135\) −19.3312 0.541642i −1.66377 0.0466171i
\(136\) 0 0
\(137\) −8.15158 4.70632i −0.696437 0.402088i 0.109582 0.993978i \(-0.465049\pi\)
−0.806019 + 0.591890i \(0.798382\pi\)
\(138\) 0 0
\(139\) 7.53929 0.639474 0.319737 0.947506i \(-0.396405\pi\)
0.319737 + 0.947506i \(0.396405\pi\)
\(140\) 0 0
\(141\) 1.91632 0.677288i 0.161383 0.0570379i
\(142\) 0 0
\(143\) −4.68031 + 8.10654i −0.391387 + 0.677903i
\(144\) 0 0
\(145\) 4.79018 + 8.29684i 0.397803 + 0.689015i
\(146\) 0 0
\(147\) −6.45234 10.2649i −0.532180 0.846631i
\(148\) 0 0
\(149\) −7.38721 12.7950i −0.605184 1.04821i −0.992022 0.126062i \(-0.959766\pi\)
0.386838 0.922148i \(-0.373567\pi\)
\(150\) 0 0
\(151\) −3.18729 1.84018i −0.259378 0.149752i 0.364673 0.931136i \(-0.381181\pi\)
−0.624051 + 0.781384i \(0.714514\pi\)
\(152\) 0 0
\(153\) −0.405292 0.501745i −0.0327659 0.0405637i
\(154\) 0 0
\(155\) 18.3158i 1.47116i
\(156\) 0 0
\(157\) 18.5989 + 10.7381i 1.48436 + 0.856993i 0.999842 0.0177905i \(-0.00566318\pi\)
0.484514 + 0.874784i \(0.338997\pi\)
\(158\) 0 0
\(159\) 2.79522 + 2.39030i 0.221676 + 0.189563i
\(160\) 0 0
\(161\) −9.65222 7.72074i −0.760701 0.608480i
\(162\) 0 0
\(163\) 0.756294 + 1.30994i 0.0592375 + 0.102602i 0.894123 0.447821i \(-0.147800\pi\)
−0.834886 + 0.550423i \(0.814466\pi\)
\(164\) 0 0
\(165\) 16.6089 + 3.08877i 1.29300 + 0.240460i
\(166\) 0 0
\(167\) −7.21687 −0.558459 −0.279229 0.960224i \(-0.590079\pi\)
−0.279229 + 0.960224i \(0.590079\pi\)
\(168\) 0 0
\(169\) 0.242090 0.0186223
\(170\) 0 0
\(171\) −1.06272 6.76317i −0.0812680 0.517193i
\(172\) 0 0
\(173\) 1.33696 + 2.31567i 0.101647 + 0.176057i 0.912363 0.409382i \(-0.134256\pi\)
−0.810716 + 0.585439i \(0.800922\pi\)
\(174\) 0 0
\(175\) 3.52460 23.1521i 0.266435 1.75013i
\(176\) 0 0
\(177\) 8.82840 10.3240i 0.663583 0.775996i
\(178\) 0 0
\(179\) 7.29346 + 4.21088i 0.545139 + 0.314736i 0.747159 0.664645i \(-0.231417\pi\)
−0.202020 + 0.979381i \(0.564751\pi\)
\(180\) 0 0
\(181\) 6.12284i 0.455107i −0.973766 0.227553i \(-0.926927\pi\)
0.973766 0.227553i \(-0.0730726\pi\)
\(182\) 0 0
\(183\) 0.200806 + 0.568160i 0.0148440 + 0.0419996i
\(184\) 0 0
\(185\) 27.2099 + 15.7096i 2.00051 + 1.15500i
\(186\) 0 0
\(187\) 0.281718 + 0.487951i 0.0206013 + 0.0356825i
\(188\) 0 0
\(189\) 2.44892 13.5279i 0.178133 0.984006i
\(190\) 0 0
\(191\) −7.56478 13.1026i −0.547368 0.948069i −0.998454 0.0555887i \(-0.982296\pi\)
0.451086 0.892481i \(-0.351037\pi\)
\(192\) 0 0
\(193\) −1.52962 + 2.64937i −0.110104 + 0.190706i −0.915812 0.401607i \(-0.868452\pi\)
0.805708 + 0.592313i \(0.201785\pi\)
\(194\) 0 0
\(195\) 7.67263 + 21.7089i 0.549448 + 1.55461i
\(196\) 0 0
\(197\) −14.5736 −1.03833 −0.519163 0.854675i \(-0.673756\pi\)
−0.519163 + 0.854675i \(0.673756\pi\)
\(198\) 0 0
\(199\) 15.0386 + 8.68255i 1.06606 + 0.615490i 0.927102 0.374809i \(-0.122292\pi\)
0.138957 + 0.990298i \(0.455625\pi\)
\(200\) 0 0
\(201\) −13.1305 11.2283i −0.926151 0.791987i
\(202\) 0 0
\(203\) −6.34345 + 2.47881i −0.445223 + 0.173978i
\(204\) 0 0
\(205\) −2.93126 + 1.69236i −0.204728 + 0.118200i
\(206\) 0 0
\(207\) −2.17555 13.8453i −0.151211 0.962314i
\(208\) 0 0
\(209\) 5.98054i 0.413683i
\(210\) 0 0
\(211\) 21.2686 1.46419 0.732097 0.681201i \(-0.238542\pi\)
0.732097 + 0.681201i \(0.238542\pi\)
\(212\) 0 0
\(213\) −3.19239 + 17.1661i −0.218739 + 1.17620i
\(214\) 0 0
\(215\) −6.95114 12.0397i −0.474064 0.821103i
\(216\) 0 0
\(217\) 12.8722 + 1.95963i 0.873822 + 0.133028i
\(218\) 0 0
\(219\) −11.7203 10.0225i −0.791984 0.677255i
\(220\) 0 0
\(221\) −0.383964 + 0.665045i −0.0258282 + 0.0447357i
\(222\) 0 0
\(223\) 6.68788i 0.447854i −0.974606 0.223927i \(-0.928112\pi\)
0.974606 0.223927i \(-0.0718877\pi\)
\(224\) 0 0
\(225\) 20.6571 16.6860i 1.37714 1.11240i
\(226\) 0 0
\(227\) 20.7637 + 11.9879i 1.37813 + 0.795666i 0.991935 0.126749i \(-0.0404544\pi\)
0.386199 + 0.922415i \(0.373788\pi\)
\(228\) 0 0
\(229\) −14.3077 + 8.26054i −0.945478 + 0.545872i −0.891673 0.452680i \(-0.850468\pi\)
−0.0538045 + 0.998551i \(0.517135\pi\)
\(230\) 0 0
\(231\) −3.94775 + 11.3421i −0.259743 + 0.746255i
\(232\) 0 0
\(233\) −13.4061 + 7.74002i −0.878264 + 0.507066i −0.870086 0.492901i \(-0.835937\pi\)
−0.00817827 + 0.999967i \(0.502603\pi\)
\(234\) 0 0
\(235\) −2.18366 + 3.78221i −0.142446 + 0.246724i
\(236\) 0 0
\(237\) −6.47102 18.3091i −0.420338 1.18930i
\(238\) 0 0
\(239\) 20.5460 1.32901 0.664505 0.747284i \(-0.268642\pi\)
0.664505 + 0.747284i \(0.268642\pi\)
\(240\) 0 0
\(241\) −6.16667 + 10.6810i −0.397230 + 0.688023i −0.993383 0.114848i \(-0.963362\pi\)
0.596153 + 0.802871i \(0.296695\pi\)
\(242\) 0 0
\(243\) 12.3961 9.45185i 0.795208 0.606337i
\(244\) 0 0
\(245\) 24.8721 + 7.75258i 1.58902 + 0.495294i
\(246\) 0 0
\(247\) −7.05904 + 4.07554i −0.449156 + 0.259320i
\(248\) 0 0
\(249\) 2.96189 + 0.550825i 0.187702 + 0.0349071i
\(250\) 0 0
\(251\) 21.2978i 1.34430i −0.740413 0.672152i \(-0.765370\pi\)
0.740413 0.672152i \(-0.234630\pi\)
\(252\) 0 0
\(253\) 12.2431i 0.769719i
\(254\) 0 0
\(255\) 1.36256 + 0.253396i 0.0853269 + 0.0158683i
\(256\) 0 0
\(257\) −13.2299 + 7.63828i −0.825258 + 0.476463i −0.852226 0.523173i \(-0.824748\pi\)
0.0269684 + 0.999636i \(0.491415\pi\)
\(258\) 0 0
\(259\) −13.9518 + 17.4421i −0.866922 + 1.08380i
\(260\) 0 0
\(261\) −7.20615 2.77628i −0.446049 0.171848i
\(262\) 0 0
\(263\) −0.249921 + 0.432876i −0.0154108 + 0.0266923i −0.873628 0.486594i \(-0.838239\pi\)
0.858217 + 0.513287i \(0.171572\pi\)
\(264\) 0 0
\(265\) −7.90287 −0.485470
\(266\) 0 0
\(267\) −10.3098 29.1705i −0.630948 1.78521i
\(268\) 0 0
\(269\) 10.9207 18.9153i 0.665849 1.15328i −0.313205 0.949685i \(-0.601403\pi\)
0.979054 0.203599i \(-0.0652638\pi\)
\(270\) 0 0
\(271\) 13.6308 7.86975i 0.828013 0.478053i −0.0251590 0.999683i \(-0.508009\pi\)
0.853172 + 0.521630i \(0.174676\pi\)
\(272\) 0 0
\(273\) −16.0777 + 3.06959i −0.973069 + 0.185780i
\(274\) 0 0
\(275\) −20.0891 + 11.5985i −1.21142 + 0.699414i
\(276\) 0 0
\(277\) −10.8672 6.27417i −0.652945 0.376978i 0.136639 0.990621i \(-0.456370\pi\)
−0.789584 + 0.613643i \(0.789703\pi\)
\(278\) 0 0
\(279\) 9.27718 + 11.4850i 0.555411 + 0.687590i
\(280\) 0 0
\(281\) 22.7512i 1.35722i −0.734498 0.678610i \(-0.762582\pi\)
0.734498 0.678610i \(-0.237418\pi\)
\(282\) 0 0
\(283\) −0.440379 + 0.762759i −0.0261778 + 0.0453413i −0.878818 0.477158i \(-0.841667\pi\)
0.852640 + 0.522499i \(0.175000\pi\)
\(284\) 0 0
\(285\) 11.1803 + 9.56068i 0.662263 + 0.566326i
\(286\) 0 0
\(287\) −0.875758 2.24113i −0.0516944 0.132289i
\(288\) 0 0
\(289\) −8.47689 14.6824i −0.498640 0.863671i
\(290\) 0 0
\(291\) −2.81388 + 15.1308i −0.164952 + 0.886981i
\(292\) 0 0
\(293\) 22.1280 1.29273 0.646366 0.763028i \(-0.276288\pi\)
0.646366 + 0.763028i \(0.276288\pi\)
\(294\) 0 0
\(295\) 29.1887i 1.69943i
\(296\) 0 0
\(297\) −11.9792 + 6.47577i −0.695101 + 0.375762i
\(298\) 0 0
\(299\) −14.4510 + 8.34329i −0.835723 + 0.482505i
\(300\) 0 0
\(301\) 9.20511 3.59705i 0.530574 0.207331i
\(302\) 0 0
\(303\) 19.4487 + 16.6313i 1.11730 + 0.955442i
\(304\) 0 0
\(305\) −1.12137 0.647422i −0.0642094 0.0370713i
\(306\) 0 0
\(307\) −9.96754 −0.568878 −0.284439 0.958694i \(-0.591807\pi\)
−0.284439 + 0.958694i \(0.591807\pi\)
\(308\) 0 0
\(309\) 4.33301 + 12.2598i 0.246496 + 0.697438i
\(310\) 0 0
\(311\) −5.87187 + 10.1704i −0.332963 + 0.576709i −0.983091 0.183115i \(-0.941382\pi\)
0.650128 + 0.759825i \(0.274715\pi\)
\(312\) 0 0
\(313\) −0.343520 0.594993i −0.0194169 0.0336310i 0.856154 0.516721i \(-0.172848\pi\)
−0.875571 + 0.483090i \(0.839514\pi\)
\(314\) 0 0
\(315\) 14.8924 + 25.5119i 0.839093 + 1.43743i
\(316\) 0 0
\(317\) 16.4535 + 28.4983i 0.924120 + 1.60062i 0.792970 + 0.609261i \(0.208534\pi\)
0.131150 + 0.991363i \(0.458133\pi\)
\(318\) 0 0
\(319\) 5.84224 + 3.37302i 0.327103 + 0.188853i
\(320\) 0 0
\(321\) 7.29082 + 20.6287i 0.406934 + 1.15138i
\(322\) 0 0
\(323\) 0.490632i 0.0272995i
\(324\) 0 0
\(325\) −27.3802 15.8079i −1.51878 0.876867i
\(326\) 0 0
\(327\) −14.5938 + 17.0660i −0.807037 + 0.943751i
\(328\) 0 0
\(329\) −2.42447 1.93932i −0.133665 0.106918i
\(330\) 0 0
\(331\) 0.833276 + 1.44328i 0.0458010 + 0.0793297i 0.888017 0.459810i \(-0.152083\pi\)
−0.842216 + 0.539140i \(0.818749\pi\)
\(332\) 0 0
\(333\) −25.0192 + 3.93134i −1.37104 + 0.215436i
\(334\) 0 0
\(335\) 37.1235 2.02827
\(336\) 0 0
\(337\) 9.04814 0.492884 0.246442 0.969158i \(-0.420739\pi\)
0.246442 + 0.969158i \(0.420739\pi\)
\(338\) 0 0
\(339\) −12.0987 2.25001i −0.657113 0.122204i
\(340\) 0 0
\(341\) −6.44858 11.1693i −0.349210 0.604849i
\(342\) 0 0
\(343\) −8.10952 + 16.6504i −0.437873 + 0.899037i
\(344\) 0 0
\(345\) 22.8878 + 19.5722i 1.23224 + 1.05373i
\(346\) 0 0
\(347\) −4.59168 2.65101i −0.246494 0.142313i 0.371664 0.928367i \(-0.378787\pi\)
−0.618158 + 0.786054i \(0.712121\pi\)
\(348\) 0 0
\(349\) 10.7938i 0.577779i 0.957362 + 0.288890i \(0.0932861\pi\)
−0.957362 + 0.288890i \(0.906714\pi\)
\(350\) 0 0
\(351\) −15.8070 9.72640i −0.843714 0.519157i
\(352\) 0 0
\(353\) 24.5717 + 14.1865i 1.30782 + 0.755071i 0.981732 0.190268i \(-0.0609357\pi\)
0.326089 + 0.945339i \(0.394269\pi\)
\(354\) 0 0
\(355\) −18.7591 32.4917i −0.995628 1.72448i
\(356\) 0 0
\(357\) −0.323866 + 0.930483i −0.0171408 + 0.0492464i
\(358\) 0 0
\(359\) 0.0586851 + 0.101646i 0.00309728 + 0.00536465i 0.867570 0.497315i \(-0.165681\pi\)
−0.864473 + 0.502680i \(0.832347\pi\)
\(360\) 0 0
\(361\) 6.89612 11.9444i 0.362954 0.628654i
\(362\) 0 0
\(363\) −6.74780 + 2.38489i −0.354168 + 0.125174i
\(364\) 0 0
\(365\) 33.1365 1.73444
\(366\) 0 0
\(367\) −7.31080 4.22089i −0.381621 0.220329i 0.296902 0.954908i \(-0.404046\pi\)
−0.678523 + 0.734579i \(0.737380\pi\)
\(368\) 0 0
\(369\) 0.980855 2.54592i 0.0510613 0.132535i
\(370\) 0 0
\(371\) 0.845534 5.55406i 0.0438980 0.288353i
\(372\) 0 0
\(373\) 0.0783826 0.0452542i 0.00405850 0.00234318i −0.497969 0.867195i \(-0.665921\pi\)
0.502028 + 0.864851i \(0.332587\pi\)
\(374\) 0 0
\(375\) −4.53939 + 24.4092i −0.234413 + 1.26048i
\(376\) 0 0
\(377\) 9.19441i 0.473536i
\(378\) 0 0
\(379\) 19.7881 1.01645 0.508224 0.861225i \(-0.330302\pi\)
0.508224 + 0.861225i \(0.330302\pi\)
\(380\) 0 0
\(381\) −4.30981 0.801498i −0.220798 0.0410620i
\(382\) 0 0
\(383\) 12.4851 + 21.6249i 0.637961 + 1.10498i 0.985880 + 0.167456i \(0.0535551\pi\)
−0.347919 + 0.937525i \(0.613112\pi\)
\(384\) 0 0
\(385\) −9.39230 24.0355i −0.478676 1.22496i
\(386\) 0 0
\(387\) 10.4570 + 4.02872i 0.531559 + 0.204792i
\(388\) 0 0
\(389\) 15.0483 26.0644i 0.762979 1.32152i −0.178329 0.983971i \(-0.557069\pi\)
0.941308 0.337548i \(-0.109597\pi\)
\(390\) 0 0
\(391\) 1.00440i 0.0507948i
\(392\) 0 0
\(393\) −3.36446 9.51942i −0.169715 0.480191i
\(394\) 0 0
\(395\) 36.1364 + 20.8634i 1.81822 + 1.04975i
\(396\) 0 0
\(397\) 4.91661 2.83861i 0.246758 0.142466i −0.371521 0.928425i \(-0.621164\pi\)
0.618279 + 0.785959i \(0.287830\pi\)
\(398\) 0 0
\(399\) −7.91534 + 6.83449i −0.396263 + 0.342153i
\(400\) 0 0
\(401\) −0.897563 + 0.518208i −0.0448222 + 0.0258781i −0.522244 0.852796i \(-0.674905\pi\)
0.477421 + 0.878674i \(0.341572\pi\)
\(402\) 0 0
\(403\) 8.78898 15.2230i 0.437810 0.758310i
\(404\) 0 0
\(405\) −7.04417 + 32.7467i −0.350028 + 1.62720i
\(406\) 0 0
\(407\) 22.1240 1.09664
\(408\) 0 0
\(409\) 1.83983 3.18669i 0.0909739 0.157571i −0.816947 0.576712i \(-0.804335\pi\)
0.907921 + 0.419141i \(0.137669\pi\)
\(410\) 0 0
\(411\) −10.5956 + 12.3906i −0.522644 + 0.611181i
\(412\) 0 0
\(413\) −20.5135 3.12292i −1.00940 0.153669i
\(414\) 0 0
\(415\) −5.60623 + 3.23676i −0.275199 + 0.158886i
\(416\) 0 0
\(417\) 2.38755 12.8383i 0.116919 0.628695i
\(418\) 0 0
\(419\) 9.81445i 0.479467i −0.970839 0.239734i \(-0.922940\pi\)
0.970839 0.239734i \(-0.0770601\pi\)
\(420\) 0 0
\(421\) 33.0188i 1.60924i −0.593790 0.804620i \(-0.702369\pi\)
0.593790 0.804620i \(-0.297631\pi\)
\(422\) 0 0
\(423\) −0.546461 3.47770i −0.0265698 0.169091i
\(424\) 0 0
\(425\) −1.64807 + 0.951516i −0.0799433 + 0.0461553i
\(426\) 0 0
\(427\) 0.574978 0.718819i 0.0278252 0.0347861i
\(428\) 0 0
\(429\) 12.3221 + 10.5371i 0.594916 + 0.508735i
\(430\) 0 0
\(431\) 5.27304 9.13317i 0.253993 0.439929i −0.710628 0.703568i \(-0.751589\pi\)
0.964622 + 0.263638i \(0.0849226\pi\)
\(432\) 0 0
\(433\) 13.7135 0.659026 0.329513 0.944151i \(-0.393115\pi\)
0.329513 + 0.944151i \(0.393115\pi\)
\(434\) 0 0
\(435\) 15.6453 5.52953i 0.750133 0.265121i
\(436\) 0 0
\(437\) −5.33056 + 9.23280i −0.254995 + 0.441665i
\(438\) 0 0
\(439\) 8.62149 4.97762i 0.411481 0.237569i −0.279945 0.960016i \(-0.590316\pi\)
0.691426 + 0.722447i \(0.256983\pi\)
\(440\) 0 0
\(441\) −19.5229 + 7.73671i −0.929662 + 0.368415i
\(442\) 0 0
\(443\) 0.202164 0.116720i 0.00960512 0.00554552i −0.495190 0.868785i \(-0.664901\pi\)
0.504795 + 0.863239i \(0.331568\pi\)
\(444\) 0 0
\(445\) 57.5734 + 33.2400i 2.72924 + 1.57573i
\(446\) 0 0
\(447\) −24.1275 + 8.52740i −1.14119 + 0.403332i
\(448\) 0 0
\(449\) 5.83932i 0.275575i 0.990462 + 0.137787i \(0.0439990\pi\)
−0.990462 + 0.137787i \(0.956001\pi\)
\(450\) 0 0
\(451\) −1.19168 + 2.06405i −0.0561141 + 0.0971924i
\(452\) 0 0
\(453\) −4.14292 + 4.84475i −0.194651 + 0.227626i
\(454\) 0 0
\(455\) 21.9695 27.4655i 1.02994 1.28760i
\(456\) 0 0
\(457\) 8.93416 + 15.4744i 0.417923 + 0.723863i 0.995730 0.0923098i \(-0.0294250\pi\)
−0.577808 + 0.816173i \(0.696092\pi\)
\(458\) 0 0
\(459\) −0.982747 + 0.531260i −0.0458707 + 0.0247971i
\(460\) 0 0
\(461\) −0.400330 −0.0186452 −0.00932262 0.999957i \(-0.502968\pi\)
−0.00932262 + 0.999957i \(0.502968\pi\)
\(462\) 0 0
\(463\) 29.4293i 1.36769i −0.729626 0.683847i \(-0.760306\pi\)
0.729626 0.683847i \(-0.239694\pi\)
\(464\) 0 0
\(465\) −31.1892 5.80028i −1.44637 0.268982i
\(466\) 0 0
\(467\) 6.75074 3.89754i 0.312387 0.180357i −0.335607 0.942002i \(-0.608941\pi\)
0.647994 + 0.761645i \(0.275608\pi\)
\(468\) 0 0
\(469\) −3.97187 + 26.0900i −0.183404 + 1.20472i
\(470\) 0 0
\(471\) 24.1753 28.2707i 1.11394 1.30265i
\(472\) 0 0
\(473\) −8.47781 4.89466i −0.389810 0.225057i
\(474\) 0 0
\(475\) −20.1995 −0.926818
\(476\) 0 0
\(477\) 4.95553 4.00290i 0.226898 0.183280i
\(478\) 0 0
\(479\) 19.3422 33.5016i 0.883765 1.53073i 0.0366434 0.999328i \(-0.488333\pi\)
0.847122 0.531398i \(-0.178333\pi\)
\(480\) 0 0
\(481\) 15.0768 + 26.1137i 0.687441 + 1.19068i
\(482\) 0 0
\(483\) −16.2040 + 13.9913i −0.737306 + 0.636627i
\(484\) 0 0
\(485\) −16.5349 28.6393i −0.750811 1.30044i
\(486\) 0 0
\(487\) −8.63096 4.98308i −0.391106 0.225805i 0.291533 0.956561i \(-0.405835\pi\)
−0.682639 + 0.730756i \(0.739168\pi\)
\(488\) 0 0
\(489\) 2.47014 0.873026i 0.111704 0.0394796i
\(490\) 0 0
\(491\) 15.5075i 0.699845i 0.936779 + 0.349923i \(0.113792\pi\)
−0.936779 + 0.349923i \(0.886208\pi\)
\(492\) 0 0
\(493\) 0.479286 + 0.276716i 0.0215860 + 0.0124627i
\(494\) 0 0
\(495\) 10.5194 27.3044i 0.472813 1.22724i
\(496\) 0 0
\(497\) 24.8419 9.70739i 1.11431 0.435436i
\(498\) 0 0
\(499\) 0.275544 + 0.477256i 0.0123350 + 0.0213649i 0.872127 0.489279i \(-0.162740\pi\)
−0.859792 + 0.510644i \(0.829407\pi\)
\(500\) 0 0
\(501\) −2.28545 + 12.2893i −0.102106 + 0.549045i
\(502\) 0 0
\(503\) −32.2097 −1.43616 −0.718079 0.695962i \(-0.754978\pi\)
−0.718079 + 0.695962i \(0.754978\pi\)
\(504\) 0 0
\(505\) −54.9868 −2.44688
\(506\) 0 0
\(507\) 0.0766652 0.412243i 0.00340482 0.0183084i
\(508\) 0 0
\(509\) −0.906135 1.56947i −0.0401637 0.0695656i 0.845245 0.534379i \(-0.179455\pi\)
−0.885408 + 0.464814i \(0.846121\pi\)
\(510\) 0 0
\(511\) −3.54530 + 23.2880i −0.156835 + 1.03020i
\(512\) 0 0
\(513\) −11.8532 0.332116i −0.523333 0.0146633i
\(514\) 0 0
\(515\) −24.1970 13.9702i −1.06625 0.615599i
\(516\) 0 0
\(517\) 3.07526i 0.135250i
\(518\) 0 0
\(519\) 4.36664 1.54331i 0.191674 0.0677438i
\(520\) 0 0
\(521\) 6.65560 + 3.84261i 0.291587 + 0.168348i 0.638657 0.769491i \(-0.279490\pi\)
−0.347070 + 0.937839i \(0.612823\pi\)
\(522\) 0 0
\(523\) 4.33611 + 7.51035i 0.189605 + 0.328405i 0.945118 0.326728i \(-0.105946\pi\)
−0.755514 + 0.655133i \(0.772613\pi\)
\(524\) 0 0
\(525\) −38.3084 13.3337i −1.67192 0.581930i
\(526\) 0 0
\(527\) −0.529029 0.916305i −0.0230449 0.0399149i
\(528\) 0 0
\(529\) 0.587489 1.01756i 0.0255430 0.0442417i
\(530\) 0 0
\(531\) −14.7844 18.3029i −0.641588 0.794277i
\(532\) 0 0
\(533\) −3.24837 −0.140702
\(534\) 0 0
\(535\) −40.7145 23.5065i −1.76024 1.01627i
\(536\) 0 0
\(537\) 9.48022 11.0862i 0.409102 0.478405i
\(538\) 0 0
\(539\) 17.8968 4.02924i 0.770871 0.173551i
\(540\) 0 0
\(541\) 10.0751 5.81687i 0.433163 0.250087i −0.267530 0.963549i \(-0.586208\pi\)
0.700693 + 0.713463i \(0.252874\pi\)
\(542\) 0 0
\(543\) −10.4263 1.93899i −0.447435 0.0832098i
\(544\) 0 0
\(545\) 48.2503i 2.06681i
\(546\) 0 0
\(547\) 27.7574 1.18682 0.593410 0.804900i \(-0.297781\pi\)
0.593410 + 0.804900i \(0.297781\pi\)
\(548\) 0 0
\(549\) 1.03109 0.162017i 0.0440056 0.00691473i
\(550\) 0 0
\(551\) 2.93717 + 5.08733i 0.125128 + 0.216728i
\(552\) 0 0
\(553\) −18.5288 + 23.1641i −0.787926 + 0.985039i
\(554\) 0 0
\(555\) 35.3681 41.3596i 1.50129 1.75562i
\(556\) 0 0
\(557\) −7.71096 + 13.3558i −0.326724 + 0.565902i −0.981860 0.189609i \(-0.939278\pi\)
0.655136 + 0.755511i \(0.272611\pi\)
\(558\) 0 0
\(559\) 13.3422i 0.564315i
\(560\) 0 0
\(561\) 0.920124 0.325201i 0.0388476 0.0137300i
\(562\) 0 0
\(563\) −11.5626 6.67567i −0.487305 0.281346i 0.236151 0.971716i \(-0.424114\pi\)
−0.723456 + 0.690371i \(0.757447\pi\)
\(564\) 0 0
\(565\) 22.9003 13.2215i 0.963423 0.556233i
\(566\) 0 0
\(567\) −22.2604 8.45417i −0.934850 0.355042i
\(568\) 0 0
\(569\) −39.4279 + 22.7637i −1.65290 + 0.954305i −0.677034 + 0.735951i \(0.736735\pi\)
−0.975870 + 0.218353i \(0.929931\pi\)
\(570\) 0 0
\(571\) −20.3243 + 35.2028i −0.850546 + 1.47319i 0.0301698 + 0.999545i \(0.490395\pi\)
−0.880716 + 0.473645i \(0.842938\pi\)
\(572\) 0 0
\(573\) −24.7074 + 8.73238i −1.03217 + 0.364800i
\(574\) 0 0
\(575\) −41.3517 −1.72448
\(576\) 0 0
\(577\) −8.50680 + 14.7342i −0.354143 + 0.613393i −0.986971 0.160899i \(-0.948561\pi\)
0.632828 + 0.774292i \(0.281894\pi\)
\(578\) 0 0
\(579\) 4.02710 + 3.44372i 0.167360 + 0.143116i
\(580\) 0 0
\(581\) −1.67495 4.28630i −0.0694885 0.177826i
\(582\) 0 0
\(583\) −4.81928 + 2.78241i −0.199594 + 0.115236i
\(584\) 0 0
\(585\) 39.3970 6.19056i 1.62886 0.255948i
\(586\) 0 0
\(587\) 28.5925i 1.18014i 0.807352 + 0.590070i \(0.200900\pi\)
−0.807352 + 0.590070i \(0.799100\pi\)
\(588\) 0 0
\(589\) 11.2306i 0.462750i
\(590\) 0 0
\(591\) −4.61518 + 24.8167i −0.189843 + 1.02082i
\(592\) 0 0
\(593\) −4.49943 + 2.59775i −0.184770 + 0.106677i −0.589532 0.807745i \(-0.700688\pi\)
0.404762 + 0.914422i \(0.367354\pi\)
\(594\) 0 0
\(595\) −0.770526 1.97183i −0.0315885 0.0808371i
\(596\) 0 0
\(597\) 19.5476 22.8590i 0.800029 0.935556i
\(598\) 0 0
\(599\) 22.7140 39.3418i 0.928069 1.60746i 0.141519 0.989936i \(-0.454801\pi\)
0.786550 0.617527i \(-0.211865\pi\)
\(600\) 0 0
\(601\) 45.5994 1.86004 0.930019 0.367511i \(-0.119790\pi\)
0.930019 + 0.367511i \(0.119790\pi\)
\(602\) 0 0
\(603\) −23.2784 + 18.8035i −0.947970 + 0.765736i
\(604\) 0 0
\(605\) 7.68917 13.3180i 0.312609 0.541455i
\(606\) 0 0
\(607\) −18.3382 + 10.5876i −0.744324 + 0.429736i −0.823639 0.567114i \(-0.808060\pi\)
0.0793155 + 0.996850i \(0.474727\pi\)
\(608\) 0 0
\(609\) 2.21220 + 11.5870i 0.0896430 + 0.469527i
\(610\) 0 0
\(611\) −3.62984 + 2.09569i −0.146848 + 0.0847825i
\(612\) 0 0
\(613\) −22.2592 12.8513i −0.899039 0.519060i −0.0221508 0.999755i \(-0.507051\pi\)
−0.876888 + 0.480694i \(0.840385\pi\)
\(614\) 0 0
\(615\) 1.95357 + 5.52744i 0.0787756 + 0.222888i
\(616\) 0 0
\(617\) 16.9888i 0.683941i 0.939711 + 0.341971i \(0.111094\pi\)
−0.939711 + 0.341971i \(0.888906\pi\)
\(618\) 0 0
\(619\) 11.6456 20.1708i 0.468076 0.810732i −0.531258 0.847210i \(-0.678281\pi\)
0.999334 + 0.0364781i \(0.0116139\pi\)
\(620\) 0 0
\(621\) −24.2655 0.679895i −0.973740 0.0272832i
\(622\) 0 0
\(623\) −29.5206 + 36.9056i −1.18272 + 1.47859i
\(624\) 0 0
\(625\) −4.54562 7.87325i −0.181825 0.314930i
\(626\) 0 0
\(627\) 10.1840 + 1.89392i 0.406709 + 0.0756360i
\(628\) 0 0
\(629\) 1.81501 0.0723691
\(630\) 0 0
\(631\) 15.0554i 0.599347i 0.954042 + 0.299674i \(0.0968778\pi\)
−0.954042 + 0.299674i \(0.903122\pi\)
\(632\) 0 0
\(633\) 6.73537 36.2174i 0.267707 1.43951i
\(634\) 0 0
\(635\) 8.15754 4.70976i 0.323722 0.186901i
\(636\) 0 0
\(637\) 16.9520 + 18.3785i 0.671661 + 0.728182i
\(638\) 0 0
\(639\) 28.2204 + 10.8723i 1.11638 + 0.430103i
\(640\) 0 0
\(641\) 22.9318 + 13.2397i 0.905752 + 0.522936i 0.879062 0.476707i \(-0.158170\pi\)
0.0266904 + 0.999644i \(0.491503\pi\)
\(642\) 0 0
\(643\) 29.9973 1.18298 0.591490 0.806312i \(-0.298540\pi\)
0.591490 + 0.806312i \(0.298540\pi\)
\(644\) 0 0
\(645\) −22.7032 + 8.02403i −0.893937 + 0.315946i
\(646\) 0 0
\(647\) −9.22707 + 15.9817i −0.362753 + 0.628307i −0.988413 0.151789i \(-0.951497\pi\)
0.625659 + 0.780096i \(0.284830\pi\)
\(648\) 0 0
\(649\) 10.2766 + 17.7997i 0.403394 + 0.698698i
\(650\) 0 0
\(651\) 7.41334 21.2989i 0.290552 0.834770i
\(652\) 0 0
\(653\) −8.95898 15.5174i −0.350592 0.607243i 0.635761 0.771886i \(-0.280686\pi\)
−0.986353 + 0.164643i \(0.947353\pi\)
\(654\) 0 0
\(655\) 18.7883 + 10.8474i 0.734121 + 0.423845i
\(656\) 0 0
\(657\) −20.7784 + 16.7840i −0.810642 + 0.654807i
\(658\) 0 0
\(659\) 30.7250i 1.19687i 0.801170 + 0.598437i \(0.204211\pi\)
−0.801170 + 0.598437i \(0.795789\pi\)
\(660\) 0 0
\(661\) −13.0311 7.52352i −0.506852 0.292631i 0.224687 0.974431i \(-0.427864\pi\)
−0.731539 + 0.681800i \(0.761197\pi\)
\(662\) 0 0
\(663\) 1.01088 + 0.864441i 0.0392593 + 0.0335721i
\(664\) 0 0
\(665\) 3.38195 22.2151i 0.131147 0.861463i
\(666\) 0 0
\(667\) 6.01287 + 10.4146i 0.232819 + 0.403254i
\(668\) 0 0
\(669\) −11.3885 2.11793i −0.440304 0.0818837i
\(670\) 0 0
\(671\) −0.911768 −0.0351984
\(672\) 0 0
\(673\) 20.6079 0.794376 0.397188 0.917737i \(-0.369986\pi\)
0.397188 + 0.917737i \(0.369986\pi\)
\(674\) 0 0
\(675\) −21.8722 40.4601i −0.841861 1.55731i
\(676\) 0 0
\(677\) 5.13682 + 8.89723i 0.197424 + 0.341948i 0.947692 0.319185i \(-0.103409\pi\)
−0.750268 + 0.661133i \(0.770076\pi\)
\(678\) 0 0
\(679\) 21.8965 8.55642i 0.840310 0.328365i
\(680\) 0 0
\(681\) 26.9891 31.5612i 1.03423 1.20943i
\(682\) 0 0
\(683\) −30.7725 17.7665i −1.17748 0.679817i −0.222048 0.975036i \(-0.571274\pi\)
−0.955430 + 0.295218i \(0.904608\pi\)
\(684\) 0 0
\(685\) 35.0316i 1.33849i
\(686\) 0 0
\(687\) 9.53553 + 26.9798i 0.363803 + 1.02935i
\(688\) 0 0
\(689\) −6.56837 3.79225i −0.250235 0.144473i
\(690\) 0 0
\(691\) −17.0490 29.5298i −0.648576 1.12337i −0.983463 0.181109i \(-0.942031\pi\)
0.334887 0.942258i \(-0.391302\pi\)
\(692\) 0 0
\(693\) 18.0638 + 10.3143i 0.686185 + 0.391807i
\(694\) 0 0
\(695\) 14.0297 + 24.3002i 0.532177 + 0.921758i
\(696\) 0 0
\(697\) −0.0977632 + 0.169331i −0.00370305 + 0.00641386i
\(698\) 0 0
\(699\) 8.93467 + 25.2798i 0.337940 + 0.956169i
\(700\) 0 0
\(701\) −42.6496 −1.61085 −0.805426 0.592696i \(-0.798063\pi\)
−0.805426 + 0.592696i \(0.798063\pi\)
\(702\) 0 0
\(703\) 16.6842 + 9.63261i 0.629255 + 0.363301i
\(704\) 0 0
\(705\) 5.74903 + 4.91621i 0.216521 + 0.185155i
\(706\) 0 0
\(707\) 5.88308 38.6442i 0.221256 1.45336i
\(708\) 0 0
\(709\) −24.7114 + 14.2671i −0.928054 + 0.535812i −0.886196 0.463311i \(-0.846661\pi\)
−0.0418586 + 0.999124i \(0.513328\pi\)
\(710\) 0 0
\(711\) −33.2270 + 5.22106i −1.24611 + 0.195805i
\(712\) 0 0
\(713\) 22.9909i 0.861017i
\(714\) 0 0
\(715\) −34.8380 −1.30287
\(716\) 0 0
\(717\) 6.50653 34.9869i 0.242991 1.30661i
\(718\) 0 0
\(719\) −25.0072 43.3138i −0.932612 1.61533i −0.778837 0.627226i \(-0.784190\pi\)
−0.153775 0.988106i \(-0.549143\pi\)
\(720\) 0 0
\(721\) 12.4070 15.5108i 0.462059 0.577651i
\(722\) 0 0
\(723\) 16.2353 + 13.8834i 0.603797 + 0.516329i
\(724\) 0 0
\(725\) −11.3925 + 19.7324i −0.423108 + 0.732844i
\(726\) 0 0
\(727\) 27.7338i 1.02859i −0.857614 0.514295i \(-0.828054\pi\)
0.857614 0.514295i \(-0.171946\pi\)
\(728\) 0 0
\(729\) −12.1695 24.1019i −0.450723 0.892664i
\(730\) 0 0
\(731\) −0.695503 0.401549i −0.0257241 0.0148518i
\(732\) 0 0
\(733\) −24.4018 + 14.0884i −0.901300 + 0.520366i −0.877622 0.479354i \(-0.840871\pi\)
−0.0236782 + 0.999720i \(0.507538\pi\)
\(734\) 0 0
\(735\) 21.0780 39.8984i 0.777475 1.47168i
\(736\) 0 0
\(737\) 22.6384 13.0703i 0.833897 0.481450i
\(738\) 0 0
\(739\) −15.9133 + 27.5626i −0.585379 + 1.01391i 0.409449 + 0.912333i \(0.365721\pi\)
−0.994828 + 0.101573i \(0.967612\pi\)
\(740\) 0 0
\(741\) 4.70459 + 13.3112i 0.172827 + 0.488998i
\(742\) 0 0
\(743\) −30.9943 −1.13707 −0.568535 0.822659i \(-0.692490\pi\)
−0.568535 + 0.822659i \(0.692490\pi\)
\(744\) 0 0
\(745\) 27.4934 47.6200i 1.00728 1.74466i
\(746\) 0 0
\(747\) 1.87595 4.86924i 0.0686375 0.178156i
\(748\) 0 0
\(749\) 20.8762 26.0988i 0.762800 0.953628i
\(750\) 0 0
\(751\) −32.0364 + 18.4962i −1.16902 + 0.674936i −0.953450 0.301551i \(-0.902496\pi\)
−0.215574 + 0.976488i \(0.569162\pi\)
\(752\) 0 0
\(753\) −36.2670 6.74460i −1.32164 0.245787i
\(754\) 0 0
\(755\) 13.6974i 0.498501i
\(756\) 0 0
\(757\) 2.01191i 0.0731242i −0.999331 0.0365621i \(-0.988359\pi\)
0.999331 0.0365621i \(-0.0116407\pi\)
\(758\) 0 0
\(759\) 20.8483 + 3.87716i 0.756744 + 0.140732i
\(760\) 0 0
\(761\) −35.5006 + 20.4963i −1.28689 + 0.742989i −0.978099 0.208140i \(-0.933259\pi\)
−0.308795 + 0.951129i \(0.599926\pi\)
\(762\) 0 0
\(763\) 33.9098 + 5.16233i 1.22762 + 0.186889i
\(764\) 0 0
\(765\) 0.862994 2.24000i 0.0312016 0.0809873i
\(766\) 0 0
\(767\) −14.0064 + 24.2598i −0.505741 + 0.875970i
\(768\) 0 0
\(769\) −46.8470 −1.68935 −0.844673 0.535282i \(-0.820205\pi\)
−0.844673 + 0.535282i \(0.820205\pi\)
\(770\) 0 0
\(771\) 8.81723 + 24.9475i 0.317545 + 0.898461i
\(772\) 0 0
\(773\) −11.2358 + 19.4611i −0.404125 + 0.699966i −0.994219 0.107369i \(-0.965757\pi\)
0.590094 + 0.807335i \(0.299091\pi\)
\(774\) 0 0
\(775\) 37.7247 21.7803i 1.35511 0.782373i
\(776\) 0 0
\(777\) 25.2830 + 29.2814i 0.907024 + 1.05047i
\(778\) 0 0
\(779\) −1.79734 + 1.03770i −0.0643965 + 0.0371794i
\(780\) 0 0
\(781\) −22.8791 13.2093i −0.818679 0.472664i
\(782\) 0 0
\(783\) −7.00965 + 11.3918i −0.250505 + 0.407111i
\(784\) 0 0
\(785\) 79.9291i 2.85279i
\(786\) 0 0
\(787\) −11.3998 + 19.7450i −0.406358 + 0.703833i −0.994479 0.104940i \(-0.966535\pi\)
0.588120 + 0.808773i \(0.299868\pi\)
\(788\) 0 0
\(789\) 0.657979 + 0.562662i 0.0234247 + 0.0200313i
\(790\) 0 0
\(791\) 6.84182 + 17.5087i 0.243267 + 0.622538i
\(792\) 0 0
\(793\) −0.621340 1.07619i −0.0220644 0.0382167i
\(794\) 0 0
\(795\) −2.50269 + 13.4574i −0.0887612 + 0.477286i
\(796\) 0 0
\(797\) 21.8746 0.774837 0.387419 0.921904i \(-0.373367\pi\)
0.387419 + 0.921904i \(0.373367\pi\)
\(798\) 0 0
\(799\) 0.252288i 0.00892532i
\(800\) 0 0
\(801\) −52.9380 + 8.31831i −1.87047 + 0.293913i
\(802\) 0 0
\(803\) 20.2071 11.6666i 0.713094 0.411705i
\(804\) 0 0
\(805\) 6.92340 45.4778i 0.244018 1.60288i
\(806\) 0 0
\(807\) −28.7516 24.5865i −1.01210 0.865487i
\(808\) 0 0
\(809\) 24.0416 + 13.8804i 0.845258 + 0.488010i 0.859048 0.511895i \(-0.171056\pi\)
−0.0137900 + 0.999905i \(0.504390\pi\)
\(810\) 0 0
\(811\) −6.49133 −0.227942 −0.113971 0.993484i \(-0.536357\pi\)
−0.113971 + 0.993484i \(0.536357\pi\)
\(812\) 0 0
\(813\) −9.08442 25.7035i −0.318605 0.901461i
\(814\) 0 0
\(815\) −2.81474 + 4.87528i −0.0985962 + 0.170774i
\(816\) 0 0
\(817\) −4.26220 7.38234i −0.149115 0.258275i
\(818\) 0 0
\(819\) 0.135554 + 28.3501i 0.00473664 + 0.990634i
\(820\) 0 0
\(821\) 12.8884 + 22.3234i 0.449810 + 0.779094i 0.998373 0.0570153i \(-0.0181584\pi\)
−0.548563 + 0.836109i \(0.684825\pi\)
\(822\) 0 0
\(823\) 18.5654 + 10.7188i 0.647151 + 0.373633i 0.787364 0.616489i \(-0.211445\pi\)
−0.140213 + 0.990121i \(0.544779\pi\)
\(824\) 0 0
\(825\) 13.3887 + 37.8819i 0.466133 + 1.31888i
\(826\) 0 0
\(827\) 0.550214i 0.0191328i −0.999954 0.00956640i \(-0.996955\pi\)
0.999954 0.00956640i \(-0.00304513\pi\)
\(828\) 0 0
\(829\) 40.9798 + 23.6597i 1.42329 + 0.821735i 0.996578 0.0826545i \(-0.0263398\pi\)
0.426708 + 0.904389i \(0.359673\pi\)
\(830\) 0 0
\(831\) −14.1254 + 16.5183i −0.490005 + 0.573014i
\(832\) 0 0
\(833\) 1.46822 0.330551i 0.0508709 0.0114529i
\(834\) 0 0
\(835\) −13.4297 23.2610i −0.464755 0.804979i
\(836\) 0 0
\(837\) 22.4952 12.1606i 0.777549 0.420332i
\(838\) 0 0
\(839\) 13.0088 0.449114 0.224557 0.974461i \(-0.427906\pi\)
0.224557 + 0.974461i \(0.427906\pi\)
\(840\) 0 0
\(841\) −22.3737 −0.771508
\(842\) 0 0
\(843\) −38.7419 7.20486i −1.33434 0.248149i
\(844\) 0 0
\(845\) 0.450499 + 0.780288i 0.0154977 + 0.0268427i
\(846\) 0 0
\(847\) 8.53711 + 6.82878i 0.293339 + 0.234640i
\(848\) 0 0
\(849\) 1.15941 + 0.991453i 0.0397908 + 0.0340266i
\(850\) 0 0
\(851\) 34.1552 + 19.7195i 1.17082 + 0.675975i
\(852\) 0 0
\(853\) 30.6386i 1.04904i −0.851397 0.524522i \(-0.824244\pi\)
0.851397 0.524522i \(-0.175756\pi\)
\(854\) 0 0
\(855\) 19.8210 16.0107i 0.677865 0.547555i
\(856\) 0 0
\(857\) −37.8255 21.8385i −1.29209 0.745991i −0.313069 0.949731i \(-0.601357\pi\)
−0.979025 + 0.203740i \(0.934690\pi\)
\(858\) 0 0
\(859\) 10.5500 + 18.2731i 0.359961 + 0.623471i 0.987954 0.154748i \(-0.0494567\pi\)
−0.627993 + 0.778219i \(0.716123\pi\)
\(860\) 0 0
\(861\) −4.09365 + 0.781567i −0.139511 + 0.0266357i
\(862\) 0 0
\(863\) −23.7379 41.1152i −0.808047 1.39958i −0.914215 0.405230i \(-0.867191\pi\)
0.106168 0.994348i \(-0.466142\pi\)
\(864\) 0 0
\(865\) −4.97582 + 8.61838i −0.169183 + 0.293034i
\(866\) 0 0
\(867\) −27.6865 + 9.78527i −0.940282 + 0.332325i
\(868\) 0 0
\(869\) 29.3820 0.996716
\(870\) 0 0
\(871\) 30.8547 + 17.8140i 1.04547 + 0.603603i
\(872\) 0 0
\(873\) 24.8744 + 9.58325i 0.841870 + 0.324344i
\(874\) 0 0
\(875\) 35.3237 13.8033i 1.19416 0.466638i
\(876\) 0 0
\(877\) −33.6478 + 19.4266i −1.13621 + 0.655989i −0.945488 0.325656i \(-0.894415\pi\)
−0.190718 + 0.981645i \(0.561082\pi\)
\(878\) 0 0
\(879\) 7.00752 37.6808i 0.236358 1.27094i
\(880\) 0 0
\(881\) 45.6144i 1.53679i −0.639978 0.768393i \(-0.721056\pi\)
0.639978 0.768393i \(-0.278944\pi\)
\(882\) 0 0
\(883\) −56.6501 −1.90643 −0.953214 0.302295i \(-0.902247\pi\)
−0.953214 + 0.302295i \(0.902247\pi\)
\(884\) 0 0
\(885\) 49.7041 + 9.24350i 1.67078 + 0.310717i
\(886\) 0 0
\(887\) 3.46905 + 6.00857i 0.116479 + 0.201748i 0.918370 0.395723i \(-0.129506\pi\)
−0.801891 + 0.597471i \(0.796172\pi\)
\(888\) 0 0
\(889\) 2.43719 + 6.23694i 0.0817407 + 0.209180i
\(890\) 0 0
\(891\) 7.23372 + 22.4495i 0.242339 + 0.752087i
\(892\) 0 0
\(893\) −1.33894 + 2.31912i −0.0448060 + 0.0776064i
\(894\) 0 0
\(895\) 31.3438i 1.04771i
\(896\) 0 0
\(897\) 9.63105 + 27.2501i 0.321571 + 0.909854i
\(898\) 0 0
\(899\) −10.9709 6.33407i −0.365901 0.211253i
\(900\) 0 0
\(901\) −0.395365 + 0.228264i −0.0131715 + 0.00760457i
\(902\) 0 0
\(903\) −3.21018 16.8141i −0.106828 0.559538i
\(904\) 0 0
\(905\) 19.7347 11.3939i 0.656005 0.378745i
\(906\) 0 0
\(907\) 23.0866 39.9871i 0.766577 1.32775i −0.172832 0.984951i \(-0.555292\pi\)
0.939409 0.342799i \(-0.111375\pi\)
\(908\) 0 0
\(909\) 34.4797 27.8515i 1.14362 0.923774i
\(910\) 0 0
\(911\) 33.7577 1.11844 0.559221 0.829018i \(-0.311100\pi\)
0.559221 + 0.829018i \(0.311100\pi\)
\(912\) 0 0
\(913\) −2.27917 + 3.94764i −0.0754295 + 0.130648i
\(914\) 0 0
\(915\) −1.45758 + 1.70450i −0.0481862 + 0.0563491i
\(916\) 0 0
\(917\) −9.63366 + 12.0437i −0.318131 + 0.397717i
\(918\) 0 0
\(919\) −1.09773 + 0.633774i −0.0362107 + 0.0209063i −0.517996 0.855383i \(-0.673322\pi\)
0.481785 + 0.876289i \(0.339988\pi\)
\(920\) 0 0
\(921\) −3.15653 + 16.9733i −0.104011 + 0.559289i
\(922\) 0 0
\(923\) 36.0067i 1.18517i
\(924\) 0 0
\(925\) 74.7247i 2.45693i
\(926\) 0 0
\(927\) 22.2489 3.49603i 0.730750 0.114825i
\(928\) 0 0
\(929\) 28.9002 16.6855i 0.948183 0.547434i 0.0556673 0.998449i \(-0.482271\pi\)
0.892516 + 0.451015i \(0.148938\pi\)
\(930\) 0 0
\(931\) 15.2507 + 4.75361i 0.499821 + 0.155793i
\(932\) 0 0
\(933\) 15.4592 + 13.2197i 0.506111 + 0.432794i
\(934\) 0 0
\(935\) −1.04849 + 1.81603i −0.0342892 + 0.0593906i
\(936\) 0 0
\(937\) −9.31498 −0.304307 −0.152154 0.988357i \(-0.548621\pi\)
−0.152154 + 0.988357i \(0.548621\pi\)
\(938\) 0 0
\(939\) −1.12197 + 0.396541i −0.0366142 + 0.0129406i
\(940\) 0 0
\(941\) −20.0007 + 34.6422i −0.652003 + 1.12930i 0.330633 + 0.943759i \(0.392738\pi\)
−0.982636 + 0.185543i \(0.940596\pi\)
\(942\) 0 0
\(943\) −3.67945 + 2.12433i −0.119819 + 0.0691778i
\(944\) 0 0
\(945\) 48.1593 17.2805i 1.56662 0.562134i
\(946\) 0 0
\(947\) −28.9295 + 16.7025i −0.940083 + 0.542757i −0.889986 0.455987i \(-0.849286\pi\)
−0.0500965 + 0.998744i \(0.515953\pi\)
\(948\) 0 0
\(949\) 27.5410 + 15.9008i 0.894018 + 0.516161i
\(950\) 0 0
\(951\) 53.7389 18.9930i 1.74260 0.615891i
\(952\) 0 0
\(953\) 35.4084i 1.14699i 0.819209 + 0.573495i \(0.194413\pi\)
−0.819209 + 0.573495i \(0.805587\pi\)
\(954\) 0 0
\(955\) 28.1543 48.7646i 0.911051 1.57799i
\(956\) 0 0
\(957\) 7.59389 8.88032i 0.245476 0.287060i
\(958\) 0 0
\(959\) 24.6198 + 3.74805i 0.795016 + 0.121031i
\(960\) 0 0
\(961\) −3.39046 5.87244i −0.109370 0.189434i
\(962\) 0 0
\(963\) 37.4365 5.88250i 1.20637 0.189561i
\(964\) 0 0
\(965\) −11.3857 −0.366519
\(966\) 0 0
\(967\) 59.2726i 1.90608i −0.302849 0.953039i \(-0.597938\pi\)
0.302849 0.953039i \(-0.402062\pi\)
\(968\) 0 0
\(969\) 0.835475 + 0.155374i 0.0268393 + 0.00499133i
\(970\) 0 0
\(971\) −49.2281 + 28.4218i −1.57980 + 0.912101i −0.584919 + 0.811092i \(0.698874\pi\)
−0.994886 + 0.101009i \(0.967793\pi\)
\(972\) 0 0
\(973\) −18.5790 + 7.26005i −0.595614 + 0.232746i
\(974\) 0 0
\(975\) −35.5894 + 41.6184i −1.13977 + 1.33285i
\(976\) 0 0
\(977\) −31.5116 18.1932i −1.00814 0.582052i −0.0974966 0.995236i \(-0.531084\pi\)
−0.910648 + 0.413183i \(0.864417\pi\)
\(978\) 0 0
\(979\) 46.8121 1.49612
\(980\) 0 0
\(981\) 24.4393 + 30.2555i 0.780287 + 0.965984i
\(982\) 0 0
\(983\) −7.30275 + 12.6487i −0.232921 + 0.403432i −0.958667 0.284532i \(-0.908162\pi\)
0.725745 + 0.687964i \(0.241495\pi\)
\(984\) 0 0
\(985\) −27.1197 46.9727i −0.864105 1.49667i
\(986\) 0 0
\(987\) −4.07016 + 3.51437i −0.129555 + 0.111864i
\(988\) 0 0
\(989\) −8.72540 15.1128i −0.277452 0.480560i
\(990\) 0 0
\(991\) −36.4541 21.0468i −1.15800 0.668572i −0.207177 0.978303i \(-0.566428\pi\)
−0.950824 + 0.309731i \(0.899761\pi\)
\(992\) 0 0
\(993\) 2.72157 0.961890i 0.0863665 0.0305246i
\(994\) 0 0
\(995\) 64.6287i 2.04887i
\(996\) 0 0
\(997\) 11.0158 + 6.36000i 0.348875 + 0.201423i 0.664190 0.747564i \(-0.268777\pi\)
−0.315315 + 0.948987i \(0.602110\pi\)
\(998\) 0 0
\(999\) −1.22861 + 43.8490i −0.0388714 + 1.38732i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 672.2.bd.a.431.16 56
3.2 odd 2 inner 672.2.bd.a.431.21 56
4.3 odd 2 168.2.v.a.11.6 yes 56
7.2 even 3 inner 672.2.bd.a.527.22 56
8.3 odd 2 inner 672.2.bd.a.431.15 56
8.5 even 2 168.2.v.a.11.3 56
12.11 even 2 168.2.v.a.11.23 yes 56
21.2 odd 6 inner 672.2.bd.a.527.15 56
24.5 odd 2 168.2.v.a.11.26 yes 56
24.11 even 2 inner 672.2.bd.a.431.22 56
28.23 odd 6 168.2.v.a.107.26 yes 56
56.37 even 6 168.2.v.a.107.23 yes 56
56.51 odd 6 inner 672.2.bd.a.527.21 56
84.23 even 6 168.2.v.a.107.3 yes 56
168.107 even 6 inner 672.2.bd.a.527.16 56
168.149 odd 6 168.2.v.a.107.6 yes 56
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
168.2.v.a.11.3 56 8.5 even 2
168.2.v.a.11.6 yes 56 4.3 odd 2
168.2.v.a.11.23 yes 56 12.11 even 2
168.2.v.a.11.26 yes 56 24.5 odd 2
168.2.v.a.107.3 yes 56 84.23 even 6
168.2.v.a.107.6 yes 56 168.149 odd 6
168.2.v.a.107.23 yes 56 56.37 even 6
168.2.v.a.107.26 yes 56 28.23 odd 6
672.2.bd.a.431.15 56 8.3 odd 2 inner
672.2.bd.a.431.16 56 1.1 even 1 trivial
672.2.bd.a.431.21 56 3.2 odd 2 inner
672.2.bd.a.431.22 56 24.11 even 2 inner
672.2.bd.a.527.15 56 21.2 odd 6 inner
672.2.bd.a.527.16 56 168.107 even 6 inner
672.2.bd.a.527.21 56 56.51 odd 6 inner
672.2.bd.a.527.22 56 7.2 even 3 inner