Properties

Label 672.2.bc.c.353.3
Level $672$
Weight $2$
Character 672.353
Analytic conductor $5.366$
Analytic rank $0$
Dimension $8$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [672,2,Mod(257,672)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(672, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 3, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("672.257"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 672 = 2^{5} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 672.bc (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.36594701583\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: 8.0.49787136.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 3x^{6} + 5x^{4} + 12x^{2} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 353.3
Root \(1.09445 - 0.895644i\) of defining polynomial
Character \(\chi\) \(=\) 672.353
Dual form 672.2.bc.c.257.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.866025 - 1.50000i) q^{3} +(-1.32288 - 2.29129i) q^{5} +(-2.29129 - 1.32288i) q^{7} +(-1.50000 - 2.59808i) q^{9} +(0.866025 + 0.500000i) q^{11} +3.46410i q^{13} -4.58258 q^{15} +(2.64575 - 4.58258i) q^{17} +(-4.58258 + 2.64575i) q^{19} +(-3.96863 + 2.29129i) q^{21} +(-1.73205 + 1.00000i) q^{23} +(-1.00000 + 1.73205i) q^{25} -5.19615 q^{27} +4.58258i q^{29} +(-6.87386 - 3.96863i) q^{31} +(1.50000 - 0.866025i) q^{33} +7.00000i q^{35} +(-3.00000 - 5.19615i) q^{37} +(5.19615 + 3.00000i) q^{39} +10.5830 q^{41} +(-3.96863 + 6.87386i) q^{45} +(-3.46410 - 6.00000i) q^{47} +(3.50000 + 6.06218i) q^{49} +(-4.58258 - 7.93725i) q^{51} +(-3.96863 - 2.29129i) q^{53} -2.64575i q^{55} +9.16515i q^{57} +(6.06218 - 10.5000i) q^{59} +(12.0000 - 6.92820i) q^{61} +7.93725i q^{63} +(7.93725 - 4.58258i) q^{65} +(-4.58258 + 7.93725i) q^{67} +3.46410i q^{69} -4.00000i q^{71} +(-6.00000 - 3.46410i) q^{73} +(1.73205 + 3.00000i) q^{75} +(-1.32288 - 2.29129i) q^{77} +(2.29129 + 3.96863i) q^{79} +(-4.50000 + 7.79423i) q^{81} -1.73205 q^{83} -14.0000 q^{85} +(6.87386 + 3.96863i) q^{87} +(-2.64575 - 4.58258i) q^{89} +(4.58258 - 7.93725i) q^{91} +(-11.9059 + 6.87386i) q^{93} +(12.1244 + 7.00000i) q^{95} -8.66025i q^{97} -3.00000i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 12 q^{9} - 8 q^{25} + 12 q^{33} - 24 q^{37} + 28 q^{49} + 96 q^{61} - 48 q^{73} - 36 q^{81} - 112 q^{85}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/672\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(421\) \(449\) \(577\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.866025 1.50000i 0.500000 0.866025i
\(4\) 0 0
\(5\) −1.32288 2.29129i −0.591608 1.02470i −0.994016 0.109235i \(-0.965160\pi\)
0.402408 0.915460i \(-0.368173\pi\)
\(6\) 0 0
\(7\) −2.29129 1.32288i −0.866025 0.500000i
\(8\) 0 0
\(9\) −1.50000 2.59808i −0.500000 0.866025i
\(10\) 0 0
\(11\) 0.866025 + 0.500000i 0.261116 + 0.150756i 0.624844 0.780750i \(-0.285163\pi\)
−0.363727 + 0.931505i \(0.618496\pi\)
\(12\) 0 0
\(13\) 3.46410i 0.960769i 0.877058 + 0.480384i \(0.159503\pi\)
−0.877058 + 0.480384i \(0.840497\pi\)
\(14\) 0 0
\(15\) −4.58258 −1.18322
\(16\) 0 0
\(17\) 2.64575 4.58258i 0.641689 1.11144i −0.343367 0.939201i \(-0.611567\pi\)
0.985056 0.172236i \(-0.0550993\pi\)
\(18\) 0 0
\(19\) −4.58258 + 2.64575i −1.05131 + 0.606977i −0.923017 0.384759i \(-0.874285\pi\)
−0.128298 + 0.991736i \(0.540951\pi\)
\(20\) 0 0
\(21\) −3.96863 + 2.29129i −0.866025 + 0.500000i
\(22\) 0 0
\(23\) −1.73205 + 1.00000i −0.361158 + 0.208514i −0.669588 0.742732i \(-0.733529\pi\)
0.308431 + 0.951247i \(0.400196\pi\)
\(24\) 0 0
\(25\) −1.00000 + 1.73205i −0.200000 + 0.346410i
\(26\) 0 0
\(27\) −5.19615 −1.00000
\(28\) 0 0
\(29\) 4.58258i 0.850963i 0.904967 + 0.425481i \(0.139895\pi\)
−0.904967 + 0.425481i \(0.860105\pi\)
\(30\) 0 0
\(31\) −6.87386 3.96863i −1.23458 0.712786i −0.266601 0.963807i \(-0.585900\pi\)
−0.967982 + 0.251021i \(0.919234\pi\)
\(32\) 0 0
\(33\) 1.50000 0.866025i 0.261116 0.150756i
\(34\) 0 0
\(35\) 7.00000i 1.18322i
\(36\) 0 0
\(37\) −3.00000 5.19615i −0.493197 0.854242i 0.506772 0.862080i \(-0.330838\pi\)
−0.999969 + 0.00783774i \(0.997505\pi\)
\(38\) 0 0
\(39\) 5.19615 + 3.00000i 0.832050 + 0.480384i
\(40\) 0 0
\(41\) 10.5830 1.65279 0.826394 0.563093i \(-0.190389\pi\)
0.826394 + 0.563093i \(0.190389\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(44\) 0 0
\(45\) −3.96863 + 6.87386i −0.591608 + 1.02470i
\(46\) 0 0
\(47\) −3.46410 6.00000i −0.505291 0.875190i −0.999981 0.00612051i \(-0.998052\pi\)
0.494690 0.869069i \(-0.335282\pi\)
\(48\) 0 0
\(49\) 3.50000 + 6.06218i 0.500000 + 0.866025i
\(50\) 0 0
\(51\) −4.58258 7.93725i −0.641689 1.11144i
\(52\) 0 0
\(53\) −3.96863 2.29129i −0.545133 0.314733i 0.202024 0.979381i \(-0.435248\pi\)
−0.747157 + 0.664648i \(0.768582\pi\)
\(54\) 0 0
\(55\) 2.64575i 0.356753i
\(56\) 0 0
\(57\) 9.16515i 1.21395i
\(58\) 0 0
\(59\) 6.06218 10.5000i 0.789228 1.36698i −0.137212 0.990542i \(-0.543814\pi\)
0.926440 0.376442i \(-0.122853\pi\)
\(60\) 0 0
\(61\) 12.0000 6.92820i 1.53644 0.887066i 0.537400 0.843328i \(-0.319407\pi\)
0.999043 0.0437377i \(-0.0139266\pi\)
\(62\) 0 0
\(63\) 7.93725i 1.00000i
\(64\) 0 0
\(65\) 7.93725 4.58258i 0.984495 0.568399i
\(66\) 0 0
\(67\) −4.58258 + 7.93725i −0.559851 + 0.969690i 0.437658 + 0.899142i \(0.355808\pi\)
−0.997508 + 0.0705482i \(0.977525\pi\)
\(68\) 0 0
\(69\) 3.46410i 0.417029i
\(70\) 0 0
\(71\) 4.00000i 0.474713i −0.971423 0.237356i \(-0.923719\pi\)
0.971423 0.237356i \(-0.0762809\pi\)
\(72\) 0 0
\(73\) −6.00000 3.46410i −0.702247 0.405442i 0.105937 0.994373i \(-0.466216\pi\)
−0.808184 + 0.588930i \(0.799549\pi\)
\(74\) 0 0
\(75\) 1.73205 + 3.00000i 0.200000 + 0.346410i
\(76\) 0 0
\(77\) −1.32288 2.29129i −0.150756 0.261116i
\(78\) 0 0
\(79\) 2.29129 + 3.96863i 0.257790 + 0.446505i 0.965650 0.259848i \(-0.0836724\pi\)
−0.707860 + 0.706353i \(0.750339\pi\)
\(80\) 0 0
\(81\) −4.50000 + 7.79423i −0.500000 + 0.866025i
\(82\) 0 0
\(83\) −1.73205 −0.190117 −0.0950586 0.995472i \(-0.530304\pi\)
−0.0950586 + 0.995472i \(0.530304\pi\)
\(84\) 0 0
\(85\) −14.0000 −1.51851
\(86\) 0 0
\(87\) 6.87386 + 3.96863i 0.736956 + 0.425481i
\(88\) 0 0
\(89\) −2.64575 4.58258i −0.280449 0.485752i 0.691046 0.722810i \(-0.257150\pi\)
−0.971495 + 0.237058i \(0.923817\pi\)
\(90\) 0 0
\(91\) 4.58258 7.93725i 0.480384 0.832050i
\(92\) 0 0
\(93\) −11.9059 + 6.87386i −1.23458 + 0.712786i
\(94\) 0 0
\(95\) 12.1244 + 7.00000i 1.24393 + 0.718185i
\(96\) 0 0
\(97\) 8.66025i 0.879316i −0.898165 0.439658i \(-0.855100\pi\)
0.898165 0.439658i \(-0.144900\pi\)
\(98\) 0 0
\(99\) 3.00000i 0.301511i
\(100\) 0 0
\(101\) 5.29150 9.16515i 0.526524 0.911967i −0.472998 0.881063i \(-0.656828\pi\)
0.999522 0.0309033i \(-0.00983838\pi\)
\(102\) 0 0
\(103\) 13.7477 7.93725i 1.35460 0.782081i 0.365713 0.930728i \(-0.380825\pi\)
0.988890 + 0.148647i \(0.0474917\pi\)
\(104\) 0 0
\(105\) 10.5000 + 6.06218i 1.02470 + 0.591608i
\(106\) 0 0
\(107\) −4.33013 + 2.50000i −0.418609 + 0.241684i −0.694482 0.719510i \(-0.744366\pi\)
0.275873 + 0.961194i \(0.411033\pi\)
\(108\) 0 0
\(109\) −7.00000 + 12.1244i −0.670478 + 1.16130i 0.307290 + 0.951616i \(0.400578\pi\)
−0.977769 + 0.209687i \(0.932756\pi\)
\(110\) 0 0
\(111\) −10.3923 −0.986394
\(112\) 0 0
\(113\) 18.3303i 1.72437i −0.506594 0.862185i \(-0.669096\pi\)
0.506594 0.862185i \(-0.330904\pi\)
\(114\) 0 0
\(115\) 4.58258 + 2.64575i 0.427327 + 0.246718i
\(116\) 0 0
\(117\) 9.00000 5.19615i 0.832050 0.480384i
\(118\) 0 0
\(119\) −12.1244 + 7.00000i −1.11144 + 0.641689i
\(120\) 0 0
\(121\) −5.00000 8.66025i −0.454545 0.787296i
\(122\) 0 0
\(123\) 9.16515 15.8745i 0.826394 1.43136i
\(124\) 0 0
\(125\) −7.93725 −0.709930
\(126\) 0 0
\(127\) 13.7477 1.21991 0.609957 0.792435i \(-0.291187\pi\)
0.609957 + 0.792435i \(0.291187\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −2.59808 4.50000i −0.226995 0.393167i 0.729921 0.683531i \(-0.239557\pi\)
−0.956916 + 0.290365i \(0.906223\pi\)
\(132\) 0 0
\(133\) 14.0000 1.21395
\(134\) 0 0
\(135\) 6.87386 + 11.9059i 0.591608 + 1.02470i
\(136\) 0 0
\(137\) 7.93725 + 4.58258i 0.678125 + 0.391516i 0.799148 0.601134i \(-0.205284\pi\)
−0.121023 + 0.992650i \(0.538617\pi\)
\(138\) 0 0
\(139\) 15.8745i 1.34646i 0.739434 + 0.673229i \(0.235093\pi\)
−0.739434 + 0.673229i \(0.764907\pi\)
\(140\) 0 0
\(141\) −12.0000 −1.01058
\(142\) 0 0
\(143\) −1.73205 + 3.00000i −0.144841 + 0.250873i
\(144\) 0 0
\(145\) 10.5000 6.06218i 0.871978 0.503436i
\(146\) 0 0
\(147\) 12.1244 1.00000
\(148\) 0 0
\(149\) 7.93725 4.58258i 0.650245 0.375419i −0.138305 0.990390i \(-0.544165\pi\)
0.788550 + 0.614970i \(0.210832\pi\)
\(150\) 0 0
\(151\) 2.29129 3.96863i 0.186462 0.322962i −0.757606 0.652712i \(-0.773631\pi\)
0.944068 + 0.329750i \(0.106964\pi\)
\(152\) 0 0
\(153\) −15.8745 −1.28338
\(154\) 0 0
\(155\) 21.0000i 1.68676i
\(156\) 0 0
\(157\) 6.00000 + 3.46410i 0.478852 + 0.276465i 0.719938 0.694038i \(-0.244170\pi\)
−0.241086 + 0.970504i \(0.577504\pi\)
\(158\) 0 0
\(159\) −6.87386 + 3.96863i −0.545133 + 0.314733i
\(160\) 0 0
\(161\) 5.29150 0.417029
\(162\) 0 0
\(163\) 4.58258 + 7.93725i 0.358935 + 0.621694i 0.987783 0.155834i \(-0.0498066\pi\)
−0.628848 + 0.777528i \(0.716473\pi\)
\(164\) 0 0
\(165\) −3.96863 2.29129i −0.308957 0.178377i
\(166\) 0 0
\(167\) 10.3923 0.804181 0.402090 0.915600i \(-0.368284\pi\)
0.402090 + 0.915600i \(0.368284\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) 0 0
\(171\) 13.7477 + 7.93725i 1.05131 + 0.606977i
\(172\) 0 0
\(173\) 5.29150 + 9.16515i 0.402305 + 0.696814i 0.994004 0.109346i \(-0.0348756\pi\)
−0.591698 + 0.806160i \(0.701542\pi\)
\(174\) 0 0
\(175\) 4.58258 2.64575i 0.346410 0.200000i
\(176\) 0 0
\(177\) −10.5000 18.1865i −0.789228 1.36698i
\(178\) 0 0
\(179\) −17.3205 10.0000i −1.29460 0.747435i −0.315130 0.949048i \(-0.602048\pi\)
−0.979465 + 0.201613i \(0.935382\pi\)
\(180\) 0 0
\(181\) 20.7846i 1.54491i 0.635071 + 0.772454i \(0.280971\pi\)
−0.635071 + 0.772454i \(0.719029\pi\)
\(182\) 0 0
\(183\) 24.0000i 1.77413i
\(184\) 0 0
\(185\) −7.93725 + 13.7477i −0.583559 + 1.01075i
\(186\) 0 0
\(187\) 4.58258 2.64575i 0.335111 0.193476i
\(188\) 0 0
\(189\) 11.9059 + 6.87386i 0.866025 + 0.500000i
\(190\) 0 0
\(191\) 13.8564 8.00000i 1.00261 0.578860i 0.0935936 0.995610i \(-0.470165\pi\)
0.909021 + 0.416751i \(0.136831\pi\)
\(192\) 0 0
\(193\) −10.5000 + 18.1865i −0.755807 + 1.30910i 0.189166 + 0.981945i \(0.439422\pi\)
−0.944972 + 0.327150i \(0.893912\pi\)
\(194\) 0 0
\(195\) 15.8745i 1.13680i
\(196\) 0 0
\(197\) 9.16515i 0.652990i −0.945199 0.326495i \(-0.894132\pi\)
0.945199 0.326495i \(-0.105868\pi\)
\(198\) 0 0
\(199\) −4.58258 2.64575i −0.324850 0.187552i 0.328702 0.944434i \(-0.393389\pi\)
−0.653552 + 0.756881i \(0.726722\pi\)
\(200\) 0 0
\(201\) 7.93725 + 13.7477i 0.559851 + 0.969690i
\(202\) 0 0
\(203\) 6.06218 10.5000i 0.425481 0.736956i
\(204\) 0 0
\(205\) −14.0000 24.2487i −0.977802 1.69360i
\(206\) 0 0
\(207\) 5.19615 + 3.00000i 0.361158 + 0.208514i
\(208\) 0 0
\(209\) −5.29150 −0.366021
\(210\) 0 0
\(211\) 18.3303 1.26191 0.630955 0.775819i \(-0.282663\pi\)
0.630955 + 0.775819i \(0.282663\pi\)
\(212\) 0 0
\(213\) −6.00000 3.46410i −0.411113 0.237356i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 10.5000 + 18.1865i 0.712786 + 1.23458i
\(218\) 0 0
\(219\) −10.3923 + 6.00000i −0.702247 + 0.405442i
\(220\) 0 0
\(221\) 15.8745 + 9.16515i 1.06783 + 0.616515i
\(222\) 0 0
\(223\) 13.2288i 0.885863i −0.896555 0.442932i \(-0.853938\pi\)
0.896555 0.442932i \(-0.146062\pi\)
\(224\) 0 0
\(225\) 6.00000 0.400000
\(226\) 0 0
\(227\) 6.06218 10.5000i 0.402361 0.696909i −0.591649 0.806195i \(-0.701523\pi\)
0.994010 + 0.109286i \(0.0348564\pi\)
\(228\) 0 0
\(229\) 12.0000 6.92820i 0.792982 0.457829i −0.0480291 0.998846i \(-0.515294\pi\)
0.841011 + 0.541017i \(0.181961\pi\)
\(230\) 0 0
\(231\) −4.58258 −0.301511
\(232\) 0 0
\(233\) −23.8118 + 13.7477i −1.55996 + 0.900644i −0.562701 + 0.826661i \(0.690238\pi\)
−0.997260 + 0.0739830i \(0.976429\pi\)
\(234\) 0 0
\(235\) −9.16515 + 15.8745i −0.597869 + 1.03554i
\(236\) 0 0
\(237\) 7.93725 0.515580
\(238\) 0 0
\(239\) 10.0000i 0.646846i 0.946254 + 0.323423i \(0.104834\pi\)
−0.946254 + 0.323423i \(0.895166\pi\)
\(240\) 0 0
\(241\) −4.50000 2.59808i −0.289870 0.167357i 0.348013 0.937490i \(-0.386857\pi\)
−0.637883 + 0.770133i \(0.720190\pi\)
\(242\) 0 0
\(243\) 7.79423 + 13.5000i 0.500000 + 0.866025i
\(244\) 0 0
\(245\) 9.26013 16.0390i 0.591608 1.02470i
\(246\) 0 0
\(247\) −9.16515 15.8745i −0.583165 1.01007i
\(248\) 0 0
\(249\) −1.50000 + 2.59808i −0.0950586 + 0.164646i
\(250\) 0 0
\(251\) 12.1244 0.765283 0.382641 0.923897i \(-0.375015\pi\)
0.382641 + 0.923897i \(0.375015\pi\)
\(252\) 0 0
\(253\) −2.00000 −0.125739
\(254\) 0 0
\(255\) −12.1244 + 21.0000i −0.759257 + 1.31507i
\(256\) 0 0
\(257\) 2.64575 + 4.58258i 0.165037 + 0.285853i 0.936669 0.350217i \(-0.113892\pi\)
−0.771631 + 0.636070i \(0.780559\pi\)
\(258\) 0 0
\(259\) 15.8745i 0.986394i
\(260\) 0 0
\(261\) 11.9059 6.87386i 0.736956 0.425481i
\(262\) 0 0
\(263\) −6.92820 4.00000i −0.427211 0.246651i 0.270947 0.962594i \(-0.412663\pi\)
−0.698158 + 0.715944i \(0.745997\pi\)
\(264\) 0 0
\(265\) 12.1244i 0.744793i
\(266\) 0 0
\(267\) −9.16515 −0.560898
\(268\) 0 0
\(269\) −6.61438 + 11.4564i −0.403286 + 0.698511i −0.994120 0.108281i \(-0.965465\pi\)
0.590835 + 0.806793i \(0.298799\pi\)
\(270\) 0 0
\(271\) −6.87386 + 3.96863i −0.417557 + 0.241077i −0.694032 0.719944i \(-0.744167\pi\)
0.276474 + 0.961021i \(0.410834\pi\)
\(272\) 0 0
\(273\) −7.93725 13.7477i −0.480384 0.832050i
\(274\) 0 0
\(275\) −1.73205 + 1.00000i −0.104447 + 0.0603023i
\(276\) 0 0
\(277\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(278\) 0 0
\(279\) 23.8118i 1.42557i
\(280\) 0 0
\(281\) 9.16515i 0.546747i 0.961908 + 0.273374i \(0.0881395\pi\)
−0.961908 + 0.273374i \(0.911860\pi\)
\(282\) 0 0
\(283\) −18.3303 10.5830i −1.08962 0.629094i −0.156147 0.987734i \(-0.549907\pi\)
−0.933476 + 0.358639i \(0.883241\pi\)
\(284\) 0 0
\(285\) 21.0000 12.1244i 1.24393 0.718185i
\(286\) 0 0
\(287\) −24.2487 14.0000i −1.43136 0.826394i
\(288\) 0 0
\(289\) −5.50000 9.52628i −0.323529 0.560369i
\(290\) 0 0
\(291\) −12.9904 7.50000i −0.761510 0.439658i
\(292\) 0 0
\(293\) −2.64575 −0.154566 −0.0772832 0.997009i \(-0.524625\pi\)
−0.0772832 + 0.997009i \(0.524625\pi\)
\(294\) 0 0
\(295\) −32.0780 −1.86766
\(296\) 0 0
\(297\) −4.50000 2.59808i −0.261116 0.150756i
\(298\) 0 0
\(299\) −3.46410 6.00000i −0.200334 0.346989i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) −9.16515 15.8745i −0.526524 0.911967i
\(304\) 0 0
\(305\) −31.7490 18.3303i −1.81794 1.04959i
\(306\) 0 0
\(307\) 5.29150i 0.302002i −0.988534 0.151001i \(-0.951750\pi\)
0.988534 0.151001i \(-0.0482497\pi\)
\(308\) 0 0
\(309\) 27.4955i 1.56416i
\(310\) 0 0
\(311\) −13.8564 + 24.0000i −0.785725 + 1.36092i 0.142840 + 0.989746i \(0.454376\pi\)
−0.928565 + 0.371169i \(0.878957\pi\)
\(312\) 0 0
\(313\) 19.5000 11.2583i 1.10221 0.636358i 0.165406 0.986226i \(-0.447107\pi\)
0.936799 + 0.349867i \(0.113773\pi\)
\(314\) 0 0
\(315\) 18.1865 10.5000i 1.02470 0.591608i
\(316\) 0 0
\(317\) 11.9059 6.87386i 0.668701 0.386075i −0.126883 0.991918i \(-0.540497\pi\)
0.795584 + 0.605843i \(0.207164\pi\)
\(318\) 0 0
\(319\) −2.29129 + 3.96863i −0.128287 + 0.222200i
\(320\) 0 0
\(321\) 8.66025i 0.483368i
\(322\) 0 0
\(323\) 28.0000i 1.55796i
\(324\) 0 0
\(325\) −6.00000 3.46410i −0.332820 0.192154i
\(326\) 0 0
\(327\) 12.1244 + 21.0000i 0.670478 + 1.16130i
\(328\) 0 0
\(329\) 18.3303i 1.01058i
\(330\) 0 0
\(331\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(332\) 0 0
\(333\) −9.00000 + 15.5885i −0.493197 + 0.854242i
\(334\) 0 0
\(335\) 24.2487 1.32485
\(336\) 0 0
\(337\) −7.00000 −0.381314 −0.190657 0.981657i \(-0.561062\pi\)
−0.190657 + 0.981657i \(0.561062\pi\)
\(338\) 0 0
\(339\) −27.4955 15.8745i −1.49335 0.862185i
\(340\) 0 0
\(341\) −3.96863 6.87386i −0.214913 0.372241i
\(342\) 0 0
\(343\) 18.5203i 1.00000i
\(344\) 0 0
\(345\) 7.93725 4.58258i 0.427327 0.246718i
\(346\) 0 0
\(347\) −17.3205 10.0000i −0.929814 0.536828i −0.0430610 0.999072i \(-0.513711\pi\)
−0.886753 + 0.462244i \(0.847044\pi\)
\(348\) 0 0
\(349\) 3.46410i 0.185429i −0.995693 0.0927146i \(-0.970446\pi\)
0.995693 0.0927146i \(-0.0295544\pi\)
\(350\) 0 0
\(351\) 18.0000i 0.960769i
\(352\) 0 0
\(353\) 5.29150 9.16515i 0.281638 0.487812i −0.690150 0.723666i \(-0.742456\pi\)
0.971788 + 0.235854i \(0.0757889\pi\)
\(354\) 0 0
\(355\) −9.16515 + 5.29150i −0.486436 + 0.280844i
\(356\) 0 0
\(357\) 24.2487i 1.28338i
\(358\) 0 0
\(359\) 22.5167 13.0000i 1.18838 0.686114i 0.230445 0.973085i \(-0.425982\pi\)
0.957939 + 0.286972i \(0.0926486\pi\)
\(360\) 0 0
\(361\) 4.50000 7.79423i 0.236842 0.410223i
\(362\) 0 0
\(363\) −17.3205 −0.909091
\(364\) 0 0
\(365\) 18.3303i 0.959452i
\(366\) 0 0
\(367\) 11.4564 + 6.61438i 0.598021 + 0.345268i 0.768263 0.640135i \(-0.221121\pi\)
−0.170241 + 0.985402i \(0.554455\pi\)
\(368\) 0 0
\(369\) −15.8745 27.4955i −0.826394 1.43136i
\(370\) 0 0
\(371\) 6.06218 + 10.5000i 0.314733 + 0.545133i
\(372\) 0 0
\(373\) −4.00000 6.92820i −0.207112 0.358729i 0.743691 0.668523i \(-0.233073\pi\)
−0.950804 + 0.309794i \(0.899740\pi\)
\(374\) 0 0
\(375\) −6.87386 + 11.9059i −0.354965 + 0.614817i
\(376\) 0 0
\(377\) −15.8745 −0.817579
\(378\) 0 0
\(379\) −36.6606 −1.88313 −0.941564 0.336833i \(-0.890644\pi\)
−0.941564 + 0.336833i \(0.890644\pi\)
\(380\) 0 0
\(381\) 11.9059 20.6216i 0.609957 1.05648i
\(382\) 0 0
\(383\) −12.1244 21.0000i −0.619526 1.07305i −0.989572 0.144037i \(-0.953992\pi\)
0.370047 0.929013i \(-0.379342\pi\)
\(384\) 0 0
\(385\) −3.50000 + 6.06218i −0.178377 + 0.308957i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 7.93725 + 4.58258i 0.402435 + 0.232346i 0.687534 0.726152i \(-0.258693\pi\)
−0.285099 + 0.958498i \(0.592027\pi\)
\(390\) 0 0
\(391\) 10.5830i 0.535206i
\(392\) 0 0
\(393\) −9.00000 −0.453990
\(394\) 0 0
\(395\) 6.06218 10.5000i 0.305021 0.528312i
\(396\) 0 0
\(397\) −12.0000 + 6.92820i −0.602263 + 0.347717i −0.769931 0.638127i \(-0.779710\pi\)
0.167668 + 0.985843i \(0.446376\pi\)
\(398\) 0 0
\(399\) 12.1244 21.0000i 0.606977 1.05131i
\(400\) 0 0
\(401\) −15.8745 + 9.16515i −0.792735 + 0.457686i −0.840925 0.541152i \(-0.817988\pi\)
0.0481894 + 0.998838i \(0.484655\pi\)
\(402\) 0 0
\(403\) 13.7477 23.8118i 0.684823 1.18615i
\(404\) 0 0
\(405\) 23.8118 1.18322
\(406\) 0 0
\(407\) 6.00000i 0.297409i
\(408\) 0 0
\(409\) −16.5000 9.52628i −0.815872 0.471044i 0.0331186 0.999451i \(-0.489456\pi\)
−0.848991 + 0.528407i \(0.822789\pi\)
\(410\) 0 0
\(411\) 13.7477 7.93725i 0.678125 0.391516i
\(412\) 0 0
\(413\) −27.7804 + 16.0390i −1.36698 + 0.789228i
\(414\) 0 0
\(415\) 2.29129 + 3.96863i 0.112475 + 0.194812i
\(416\) 0 0
\(417\) 23.8118 + 13.7477i 1.16607 + 0.673229i
\(418\) 0 0
\(419\) 24.2487 1.18463 0.592314 0.805708i \(-0.298215\pi\)
0.592314 + 0.805708i \(0.298215\pi\)
\(420\) 0 0
\(421\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(422\) 0 0
\(423\) −10.3923 + 18.0000i −0.505291 + 0.875190i
\(424\) 0 0
\(425\) 5.29150 + 9.16515i 0.256676 + 0.444575i
\(426\) 0 0
\(427\) −36.6606 −1.77413
\(428\) 0 0
\(429\) 3.00000 + 5.19615i 0.144841 + 0.250873i
\(430\) 0 0
\(431\) 6.92820 + 4.00000i 0.333720 + 0.192673i 0.657491 0.753462i \(-0.271618\pi\)
−0.323772 + 0.946135i \(0.604951\pi\)
\(432\) 0 0
\(433\) 20.7846i 0.998845i −0.866359 0.499422i \(-0.833546\pi\)
0.866359 0.499422i \(-0.166454\pi\)
\(434\) 0 0
\(435\) 21.0000i 1.00687i
\(436\) 0 0
\(437\) 5.29150 9.16515i 0.253127 0.438429i
\(438\) 0 0
\(439\) −29.7867 + 17.1974i −1.42164 + 0.820786i −0.996439 0.0843111i \(-0.973131\pi\)
−0.425204 + 0.905097i \(0.639798\pi\)
\(440\) 0 0
\(441\) 10.5000 18.1865i 0.500000 0.866025i
\(442\) 0 0
\(443\) −4.33013 + 2.50000i −0.205731 + 0.118779i −0.599326 0.800505i \(-0.704565\pi\)
0.393595 + 0.919284i \(0.371231\pi\)
\(444\) 0 0
\(445\) −7.00000 + 12.1244i −0.331832 + 0.574750i
\(446\) 0 0
\(447\) 15.8745i 0.750838i
\(448\) 0 0
\(449\) 27.4955i 1.29759i 0.760963 + 0.648795i \(0.224727\pi\)
−0.760963 + 0.648795i \(0.775273\pi\)
\(450\) 0 0
\(451\) 9.16515 + 5.29150i 0.431570 + 0.249167i
\(452\) 0 0
\(453\) −3.96863 6.87386i −0.186462 0.322962i
\(454\) 0 0
\(455\) −24.2487 −1.13680
\(456\) 0 0
\(457\) 6.50000 + 11.2583i 0.304057 + 0.526642i 0.977051 0.213006i \(-0.0683253\pi\)
−0.672994 + 0.739648i \(0.734992\pi\)
\(458\) 0 0
\(459\) −13.7477 + 23.8118i −0.641689 + 1.11144i
\(460\) 0 0
\(461\) 10.5830 0.492900 0.246450 0.969156i \(-0.420736\pi\)
0.246450 + 0.969156i \(0.420736\pi\)
\(462\) 0 0
\(463\) 36.6606 1.70376 0.851881 0.523735i \(-0.175462\pi\)
0.851881 + 0.523735i \(0.175462\pi\)
\(464\) 0 0
\(465\) 31.5000 + 18.1865i 1.46078 + 0.843380i
\(466\) 0 0
\(467\) 12.1244 + 21.0000i 0.561048 + 0.971764i 0.997405 + 0.0719905i \(0.0229351\pi\)
−0.436357 + 0.899774i \(0.643732\pi\)
\(468\) 0 0
\(469\) 21.0000 12.1244i 0.969690 0.559851i
\(470\) 0 0
\(471\) 10.3923 6.00000i 0.478852 0.276465i
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 10.5830i 0.485582i
\(476\) 0 0
\(477\) 13.7477i 0.629465i
\(478\) 0 0
\(479\) −10.3923 + 18.0000i −0.474837 + 0.822441i −0.999585 0.0288165i \(-0.990826\pi\)
0.524748 + 0.851258i \(0.324159\pi\)
\(480\) 0 0
\(481\) 18.0000 10.3923i 0.820729 0.473848i
\(482\) 0 0
\(483\) 4.58258 7.93725i 0.208514 0.361158i
\(484\) 0 0
\(485\) −19.8431 + 11.4564i −0.901030 + 0.520210i
\(486\) 0 0
\(487\) 6.87386 11.9059i 0.311484 0.539507i −0.667199 0.744879i \(-0.732507\pi\)
0.978684 + 0.205372i \(0.0658405\pi\)
\(488\) 0 0
\(489\) 15.8745 0.717870
\(490\) 0 0
\(491\) 31.0000i 1.39901i 0.714628 + 0.699505i \(0.246596\pi\)
−0.714628 + 0.699505i \(0.753404\pi\)
\(492\) 0 0
\(493\) 21.0000 + 12.1244i 0.945792 + 0.546054i
\(494\) 0 0
\(495\) −6.87386 + 3.96863i −0.308957 + 0.178377i
\(496\) 0 0
\(497\) −5.29150 + 9.16515i −0.237356 + 0.411113i
\(498\) 0 0
\(499\) 4.58258 + 7.93725i 0.205144 + 0.355320i 0.950179 0.311706i \(-0.100900\pi\)
−0.745034 + 0.667026i \(0.767567\pi\)
\(500\) 0 0
\(501\) 9.00000 15.5885i 0.402090 0.696441i
\(502\) 0 0
\(503\) 24.2487 1.08120 0.540598 0.841281i \(-0.318198\pi\)
0.540598 + 0.841281i \(0.318198\pi\)
\(504\) 0 0
\(505\) −28.0000 −1.24598
\(506\) 0 0
\(507\) 0.866025 1.50000i 0.0384615 0.0666173i
\(508\) 0 0
\(509\) 1.32288 + 2.29129i 0.0586354 + 0.101560i 0.893853 0.448360i \(-0.147992\pi\)
−0.835218 + 0.549920i \(0.814658\pi\)
\(510\) 0 0
\(511\) 9.16515 + 15.8745i 0.405442 + 0.702247i
\(512\) 0 0
\(513\) 23.8118 13.7477i 1.05131 0.606977i
\(514\) 0 0
\(515\) −36.3731 21.0000i −1.60279 0.925371i
\(516\) 0 0
\(517\) 6.92820i 0.304702i
\(518\) 0 0
\(519\) 18.3303 0.804611
\(520\) 0 0
\(521\) −10.5830 + 18.3303i −0.463650 + 0.803065i −0.999139 0.0414767i \(-0.986794\pi\)
0.535490 + 0.844542i \(0.320127\pi\)
\(522\) 0 0
\(523\) 13.7477 7.93725i 0.601146 0.347072i −0.168346 0.985728i \(-0.553843\pi\)
0.769492 + 0.638656i \(0.220509\pi\)
\(524\) 0 0
\(525\) 9.16515i 0.400000i
\(526\) 0 0
\(527\) −36.3731 + 21.0000i −1.58444 + 0.914774i
\(528\) 0 0
\(529\) −9.50000 + 16.4545i −0.413043 + 0.715412i
\(530\) 0 0
\(531\) −36.3731 −1.57846
\(532\) 0 0
\(533\) 36.6606i 1.58795i
\(534\) 0 0
\(535\) 11.4564 + 6.61438i 0.495305 + 0.285965i
\(536\) 0 0
\(537\) −30.0000 + 17.3205i −1.29460 + 0.747435i
\(538\) 0 0
\(539\) 7.00000i 0.301511i
\(540\) 0 0
\(541\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(542\) 0 0
\(543\) 31.1769 + 18.0000i 1.33793 + 0.772454i
\(544\) 0 0
\(545\) 37.0405 1.58664
\(546\) 0 0
\(547\) 9.16515 0.391874 0.195937 0.980617i \(-0.437225\pi\)
0.195937 + 0.980617i \(0.437225\pi\)
\(548\) 0 0
\(549\) −36.0000 20.7846i −1.53644 0.887066i
\(550\) 0 0
\(551\) −12.1244 21.0000i −0.516515 0.894630i
\(552\) 0 0
\(553\) 12.1244i 0.515580i
\(554\) 0 0
\(555\) 13.7477 + 23.8118i 0.583559 + 1.01075i
\(556\) 0 0
\(557\) −27.7804 16.0390i −1.17709 0.679595i −0.221753 0.975103i \(-0.571178\pi\)
−0.955340 + 0.295508i \(0.904511\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 9.16515i 0.386953i
\(562\) 0 0
\(563\) 18.1865 31.5000i 0.766471 1.32757i −0.172994 0.984923i \(-0.555344\pi\)
0.939465 0.342644i \(-0.111322\pi\)
\(564\) 0 0
\(565\) −42.0000 + 24.2487i −1.76695 + 1.02015i
\(566\) 0 0
\(567\) 20.6216 11.9059i 0.866025 0.500000i
\(568\) 0 0
\(569\) 23.8118 13.7477i 0.998241 0.576335i 0.0905136 0.995895i \(-0.471149\pi\)
0.907727 + 0.419561i \(0.137816\pi\)
\(570\) 0 0
\(571\) 18.3303 31.7490i 0.767099 1.32865i −0.172030 0.985092i \(-0.555033\pi\)
0.939130 0.343563i \(-0.111634\pi\)
\(572\) 0 0
\(573\) 27.7128i 1.15772i
\(574\) 0 0
\(575\) 4.00000i 0.166812i
\(576\) 0 0
\(577\) 16.5000 + 9.52628i 0.686904 + 0.396584i 0.802451 0.596718i \(-0.203529\pi\)
−0.115547 + 0.993302i \(0.536862\pi\)
\(578\) 0 0
\(579\) 18.1865 + 31.5000i 0.755807 + 1.30910i
\(580\) 0 0
\(581\) 3.96863 + 2.29129i 0.164646 + 0.0950586i
\(582\) 0 0
\(583\) −2.29129 3.96863i −0.0948954 0.164364i
\(584\) 0 0
\(585\) −23.8118 13.7477i −0.984495 0.568399i
\(586\) 0 0
\(587\) 12.1244 0.500426 0.250213 0.968191i \(-0.419499\pi\)
0.250213 + 0.968191i \(0.419499\pi\)
\(588\) 0 0
\(589\) 42.0000 1.73058
\(590\) 0 0
\(591\) −13.7477 7.93725i −0.565506 0.326495i
\(592\) 0 0
\(593\) −13.2288 22.9129i −0.543240 0.940919i −0.998715 0.0506708i \(-0.983864\pi\)
0.455475 0.890248i \(-0.349469\pi\)
\(594\) 0 0
\(595\) 32.0780 + 18.5203i 1.31507 + 0.759257i
\(596\) 0 0
\(597\) −7.93725 + 4.58258i −0.324850 + 0.187552i
\(598\) 0 0
\(599\) 19.0526 + 11.0000i 0.778466 + 0.449448i 0.835887 0.548902i \(-0.184954\pi\)
−0.0574201 + 0.998350i \(0.518287\pi\)
\(600\) 0 0
\(601\) 32.9090i 1.34238i 0.741283 + 0.671192i \(0.234218\pi\)
−0.741283 + 0.671192i \(0.765782\pi\)
\(602\) 0 0
\(603\) 27.4955 1.11970
\(604\) 0 0
\(605\) −13.2288 + 22.9129i −0.537825 + 0.931541i
\(606\) 0 0
\(607\) 16.0390 9.26013i 0.651004 0.375857i −0.137837 0.990455i \(-0.544015\pi\)
0.788841 + 0.614598i \(0.210682\pi\)
\(608\) 0 0
\(609\) −10.5000 18.1865i −0.425481 0.736956i
\(610\) 0 0
\(611\) 20.7846 12.0000i 0.840855 0.485468i
\(612\) 0 0
\(613\) 7.00000 12.1244i 0.282727 0.489698i −0.689328 0.724449i \(-0.742094\pi\)
0.972056 + 0.234751i \(0.0754275\pi\)
\(614\) 0 0
\(615\) −48.4974 −1.95560
\(616\) 0 0
\(617\) 18.3303i 0.737950i −0.929439 0.368975i \(-0.879709\pi\)
0.929439 0.368975i \(-0.120291\pi\)
\(618\) 0 0
\(619\) 27.4955 + 15.8745i 1.10514 + 0.638050i 0.937565 0.347810i \(-0.113074\pi\)
0.167570 + 0.985860i \(0.446408\pi\)
\(620\) 0 0
\(621\) 9.00000 5.19615i 0.361158 0.208514i
\(622\) 0 0
\(623\) 14.0000i 0.560898i
\(624\) 0 0
\(625\) 15.5000 + 26.8468i 0.620000 + 1.07387i
\(626\) 0 0
\(627\) −4.58258 + 7.93725i −0.183010 + 0.316983i
\(628\) 0 0
\(629\) −31.7490 −1.26592
\(630\) 0 0
\(631\) −13.7477 −0.547288 −0.273644 0.961831i \(-0.588229\pi\)
−0.273644 + 0.961831i \(0.588229\pi\)
\(632\) 0 0
\(633\) 15.8745 27.4955i 0.630955 1.09285i
\(634\) 0 0
\(635\) −18.1865 31.5000i −0.721711 1.25004i
\(636\) 0 0
\(637\) −21.0000 + 12.1244i −0.832050 + 0.480384i
\(638\) 0 0
\(639\) −10.3923 + 6.00000i −0.411113 + 0.237356i
\(640\) 0 0
\(641\) 31.7490 + 18.3303i 1.25401 + 0.724003i 0.971904 0.235379i \(-0.0756333\pi\)
0.282107 + 0.959383i \(0.408967\pi\)
\(642\) 0 0
\(643\) 5.29150i 0.208676i 0.994542 + 0.104338i \(0.0332725\pi\)
−0.994542 + 0.104338i \(0.966728\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 13.8564 24.0000i 0.544752 0.943537i −0.453871 0.891067i \(-0.649957\pi\)
0.998623 0.0524699i \(-0.0167094\pi\)
\(648\) 0 0
\(649\) 10.5000 6.06218i 0.412161 0.237961i
\(650\) 0 0
\(651\) 36.3731 1.42557
\(652\) 0 0
\(653\) −3.96863 + 2.29129i −0.155304 + 0.0896650i −0.575638 0.817705i \(-0.695246\pi\)
0.420334 + 0.907370i \(0.361913\pi\)
\(654\) 0 0
\(655\) −6.87386 + 11.9059i −0.268584 + 0.465201i
\(656\) 0 0
\(657\) 20.7846i 0.810885i
\(658\) 0 0
\(659\) 4.00000i 0.155818i 0.996960 + 0.0779089i \(0.0248243\pi\)
−0.996960 + 0.0779089i \(0.975176\pi\)
\(660\) 0 0
\(661\) 6.00000 + 3.46410i 0.233373 + 0.134738i 0.612127 0.790759i \(-0.290314\pi\)
−0.378754 + 0.925497i \(0.623647\pi\)
\(662\) 0 0
\(663\) 27.4955 15.8745i 1.06783 0.616515i
\(664\) 0 0
\(665\) −18.5203 32.0780i −0.718185 1.24393i
\(666\) 0 0
\(667\) −4.58258 7.93725i −0.177438 0.307332i
\(668\) 0 0
\(669\) −19.8431 11.4564i −0.767180 0.442932i
\(670\) 0 0
\(671\) 13.8564 0.534921
\(672\) 0 0
\(673\) −9.00000 −0.346925 −0.173462 0.984841i \(-0.555495\pi\)
−0.173462 + 0.984841i \(0.555495\pi\)
\(674\) 0 0
\(675\) 5.19615 9.00000i 0.200000 0.346410i
\(676\) 0 0
\(677\) −1.32288 2.29129i −0.0508422 0.0880613i 0.839484 0.543384i \(-0.182857\pi\)
−0.890326 + 0.455323i \(0.849524\pi\)
\(678\) 0 0
\(679\) −11.4564 + 19.8431i −0.439658 + 0.761510i
\(680\) 0 0
\(681\) −10.5000 18.1865i −0.402361 0.696909i
\(682\) 0 0
\(683\) −0.866025 0.500000i −0.0331375 0.0191320i 0.483340 0.875433i \(-0.339424\pi\)
−0.516477 + 0.856301i \(0.672757\pi\)
\(684\) 0 0
\(685\) 24.2487i 0.926496i
\(686\) 0 0
\(687\) 24.0000i 0.915657i
\(688\) 0 0
\(689\) 7.93725 13.7477i 0.302385 0.523747i
\(690\) 0 0
\(691\) 27.4955 15.8745i 1.04598 0.603895i 0.124456 0.992225i \(-0.460281\pi\)
0.921520 + 0.388330i \(0.126948\pi\)
\(692\) 0 0
\(693\) −3.96863 + 6.87386i −0.150756 + 0.261116i
\(694\) 0 0
\(695\) 36.3731 21.0000i 1.37971 0.796575i
\(696\) 0 0
\(697\) 28.0000 48.4974i 1.06058 1.83697i
\(698\) 0 0
\(699\) 47.6235i 1.80129i
\(700\) 0 0
\(701\) 41.2432i 1.55773i −0.627189 0.778867i \(-0.715795\pi\)
0.627189 0.778867i \(-0.284205\pi\)
\(702\) 0 0
\(703\) 27.4955 + 15.8745i 1.03701 + 0.598718i
\(704\) 0 0
\(705\) 15.8745 + 27.4955i 0.597869 + 1.03554i
\(706\) 0 0
\(707\) −24.2487 + 14.0000i −0.911967 + 0.526524i
\(708\) 0 0
\(709\) 7.00000 + 12.1244i 0.262891 + 0.455340i 0.967009 0.254743i \(-0.0819909\pi\)
−0.704118 + 0.710083i \(0.748658\pi\)
\(710\) 0 0
\(711\) 6.87386 11.9059i 0.257790 0.446505i
\(712\) 0 0
\(713\) 15.8745 0.594505
\(714\) 0 0
\(715\) 9.16515 0.342757
\(716\) 0 0
\(717\) 15.0000 + 8.66025i 0.560185 + 0.323423i
\(718\) 0 0
\(719\) −12.1244 21.0000i −0.452162 0.783168i 0.546358 0.837552i \(-0.316014\pi\)
−0.998520 + 0.0543839i \(0.982681\pi\)
\(720\) 0 0
\(721\) −42.0000 −1.56416
\(722\) 0 0
\(723\) −7.79423 + 4.50000i −0.289870 + 0.167357i
\(724\) 0 0
\(725\) −7.93725 4.58258i −0.294782 0.170193i
\(726\) 0 0
\(727\) 7.93725i 0.294376i 0.989109 + 0.147188i \(0.0470223\pi\)
−0.989109 + 0.147188i \(0.952978\pi\)
\(728\) 0 0
\(729\) 27.0000 1.00000
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) −30.0000 + 17.3205i −1.10808 + 0.639748i −0.938330 0.345740i \(-0.887628\pi\)
−0.169745 + 0.985488i \(0.554294\pi\)
\(734\) 0 0
\(735\) −16.0390 27.7804i −0.591608 1.02470i
\(736\) 0 0
\(737\) −7.93725 + 4.58258i −0.292373 + 0.168801i
\(738\) 0 0
\(739\) −13.7477 + 23.8118i −0.505718 + 0.875930i 0.494260 + 0.869314i \(0.335439\pi\)
−0.999978 + 0.00661558i \(0.997894\pi\)
\(740\) 0 0
\(741\) −31.7490 −1.16633
\(742\) 0 0
\(743\) 10.0000i 0.366864i 0.983032 + 0.183432i \(0.0587208\pi\)
−0.983032 + 0.183432i \(0.941279\pi\)
\(744\) 0 0
\(745\) −21.0000 12.1244i −0.769380 0.444202i
\(746\) 0 0
\(747\) 2.59808 + 4.50000i 0.0950586 + 0.164646i
\(748\) 0 0
\(749\) 13.2288 0.483368
\(750\) 0 0
\(751\) −2.29129 3.96863i −0.0836103 0.144817i 0.821188 0.570658i \(-0.193312\pi\)
−0.904798 + 0.425841i \(0.859978\pi\)
\(752\) 0 0
\(753\) 10.5000 18.1865i 0.382641 0.662754i
\(754\) 0 0
\(755\) −12.1244 −0.441250
\(756\) 0 0
\(757\) 28.0000 1.01768 0.508839 0.860862i \(-0.330075\pi\)
0.508839 + 0.860862i \(0.330075\pi\)
\(758\) 0 0
\(759\) −1.73205 + 3.00000i −0.0628695 + 0.108893i
\(760\) 0 0
\(761\) 2.64575 + 4.58258i 0.0959084 + 0.166118i 0.909987 0.414636i \(-0.136091\pi\)
−0.814079 + 0.580754i \(0.802758\pi\)
\(762\) 0 0
\(763\) 32.0780 18.5203i 1.16130 0.670478i
\(764\) 0 0
\(765\) 21.0000 + 36.3731i 0.759257 + 1.31507i
\(766\) 0 0
\(767\) 36.3731 + 21.0000i 1.31336 + 0.758266i
\(768\) 0 0
\(769\) 15.5885i 0.562134i −0.959688 0.281067i \(-0.909312\pi\)
0.959688 0.281067i \(-0.0906883\pi\)
\(770\) 0 0
\(771\) 9.16515 0.330075
\(772\) 0 0
\(773\) −5.29150 + 9.16515i −0.190322 + 0.329648i −0.945357 0.326037i \(-0.894287\pi\)
0.755035 + 0.655685i \(0.227620\pi\)
\(774\) 0 0
\(775\) 13.7477 7.93725i 0.493833 0.285115i
\(776\) 0 0
\(777\) 23.8118 + 13.7477i 0.854242 + 0.493197i
\(778\) 0 0
\(779\) −48.4974 + 28.0000i −1.73760 + 1.00320i
\(780\) 0 0
\(781\) 2.00000 3.46410i 0.0715656 0.123955i
\(782\) 0 0
\(783\) 23.8118i 0.850963i
\(784\) 0 0
\(785\) 18.3303i 0.654237i
\(786\) 0 0
\(787\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(788\) 0 0
\(789\) −12.0000 + 6.92820i −0.427211 + 0.246651i
\(790\) 0 0
\(791\) −24.2487 + 42.0000i −0.862185 + 1.49335i
\(792\) 0 0
\(793\) 24.0000 + 41.5692i 0.852265 + 1.47617i
\(794\) 0 0
\(795\) 18.1865 + 10.5000i 0.645010 + 0.372397i
\(796\) 0 0
\(797\) −13.2288 −0.468587 −0.234293 0.972166i \(-0.575278\pi\)
−0.234293 + 0.972166i \(0.575278\pi\)
\(798\) 0 0
\(799\) −36.6606 −1.29696
\(800\) 0 0
\(801\) −7.93725 + 13.7477i −0.280449 + 0.485752i
\(802\) 0 0
\(803\) −3.46410 6.00000i −0.122245 0.211735i
\(804\) 0 0
\(805\) −7.00000 12.1244i −0.246718 0.427327i
\(806\) 0 0
\(807\) 11.4564 + 19.8431i 0.403286 + 0.698511i
\(808\) 0 0
\(809\) 31.7490 + 18.3303i 1.11624 + 0.644459i 0.940437 0.339967i \(-0.110416\pi\)
0.175799 + 0.984426i \(0.443749\pi\)
\(810\) 0 0
\(811\) 47.6235i 1.67229i −0.548510 0.836144i \(-0.684805\pi\)
0.548510 0.836144i \(-0.315195\pi\)
\(812\) 0 0
\(813\) 13.7477i 0.482154i
\(814\) 0 0
\(815\) 12.1244 21.0000i 0.424698 0.735598i
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) −27.4955 −0.960769
\(820\) 0 0
\(821\) −11.9059 + 6.87386i −0.415518 + 0.239899i −0.693158 0.720786i \(-0.743781\pi\)
0.277640 + 0.960685i \(0.410448\pi\)
\(822\) 0 0
\(823\) 9.16515 15.8745i 0.319477 0.553351i −0.660902 0.750472i \(-0.729826\pi\)
0.980379 + 0.197122i \(0.0631594\pi\)
\(824\) 0 0
\(825\) 3.46410i 0.120605i
\(826\) 0 0
\(827\) 17.0000i 0.591148i 0.955320 + 0.295574i \(0.0955109\pi\)
−0.955320 + 0.295574i \(0.904489\pi\)
\(828\) 0 0
\(829\) −15.0000 8.66025i −0.520972 0.300783i 0.216361 0.976314i \(-0.430581\pi\)
−0.737332 + 0.675530i \(0.763915\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 37.0405 1.28338
\(834\) 0 0
\(835\) −13.7477 23.8118i −0.475760 0.824040i
\(836\) 0 0
\(837\) 35.7176 + 20.6216i 1.23458 + 0.712786i
\(838\) 0 0
\(839\) −38.1051 −1.31553 −0.657767 0.753221i \(-0.728499\pi\)
−0.657767 + 0.753221i \(0.728499\pi\)
\(840\) 0 0
\(841\) 8.00000 0.275862
\(842\) 0 0
\(843\) 13.7477 + 7.93725i 0.473497 + 0.273374i
\(844\) 0 0
\(845\) −1.32288 2.29129i −0.0455083 0.0788227i
\(846\) 0 0
\(847\) 26.4575i 0.909091i
\(848\) 0 0
\(849\) −31.7490 + 18.3303i −1.08962 + 0.629094i
\(850\) 0 0
\(851\) 10.3923 + 6.00000i 0.356244 + 0.205677i
\(852\) 0 0
\(853\) 3.46410i 0.118609i 0.998240 + 0.0593043i \(0.0188882\pi\)
−0.998240 + 0.0593043i \(0.981112\pi\)
\(854\) 0 0
\(855\) 42.0000i 1.43637i
\(856\) 0 0
\(857\) 10.5830 18.3303i 0.361509 0.626151i −0.626701 0.779260i \(-0.715595\pi\)
0.988209 + 0.153109i \(0.0489285\pi\)
\(858\) 0 0
\(859\) −45.8258 + 26.4575i −1.56355 + 0.902719i −0.566662 + 0.823951i \(0.691765\pi\)
−0.996893 + 0.0787681i \(0.974901\pi\)
\(860\) 0 0
\(861\) −42.0000 + 24.2487i −1.43136 + 0.826394i
\(862\) 0 0
\(863\) −22.5167 + 13.0000i −0.766476 + 0.442525i −0.831616 0.555351i \(-0.812584\pi\)
0.0651400 + 0.997876i \(0.479251\pi\)
\(864\) 0 0
\(865\) 14.0000 24.2487i 0.476014 0.824481i
\(866\) 0 0
\(867\) −19.0526 −0.647059
\(868\) 0 0
\(869\) 4.58258i 0.155453i
\(870\) 0 0
\(871\) −27.4955 15.8745i −0.931648 0.537887i
\(872\) 0 0
\(873\) −22.5000 + 12.9904i −0.761510 + 0.439658i
\(874\) 0 0
\(875\) 18.1865 + 10.5000i 0.614817 + 0.354965i
\(876\) 0 0
\(877\) −14.0000 24.2487i −0.472746 0.818821i 0.526767 0.850010i \(-0.323404\pi\)
−0.999514 + 0.0311889i \(0.990071\pi\)
\(878\) 0 0
\(879\) −2.29129 + 3.96863i −0.0772832 + 0.133858i
\(880\) 0 0
\(881\) −58.2065 −1.96103 −0.980514 0.196450i \(-0.937059\pi\)
−0.980514 + 0.196450i \(0.937059\pi\)
\(882\) 0 0
\(883\) −18.3303 −0.616864 −0.308432 0.951246i \(-0.599804\pi\)
−0.308432 + 0.951246i \(0.599804\pi\)
\(884\) 0 0
\(885\) −27.7804 + 48.1170i −0.933828 + 1.61744i
\(886\) 0 0
\(887\) 15.5885 + 27.0000i 0.523409 + 0.906571i 0.999629 + 0.0272449i \(0.00867339\pi\)
−0.476220 + 0.879326i \(0.657993\pi\)
\(888\) 0 0
\(889\) −31.5000 18.1865i −1.05648 0.609957i
\(890\) 0 0
\(891\) −7.79423 + 4.50000i −0.261116 + 0.150756i
\(892\) 0 0
\(893\) 31.7490 + 18.3303i 1.06244 + 0.613400i
\(894\) 0 0
\(895\) 52.9150i 1.76875i
\(896\) 0 0
\(897\) −12.0000 −0.400668
\(898\) 0 0
\(899\) 18.1865 31.5000i 0.606555 1.05058i
\(900\) 0 0
\(901\) −21.0000 + 12.1244i −0.699611 + 0.403921i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 47.6235 27.4955i 1.58306 0.913980i
\(906\) 0 0
\(907\) 4.58258 7.93725i 0.152162 0.263552i −0.779860 0.625954i \(-0.784710\pi\)
0.932022 + 0.362402i \(0.118043\pi\)
\(908\) 0 0
\(909\) −31.7490 −1.05305
\(910\) 0 0
\(911\) 32.0000i 1.06021i 0.847933 + 0.530104i \(0.177847\pi\)
−0.847933 + 0.530104i \(0.822153\pi\)
\(912\) 0 0
\(913\) −1.50000 0.866025i −0.0496428 0.0286613i
\(914\) 0 0
\(915\) −54.9909 + 31.7490i −1.81794 + 1.04959i
\(916\) 0 0
\(917\) 13.7477i 0.453990i
\(918\) 0 0
\(919\) 18.3303 + 31.7490i 0.604661 + 1.04730i 0.992105 + 0.125410i \(0.0400247\pi\)
−0.387444 + 0.921893i \(0.626642\pi\)
\(920\) 0 0
\(921\) −7.93725 4.58258i −0.261541 0.151001i
\(922\) 0 0
\(923\) 13.8564 0.456089
\(924\) 0 0
\(925\) 12.0000 0.394558
\(926\) 0 0
\(927\) −41.2432 23.8118i −1.35460 0.782081i
\(928\) 0 0
\(929\) 26.4575 + 45.8258i 0.868043 + 1.50349i 0.863994 + 0.503503i \(0.167956\pi\)
0.00404909 + 0.999992i \(0.498711\pi\)
\(930\) 0 0
\(931\) −32.0780 18.5203i −1.05131 0.606977i
\(932\) 0 0
\(933\) 24.0000 + 41.5692i 0.785725 + 1.36092i
\(934\) 0 0
\(935\) −12.1244 7.00000i −0.396509 0.228924i
\(936\) 0 0
\(937\) 8.66025i 0.282918i 0.989944 + 0.141459i \(0.0451794\pi\)
−0.989944 + 0.141459i \(0.954821\pi\)
\(938\) 0 0
\(939\) 39.0000i 1.27272i
\(940\) 0 0
\(941\) 14.5516 25.2042i 0.474370 0.821632i −0.525200 0.850979i \(-0.676009\pi\)
0.999569 + 0.0293467i \(0.00934269\pi\)
\(942\) 0 0
\(943\) −18.3303 + 10.5830i −0.596917 + 0.344630i
\(944\) 0 0
\(945\) 36.3731i 1.18322i
\(946\) 0 0
\(947\) 38.1051 22.0000i 1.23825 0.714904i 0.269514 0.962997i \(-0.413137\pi\)
0.968736 + 0.248093i \(0.0798037\pi\)
\(948\) 0 0
\(949\) 12.0000 20.7846i 0.389536 0.674697i
\(950\) 0 0
\(951\) 23.8118i 0.772149i
\(952\) 0 0
\(953\) 36.6606i 1.18755i −0.804630 0.593777i \(-0.797636\pi\)
0.804630 0.593777i \(-0.202364\pi\)
\(954\) 0 0
\(955\) −36.6606 21.1660i −1.18631 0.684916i
\(956\) 0 0
\(957\) 3.96863 + 6.87386i 0.128287 + 0.222200i
\(958\) 0 0
\(959\) −12.1244 21.0000i −0.391516 0.678125i
\(960\) 0 0
\(961\) 16.0000 + 27.7128i 0.516129 + 0.893962i
\(962\) 0 0
\(963\) 12.9904 + 7.50000i 0.418609 + 0.241684i
\(964\) 0 0
\(965\) 55.5608 1.78856
\(966\) 0 0
\(967\) 22.9129 0.736828 0.368414 0.929662i \(-0.379901\pi\)
0.368414 + 0.929662i \(0.379901\pi\)
\(968\) 0 0
\(969\) 42.0000 + 24.2487i 1.34923 + 0.778981i
\(970\) 0 0
\(971\) −26.8468 46.5000i −0.861554 1.49226i −0.870428 0.492295i \(-0.836158\pi\)
0.00887379 0.999961i \(-0.497175\pi\)
\(972\) 0 0
\(973\) 21.0000 36.3731i 0.673229 1.16607i
\(974\) 0 0
\(975\) −10.3923 + 6.00000i −0.332820 + 0.192154i
\(976\) 0 0
\(977\) −31.7490 18.3303i −1.01574 0.586438i −0.102874 0.994694i \(-0.532804\pi\)
−0.912867 + 0.408256i \(0.866137\pi\)
\(978\) 0 0
\(979\) 5.29150i 0.169117i
\(980\) 0 0
\(981\) 42.0000 1.34096
\(982\) 0 0
\(983\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(984\) 0 0
\(985\) −21.0000 + 12.1244i −0.669116 + 0.386314i
\(986\) 0 0
\(987\) 27.4955 + 15.8745i 0.875190 + 0.505291i
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) −2.29129 + 3.96863i −0.0727852 + 0.126068i −0.900121 0.435640i \(-0.856522\pi\)
0.827336 + 0.561708i \(0.189855\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 14.0000i 0.443830i
\(996\) 0 0
\(997\) 15.0000 + 8.66025i 0.475055 + 0.274273i 0.718353 0.695678i \(-0.244896\pi\)
−0.243299 + 0.969951i \(0.578229\pi\)
\(998\) 0 0
\(999\) 15.5885 + 27.0000i 0.493197 + 0.854242i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 672.2.bc.c.353.3 yes 8
3.2 odd 2 inner 672.2.bc.c.353.2 yes 8
4.3 odd 2 inner 672.2.bc.c.353.1 yes 8
7.5 odd 6 inner 672.2.bc.c.257.2 yes 8
12.11 even 2 inner 672.2.bc.c.353.4 yes 8
21.5 even 6 inner 672.2.bc.c.257.3 yes 8
28.19 even 6 inner 672.2.bc.c.257.4 yes 8
84.47 odd 6 inner 672.2.bc.c.257.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
672.2.bc.c.257.1 8 84.47 odd 6 inner
672.2.bc.c.257.2 yes 8 7.5 odd 6 inner
672.2.bc.c.257.3 yes 8 21.5 even 6 inner
672.2.bc.c.257.4 yes 8 28.19 even 6 inner
672.2.bc.c.353.1 yes 8 4.3 odd 2 inner
672.2.bc.c.353.2 yes 8 3.2 odd 2 inner
672.2.bc.c.353.3 yes 8 1.1 even 1 trivial
672.2.bc.c.353.4 yes 8 12.11 even 2 inner