Properties

Label 66.3.f.a.13.2
Level $66$
Weight $3$
Character 66.13
Analytic conductor $1.798$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [66,3,Mod(7,66)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("66.7"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(66, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 7])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 66 = 2 \cdot 3 \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 66.f (of order \(10\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.79836974478\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{10})\)
Coefficient field: 16.0.6879707136000000000000.7
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 4x^{14} + 15x^{12} - 56x^{10} + 209x^{8} - 56x^{6} + 15x^{4} - 4x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 13.2
Root \(1.13551 - 1.56290i\) of defining polynomial
Character \(\chi\) \(=\) 66.13
Dual form 66.3.f.a.61.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.34500 - 0.437016i) q^{2} +(1.40126 - 1.01807i) q^{3} +(1.61803 + 1.17557i) q^{4} +(1.96126 + 6.03615i) q^{5} +(-2.32960 + 0.756934i) q^{6} +(5.91718 - 8.14430i) q^{7} +(-1.66251 - 2.28825i) q^{8} +(0.927051 - 2.85317i) q^{9} -8.97571i q^{10} +(10.7270 + 2.43542i) q^{11} +3.46410 q^{12} +(-1.07106 - 0.348007i) q^{13} +(-11.5178 + 8.36815i) q^{14} +(8.89348 + 6.46149i) q^{15} +(1.23607 + 3.80423i) q^{16} +(-18.8514 + 6.12519i) q^{17} +(-2.49376 + 3.43237i) q^{18} +(0.867726 + 1.19432i) q^{19} +(-3.92253 + 12.0723i) q^{20} -17.4364i q^{21} +(-13.3635 - 7.96351i) q^{22} -38.3012 q^{23} +(-4.65921 - 1.51387i) q^{24} +(-12.3631 + 8.98233i) q^{25} +(1.28848 + 0.936136i) q^{26} +(-1.60570 - 4.94183i) q^{27} +(19.1484 - 6.22169i) q^{28} +(10.1256 - 13.9367i) q^{29} +(-9.13793 - 12.5773i) q^{30} +(-18.5793 + 57.1814i) q^{31} -5.65685i q^{32} +(17.5108 - 7.50823i) q^{33} +28.0319 q^{34} +(60.7653 + 19.7439i) q^{35} +(4.85410 - 3.52671i) q^{36} +(-19.5450 - 14.2003i) q^{37} +(-0.645151 - 1.98557i) q^{38} +(-1.85512 + 0.602766i) q^{39} +(10.5516 - 14.5230i) q^{40} +(-19.6761 - 27.0818i) q^{41} +(-7.61998 + 23.4519i) q^{42} -42.3015i q^{43} +(14.4937 + 16.5509i) q^{44} +19.0404 q^{45} +(51.5150 + 16.7382i) q^{46} +(48.3094 - 35.0988i) q^{47} +(5.60503 + 4.07230i) q^{48} +(-16.1747 - 49.7808i) q^{49} +(20.5538 - 6.67833i) q^{50} +(-20.1798 + 27.7751i) q^{51} +(-1.32390 - 1.82219i) q^{52} +(-7.40816 + 22.8000i) q^{53} +7.34847i q^{54} +(6.33793 + 69.5263i) q^{55} -28.4735 q^{56} +(2.43182 + 0.790145i) q^{57} +(-19.7095 + 14.3198i) q^{58} +(-35.0787 - 25.4862i) q^{59} +(6.79402 + 20.9098i) q^{60} +(-97.0652 + 31.5384i) q^{61} +(49.9783 - 68.7893i) q^{62} +(-17.7515 - 24.4329i) q^{63} +(-2.47214 + 7.60845i) q^{64} -7.14758i q^{65} +(-26.8331 + 2.44607i) q^{66} +110.204 q^{67} +(-37.7028 - 12.2504i) q^{68} +(-53.6699 + 38.9934i) q^{69} +(-73.1008 - 53.1109i) q^{70} +(10.2735 + 31.6186i) q^{71} +(-8.06998 + 2.62210i) q^{72} +(-26.8929 + 37.0149i) q^{73} +(20.0822 + 27.6408i) q^{74} +(-8.17925 + 25.1731i) q^{75} +2.95253i q^{76} +(83.3084 - 72.9531i) q^{77} +2.75855 q^{78} +(73.0619 + 23.7393i) q^{79} +(-20.5386 + 14.9222i) q^{80} +(-7.28115 - 5.29007i) q^{81} +(14.6291 + 45.0237i) q^{82} +(-67.1877 + 21.8306i) q^{83} +(20.4977 - 28.2127i) q^{84} +(-73.9451 - 101.777i) q^{85} +(-18.4864 + 56.8953i) q^{86} -29.8376i q^{87} +(-12.2609 - 28.5949i) q^{88} +53.1788 q^{89} +(-25.6092 - 8.32094i) q^{90} +(-9.17190 + 6.66377i) q^{91} +(-61.9726 - 45.0258i) q^{92} +(32.1804 + 99.0410i) q^{93} +(-80.3147 + 26.0958i) q^{94} +(-5.50727 + 7.58010i) q^{95} +(-5.75910 - 7.92672i) q^{96} +(33.4207 - 102.858i) q^{97} +74.0236i q^{98} +(16.8932 - 28.3482i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 8 q^{4} + 8 q^{5} + 60 q^{7} - 12 q^{9} - 4 q^{11} - 60 q^{13} - 32 q^{14} + 12 q^{15} - 16 q^{16} - 60 q^{17} - 16 q^{20} - 48 q^{22} - 8 q^{23} - 48 q^{25} + 48 q^{26} + 40 q^{28} - 160 q^{29}+ \cdots + 48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/66\mathbb{Z}\right)^\times\).

\(n\) \(13\) \(23\)
\(\chi(n)\) \(e\left(\frac{1}{10}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.34500 0.437016i −0.672499 0.218508i
\(3\) 1.40126 1.01807i 0.467086 0.339358i
\(4\) 1.61803 + 1.17557i 0.404508 + 0.293893i
\(5\) 1.96126 + 6.03615i 0.392253 + 1.20723i 0.931080 + 0.364814i \(0.118867\pi\)
−0.538828 + 0.842416i \(0.681133\pi\)
\(6\) −2.32960 + 0.756934i −0.388267 + 0.126156i
\(7\) 5.91718 8.14430i 0.845311 1.16347i −0.139565 0.990213i \(-0.544570\pi\)
0.984876 0.173258i \(-0.0554295\pi\)
\(8\) −1.66251 2.28825i −0.207813 0.286031i
\(9\) 0.927051 2.85317i 0.103006 0.317019i
\(10\) 8.97571i 0.897571i
\(11\) 10.7270 + 2.43542i 0.975183 + 0.221402i
\(12\) 3.46410 0.288675
\(13\) −1.07106 0.348007i −0.0823889 0.0267698i 0.267533 0.963549i \(-0.413792\pi\)
−0.349921 + 0.936779i \(0.613792\pi\)
\(14\) −11.5178 + 8.36815i −0.822698 + 0.597725i
\(15\) 8.89348 + 6.46149i 0.592899 + 0.430766i
\(16\) 1.23607 + 3.80423i 0.0772542 + 0.237764i
\(17\) −18.8514 + 6.12519i −1.10891 + 0.360305i −0.805524 0.592564i \(-0.798116\pi\)
−0.303382 + 0.952869i \(0.598116\pi\)
\(18\) −2.49376 + 3.43237i −0.138542 + 0.190687i
\(19\) 0.867726 + 1.19432i 0.0456698 + 0.0628591i 0.831241 0.555912i \(-0.187631\pi\)
−0.785571 + 0.618771i \(0.787631\pi\)
\(20\) −3.92253 + 12.0723i −0.196126 + 0.603615i
\(21\) 17.4364i 0.830304i
\(22\) −13.3635 7.96351i −0.607431 0.361978i
\(23\) −38.3012 −1.66527 −0.832635 0.553823i \(-0.813169\pi\)
−0.832635 + 0.553823i \(0.813169\pi\)
\(24\) −4.65921 1.51387i −0.194134 0.0630778i
\(25\) −12.3631 + 8.98233i −0.494525 + 0.359293i
\(26\) 1.28848 + 0.936136i 0.0495570 + 0.0360052i
\(27\) −1.60570 4.94183i −0.0594703 0.183031i
\(28\) 19.1484 6.22169i 0.683871 0.222203i
\(29\) 10.1256 13.9367i 0.349159 0.480577i −0.597929 0.801549i \(-0.704010\pi\)
0.947089 + 0.320972i \(0.104010\pi\)
\(30\) −9.13793 12.5773i −0.304598 0.419243i
\(31\) −18.5793 + 57.1814i −0.599334 + 1.84456i −0.0674851 + 0.997720i \(0.521498\pi\)
−0.531849 + 0.846839i \(0.678502\pi\)
\(32\) 5.65685i 0.176777i
\(33\) 17.5108 7.50823i 0.530629 0.227522i
\(34\) 28.0319 0.824467
\(35\) 60.7653 + 19.7439i 1.73615 + 0.564110i
\(36\) 4.85410 3.52671i 0.134836 0.0979642i
\(37\) −19.5450 14.2003i −0.528243 0.383791i 0.291457 0.956584i \(-0.405860\pi\)
−0.819700 + 0.572793i \(0.805860\pi\)
\(38\) −0.645151 1.98557i −0.0169777 0.0522518i
\(39\) −1.85512 + 0.602766i −0.0475672 + 0.0154555i
\(40\) 10.5516 14.5230i 0.263789 0.363075i
\(41\) −19.6761 27.0818i −0.479905 0.660532i 0.498582 0.866843i \(-0.333854\pi\)
−0.978487 + 0.206310i \(0.933854\pi\)
\(42\) −7.61998 + 23.4519i −0.181428 + 0.558378i
\(43\) 42.3015i 0.983755i −0.870664 0.491877i \(-0.836311\pi\)
0.870664 0.491877i \(-0.163689\pi\)
\(44\) 14.4937 + 16.5509i 0.329401 + 0.376158i
\(45\) 19.0404 0.423119
\(46\) 51.5150 + 16.7382i 1.11989 + 0.363875i
\(47\) 48.3094 35.0988i 1.02786 0.746783i 0.0599802 0.998200i \(-0.480896\pi\)
0.967879 + 0.251416i \(0.0808962\pi\)
\(48\) 5.60503 + 4.07230i 0.116772 + 0.0848395i
\(49\) −16.1747 49.7808i −0.330097 1.01593i
\(50\) 20.5538 6.67833i 0.411076 0.133567i
\(51\) −20.1798 + 27.7751i −0.395682 + 0.544610i
\(52\) −1.32390 1.82219i −0.0254596 0.0350421i
\(53\) −7.40816 + 22.8000i −0.139777 + 0.430188i −0.996302 0.0859161i \(-0.972618\pi\)
0.856526 + 0.516104i \(0.172618\pi\)
\(54\) 7.34847i 0.136083i
\(55\) 6.33793 + 69.5263i 0.115235 + 1.26412i
\(56\) −28.4735 −0.508456
\(57\) 2.43182 + 0.790145i 0.0426634 + 0.0138622i
\(58\) −19.7095 + 14.3198i −0.339819 + 0.246893i
\(59\) −35.0787 25.4862i −0.594554 0.431969i 0.249388 0.968404i \(-0.419771\pi\)
−0.843942 + 0.536435i \(0.819771\pi\)
\(60\) 6.79402 + 20.9098i 0.113234 + 0.348497i
\(61\) −97.0652 + 31.5384i −1.59123 + 0.517023i −0.964919 0.262548i \(-0.915437\pi\)
−0.626314 + 0.779571i \(0.715437\pi\)
\(62\) 49.9783 68.7893i 0.806102 1.10950i
\(63\) −17.7515 24.4329i −0.281770 0.387824i
\(64\) −2.47214 + 7.60845i −0.0386271 + 0.118882i
\(65\) 7.14758i 0.109963i
\(66\) −26.8331 + 2.44607i −0.406563 + 0.0370617i
\(67\) 110.204 1.64483 0.822417 0.568884i \(-0.192625\pi\)
0.822417 + 0.568884i \(0.192625\pi\)
\(68\) −37.7028 12.2504i −0.554453 0.180153i
\(69\) −53.6699 + 38.9934i −0.777824 + 0.565122i
\(70\) −73.1008 53.1109i −1.04430 0.758727i
\(71\) 10.2735 + 31.6186i 0.144697 + 0.445332i 0.996972 0.0777625i \(-0.0247776\pi\)
−0.852275 + 0.523094i \(0.824778\pi\)
\(72\) −8.06998 + 2.62210i −0.112083 + 0.0364180i
\(73\) −26.8929 + 37.0149i −0.368395 + 0.507053i −0.952464 0.304652i \(-0.901460\pi\)
0.584068 + 0.811704i \(0.301460\pi\)
\(74\) 20.0822 + 27.6408i 0.271381 + 0.373524i
\(75\) −8.17925 + 25.1731i −0.109057 + 0.335642i
\(76\) 2.95253i 0.0388490i
\(77\) 83.3084 72.9531i 1.08193 0.947443i
\(78\) 2.75855 0.0353660
\(79\) 73.0619 + 23.7393i 0.924835 + 0.300497i 0.732449 0.680822i \(-0.238377\pi\)
0.192386 + 0.981319i \(0.438377\pi\)
\(80\) −20.5386 + 14.9222i −0.256733 + 0.186527i
\(81\) −7.28115 5.29007i −0.0898908 0.0653095i
\(82\) 14.6291 + 45.0237i 0.178404 + 0.549070i
\(83\) −67.1877 + 21.8306i −0.809490 + 0.263019i −0.684382 0.729124i \(-0.739928\pi\)
−0.125108 + 0.992143i \(0.539928\pi\)
\(84\) 20.4977 28.2127i 0.244020 0.335865i
\(85\) −73.9451 101.777i −0.869943 1.19737i
\(86\) −18.4864 + 56.8953i −0.214958 + 0.661574i
\(87\) 29.8376i 0.342961i
\(88\) −12.2609 28.5949i −0.139328 0.324942i
\(89\) 53.1788 0.597514 0.298757 0.954329i \(-0.403428\pi\)
0.298757 + 0.954329i \(0.403428\pi\)
\(90\) −25.6092 8.32094i −0.284547 0.0924549i
\(91\) −9.17190 + 6.66377i −0.100790 + 0.0732283i
\(92\) −61.9726 45.0258i −0.673616 0.489410i
\(93\) 32.1804 + 99.0410i 0.346026 + 1.06496i
\(94\) −80.3147 + 26.0958i −0.854412 + 0.277615i
\(95\) −5.50727 + 7.58010i −0.0579712 + 0.0797906i
\(96\) −5.75910 7.92672i −0.0599906 0.0825700i
\(97\) 33.4207 102.858i 0.344543 1.06039i −0.617285 0.786740i \(-0.711767\pi\)
0.961828 0.273655i \(-0.0882326\pi\)
\(98\) 74.0236i 0.755343i
\(99\) 16.8932 28.3482i 0.170638 0.286346i
\(100\) −30.5633 −0.305633
\(101\) 3.21182 + 1.04358i 0.0318002 + 0.0103325i 0.324874 0.945757i \(-0.394678\pi\)
−0.293074 + 0.956090i \(0.594678\pi\)
\(102\) 39.2799 28.5385i 0.385097 0.279789i
\(103\) 94.7070 + 68.8087i 0.919486 + 0.668046i 0.943396 0.331669i \(-0.107612\pi\)
−0.0239101 + 0.999714i \(0.507612\pi\)
\(104\) 0.984312 + 3.02940i 0.00946454 + 0.0291289i
\(105\) 105.249 34.1974i 1.00237 0.325689i
\(106\) 19.9279 27.4284i 0.187999 0.258759i
\(107\) −35.0548 48.2488i −0.327615 0.450923i 0.613158 0.789960i \(-0.289899\pi\)
−0.940773 + 0.339037i \(0.889899\pi\)
\(108\) 3.21140 9.88367i 0.0297352 0.0915155i
\(109\) 188.343i 1.72792i 0.503560 + 0.863961i \(0.332023\pi\)
−0.503560 + 0.863961i \(0.667977\pi\)
\(110\) 21.8596 96.2825i 0.198724 0.875295i
\(111\) −41.8445 −0.376978
\(112\) 38.2968 + 12.4434i 0.341936 + 0.111102i
\(113\) −6.71498 + 4.87872i −0.0594246 + 0.0431745i −0.617101 0.786884i \(-0.711693\pi\)
0.557676 + 0.830058i \(0.311693\pi\)
\(114\) −2.92548 2.12549i −0.0256621 0.0186446i
\(115\) −75.1188 231.192i −0.653207 2.01036i
\(116\) 32.7672 10.6467i 0.282476 0.0917819i
\(117\) −1.98585 + 2.73328i −0.0169730 + 0.0233614i
\(118\) 36.0429 + 49.6088i 0.305448 + 0.420413i
\(119\) −61.6617 + 189.775i −0.518166 + 1.59475i
\(120\) 31.0928i 0.259106i
\(121\) 109.137 + 52.2496i 0.901962 + 0.431815i
\(122\) 144.335 1.18308
\(123\) −55.1426 17.9169i −0.448314 0.145666i
\(124\) −97.2827 + 70.6800i −0.784538 + 0.570000i
\(125\) 49.9003 + 36.2547i 0.399203 + 0.290038i
\(126\) 13.1982 + 40.6199i 0.104748 + 0.322380i
\(127\) 118.780 38.5938i 0.935272 0.303888i 0.198555 0.980090i \(-0.436375\pi\)
0.736717 + 0.676201i \(0.236375\pi\)
\(128\) 6.65003 9.15298i 0.0519534 0.0715077i
\(129\) −43.0660 59.2753i −0.333845 0.459498i
\(130\) −3.12361 + 9.61348i −0.0240278 + 0.0739498i
\(131\) 43.0571i 0.328680i −0.986404 0.164340i \(-0.947451\pi\)
0.986404 0.164340i \(-0.0525494\pi\)
\(132\) 37.1595 + 8.43654i 0.281511 + 0.0639132i
\(133\) 14.8614 0.111740
\(134\) −148.224 48.1609i −1.10615 0.359410i
\(135\) 26.6805 19.3845i 0.197633 0.143589i
\(136\) 45.3565 + 32.9534i 0.333504 + 0.242305i
\(137\) −5.36340 16.5069i −0.0391489 0.120488i 0.929572 0.368640i \(-0.120177\pi\)
−0.968721 + 0.248152i \(0.920177\pi\)
\(138\) 89.2266 28.9915i 0.646569 0.210083i
\(139\) 20.9854 28.8839i 0.150974 0.207798i −0.726831 0.686817i \(-0.759007\pi\)
0.877805 + 0.479019i \(0.159007\pi\)
\(140\) 75.1101 + 103.380i 0.536501 + 0.738430i
\(141\) 31.9607 98.3651i 0.226672 0.697624i
\(142\) 47.0165i 0.331102i
\(143\) −10.6417 6.34154i −0.0744173 0.0443465i
\(144\) 12.0000 0.0833333
\(145\) 103.983 + 33.7862i 0.717125 + 0.233008i
\(146\) 52.3469 38.0323i 0.358541 0.260495i
\(147\) −73.3455 53.2886i −0.498949 0.362508i
\(148\) −14.9311 45.9531i −0.100885 0.310494i
\(149\) 0.203427 0.0660976i 0.00136529 0.000443608i −0.308334 0.951278i \(-0.599772\pi\)
0.309700 + 0.950834i \(0.399772\pi\)
\(150\) 22.0021 30.2833i 0.146681 0.201889i
\(151\) −60.5076 83.2816i −0.400713 0.551534i 0.560210 0.828351i \(-0.310720\pi\)
−0.960923 + 0.276817i \(0.910720\pi\)
\(152\) 1.29030 3.97114i 0.00848883 0.0261259i
\(153\) 59.4646i 0.388657i
\(154\) −143.931 + 61.7146i −0.934619 + 0.400744i
\(155\) −381.594 −2.46190
\(156\) −3.71024 1.20553i −0.0237836 0.00772776i
\(157\) −60.8637 + 44.2201i −0.387667 + 0.281657i −0.764499 0.644625i \(-0.777013\pi\)
0.376832 + 0.926282i \(0.377013\pi\)
\(158\) −87.8937 63.8585i −0.556289 0.404168i
\(159\) 12.8313 + 39.4907i 0.0807000 + 0.248369i
\(160\) 34.1456 11.0946i 0.213410 0.0693412i
\(161\) −226.635 + 311.936i −1.40767 + 1.93749i
\(162\) 7.48128 + 10.2971i 0.0461808 + 0.0635624i
\(163\) 59.3669 182.712i 0.364214 1.12094i −0.586258 0.810125i \(-0.699399\pi\)
0.950472 0.310811i \(-0.100601\pi\)
\(164\) 66.9500i 0.408231i
\(165\) 79.6640 + 90.9719i 0.482812 + 0.551345i
\(166\) 99.9076 0.601853
\(167\) −146.413 47.5726i −0.876727 0.284866i −0.164129 0.986439i \(-0.552481\pi\)
−0.712598 + 0.701573i \(0.752481\pi\)
\(168\) −39.8987 + 28.9881i −0.237493 + 0.172548i
\(169\) −135.698 98.5902i −0.802946 0.583374i
\(170\) 54.9779 + 169.205i 0.323399 + 0.995321i
\(171\) 4.21203 1.36857i 0.0246318 0.00800334i
\(172\) 49.7284 68.4452i 0.289118 0.397937i
\(173\) 193.249 + 265.985i 1.11705 + 1.53749i 0.810602 + 0.585597i \(0.199140\pi\)
0.306446 + 0.951888i \(0.400860\pi\)
\(174\) −13.0395 + 40.1314i −0.0749396 + 0.230641i
\(175\) 153.839i 0.879080i
\(176\) 3.99442 + 43.8183i 0.0226956 + 0.248968i
\(177\) −75.1011 −0.424300
\(178\) −71.5253 23.2400i −0.401828 0.130562i
\(179\) 101.266 73.5741i 0.565732 0.411029i −0.267820 0.963469i \(-0.586303\pi\)
0.833552 + 0.552440i \(0.186303\pi\)
\(180\) 30.8079 + 22.3833i 0.171155 + 0.124352i
\(181\) −49.8275 153.353i −0.275290 0.847255i −0.989143 0.146959i \(-0.953051\pi\)
0.713853 0.700296i \(-0.246949\pi\)
\(182\) 15.2483 4.95449i 0.0837821 0.0272225i
\(183\) −103.905 + 143.013i −0.567787 + 0.781492i
\(184\) 63.6760 + 87.6425i 0.346065 + 0.476318i
\(185\) 47.3821 145.827i 0.256119 0.788254i
\(186\) 147.273i 0.791791i
\(187\) −217.137 + 19.7939i −1.16116 + 0.105850i
\(188\) 119.427 0.635252
\(189\) −49.7490 16.1644i −0.263222 0.0855261i
\(190\) 10.7199 7.78845i 0.0564204 0.0409919i
\(191\) 199.335 + 144.825i 1.04364 + 0.758247i 0.970992 0.239110i \(-0.0768558\pi\)
0.0726456 + 0.997358i \(0.476856\pi\)
\(192\) 4.28187 + 13.1782i 0.0223014 + 0.0686366i
\(193\) −258.540 + 84.0049i −1.33959 + 0.435258i −0.889177 0.457563i \(-0.848722\pi\)
−0.450410 + 0.892822i \(0.648722\pi\)
\(194\) −89.9014 + 123.739i −0.463409 + 0.637828i
\(195\) −7.27677 10.0156i −0.0373168 0.0513621i
\(196\) 32.3495 99.5615i 0.165048 0.507967i
\(197\) 371.771i 1.88716i −0.331139 0.943582i \(-0.607433\pi\)
0.331139 0.943582i \(-0.392567\pi\)
\(198\) −35.1099 + 30.7457i −0.177323 + 0.155281i
\(199\) 113.221 0.568951 0.284476 0.958683i \(-0.408180\pi\)
0.284476 + 0.958683i \(0.408180\pi\)
\(200\) 41.1076 + 13.3567i 0.205538 + 0.0667833i
\(201\) 154.424 112.196i 0.768280 0.558188i
\(202\) −3.86382 2.80723i −0.0191278 0.0138972i
\(203\) −53.5897 164.932i −0.263989 0.812473i
\(204\) −65.3031 + 21.2183i −0.320113 + 0.104011i
\(205\) 124.880 171.882i 0.609170 0.838451i
\(206\) −97.3102 133.936i −0.472380 0.650175i
\(207\) −35.5072 + 109.280i −0.171532 + 0.527922i
\(208\) 4.50470i 0.0216572i
\(209\) 6.39943 + 14.9248i 0.0306193 + 0.0714104i
\(210\) −156.504 −0.745257
\(211\) 125.892 + 40.9049i 0.596646 + 0.193862i 0.591744 0.806126i \(-0.298440\pi\)
0.00490194 + 0.999988i \(0.498440\pi\)
\(212\) −38.7896 + 28.1823i −0.182970 + 0.132935i
\(213\) 46.5858 + 33.8466i 0.218713 + 0.158904i
\(214\) 26.0631 + 80.2140i 0.121790 + 0.374832i
\(215\) 255.338 82.9643i 1.18762 0.385881i
\(216\) −8.63864 + 11.8901i −0.0399937 + 0.0550466i
\(217\) 355.765 + 489.668i 1.63947 + 2.25653i
\(218\) 82.3091 253.321i 0.377565 1.16202i
\(219\) 79.2463i 0.361855i
\(220\) −71.4781 + 119.947i −0.324901 + 0.545212i
\(221\) 22.3225 0.101007
\(222\) 56.2808 + 18.2867i 0.253517 + 0.0823727i
\(223\) −108.333 + 78.7084i −0.485798 + 0.352953i −0.803566 0.595216i \(-0.797067\pi\)
0.317768 + 0.948168i \(0.397067\pi\)
\(224\) −46.0711 33.4726i −0.205675 0.149431i
\(225\) 14.1669 + 43.6012i 0.0629639 + 0.193783i
\(226\) 11.1637 3.62731i 0.0493969 0.0160500i
\(227\) 225.392 310.225i 0.992914 1.36663i 0.0633412 0.997992i \(-0.479824\pi\)
0.929573 0.368637i \(-0.120176\pi\)
\(228\) 3.00589 + 4.13725i 0.0131837 + 0.0181458i
\(229\) 31.3827 96.5861i 0.137042 0.421773i −0.858860 0.512211i \(-0.828827\pi\)
0.995902 + 0.0904376i \(0.0288266\pi\)
\(230\) 343.780i 1.49470i
\(231\) 42.4649 187.040i 0.183831 0.809698i
\(232\) −48.7246 −0.210020
\(233\) 35.8160 + 11.6373i 0.153717 + 0.0499457i 0.384865 0.922973i \(-0.374248\pi\)
−0.231148 + 0.972919i \(0.574248\pi\)
\(234\) 3.86544 2.80841i 0.0165190 0.0120017i
\(235\) 306.609 + 222.765i 1.30472 + 0.947935i
\(236\) −26.7977 82.4750i −0.113550 0.349470i
\(237\) 126.547 41.1176i 0.533954 0.173492i
\(238\) 165.870 228.300i 0.696931 0.959243i
\(239\) −71.1372 97.9120i −0.297645 0.409674i 0.633833 0.773470i \(-0.281480\pi\)
−0.931479 + 0.363796i \(0.881480\pi\)
\(240\) −13.5880 + 41.8197i −0.0566168 + 0.174249i
\(241\) 25.2413i 0.104736i 0.998628 + 0.0523679i \(0.0166768\pi\)
−0.998628 + 0.0523679i \(0.983323\pi\)
\(242\) −123.956 117.970i −0.512213 0.487481i
\(243\) −15.5885 −0.0641500
\(244\) −194.130 63.0768i −0.795616 0.258511i
\(245\) 268.761 195.266i 1.09698 0.797006i
\(246\) 66.3367 + 48.1964i 0.269661 + 0.195920i
\(247\) −0.513750 1.58116i −0.00207996 0.00640145i
\(248\) 161.733 52.5503i 0.652150 0.211896i
\(249\) −71.9222 + 98.9924i −0.288844 + 0.397560i
\(250\) −51.2719 70.5697i −0.205088 0.282279i
\(251\) 46.2888 142.462i 0.184417 0.567578i −0.815520 0.578728i \(-0.803549\pi\)
0.999938 + 0.0111499i \(0.00354919\pi\)
\(252\) 60.4014i 0.239688i
\(253\) −410.857 93.2795i −1.62394 0.368694i
\(254\) −176.624 −0.695371
\(255\) −207.232 67.3339i −0.812676 0.264055i
\(256\) −12.9443 + 9.40456i −0.0505636 + 0.0367366i
\(257\) 326.640 + 237.318i 1.27097 + 0.923416i 0.999241 0.0389575i \(-0.0124037\pi\)
0.271732 + 0.962373i \(0.412404\pi\)
\(258\) 32.0194 + 98.5456i 0.124106 + 0.381960i
\(259\) −231.303 + 75.1547i −0.893060 + 0.290173i
\(260\) 8.40249 11.5650i 0.0323173 0.0444809i
\(261\) −30.3769 41.8102i −0.116386 0.160192i
\(262\) −18.8166 + 57.9116i −0.0718192 + 0.221037i
\(263\) 163.005i 0.619790i 0.950771 + 0.309895i \(0.100294\pi\)
−0.950771 + 0.309895i \(0.899706\pi\)
\(264\) −46.2924 27.5864i −0.175350 0.104494i
\(265\) −152.153 −0.574164
\(266\) −19.9885 6.49467i −0.0751449 0.0244161i
\(267\) 74.5172 54.1399i 0.279091 0.202771i
\(268\) 178.314 + 129.552i 0.665350 + 0.483405i
\(269\) 109.868 + 338.138i 0.408431 + 1.25702i 0.917996 + 0.396589i \(0.129806\pi\)
−0.509566 + 0.860432i \(0.670194\pi\)
\(270\) −44.3565 + 14.4123i −0.164283 + 0.0533788i
\(271\) −261.630 + 360.103i −0.965424 + 1.32879i −0.0210996 + 0.999777i \(0.506717\pi\)
−0.944325 + 0.329015i \(0.893283\pi\)
\(272\) −46.6032 64.1438i −0.171335 0.235823i
\(273\) −6.06798 + 18.6753i −0.0222271 + 0.0684078i
\(274\) 24.5456i 0.0895823i
\(275\) −154.495 + 66.2442i −0.561800 + 0.240888i
\(276\) −132.679 −0.480722
\(277\) −97.4558 31.6653i −0.351826 0.114315i 0.127772 0.991804i \(-0.459217\pi\)
−0.479598 + 0.877488i \(0.659217\pi\)
\(278\) −40.8480 + 29.6778i −0.146935 + 0.106755i
\(279\) 145.924 + 106.020i 0.523025 + 0.380000i
\(280\) −55.8441 171.870i −0.199443 0.613823i
\(281\) −139.633 + 45.3696i −0.496915 + 0.161458i −0.546743 0.837300i \(-0.684133\pi\)
0.0498281 + 0.998758i \(0.484133\pi\)
\(282\) −85.9742 + 118.333i −0.304873 + 0.419622i
\(283\) −75.7942 104.322i −0.267824 0.368628i 0.653829 0.756642i \(-0.273161\pi\)
−0.921654 + 0.388014i \(0.873161\pi\)
\(284\) −20.5470 + 63.2371i −0.0723485 + 0.222666i
\(285\) 16.2285i 0.0569421i
\(286\) 11.5417 + 13.1799i 0.0403555 + 0.0460837i
\(287\) −336.989 −1.17418
\(288\) −16.1400 5.24419i −0.0560415 0.0182090i
\(289\) 84.0512 61.0668i 0.290835 0.211304i
\(290\) −125.092 90.8846i −0.431351 0.313395i
\(291\) −57.8863 178.156i −0.198922 0.612219i
\(292\) −87.0271 + 28.2768i −0.298038 + 0.0968385i
\(293\) −42.8674 + 59.0020i −0.146305 + 0.201372i −0.875880 0.482529i \(-0.839718\pi\)
0.729574 + 0.683901i \(0.239718\pi\)
\(294\) 75.3615 + 103.726i 0.256332 + 0.352810i
\(295\) 85.0397 261.725i 0.288270 0.887205i
\(296\) 68.3318i 0.230851i
\(297\) −5.18891 56.9217i −0.0174711 0.191655i
\(298\) −0.302495 −0.00101508
\(299\) 41.0227 + 13.3291i 0.137200 + 0.0445789i
\(300\) −42.8271 + 31.1157i −0.142757 + 0.103719i
\(301\) −344.516 250.305i −1.14457 0.831579i
\(302\) 44.9872 + 138.456i 0.148964 + 0.458465i
\(303\) 5.56303 1.80754i 0.0183598 0.00596548i
\(304\) −3.47090 + 4.77729i −0.0114174 + 0.0157148i
\(305\) −380.741 524.045i −1.24833 1.71818i
\(306\) 25.9870 79.9797i 0.0849248 0.261372i
\(307\) 243.270i 0.792409i 0.918162 + 0.396204i \(0.129673\pi\)
−0.918162 + 0.396204i \(0.870327\pi\)
\(308\) 220.557 20.1057i 0.716095 0.0652784i
\(309\) 202.761 0.656186
\(310\) 513.243 + 166.763i 1.65562 + 0.537944i
\(311\) −127.901 + 92.9257i −0.411258 + 0.298797i −0.774111 0.633050i \(-0.781803\pi\)
0.362853 + 0.931846i \(0.381803\pi\)
\(312\) 4.46343 + 3.24287i 0.0143059 + 0.0103938i
\(313\) −5.38606 16.5766i −0.0172079 0.0529604i 0.942084 0.335377i \(-0.108864\pi\)
−0.959292 + 0.282417i \(0.908864\pi\)
\(314\) 101.186 32.8775i 0.322250 0.104705i
\(315\) 112.665 155.070i 0.357667 0.492287i
\(316\) 90.3095 + 124.300i 0.285790 + 0.393356i
\(317\) −22.8323 + 70.2706i −0.0720262 + 0.221674i −0.980589 0.196074i \(-0.937181\pi\)
0.908563 + 0.417748i \(0.137181\pi\)
\(318\) 58.7224i 0.184662i
\(319\) 142.559 124.839i 0.446895 0.391345i
\(320\) −50.7743 −0.158670
\(321\) −98.2416 31.9206i −0.306049 0.0994412i
\(322\) 441.145 320.510i 1.37001 0.995374i
\(323\) −23.6733 17.1997i −0.0732919 0.0532497i
\(324\) −5.56231 17.1190i −0.0171676 0.0528365i
\(325\) 16.3675 5.31812i 0.0503615 0.0163635i
\(326\) −159.697 + 219.803i −0.489867 + 0.674244i
\(327\) 191.747 + 263.918i 0.586384 + 0.807088i
\(328\) −29.2582 + 90.0475i −0.0892018 + 0.274535i
\(329\) 601.132i 1.82715i
\(330\) −67.3917 157.171i −0.204217 0.476277i
\(331\) 418.904 1.26557 0.632786 0.774327i \(-0.281911\pi\)
0.632786 + 0.774327i \(0.281911\pi\)
\(332\) −134.375 43.6612i −0.404745 0.131510i
\(333\) −58.6350 + 42.6008i −0.176081 + 0.127930i
\(334\) 176.136 + 127.970i 0.527352 + 0.383144i
\(335\) 216.139 + 665.207i 0.645191 + 1.98569i
\(336\) 66.3320 21.5526i 0.197417 0.0641445i
\(337\) −90.0326 + 123.919i −0.267159 + 0.367713i −0.921428 0.388549i \(-0.872976\pi\)
0.654269 + 0.756262i \(0.272976\pi\)
\(338\) 139.428 + 191.906i 0.412508 + 0.567768i
\(339\) −4.44253 + 13.6727i −0.0131048 + 0.0403324i
\(340\) 251.606i 0.740017i
\(341\) −338.561 + 568.136i −0.992849 + 1.66609i
\(342\) −6.26325 −0.0183136
\(343\) −32.0026 10.3983i −0.0933020 0.0303157i
\(344\) −96.7961 + 70.3265i −0.281384 + 0.204438i
\(345\) −340.631 247.483i −0.987337 0.717342i
\(346\) −143.680 442.202i −0.415261 1.27804i
\(347\) 288.706 93.8063i 0.832006 0.270335i 0.138116 0.990416i \(-0.455895\pi\)
0.693890 + 0.720081i \(0.255895\pi\)
\(348\) 35.0762 48.2782i 0.100794 0.138730i
\(349\) 270.255 + 371.974i 0.774369 + 1.06583i 0.995881 + 0.0906698i \(0.0289008\pi\)
−0.221512 + 0.975158i \(0.571099\pi\)
\(350\) 67.2301 206.913i 0.192086 0.591180i
\(351\) 5.85177i 0.0166717i
\(352\) 13.7768 60.6811i 0.0391387 0.172390i
\(353\) −35.2031 −0.0997256 −0.0498628 0.998756i \(-0.515878\pi\)
−0.0498628 + 0.998756i \(0.515878\pi\)
\(354\) 101.011 + 32.8204i 0.285341 + 0.0927130i
\(355\) −170.705 + 124.025i −0.480860 + 0.349365i
\(356\) 86.0451 + 62.5154i 0.241700 + 0.175605i
\(357\) 106.801 + 328.700i 0.299163 + 0.920729i
\(358\) −168.356 + 54.7021i −0.470267 + 0.152799i
\(359\) 123.345 169.770i 0.343581 0.472898i −0.601902 0.798570i \(-0.705590\pi\)
0.945483 + 0.325672i \(0.105590\pi\)
\(360\) −31.6547 43.5690i −0.0879298 0.121025i
\(361\) 110.882 341.259i 0.307151 0.945315i
\(362\) 228.035i 0.629931i
\(363\) 206.124 37.8949i 0.567834 0.104394i
\(364\) −22.6742 −0.0622917
\(365\) −276.171 89.7335i −0.756634 0.245845i
\(366\) 202.251 146.944i 0.552598 0.401486i
\(367\) −316.777 230.152i −0.863154 0.627118i 0.0655873 0.997847i \(-0.479108\pi\)
−0.928741 + 0.370729i \(0.879108\pi\)
\(368\) −47.3429 145.706i −0.128649 0.395941i
\(369\) −95.5098 + 31.0330i −0.258834 + 0.0841003i
\(370\) −127.458 + 175.430i −0.344480 + 0.474136i
\(371\) 141.854 + 195.246i 0.382357 + 0.526269i
\(372\) −64.3607 + 198.082i −0.173013 + 0.532479i
\(373\) 352.395i 0.944758i −0.881395 0.472379i \(-0.843395\pi\)
0.881395 0.472379i \(-0.156605\pi\)
\(374\) 300.698 + 68.2694i 0.804006 + 0.182539i
\(375\) 106.833 0.284889
\(376\) −160.629 52.1917i −0.427206 0.138808i
\(377\) −15.6952 + 11.4032i −0.0416318 + 0.0302472i
\(378\) 59.8481 + 43.4822i 0.158328 + 0.115032i
\(379\) −171.786 528.702i −0.453260 1.39499i −0.873166 0.487424i \(-0.837937\pi\)
0.419905 0.907568i \(-0.362063\pi\)
\(380\) −17.8219 + 5.79068i −0.0468997 + 0.0152386i
\(381\) 127.150 175.006i 0.333726 0.459334i
\(382\) −204.814 281.902i −0.536162 0.737963i
\(383\) −62.8828 + 193.533i −0.164185 + 0.505309i −0.998975 0.0452588i \(-0.985589\pi\)
0.834790 + 0.550568i \(0.185589\pi\)
\(384\) 19.5959i 0.0510310i
\(385\) 603.746 + 359.782i 1.56817 + 0.934498i
\(386\) 384.448 0.995978
\(387\) −120.693 39.2156i −0.311869 0.101332i
\(388\) 174.993 127.140i 0.451013 0.327680i
\(389\) −350.258 254.477i −0.900407 0.654184i 0.0381637 0.999272i \(-0.487849\pi\)
−0.938570 + 0.345088i \(0.887849\pi\)
\(390\) 5.41025 + 16.6510i 0.0138724 + 0.0426950i
\(391\) 722.031 234.602i 1.84663 0.600005i
\(392\) −87.0200 + 119.773i −0.221990 + 0.305543i
\(393\) −43.8353 60.3341i −0.111540 0.153522i
\(394\) −162.470 + 500.031i −0.412360 + 1.26911i
\(395\) 487.572i 1.23436i
\(396\) 60.6590 26.0093i 0.153179 0.0656800i
\(397\) −216.304 −0.544847 −0.272423 0.962177i \(-0.587825\pi\)
−0.272423 + 0.962177i \(0.587825\pi\)
\(398\) −152.282 49.4795i −0.382619 0.124320i
\(399\) 20.8247 15.1300i 0.0521921 0.0379198i
\(400\) −49.4525 35.9293i −0.123631 0.0898233i
\(401\) 24.4920 + 75.3786i 0.0610773 + 0.187977i 0.976940 0.213516i \(-0.0684916\pi\)
−0.915862 + 0.401493i \(0.868492\pi\)
\(402\) −256.731 + 83.4171i −0.638635 + 0.207505i
\(403\) 39.7990 54.7786i 0.0987568 0.135927i
\(404\) 3.97003 + 5.46427i 0.00982680 + 0.0135254i
\(405\) 17.6514 54.3253i 0.0435836 0.134137i
\(406\) 245.253i 0.604071i
\(407\) −175.076 199.927i −0.430162 0.491221i
\(408\) 97.1053 0.238003
\(409\) 306.832 + 99.6958i 0.750201 + 0.243755i 0.659068 0.752084i \(-0.270951\pi\)
0.0911333 + 0.995839i \(0.470951\pi\)
\(410\) −243.079 + 176.607i −0.592874 + 0.430749i
\(411\) −24.3207 17.6700i −0.0591745 0.0429928i
\(412\) 72.3497 + 222.670i 0.175606 + 0.540460i
\(413\) −415.134 + 134.885i −1.00517 + 0.326598i
\(414\) 95.5141 131.464i 0.230710 0.317545i
\(415\) −263.546 362.739i −0.635050 0.874071i
\(416\) −1.96862 + 6.05880i −0.00473227 + 0.0145644i
\(417\) 61.8385i 0.148294i
\(418\) −2.08484 22.8704i −0.00498766 0.0547140i
\(419\) 609.683 1.45509 0.727546 0.686059i \(-0.240661\pi\)
0.727546 + 0.686059i \(0.240661\pi\)
\(420\) 210.497 + 68.3947i 0.501184 + 0.162845i
\(421\) −25.3634 + 18.4276i −0.0602457 + 0.0437711i −0.617501 0.786570i \(-0.711855\pi\)
0.557255 + 0.830342i \(0.311855\pi\)
\(422\) −151.449 110.034i −0.358883 0.260744i
\(423\) −55.3576 170.373i −0.130869 0.402774i
\(424\) 64.4880 20.9534i 0.152094 0.0494185i
\(425\) 178.044 245.056i 0.418926 0.576602i
\(426\) −47.8663 65.8823i −0.112362 0.154653i
\(427\) −317.494 + 977.146i −0.743546 + 2.28840i
\(428\) 119.278i 0.278686i
\(429\) −21.3679 + 1.94787i −0.0498086 + 0.00454049i
\(430\) −379.686 −0.882990
\(431\) 345.006 + 112.099i 0.800478 + 0.260091i 0.680560 0.732693i \(-0.261737\pi\)
0.119918 + 0.992784i \(0.461737\pi\)
\(432\) 16.8151 12.2169i 0.0389238 0.0282798i
\(433\) 71.7297 + 52.1147i 0.165658 + 0.120357i 0.667525 0.744587i \(-0.267354\pi\)
−0.501868 + 0.864944i \(0.667354\pi\)
\(434\) −264.510 814.077i −0.609469 1.87575i
\(435\) 180.104 58.5194i 0.414032 0.134527i
\(436\) −221.411 + 304.746i −0.507823 + 0.698959i
\(437\) −33.2349 45.7440i −0.0760525 0.104677i
\(438\) 34.6319 106.586i 0.0790683 0.243347i
\(439\) 373.125i 0.849944i 0.905207 + 0.424972i \(0.139716\pi\)
−0.905207 + 0.424972i \(0.860284\pi\)
\(440\) 148.556 130.091i 0.337628 0.295661i
\(441\) −157.028 −0.356072
\(442\) −30.0237 9.75529i −0.0679269 0.0220708i
\(443\) −440.508 + 320.048i −0.994375 + 0.722456i −0.960875 0.276983i \(-0.910665\pi\)
−0.0335003 + 0.999439i \(0.510665\pi\)
\(444\) −67.7059 49.1912i −0.152491 0.110791i
\(445\) 104.298 + 320.995i 0.234377 + 0.721337i
\(446\) 180.104 58.5194i 0.403821 0.131209i
\(447\) 0.217762 0.299724i 0.000487164 0.000670524i
\(448\) 47.3374 + 65.1544i 0.105664 + 0.145434i
\(449\) 26.6050 81.8817i 0.0592539 0.182365i −0.917048 0.398776i \(-0.869435\pi\)
0.976302 + 0.216411i \(0.0694352\pi\)
\(450\) 64.8346i 0.144077i
\(451\) −145.110 338.427i −0.321752 0.750391i
\(452\) −16.6003 −0.0367264
\(453\) −169.574 55.0978i −0.374335 0.121629i
\(454\) −438.724 + 318.752i −0.966353 + 0.702096i
\(455\) −58.2120 42.2935i −0.127939 0.0929528i
\(456\) −2.23487 6.87822i −0.00490103 0.0150838i
\(457\) −399.616 + 129.843i −0.874434 + 0.284121i −0.711644 0.702540i \(-0.752049\pi\)
−0.162790 + 0.986661i \(0.552049\pi\)
\(458\) −84.4194 + 116.193i −0.184322 + 0.253697i
\(459\) 60.5393 + 83.3253i 0.131894 + 0.181537i
\(460\) 150.238 462.384i 0.326603 1.00518i
\(461\) 169.900i 0.368546i −0.982875 0.184273i \(-0.941007\pi\)
0.982875 0.184273i \(-0.0589930\pi\)
\(462\) −138.855 + 233.011i −0.300552 + 0.504352i
\(463\) 23.1381 0.0499743 0.0249872 0.999688i \(-0.492046\pi\)
0.0249872 + 0.999688i \(0.492046\pi\)
\(464\) 65.5344 + 21.2934i 0.141238 + 0.0458910i
\(465\) −534.712 + 388.491i −1.14992 + 0.835465i
\(466\) −43.0868 31.3044i −0.0924609 0.0671768i
\(467\) −86.8147 267.188i −0.185899 0.572137i 0.814064 0.580775i \(-0.197250\pi\)
−0.999963 + 0.00863779i \(0.997250\pi\)
\(468\) −6.42633 + 2.08804i −0.0137315 + 0.00446163i
\(469\) 652.096 897.534i 1.39040 1.91372i
\(470\) −315.037 433.611i −0.670291 0.922576i
\(471\) −40.2665 + 123.928i −0.0854915 + 0.263116i
\(472\) 122.640i 0.259830i
\(473\) 103.022 453.768i 0.217805 0.959341i
\(474\) −188.174 −0.396992
\(475\) −21.4556 6.97135i −0.0451697 0.0146765i
\(476\) −322.865 + 234.575i −0.678288 + 0.492805i
\(477\) 58.1844 + 42.2735i 0.121980 + 0.0886236i
\(478\) 52.8902 + 162.779i 0.110649 + 0.340543i
\(479\) 237.369 77.1258i 0.495551 0.161014i −0.0505703 0.998721i \(-0.516104\pi\)
0.546121 + 0.837706i \(0.316104\pi\)
\(480\) 36.5517 50.3091i 0.0761494 0.104811i
\(481\) 15.9920 + 22.0111i 0.0332474 + 0.0457611i
\(482\) 11.0309 33.9495i 0.0228856 0.0704346i
\(483\) 667.835i 1.38268i
\(484\) 115.165 + 212.840i 0.237944 + 0.439753i
\(485\) 686.415 1.41529
\(486\) 20.9664 + 6.81241i 0.0431408 + 0.0140173i
\(487\) −464.398 + 337.405i −0.953590 + 0.692824i −0.951653 0.307174i \(-0.900617\pi\)
−0.00193685 + 0.999998i \(0.500617\pi\)
\(488\) 233.539 + 169.676i 0.478564 + 0.347697i
\(489\) −102.826 316.467i −0.210279 0.647172i
\(490\) −446.818 + 145.180i −0.911872 + 0.296285i
\(491\) 35.6948 49.1297i 0.0726982 0.100060i −0.771119 0.636690i \(-0.780303\pi\)
0.843818 + 0.536630i \(0.180303\pi\)
\(492\) −68.1600 93.8142i −0.138537 0.190679i
\(493\) −105.517 + 324.748i −0.214030 + 0.658718i
\(494\) 2.35117i 0.00475946i
\(495\) 204.246 + 46.3713i 0.412618 + 0.0936793i
\(496\) −240.496 −0.484871
\(497\) 318.301 + 103.422i 0.640445 + 0.208093i
\(498\) 139.996 101.713i 0.281117 0.204244i
\(499\) −461.638 335.399i −0.925126 0.672143i 0.0196689 0.999807i \(-0.493739\pi\)
−0.944795 + 0.327663i \(0.893739\pi\)
\(500\) 38.1205 + 117.323i 0.0762409 + 0.234645i
\(501\) −253.595 + 82.3981i −0.506178 + 0.164467i
\(502\) −124.517 + 171.382i −0.248041 + 0.341399i
\(503\) −110.960 152.723i −0.220595 0.303624i 0.684348 0.729156i \(-0.260087\pi\)
−0.904943 + 0.425532i \(0.860087\pi\)
\(504\) −26.3964 + 81.2397i −0.0523738 + 0.161190i
\(505\) 21.4338i 0.0424431i
\(506\) 511.837 + 305.012i 1.01154 + 0.602790i
\(507\) −290.520 −0.573018
\(508\) 237.559 + 77.1877i 0.467636 + 0.151944i
\(509\) 92.8025 67.4249i 0.182323 0.132465i −0.492880 0.870097i \(-0.664056\pi\)
0.675203 + 0.737632i \(0.264056\pi\)
\(510\) 249.301 + 181.128i 0.488826 + 0.355153i
\(511\) 142.330 + 438.047i 0.278533 + 0.857235i
\(512\) 21.5200 6.99226i 0.0420312 0.0136568i
\(513\) 4.50884 6.20588i 0.00878915 0.0120972i
\(514\) −335.618 461.939i −0.652953 0.898713i
\(515\) −229.594 + 706.618i −0.445814 + 1.37207i
\(516\) 146.537i 0.283986i
\(517\) 603.696 258.852i 1.16769 0.500680i
\(518\) 343.945 0.663987
\(519\) 541.585 + 175.972i 1.04352 + 0.339059i
\(520\) −16.3554 + 11.8829i −0.0314527 + 0.0228518i
\(521\) 403.744 + 293.337i 0.774940 + 0.563027i 0.903456 0.428681i \(-0.141021\pi\)
−0.128516 + 0.991707i \(0.541021\pi\)
\(522\) 22.5851 + 69.5097i 0.0432664 + 0.133160i
\(523\) 484.403 157.392i 0.926201 0.300941i 0.193193 0.981161i \(-0.438116\pi\)
0.733008 + 0.680220i \(0.238116\pi\)
\(524\) 50.6166 69.6678i 0.0965966 0.132954i
\(525\) 156.619 + 215.568i 0.298323 + 0.410606i
\(526\) 71.2357 219.241i 0.135429 0.416808i
\(527\) 1191.75i 2.26139i
\(528\) 50.2075 + 57.3342i 0.0950900 + 0.108587i
\(529\) 937.982 1.77312
\(530\) 204.646 + 66.4935i 0.386124 + 0.125459i
\(531\) −105.236 + 76.4585i −0.198185 + 0.143990i
\(532\) 24.0463 + 17.4706i 0.0451997 + 0.0328395i
\(533\) 11.6495 + 35.8535i 0.0218565 + 0.0672674i
\(534\) −123.885 + 40.2528i −0.231995 + 0.0753798i
\(535\) 222.485 306.224i 0.415860 0.572382i
\(536\) −183.215 252.174i −0.341819 0.470473i
\(537\) 66.9961 206.193i 0.124760 0.383972i
\(538\) 502.809i 0.934590i
\(539\) −52.2696 573.391i −0.0969751 1.06381i
\(540\) 65.9577 0.122144
\(541\) −1003.39 326.021i −1.85469 0.602627i −0.995917 0.0902771i \(-0.971225\pi\)
−0.858777 0.512349i \(-0.828775\pi\)
\(542\) 509.262 370.001i 0.939598 0.682658i
\(543\) −225.946 164.159i −0.416107 0.302319i
\(544\) 34.6493 + 106.640i 0.0636936 + 0.196029i
\(545\) −1136.87 + 369.391i −2.08600 + 0.677782i
\(546\) 16.3228 22.4665i 0.0298953 0.0411474i
\(547\) 90.1315 + 124.055i 0.164774 + 0.226792i 0.883418 0.468587i \(-0.155237\pi\)
−0.718643 + 0.695379i \(0.755237\pi\)
\(548\) 10.7268 33.0137i 0.0195745 0.0602440i
\(549\) 306.181i 0.557707i
\(550\) 236.745 21.5814i 0.430446 0.0392389i
\(551\) 25.4312 0.0461546
\(552\) 178.453 + 57.9830i 0.323285 + 0.105042i
\(553\) 625.660 454.569i 1.13139 0.822005i
\(554\) 117.239 + 85.1795i 0.211624 + 0.153754i
\(555\) −82.0682 252.580i −0.147871 0.455099i
\(556\) 67.9101 22.0653i 0.122140 0.0396859i
\(557\) −97.4126 + 134.077i −0.174888 + 0.240713i −0.887458 0.460888i \(-0.847531\pi\)
0.712570 + 0.701601i \(0.247531\pi\)
\(558\) −149.935 206.368i −0.268701 0.369835i
\(559\) −14.7212 + 45.3072i −0.0263349 + 0.0810504i
\(560\) 255.570i 0.456375i
\(561\) −284.113 + 248.797i −0.506440 + 0.443489i
\(562\) 207.633 0.369455
\(563\) 511.675 + 166.253i 0.908837 + 0.295299i 0.725879 0.687822i \(-0.241433\pi\)
0.182957 + 0.983121i \(0.441433\pi\)
\(564\) 167.349 121.586i 0.296717 0.215578i
\(565\) −42.6185 30.9642i −0.0754310 0.0548039i
\(566\) 56.3527 + 173.436i 0.0995631 + 0.306424i
\(567\) −86.1678 + 27.9976i −0.151971 + 0.0493785i
\(568\) 55.2713 76.0744i 0.0973086 0.133934i
\(569\) −15.9900 22.0083i −0.0281019 0.0386789i 0.794735 0.606957i \(-0.207610\pi\)
−0.822837 + 0.568278i \(0.807610\pi\)
\(570\) 7.09211 21.8273i 0.0124423 0.0382935i
\(571\) 372.459i 0.652292i −0.945319 0.326146i \(-0.894250\pi\)
0.945319 0.326146i \(-0.105750\pi\)
\(572\) −9.76366 22.7709i −0.0170693 0.0398092i
\(573\) 426.762 0.744786
\(574\) 453.250 + 147.270i 0.789634 + 0.256568i
\(575\) 473.522 344.034i 0.823517 0.598320i
\(576\) 19.4164 + 14.1068i 0.0337090 + 0.0244911i
\(577\) 329.373 + 1013.71i 0.570837 + 1.75686i 0.649935 + 0.759989i \(0.274796\pi\)
−0.0790983 + 0.996867i \(0.525204\pi\)
\(578\) −139.736 + 45.4029i −0.241757 + 0.0785518i
\(579\) −276.759 + 380.926i −0.477994 + 0.657903i
\(580\) 128.530 + 176.907i 0.221604 + 0.305011i
\(581\) −219.767 + 676.372i −0.378256 + 1.16415i
\(582\) 264.916i 0.455183i
\(583\) −134.995 + 226.533i −0.231552 + 0.388565i
\(584\) 129.409 0.221590
\(585\) −20.3933 6.62617i −0.0348603 0.0113268i
\(586\) 83.4414 60.6237i 0.142391 0.103453i
\(587\) −474.689 344.882i −0.808670 0.587533i 0.104775 0.994496i \(-0.466588\pi\)
−0.913445 + 0.406963i \(0.866588\pi\)
\(588\) −56.0310 172.446i −0.0952908 0.293275i
\(589\) −84.4147 + 27.4280i −0.143319 + 0.0465671i
\(590\) −228.756 + 314.856i −0.387723 + 0.533654i
\(591\) −378.491 520.948i −0.640424 0.881468i
\(592\) 29.8621 91.9061i 0.0504427 0.155247i
\(593\) 173.493i 0.292568i 0.989243 + 0.146284i \(0.0467314\pi\)
−0.989243 + 0.146284i \(0.953269\pi\)
\(594\) −17.8966 + 78.8271i −0.0301290 + 0.132706i
\(595\) −1266.45 −2.12848
\(596\) 0.406855 + 0.132195i 0.000682643 + 0.000221804i
\(597\) 158.652 115.268i 0.265749 0.193078i
\(598\) −49.3504 35.8551i −0.0825257 0.0599584i
\(599\) −281.948 867.747i −0.470698 1.44866i −0.851673 0.524074i \(-0.824411\pi\)
0.380974 0.924586i \(-0.375589\pi\)
\(600\) 71.2004 23.1344i 0.118667 0.0385574i
\(601\) −57.0756 + 78.5579i −0.0949678 + 0.130712i −0.853857 0.520508i \(-0.825743\pi\)
0.758889 + 0.651220i \(0.225743\pi\)
\(602\) 353.985 + 487.219i 0.588015 + 0.809334i
\(603\) 102.165 314.431i 0.169427 0.521444i
\(604\) 205.884i 0.340867i
\(605\) −101.339 + 761.245i −0.167502 + 1.25826i
\(606\) −8.27219 −0.0136505
\(607\) −922.931 299.878i −1.52048 0.494034i −0.574567 0.818457i \(-0.694830\pi\)
−0.945912 + 0.324424i \(0.894830\pi\)
\(608\) 6.75611 4.90860i 0.0111120 0.00807335i
\(609\) −243.006 176.554i −0.399025 0.289908i
\(610\) 283.079 + 871.229i 0.464065 + 1.42824i
\(611\) −63.9566 + 20.7808i −0.104675 + 0.0340111i
\(612\) −69.9048 + 96.2157i −0.114224 + 0.157215i
\(613\) −269.859 371.429i −0.440227 0.605920i 0.530036 0.847975i \(-0.322178\pi\)
−0.970262 + 0.242055i \(0.922178\pi\)
\(614\) 106.313 327.197i 0.173148 0.532894i
\(615\) 367.989i 0.598356i
\(616\) −305.436 69.3450i −0.495837 0.112573i
\(617\) −836.518 −1.35578 −0.677891 0.735162i \(-0.737106\pi\)
−0.677891 + 0.735162i \(0.737106\pi\)
\(618\) −272.713 88.6100i −0.441284 0.143382i
\(619\) 154.261 112.077i 0.249210 0.181062i −0.456166 0.889894i \(-0.650778\pi\)
0.705377 + 0.708833i \(0.250778\pi\)
\(620\) −617.432 448.591i −0.995859 0.723534i
\(621\) 61.5002 + 189.278i 0.0990342 + 0.304796i
\(622\) 212.637 69.0899i 0.341860 0.111077i
\(623\) 314.668 433.104i 0.505086 0.695191i
\(624\) −4.58611 6.31224i −0.00734954 0.0101158i
\(625\) −239.028 + 735.654i −0.382446 + 1.17705i
\(626\) 24.6493i 0.0393758i
\(627\) 24.1618 + 14.3984i 0.0385355 + 0.0229639i
\(628\) −150.463 −0.239591
\(629\) 455.430 + 147.978i 0.724054 + 0.235259i
\(630\) −219.302 + 159.333i −0.348099 + 0.252909i
\(631\) −228.528 166.035i −0.362168 0.263130i 0.391788 0.920056i \(-0.371857\pi\)
−0.753956 + 0.656925i \(0.771857\pi\)
\(632\) −67.1448 206.650i −0.106242 0.326978i
\(633\) 218.052 70.8493i 0.344474 0.111926i
\(634\) 61.4188 84.5357i 0.0968750 0.133337i
\(635\) 465.916 + 641.279i 0.733726 + 1.00989i
\(636\) −25.6626 + 78.9814i −0.0403500 + 0.124185i
\(637\) 58.9469i 0.0925382i
\(638\) −246.299 + 105.608i −0.386048 + 0.165529i
\(639\) 99.7372 0.156083
\(640\) 68.2912 + 22.1892i 0.106705 + 0.0346706i
\(641\) −531.987 + 386.511i −0.829933 + 0.602982i −0.919540 0.392996i \(-0.871439\pi\)
0.0896074 + 0.995977i \(0.471439\pi\)
\(642\) 118.185 + 85.8663i 0.184089 + 0.133748i
\(643\) 171.361 + 527.393i 0.266502 + 0.820207i 0.991344 + 0.131292i \(0.0419127\pi\)
−0.724842 + 0.688915i \(0.758087\pi\)
\(644\) −733.406 + 238.298i −1.13883 + 0.370028i
\(645\) 273.331 376.207i 0.423768 0.583267i
\(646\) 24.3240 + 33.4791i 0.0376532 + 0.0518252i
\(647\) −217.679 + 669.949i −0.336444 + 1.03547i 0.629562 + 0.776950i \(0.283234\pi\)
−0.966006 + 0.258519i \(0.916766\pi\)
\(648\) 25.4558i 0.0392837i
\(649\) −314.220 358.822i −0.484160 0.552884i
\(650\) −24.3383 −0.0374436
\(651\) 997.036 + 323.957i 1.53155 + 0.497629i
\(652\) 310.849 225.845i 0.476762 0.346388i
\(653\) 114.090 + 82.8910i 0.174716 + 0.126939i 0.671707 0.740817i \(-0.265562\pi\)
−0.496990 + 0.867756i \(0.665562\pi\)
\(654\) −142.564 438.765i −0.217987 0.670895i
\(655\) 259.899 84.4463i 0.396792 0.128926i
\(656\) 78.7044 108.327i 0.119976 0.165133i
\(657\) 80.6786 + 111.045i 0.122798 + 0.169018i
\(658\) −262.704 + 808.521i −0.399247 + 1.22875i
\(659\) 346.909i 0.526418i 0.964739 + 0.263209i \(0.0847808\pi\)
−0.964739 + 0.263209i \(0.915219\pi\)
\(660\) 21.9552 + 240.846i 0.0332655 + 0.364919i
\(661\) 527.348 0.797803 0.398902 0.916994i \(-0.369392\pi\)
0.398902 + 0.916994i \(0.369392\pi\)
\(662\) −563.425 183.068i −0.851095 0.276538i
\(663\) 31.2796 22.7259i 0.0471789 0.0342774i
\(664\) 161.654 + 117.448i 0.243455 + 0.176880i
\(665\) 29.1471 + 89.7057i 0.0438303 + 0.134896i
\(666\) 97.4811 31.6735i 0.146368 0.0475579i
\(667\) −387.823 + 533.793i −0.581444 + 0.800289i
\(668\) −180.977 249.093i −0.270923 0.372894i
\(669\) −71.6713 + 220.582i −0.107132 + 0.329719i
\(670\) 989.158i 1.47636i
\(671\) −1118.03 + 101.918i −1.66621 + 0.151890i
\(672\) −98.6351 −0.146778
\(673\) 157.775 + 51.2641i 0.234435 + 0.0761726i 0.423878 0.905719i \(-0.360668\pi\)
−0.189443 + 0.981892i \(0.560668\pi\)
\(674\) 175.248 127.325i 0.260012 0.188910i
\(675\) 64.2407 + 46.6736i 0.0951714 + 0.0691460i
\(676\) −103.664 319.045i −0.153349 0.471960i
\(677\) 781.310 253.863i 1.15408 0.374982i 0.331399 0.943491i \(-0.392479\pi\)
0.822678 + 0.568508i \(0.192479\pi\)
\(678\) 11.9504 16.4483i 0.0176259 0.0242600i
\(679\) −639.952 880.819i −0.942492 1.29723i
\(680\) −109.956 + 338.409i −0.161700 + 0.497661i
\(681\) 664.171i 0.975287i
\(682\) 703.649 616.185i 1.03174 0.903497i
\(683\) −674.547 −0.987623 −0.493812 0.869569i \(-0.664397\pi\)
−0.493812 + 0.869569i \(0.664397\pi\)
\(684\) 8.42406 + 2.73714i 0.0123159 + 0.00400167i
\(685\) 89.1188 64.7486i 0.130100 0.0945235i
\(686\) 38.4992 + 27.9713i 0.0561212 + 0.0407745i
\(687\) −54.3565 167.292i −0.0791215 0.243511i
\(688\) 160.924 52.2875i 0.233902 0.0759993i
\(689\) 15.8691 21.8419i 0.0230321 0.0317009i
\(690\) 349.994 + 481.725i 0.507237 + 0.698152i
\(691\) 74.7079 229.927i 0.108116 0.332746i −0.882333 0.470625i \(-0.844029\pi\)
0.990449 + 0.137879i \(0.0440285\pi\)
\(692\) 657.551i 0.950218i
\(693\) −130.917 305.324i −0.188913 0.440583i
\(694\) −429.304 −0.618593
\(695\) 215.505 + 70.0219i 0.310080 + 0.100751i
\(696\) −68.2757 + 49.6052i −0.0980973 + 0.0712718i
\(697\) 536.803 + 390.010i 0.770162 + 0.559556i
\(698\) −200.933 618.409i −0.287870 0.885973i
\(699\) 62.0352 20.1565i 0.0887485 0.0288361i
\(700\) −180.849 + 248.917i −0.258355 + 0.355595i
\(701\) 266.793 + 367.210i 0.380590 + 0.523837i 0.955741 0.294211i \(-0.0950567\pi\)
−0.575151 + 0.818047i \(0.695057\pi\)
\(702\) 2.55732 7.87062i 0.00364290 0.0112117i
\(703\) 35.6650i 0.0507325i
\(704\) −45.0484 + 75.5952i −0.0639892 + 0.107380i
\(705\) 656.430 0.931106
\(706\) 47.3481 + 15.3843i 0.0670653 + 0.0217908i
\(707\) 27.5042 19.9829i 0.0389026 0.0282644i
\(708\) −121.516 88.2867i −0.171633 0.124699i
\(709\) 133.611 + 411.212i 0.188450 + 0.579989i 0.999991 0.00430687i \(-0.00137093\pi\)
−0.811541 + 0.584295i \(0.801371\pi\)
\(710\) 283.799 92.2119i 0.399717 0.129876i
\(711\) 135.464 186.451i 0.190526 0.262237i
\(712\) −88.4101 121.686i −0.124172 0.170907i
\(713\) 711.611 2190.11i 0.998052 3.07169i
\(714\) 488.775i 0.684559i
\(715\) 17.4074 76.6722i 0.0243460 0.107234i
\(716\) 250.344 0.349642
\(717\) −199.363 64.7770i −0.278052 0.0903446i
\(718\) −240.092 + 174.437i −0.334389 + 0.242948i
\(719\) 328.819 + 238.901i 0.457328 + 0.332268i 0.792482 0.609895i \(-0.208788\pi\)
−0.335154 + 0.942163i \(0.608788\pi\)
\(720\) 23.5352 + 72.4338i 0.0326877 + 0.100602i
\(721\) 1120.80 364.169i 1.55450 0.505089i
\(722\) −298.271 + 410.535i −0.413118 + 0.568608i
\(723\) 25.6975 + 35.3696i 0.0355429 + 0.0489206i
\(724\) 99.6550 306.706i 0.137645 0.423628i
\(725\) 263.253i 0.363108i
\(726\) −293.796 39.1109i −0.404678 0.0538717i
\(727\) −710.158 −0.976834 −0.488417 0.872610i \(-0.662425\pi\)
−0.488417 + 0.872610i \(0.662425\pi\)
\(728\) 30.4967 + 9.90898i 0.0418911 + 0.0136112i
\(729\) −21.8435 + 15.8702i −0.0299636 + 0.0217698i
\(730\) 332.235 + 241.383i 0.455116 + 0.330661i
\(731\) 259.104 + 797.442i 0.354452 + 1.09089i
\(732\) −336.244 + 109.252i −0.459349 + 0.149252i
\(733\) −237.868 + 327.397i −0.324513 + 0.446654i −0.939838 0.341619i \(-0.889025\pi\)
0.615325 + 0.788273i \(0.289025\pi\)
\(734\) 325.484 + 447.991i 0.443439 + 0.610342i
\(735\) 177.808 547.237i 0.241916 0.744541i
\(736\) 216.664i 0.294381i
\(737\) 1182.16 + 268.393i 1.60401 + 0.364169i
\(738\) 142.022 0.192442
\(739\) 953.767 + 309.898i 1.29062 + 0.419347i 0.872308 0.488957i \(-0.162623\pi\)
0.418310 + 0.908304i \(0.362623\pi\)
\(740\) 248.096 180.252i 0.335265 0.243584i
\(741\) −2.32963 1.69258i −0.00314390 0.00228418i
\(742\) −105.468 324.598i −0.142140 0.437463i
\(743\) 132.883 43.1762i 0.178846 0.0581106i −0.218225 0.975898i \(-0.570027\pi\)
0.397071 + 0.917788i \(0.370027\pi\)
\(744\) 173.130 238.293i 0.232702 0.320286i
\(745\) 0.797950 + 1.09828i 0.00107107 + 0.00147421i
\(746\) −154.002 + 473.970i −0.206437 + 0.635349i
\(747\) 211.936i 0.283716i
\(748\) −374.603 223.232i −0.500807 0.298439i
\(749\) −600.378 −0.801572
\(750\) −143.690 46.6878i −0.191587 0.0622505i
\(751\) 24.0224 17.4533i 0.0319872 0.0232401i −0.571677 0.820479i \(-0.693707\pi\)
0.603664 + 0.797239i \(0.293707\pi\)
\(752\) 193.238 + 140.395i 0.256965 + 0.186696i
\(753\) −80.1745 246.752i −0.106473 0.327692i
\(754\) 26.0933 8.47824i 0.0346066 0.0112444i
\(755\) 384.029 528.570i 0.508648 0.700093i
\(756\) −61.4931 84.6380i −0.0813401 0.111955i
\(757\) 119.458 367.655i 0.157805 0.485674i −0.840629 0.541611i \(-0.817815\pi\)
0.998434 + 0.0559369i \(0.0178146\pi\)
\(758\) 786.175i 1.03717i
\(759\) −670.683 + 287.574i −0.883640 + 0.378886i
\(760\) 26.5010 0.0348698
\(761\) −312.620 101.576i −0.410801 0.133477i 0.0963236 0.995350i \(-0.469292\pi\)
−0.507125 + 0.861873i \(0.669292\pi\)
\(762\) −247.496 + 179.817i −0.324798 + 0.235980i
\(763\) 1533.92 + 1114.46i 2.01039 + 1.46063i
\(764\) 152.278 + 468.664i 0.199317 + 0.613435i
\(765\) −358.937 + 116.626i −0.469199 + 0.152452i
\(766\) 169.154 232.821i 0.220828 0.303944i
\(767\) 28.7019 + 39.5047i 0.0374209 + 0.0515055i
\(768\) −8.56373 + 26.3565i −0.0111507 + 0.0343183i
\(769\) 240.314i 0.312502i 0.987717 + 0.156251i \(0.0499409\pi\)
−0.987717 + 0.156251i \(0.950059\pi\)
\(770\) −654.806 747.752i −0.850397 0.971106i
\(771\) 699.314 0.907022
\(772\) −517.081 168.010i −0.669794 0.217629i
\(773\) 513.626 373.171i 0.664458 0.482757i −0.203708 0.979032i \(-0.565299\pi\)
0.868165 + 0.496275i \(0.165299\pi\)
\(774\) 145.194 + 105.490i 0.187589 + 0.136292i
\(775\) −283.923 873.826i −0.366353 1.12752i
\(776\) −290.927 + 94.5280i −0.374906 + 0.121814i
\(777\) −247.602 + 340.794i −0.318664 + 0.438603i
\(778\) 359.886 + 495.340i 0.462578 + 0.636684i
\(779\) 15.2710 46.9992i 0.0196033 0.0603327i
\(780\) 24.7600i 0.0317435i
\(781\) 33.1994 + 364.193i 0.0425088 + 0.466316i
\(782\) −1073.65 −1.37296
\(783\) −85.1317 27.6610i −0.108725 0.0353269i
\(784\) 169.384 123.065i 0.216051 0.156970i
\(785\) −386.289 280.655i −0.492088 0.357523i
\(786\) 32.5914 + 100.306i 0.0414648 + 0.127616i
\(787\) 21.2998 6.92071i 0.0270645 0.00879379i −0.295453 0.955357i \(-0.595471\pi\)
0.322518 + 0.946563i \(0.395471\pi\)
\(788\) 437.043 601.539i 0.554624 0.763374i
\(789\) 165.951 + 228.412i 0.210331 + 0.289496i
\(790\) 213.077 655.783i 0.269717 0.830105i
\(791\) 83.5571i 0.105635i
\(792\) −92.9527 + 8.47345i −0.117364 + 0.0106988i
\(793\) 114.938 0.144940
\(794\) 290.928 + 94.5284i 0.366409 + 0.119053i
\(795\) −213.206 + 154.903i −0.268184 + 0.194847i
\(796\) 183.196 + 133.100i 0.230146 + 0.167211i
\(797\) −317.613 977.511i −0.398510 1.22649i −0.926194 0.377047i \(-0.876939\pi\)
0.527684 0.849441i \(-0.323061\pi\)
\(798\) −34.6212 + 11.2491i −0.0433849 + 0.0140966i
\(799\) −695.712 + 957.566i −0.870729 + 1.19846i
\(800\) 50.8118 + 69.9364i 0.0635147 + 0.0874205i
\(801\) 49.2994 151.728i 0.0615474 0.189423i
\(802\) 112.087i 0.139760i
\(803\) −378.627 + 331.563i −0.471515 + 0.412906i
\(804\) 381.758 0.474823
\(805\) −2327.39 756.213i −2.89116 0.939396i
\(806\) −77.4687 + 56.2843i −0.0961150 + 0.0698316i
\(807\) 498.203 + 361.966i 0.617352 + 0.448533i
\(808\) −2.95170 9.08440i −0.00365309 0.0112431i
\(809\) −1403.99 + 456.183i −1.73546 + 0.563886i −0.994221 0.107354i \(-0.965762\pi\)
−0.741240 + 0.671240i \(0.765762\pi\)
\(810\) −47.4821 + 65.3535i −0.0586199 + 0.0806833i
\(811\) −163.293 224.753i −0.201347 0.277131i 0.696389 0.717665i \(-0.254789\pi\)
−0.897736 + 0.440534i \(0.854789\pi\)
\(812\) 107.179 329.864i 0.131994 0.406237i
\(813\) 770.956i 0.948285i
\(814\) 148.105 + 345.412i 0.181947 + 0.424339i
\(815\) 1219.31 1.49609
\(816\) −130.606 42.4366i −0.160057 0.0520056i
\(817\) 50.5216 36.7061i 0.0618379 0.0449279i
\(818\) −369.120 268.181i −0.451247 0.327850i
\(819\) 10.5101 + 32.3466i 0.0128328 + 0.0394953i
\(820\) 404.120 131.307i 0.492829 0.160130i
\(821\) 594.868 818.766i 0.724565 0.997279i −0.274794 0.961503i \(-0.588610\pi\)
0.999360 0.0357757i \(-0.0113902\pi\)
\(822\) 24.9892 + 34.3947i 0.0304005 + 0.0418427i
\(823\) 173.629 534.375i 0.210971 0.649301i −0.788444 0.615106i \(-0.789113\pi\)
0.999415 0.0341951i \(-0.0108868\pi\)
\(824\) 331.108i 0.401830i
\(825\) −149.046 + 250.113i −0.180662 + 0.303167i
\(826\) 617.301 0.747337
\(827\) −707.503 229.882i −0.855506 0.277971i −0.151755 0.988418i \(-0.548493\pi\)
−0.703750 + 0.710447i \(0.748493\pi\)
\(828\) −185.918 + 135.077i −0.224539 + 0.163137i
\(829\) −258.334 187.690i −0.311621 0.226406i 0.420971 0.907074i \(-0.361689\pi\)
−0.732592 + 0.680668i \(0.761689\pi\)
\(830\) 195.945 + 603.057i 0.236078 + 0.726575i
\(831\) −168.798 + 54.8459i −0.203127 + 0.0659999i
\(832\) 5.29559 7.28875i 0.00636489 0.00876052i
\(833\) 609.833 + 839.363i 0.732093 + 1.00764i
\(834\) −27.0244 + 83.1726i −0.0324034 + 0.0997273i
\(835\) 977.075i 1.17015i
\(836\) −7.19064 + 31.6718i −0.00860125 + 0.0378849i
\(837\) 312.414 0.373254
\(838\) −820.022 266.441i −0.978547 0.317949i
\(839\) −1135.17 + 824.751i −1.35301 + 0.983016i −0.354150 + 0.935189i \(0.615230\pi\)
−0.998856 + 0.0478277i \(0.984770\pi\)
\(840\) −253.229 183.981i −0.301463 0.219026i
\(841\) 168.179 + 517.603i 0.199975 + 0.615461i
\(842\) 42.1669 13.7009i 0.0500795 0.0162718i
\(843\) −149.473 + 205.731i −0.177310 + 0.244047i
\(844\) 155.611 + 214.181i 0.184374 + 0.253769i
\(845\) 328.966 1012.45i 0.389309 1.19817i
\(846\) 253.344i 0.299461i
\(847\) 1071.32 579.678i 1.26484 0.684390i
\(848\) −95.8932 −0.113082
\(849\) −212.415 69.0177i −0.250194 0.0812929i
\(850\) −346.562 + 251.792i −0.407719 + 0.296226i
\(851\) 748.597 + 543.888i 0.879667 + 0.639116i
\(852\) 35.5884 + 109.530i 0.0417704 + 0.128556i
\(853\) −1380.33 + 448.496i −1.61821 + 0.525787i −0.971518 0.236967i \(-0.923847\pi\)
−0.646689 + 0.762754i \(0.723847\pi\)
\(854\) 854.057 1175.51i 1.00007 1.37647i
\(855\) 16.5218 + 22.7403i 0.0193237 + 0.0265969i
\(856\) −52.1262 + 160.428i −0.0608951 + 0.187416i
\(857\) 598.032i 0.697820i 0.937156 + 0.348910i \(0.113448\pi\)
−0.937156 + 0.348910i \(0.886552\pi\)
\(858\) 29.5910 + 6.71823i 0.0344884 + 0.00783011i
\(859\) −1338.18 −1.55784 −0.778919 0.627125i \(-0.784232\pi\)
−0.778919 + 0.627125i \(0.784232\pi\)
\(860\) 510.676 + 165.929i 0.593809 + 0.192940i
\(861\) −472.209 + 343.080i −0.548443 + 0.398467i
\(862\) −415.043 301.546i −0.481488 0.349822i
\(863\) −328.226 1010.17i −0.380331 1.17054i −0.939811 0.341695i \(-0.888999\pi\)
0.559480 0.828844i \(-0.311001\pi\)
\(864\) −27.9552 + 9.08321i −0.0323556 + 0.0105130i
\(865\) −1226.51 + 1688.15i −1.41793 + 1.95162i
\(866\) −73.7013 101.441i −0.0851054 0.117138i
\(867\) 55.6070 171.141i 0.0641373 0.197394i
\(868\) 1210.53i 1.39462i
\(869\) 725.921 + 432.588i 0.835352 + 0.497800i
\(870\) −267.813 −0.307831
\(871\) −118.034 38.3517i −0.135516 0.0440318i
\(872\) 430.976 313.122i 0.494238 0.359085i
\(873\) −262.489 190.710i −0.300675 0.218453i
\(874\) 24.7100 + 76.0497i 0.0282724 + 0.0870134i
\(875\) 590.538 191.878i 0.674901 0.219289i
\(876\) −93.1596 + 128.223i −0.106347 + 0.146374i
\(877\) 98.0905 + 135.010i 0.111848 + 0.153945i 0.861271 0.508146i \(-0.169669\pi\)
−0.749423 + 0.662091i \(0.769669\pi\)
\(878\) 163.062 501.852i 0.185720 0.571586i
\(879\) 126.319i 0.143708i
\(880\) −256.660 + 110.050i −0.291659 + 0.125057i
\(881\) −1345.57 −1.52732 −0.763662 0.645616i \(-0.776601\pi\)
−0.763662 + 0.645616i \(0.776601\pi\)
\(882\) 211.202 + 68.6236i 0.239458 + 0.0778046i
\(883\) 826.040 600.153i 0.935493 0.679675i −0.0118386 0.999930i \(-0.503768\pi\)
0.947332 + 0.320255i \(0.103768\pi\)
\(884\) 36.1185 + 26.2417i 0.0408581 + 0.0296851i
\(885\) −147.293 453.322i −0.166433 0.512228i
\(886\) 732.348 237.954i 0.826578 0.268572i
\(887\) −399.837 + 550.329i −0.450775 + 0.620438i −0.972564 0.232636i \(-0.925265\pi\)
0.521789 + 0.853075i \(0.325265\pi\)
\(888\) 69.5669 + 95.7506i 0.0783411 + 0.107827i
\(889\) 388.520 1195.74i 0.437031 1.34504i
\(890\) 477.317i 0.536311i
\(891\) −65.2215 74.4793i −0.0732003 0.0835907i
\(892\) −267.814 −0.300239
\(893\) 83.8386 + 27.2408i 0.0938842 + 0.0305048i
\(894\) −0.423874 + 0.307962i −0.000474132 + 0.000344477i
\(895\) 642.714 + 466.959i 0.718116 + 0.521742i
\(896\) −35.1952 108.320i −0.0392803 0.120892i
\(897\) 71.0534 23.0866i 0.0792122 0.0257376i
\(898\) −71.5673 + 98.5039i −0.0796963 + 0.109693i
\(899\) 608.793 + 837.932i 0.677189 + 0.932071i
\(900\) −28.3338 + 87.2023i −0.0314820 + 0.0968915i
\(901\) 475.188i 0.527400i
\(902\) 47.2748 + 518.598i 0.0524110 + 0.574942i
\(903\) −737.585 −0.816816
\(904\) 22.3274 + 7.25462i 0.0246985 + 0.00802502i
\(905\) 827.938 601.532i 0.914849 0.664677i
\(906\) 203.997 + 148.213i 0.225163 + 0.163590i
\(907\) 256.982 + 790.909i 0.283332 + 0.872005i 0.986894 + 0.161372i \(0.0515918\pi\)
−0.703562 + 0.710634i \(0.748408\pi\)
\(908\) 729.382 236.991i 0.803285 0.261003i
\(909\) 5.95504 8.19641i 0.00655120 0.00901695i
\(910\) 59.8121 + 82.3243i 0.0657276 + 0.0904662i
\(911\) 264.873 815.195i 0.290750 0.894835i −0.693866 0.720104i \(-0.744094\pi\)
0.984616 0.174732i \(-0.0559058\pi\)
\(912\) 10.2279i 0.0112147i
\(913\) −773.890 + 70.5468i −0.847634 + 0.0772692i
\(914\) 594.226 0.650138
\(915\) −1067.03 346.700i −1.16616 0.378907i
\(916\) 164.322 119.387i 0.179391 0.130335i
\(917\) −350.670 254.776i −0.382410 0.277837i
\(918\) −45.0108 138.529i −0.0490313 0.150903i
\(919\) 193.329 62.8163i 0.210369 0.0683529i −0.201937 0.979399i \(-0.564724\pi\)
0.412306 + 0.911046i \(0.364724\pi\)
\(920\) −404.138 + 556.248i −0.439280 + 0.604618i
\(921\) 247.666 + 340.884i 0.268910 + 0.370123i
\(922\) −74.2489 + 228.515i −0.0805302 + 0.247847i
\(923\) 37.4405i 0.0405639i
\(924\) 288.589 252.717i 0.312326 0.273503i
\(925\) 369.189 0.399123
\(926\) −31.1207 10.1117i −0.0336077 0.0109198i
\(927\) 284.121 206.426i 0.306495 0.222682i
\(928\) −78.8380 57.2791i −0.0849547 0.0617232i
\(929\) −324.572 998.929i −0.349378 1.07527i −0.959198 0.282734i \(-0.908758\pi\)
0.609821 0.792540i \(-0.291242\pi\)
\(930\) 888.963 288.842i 0.955874 0.310582i
\(931\) 45.4190 62.5139i 0.0487852 0.0671471i
\(932\) 44.2711 + 60.9339i 0.0475011 + 0.0653797i
\(933\) −84.6175 + 260.426i −0.0906940 + 0.279127i
\(934\) 397.307i 0.425382i
\(935\) −545.341 1271.85i −0.583252 1.36026i
\(936\) 9.55590 0.0102093
\(937\) 576.198 + 187.218i 0.614940 + 0.199806i 0.599892 0.800081i \(-0.295210\pi\)
0.0150473 + 0.999887i \(0.495210\pi\)
\(938\) −1269.30 + 922.204i −1.35320 + 0.983159i
\(939\) −24.4235 17.7447i −0.0260101 0.0188974i
\(940\) 234.229 + 720.881i 0.249179 + 0.766895i
\(941\) 564.679 183.475i 0.600084 0.194979i 0.00680637 0.999977i \(-0.497833\pi\)
0.593278 + 0.804998i \(0.297833\pi\)
\(942\) 108.317 149.085i 0.114986 0.158264i
\(943\) 753.618 + 1037.27i 0.799171 + 1.09996i
\(944\) 53.5955 164.950i 0.0567749 0.174735i
\(945\) 331.995i 0.351317i
\(946\) −336.868 + 565.295i −0.356097 + 0.597563i
\(947\) 141.939 0.149883 0.0749413 0.997188i \(-0.476123\pi\)
0.0749413 + 0.997188i \(0.476123\pi\)
\(948\) 253.094 + 82.2352i 0.266977 + 0.0867460i
\(949\) 41.6852 30.2860i 0.0439254 0.0319136i
\(950\) 25.8111 + 18.7529i 0.0271696 + 0.0197399i
\(951\) 39.5467 + 121.712i 0.0415843 + 0.127983i
\(952\) 536.765 174.406i 0.563829 0.183199i
\(953\) −996.086 + 1371.00i −1.04521 + 1.43861i −0.152323 + 0.988331i \(0.548675\pi\)
−0.892888 + 0.450279i \(0.851325\pi\)
\(954\) −59.7837 82.2852i −0.0626664 0.0862528i
\(955\) −483.239 + 1487.26i −0.506009 + 1.55734i
\(956\) 242.052i 0.253192i
\(957\) 72.6670 320.068i 0.0759321 0.334449i
\(958\) −352.966 −0.368440
\(959\) −166.173 53.9929i −0.173277 0.0563012i
\(960\) −71.1479 + 51.6920i −0.0741124 + 0.0538458i
\(961\) −2147.05 1559.92i −2.23418 1.62323i
\(962\) −11.8900 36.5936i −0.0123596 0.0380391i
\(963\) −170.159 + 55.2882i −0.176697 + 0.0574124i
\(964\) −29.6729 + 40.8413i −0.0307811 + 0.0423665i
\(965\) −1014.13 1395.83i −1.05091 1.44646i
\(966\) 291.854 898.236i 0.302127 0.929851i
\(967\) 1285.89i 1.32978i 0.746943 + 0.664888i \(0.231521\pi\)
−0.746943 + 0.664888i \(0.768479\pi\)
\(968\) −61.8820 336.599i −0.0639277 0.347726i
\(969\) −50.6829 −0.0523044
\(970\) −923.226 299.974i −0.951779 0.309252i
\(971\) 329.891 239.680i 0.339744 0.246838i −0.404810 0.914401i \(-0.632662\pi\)
0.744554 + 0.667562i \(0.232662\pi\)
\(972\) −25.2227 18.3253i −0.0259492 0.0188532i
\(973\) −111.065 341.822i −0.114147 0.351308i
\(974\) 772.066 250.859i 0.792675 0.257556i
\(975\) 17.5209 24.1154i 0.0179701 0.0247337i
\(976\) −239.958 330.274i −0.245859 0.338396i
\(977\) −323.762 + 996.436i −0.331383 + 1.01989i 0.637093 + 0.770787i \(0.280137\pi\)
−0.968476 + 0.249106i \(0.919863\pi\)
\(978\) 470.584i 0.481170i
\(979\) 570.449 + 129.513i 0.582686 + 0.132291i
\(980\) 664.414 0.677974
\(981\) 537.376 + 174.604i 0.547784 + 0.177986i
\(982\) −69.4799 + 50.4801i −0.0707534 + 0.0514054i
\(983\) −58.5745 42.5568i −0.0595875 0.0432928i 0.557593 0.830115i \(-0.311725\pi\)
−0.617180 + 0.786822i \(0.711725\pi\)
\(984\) 50.6767 + 155.967i 0.0515007 + 0.158503i
\(985\) 2244.07 729.142i 2.27824 0.740245i
\(986\) 283.840 390.672i 0.287870 0.396219i
\(987\) −611.997 842.341i −0.620058 0.853436i
\(988\) 1.02750 3.16232i 0.00103998 0.00320073i
\(989\) 1620.20i 1.63822i
\(990\) −254.445 151.628i −0.257015 0.153160i
\(991\) 1335.55 1.34768 0.673838 0.738879i \(-0.264644\pi\)
0.673838 + 0.738879i \(0.264644\pi\)
\(992\) 323.467 + 105.101i 0.326075 + 0.105948i
\(993\) 586.993 426.475i 0.591131 0.429482i
\(994\) −382.917 278.205i −0.385228 0.279885i
\(995\) 222.057 + 683.421i 0.223173 + 0.686855i
\(996\) −232.745 + 75.6234i −0.233680 + 0.0759271i
\(997\) 300.433 413.510i 0.301337 0.414754i −0.631318 0.775524i \(-0.717486\pi\)
0.932655 + 0.360769i \(0.117486\pi\)
\(998\) 474.326 + 652.854i 0.475277 + 0.654163i
\(999\) −38.7920 + 119.390i −0.0388308 + 0.119509i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 66.3.f.a.13.2 16
3.2 odd 2 198.3.j.b.145.3 16
4.3 odd 2 528.3.bf.c.145.2 16
11.4 even 5 726.3.d.e.241.3 16
11.6 odd 10 inner 66.3.f.a.61.2 yes 16
11.7 odd 10 726.3.d.e.241.11 16
33.17 even 10 198.3.j.b.127.3 16
33.26 odd 10 2178.3.d.m.1693.10 16
33.29 even 10 2178.3.d.m.1693.2 16
44.39 even 10 528.3.bf.c.193.2 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
66.3.f.a.13.2 16 1.1 even 1 trivial
66.3.f.a.61.2 yes 16 11.6 odd 10 inner
198.3.j.b.127.3 16 33.17 even 10
198.3.j.b.145.3 16 3.2 odd 2
528.3.bf.c.145.2 16 4.3 odd 2
528.3.bf.c.193.2 16 44.39 even 10
726.3.d.e.241.3 16 11.4 even 5
726.3.d.e.241.11 16 11.7 odd 10
2178.3.d.m.1693.2 16 33.29 even 10
2178.3.d.m.1693.10 16 33.26 odd 10