L(s) = 1 | + (−1.34 − 0.437i)2-s + (1.40 − 1.01i)3-s + (1.61 + 1.17i)4-s + (1.96 + 6.03i)5-s + (−2.32 + 0.756i)6-s + (5.91 − 8.14i)7-s + (−1.66 − 2.28i)8-s + (0.927 − 2.85i)9-s − 8.97i·10-s + (10.7 + 2.43i)11-s + 3.46·12-s + (−1.07 − 0.348i)13-s + (−11.5 + 8.36i)14-s + (8.89 + 6.46i)15-s + (1.23 + 3.80i)16-s + (−18.8 + 6.12i)17-s + ⋯ |
L(s) = 1 | + (−0.672 − 0.218i)2-s + (0.467 − 0.339i)3-s + (0.404 + 0.293i)4-s + (0.392 + 1.20i)5-s + (−0.388 + 0.126i)6-s + (0.845 − 1.16i)7-s + (−0.207 − 0.286i)8-s + (0.103 − 0.317i)9-s − 0.897i·10-s + (0.975 + 0.221i)11-s + 0.288·12-s + (−0.0823 − 0.0267i)13-s + (−0.822 + 0.597i)14-s + (0.592 + 0.430i)15-s + (0.0772 + 0.237i)16-s + (−1.10 + 0.360i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 66 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.970 + 0.242i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 66 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.970 + 0.242i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(1.14879 - 0.141573i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.14879 - 0.141573i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.34 + 0.437i)T \) |
| 3 | \( 1 + (-1.40 + 1.01i)T \) |
| 11 | \( 1 + (-10.7 - 2.43i)T \) |
good | 5 | \( 1 + (-1.96 - 6.03i)T + (-20.2 + 14.6i)T^{2} \) |
| 7 | \( 1 + (-5.91 + 8.14i)T + (-15.1 - 46.6i)T^{2} \) |
| 13 | \( 1 + (1.07 + 0.348i)T + (136. + 99.3i)T^{2} \) |
| 17 | \( 1 + (18.8 - 6.12i)T + (233. - 169. i)T^{2} \) |
| 19 | \( 1 + (-0.867 - 1.19i)T + (-111. + 343. i)T^{2} \) |
| 23 | \( 1 + 38.3T + 529T^{2} \) |
| 29 | \( 1 + (-10.1 + 13.9i)T + (-259. - 799. i)T^{2} \) |
| 31 | \( 1 + (18.5 - 57.1i)T + (-777. - 564. i)T^{2} \) |
| 37 | \( 1 + (19.5 + 14.2i)T + (423. + 1.30e3i)T^{2} \) |
| 41 | \( 1 + (19.6 + 27.0i)T + (-519. + 1.59e3i)T^{2} \) |
| 43 | \( 1 + 42.3iT - 1.84e3T^{2} \) |
| 47 | \( 1 + (-48.3 + 35.0i)T + (682. - 2.10e3i)T^{2} \) |
| 53 | \( 1 + (7.40 - 22.7i)T + (-2.27e3 - 1.65e3i)T^{2} \) |
| 59 | \( 1 + (35.0 + 25.4i)T + (1.07e3 + 3.31e3i)T^{2} \) |
| 61 | \( 1 + (97.0 - 31.5i)T + (3.01e3 - 2.18e3i)T^{2} \) |
| 67 | \( 1 - 110.T + 4.48e3T^{2} \) |
| 71 | \( 1 + (-10.2 - 31.6i)T + (-4.07e3 + 2.96e3i)T^{2} \) |
| 73 | \( 1 + (26.8 - 37.0i)T + (-1.64e3 - 5.06e3i)T^{2} \) |
| 79 | \( 1 + (-73.0 - 23.7i)T + (5.04e3 + 3.66e3i)T^{2} \) |
| 83 | \( 1 + (67.1 - 21.8i)T + (5.57e3 - 4.04e3i)T^{2} \) |
| 89 | \( 1 - 53.1T + 7.92e3T^{2} \) |
| 97 | \( 1 + (-33.4 + 102. i)T + (-7.61e3 - 5.53e3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.25090496488735717318911261936, −13.90250710048495061317297652728, −12.13451094252914487430497364624, −10.88167409417136469958407130661, −10.18861443130706097373454820537, −8.714971168291639155664805040718, −7.38782096059832064321662427129, −6.58704801980766935142764380806, −3.87144927826549185668770496130, −1.92003666008824526803182970237,
1.92283121983459928074846119548, 4.64958536952187431831400755164, 6.01836576880122267005215095159, 8.058162895176664508661366539887, 8.922565317074818417080899271097, 9.529991345237817343180824876826, 11.29403921541134676965574140039, 12.27533345895934052670962087355, 13.72620047458768154195157146582, 14.84212141087056779006366904545