Properties

Label 726.3.d.e.241.11
Level $726$
Weight $3$
Character 726.241
Analytic conductor $19.782$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [726,3,Mod(241,726)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("726.241"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(726, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 726 = 2 \cdot 3 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 726.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,-32,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(19.7820671926\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: 16.0.6879707136000000000000.7
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 4x^{14} + 15x^{12} - 56x^{10} + 209x^{8} - 56x^{6} + 15x^{4} - 4x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{12}\cdot 11^{2} \)
Twist minimal: no (minimal twist has level 66)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 241.11
Root \(-0.492303 + 0.159959i\) of defining polynomial
Character \(\chi\) \(=\) 726.241
Dual form 726.3.d.e.241.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.41421i q^{2} -1.73205 q^{3} -2.00000 q^{4} +6.34678 q^{5} -2.44949i q^{6} -10.0669i q^{7} -2.82843i q^{8} +3.00000 q^{9} +8.97571i q^{10} +3.46410 q^{12} +1.12617i q^{13} +14.2368 q^{14} -10.9930 q^{15} +4.00000 q^{16} -19.8215i q^{17} +4.24264i q^{18} +1.47626i q^{19} -12.6936 q^{20} +17.4364i q^{21} -38.3012 q^{23} +4.89898i q^{24} +15.2817 q^{25} -1.59265 q^{26} -5.19615 q^{27} +20.1338i q^{28} -17.2267i q^{29} -15.5464i q^{30} -60.1240 q^{31} +5.65685i q^{32} +28.0319 q^{34} -63.8925i q^{35} -6.00000 q^{36} +24.1590 q^{37} -2.08775 q^{38} -1.95059i q^{39} -17.9514i q^{40} -33.4750i q^{41} -24.6588 q^{42} +42.3015i q^{43} +19.0404 q^{45} -54.1661i q^{46} -59.7137 q^{47} -6.92820 q^{48} -52.3426 q^{49} +21.6115i q^{50} +34.3319i q^{51} -2.25235i q^{52} -23.9733 q^{53} -7.34847i q^{54} -28.4735 q^{56} -2.55696i q^{57} +24.3623 q^{58} +43.3596 q^{59} +21.9859 q^{60} -102.060i q^{61} -85.0282i q^{62} -30.2007i q^{63} -8.00000 q^{64} +7.14758i q^{65} +110.204 q^{67} +39.6431i q^{68} +66.3396 q^{69} +90.3576 q^{70} +33.2457 q^{71} -8.48528i q^{72} +45.7529i q^{73} +34.1659i q^{74} -26.4686 q^{75} -2.95253i q^{76} +2.75855 q^{78} -76.8219i q^{79} +25.3871 q^{80} +9.00000 q^{81} +47.3408 q^{82} -70.6453i q^{83} -34.8728i q^{84} -125.803i q^{85} -59.8233 q^{86} +29.8376i q^{87} +53.1788 q^{89} +26.9271i q^{90} +11.3371 q^{91} +76.6024 q^{92} +104.138 q^{93} -84.4479i q^{94} +9.36952i q^{95} -9.79796i q^{96} +108.152 q^{97} -74.0236i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 32 q^{4} + 8 q^{5} + 48 q^{9} + 48 q^{14} - 48 q^{15} + 64 q^{16} - 16 q^{20} - 8 q^{23} - 8 q^{25} + 128 q^{26} - 8 q^{31} - 64 q^{34} - 96 q^{36} + 96 q^{37} - 208 q^{38} - 144 q^{42} + 24 q^{45}+ \cdots + 184 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/726\mathbb{Z}\right)^\times\).

\(n\) \(485\) \(607\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.41421i 0.707107i
\(3\) −1.73205 −0.577350
\(4\) −2.00000 −0.500000
\(5\) 6.34678 1.26936 0.634678 0.772776i \(-0.281133\pi\)
0.634678 + 0.772776i \(0.281133\pi\)
\(6\) − 2.44949i − 0.408248i
\(7\) − 10.0669i − 1.43813i −0.694943 0.719065i \(-0.744570\pi\)
0.694943 0.719065i \(-0.255430\pi\)
\(8\) − 2.82843i − 0.353553i
\(9\) 3.00000 0.333333
\(10\) 8.97571i 0.897571i
\(11\) 0 0
\(12\) 3.46410 0.288675
\(13\) 1.12617i 0.0866288i 0.999061 + 0.0433144i \(0.0137917\pi\)
−0.999061 + 0.0433144i \(0.986208\pi\)
\(14\) 14.2368 1.01691
\(15\) −10.9930 −0.732863
\(16\) 4.00000 0.250000
\(17\) − 19.8215i − 1.16597i −0.812482 0.582986i \(-0.801884\pi\)
0.812482 0.582986i \(-0.198116\pi\)
\(18\) 4.24264i 0.235702i
\(19\) 1.47626i 0.0776981i 0.999245 + 0.0388490i \(0.0123691\pi\)
−0.999245 + 0.0388490i \(0.987631\pi\)
\(20\) −12.6936 −0.634678
\(21\) 17.4364i 0.830304i
\(22\) 0 0
\(23\) −38.3012 −1.66527 −0.832635 0.553823i \(-0.813169\pi\)
−0.832635 + 0.553823i \(0.813169\pi\)
\(24\) 4.89898i 0.204124i
\(25\) 15.2817 0.611266
\(26\) −1.59265 −0.0612558
\(27\) −5.19615 −0.192450
\(28\) 20.1338i 0.719065i
\(29\) − 17.2267i − 0.594025i −0.954874 0.297013i \(-0.904010\pi\)
0.954874 0.297013i \(-0.0959903\pi\)
\(30\) − 15.5464i − 0.518213i
\(31\) −60.1240 −1.93948 −0.969742 0.244130i \(-0.921498\pi\)
−0.969742 + 0.244130i \(0.921498\pi\)
\(32\) 5.65685i 0.176777i
\(33\) 0 0
\(34\) 28.0319 0.824467
\(35\) − 63.8925i − 1.82550i
\(36\) −6.00000 −0.166667
\(37\) 24.1590 0.652945 0.326472 0.945207i \(-0.394140\pi\)
0.326472 + 0.945207i \(0.394140\pi\)
\(38\) −2.08775 −0.0549408
\(39\) − 1.95059i − 0.0500151i
\(40\) − 17.9514i − 0.448785i
\(41\) − 33.4750i − 0.816463i −0.912878 0.408231i \(-0.866146\pi\)
0.912878 0.408231i \(-0.133854\pi\)
\(42\) −24.6588 −0.587114
\(43\) 42.3015i 0.983755i 0.870664 + 0.491877i \(0.163689\pi\)
−0.870664 + 0.491877i \(0.836311\pi\)
\(44\) 0 0
\(45\) 19.0404 0.423119
\(46\) − 54.1661i − 1.17752i
\(47\) −59.7137 −1.27050 −0.635252 0.772305i \(-0.719104\pi\)
−0.635252 + 0.772305i \(0.719104\pi\)
\(48\) −6.92820 −0.144338
\(49\) −52.3426 −1.06822
\(50\) 21.6115i 0.432231i
\(51\) 34.3319i 0.673174i
\(52\) − 2.25235i − 0.0433144i
\(53\) −23.9733 −0.452327 −0.226163 0.974089i \(-0.572618\pi\)
−0.226163 + 0.974089i \(0.572618\pi\)
\(54\) − 7.34847i − 0.136083i
\(55\) 0 0
\(56\) −28.4735 −0.508456
\(57\) − 2.55696i − 0.0448590i
\(58\) 24.3623 0.420039
\(59\) 43.3596 0.734909 0.367455 0.930041i \(-0.380229\pi\)
0.367455 + 0.930041i \(0.380229\pi\)
\(60\) 21.9859 0.366432
\(61\) − 102.060i − 1.67312i −0.547875 0.836561i \(-0.684563\pi\)
0.547875 0.836561i \(-0.315437\pi\)
\(62\) − 85.0282i − 1.37142i
\(63\) − 30.2007i − 0.479376i
\(64\) −8.00000 −0.125000
\(65\) 7.14758i 0.109963i
\(66\) 0 0
\(67\) 110.204 1.64483 0.822417 0.568884i \(-0.192625\pi\)
0.822417 + 0.568884i \(0.192625\pi\)
\(68\) 39.6431i 0.582986i
\(69\) 66.3396 0.961444
\(70\) 90.3576 1.29082
\(71\) 33.2457 0.468250 0.234125 0.972207i \(-0.424778\pi\)
0.234125 + 0.972207i \(0.424778\pi\)
\(72\) − 8.48528i − 0.117851i
\(73\) 45.7529i 0.626752i 0.949629 + 0.313376i \(0.101460\pi\)
−0.949629 + 0.313376i \(0.898540\pi\)
\(74\) 34.1659i 0.461702i
\(75\) −26.4686 −0.352915
\(76\) − 2.95253i − 0.0388490i
\(77\) 0 0
\(78\) 2.75855 0.0353660
\(79\) − 76.8219i − 0.972429i −0.873840 0.486214i \(-0.838377\pi\)
0.873840 0.486214i \(-0.161623\pi\)
\(80\) 25.3871 0.317339
\(81\) 9.00000 0.111111
\(82\) 47.3408 0.577326
\(83\) − 70.6453i − 0.851148i −0.904924 0.425574i \(-0.860072\pi\)
0.904924 0.425574i \(-0.139928\pi\)
\(84\) − 34.8728i − 0.415152i
\(85\) − 125.803i − 1.48003i
\(86\) −59.8233 −0.695620
\(87\) 29.8376i 0.342961i
\(88\) 0 0
\(89\) 53.1788 0.597514 0.298757 0.954329i \(-0.403428\pi\)
0.298757 + 0.954329i \(0.403428\pi\)
\(90\) 26.9271i 0.299190i
\(91\) 11.3371 0.124583
\(92\) 76.6024 0.832635
\(93\) 104.138 1.11976
\(94\) − 84.4479i − 0.898382i
\(95\) 9.36952i 0.0986266i
\(96\) − 9.79796i − 0.102062i
\(97\) 108.152 1.11496 0.557482 0.830189i \(-0.311767\pi\)
0.557482 + 0.830189i \(0.311767\pi\)
\(98\) − 74.0236i − 0.755343i
\(99\) 0 0
\(100\) −30.5633 −0.305633
\(101\) − 3.37711i − 0.0334367i −0.999860 0.0167183i \(-0.994678\pi\)
0.999860 0.0167183i \(-0.00532186\pi\)
\(102\) −48.5526 −0.476006
\(103\) −117.064 −1.13655 −0.568274 0.822840i \(-0.692388\pi\)
−0.568274 + 0.822840i \(0.692388\pi\)
\(104\) 3.18530 0.0306279
\(105\) 110.665i 1.05395i
\(106\) − 33.9034i − 0.319843i
\(107\) − 59.6388i − 0.557372i −0.960382 0.278686i \(-0.910101\pi\)
0.960382 0.278686i \(-0.0898988\pi\)
\(108\) 10.3923 0.0962250
\(109\) − 188.343i − 1.72792i −0.503560 0.863961i \(-0.667977\pi\)
0.503560 0.863961i \(-0.332023\pi\)
\(110\) 0 0
\(111\) −41.8445 −0.376978
\(112\) − 40.2676i − 0.359532i
\(113\) 8.30017 0.0734529 0.0367264 0.999325i \(-0.488307\pi\)
0.0367264 + 0.999325i \(0.488307\pi\)
\(114\) 3.61609 0.0317201
\(115\) −243.089 −2.11382
\(116\) 34.4535i 0.297013i
\(117\) 3.37852i 0.0288763i
\(118\) 61.3198i 0.519659i
\(119\) −199.541 −1.67682
\(120\) 31.0928i 0.259106i
\(121\) 0 0
\(122\) 144.335 1.18308
\(123\) 57.9804i 0.471385i
\(124\) 120.248 0.969742
\(125\) −61.6802 −0.493442
\(126\) 42.7103 0.338970
\(127\) 124.892i 0.983404i 0.870764 + 0.491702i \(0.163625\pi\)
−0.870764 + 0.491702i \(0.836375\pi\)
\(128\) − 11.3137i − 0.0883883i
\(129\) − 73.2683i − 0.567971i
\(130\) −10.1082 −0.0777554
\(131\) 43.0571i 0.328680i 0.986404 + 0.164340i \(0.0525494\pi\)
−0.986404 + 0.164340i \(0.947451\pi\)
\(132\) 0 0
\(133\) 14.8614 0.111740
\(134\) 155.852i 1.16307i
\(135\) −32.9789 −0.244288
\(136\) −56.0638 −0.412233
\(137\) −17.3563 −0.126689 −0.0633443 0.997992i \(-0.520177\pi\)
−0.0633443 + 0.997992i \(0.520177\pi\)
\(138\) 93.8184i 0.679843i
\(139\) − 35.7025i − 0.256852i −0.991719 0.128426i \(-0.959007\pi\)
0.991719 0.128426i \(-0.0409925\pi\)
\(140\) 127.785i 0.912750i
\(141\) 103.427 0.733526
\(142\) 47.0165i 0.331102i
\(143\) 0 0
\(144\) 12.0000 0.0833333
\(145\) − 109.334i − 0.754030i
\(146\) −64.7043 −0.443180
\(147\) 90.6600 0.616735
\(148\) −48.3179 −0.326472
\(149\) 0.213896i 0.00143555i 1.00000 0.000717773i \(0.000228474\pi\)
−1.00000 0.000717773i \(0.999772\pi\)
\(150\) − 37.4323i − 0.249548i
\(151\) − 102.942i − 0.681733i −0.940112 0.340867i \(-0.889280\pi\)
0.940112 0.340867i \(-0.110720\pi\)
\(152\) 4.17550 0.0274704
\(153\) − 59.4646i − 0.388657i
\(154\) 0 0
\(155\) −381.594 −2.46190
\(156\) 3.90118i 0.0250076i
\(157\) 75.2317 0.479183 0.239591 0.970874i \(-0.422987\pi\)
0.239591 + 0.970874i \(0.422987\pi\)
\(158\) 108.643 0.687611
\(159\) 41.5230 0.261151
\(160\) 35.9028i 0.224393i
\(161\) 385.575i 2.39487i
\(162\) 12.7279i 0.0785674i
\(163\) 192.115 1.17862 0.589311 0.807907i \(-0.299399\pi\)
0.589311 + 0.807907i \(0.299399\pi\)
\(164\) 66.9500i 0.408231i
\(165\) 0 0
\(166\) 99.9076 0.601853
\(167\) 153.948i 0.921845i 0.887440 + 0.460923i \(0.152481\pi\)
−0.887440 + 0.460923i \(0.847519\pi\)
\(168\) 49.3176 0.293557
\(169\) 167.732 0.992495
\(170\) 177.912 1.04654
\(171\) 4.42879i 0.0258994i
\(172\) − 84.6029i − 0.491877i
\(173\) 328.775i 1.90044i 0.311586 + 0.950218i \(0.399140\pi\)
−0.311586 + 0.950218i \(0.600860\pi\)
\(174\) −42.1967 −0.242510
\(175\) − 153.839i − 0.879080i
\(176\) 0 0
\(177\) −75.1011 −0.424300
\(178\) 75.2062i 0.422507i
\(179\) −125.172 −0.699284 −0.349642 0.936883i \(-0.613697\pi\)
−0.349642 + 0.936883i \(0.613697\pi\)
\(180\) −38.0807 −0.211559
\(181\) −161.245 −0.890857 −0.445428 0.895318i \(-0.646949\pi\)
−0.445428 + 0.895318i \(0.646949\pi\)
\(182\) 16.0331i 0.0880937i
\(183\) 176.774i 0.965977i
\(184\) 108.332i 0.588762i
\(185\) 153.332 0.828820
\(186\) 147.273i 0.791791i
\(187\) 0 0
\(188\) 119.427 0.635252
\(189\) 52.3092i 0.276768i
\(190\) −13.2505 −0.0697395
\(191\) −246.391 −1.29001 −0.645004 0.764179i \(-0.723144\pi\)
−0.645004 + 0.764179i \(0.723144\pi\)
\(192\) 13.8564 0.0721688
\(193\) − 271.845i − 1.40853i −0.709939 0.704263i \(-0.751278\pi\)
0.709939 0.704263i \(-0.248722\pi\)
\(194\) 152.949i 0.788399i
\(195\) − 12.3800i − 0.0634871i
\(196\) 104.685 0.534108
\(197\) 371.771i 1.88716i 0.331139 + 0.943582i \(0.392567\pi\)
−0.331139 + 0.943582i \(0.607433\pi\)
\(198\) 0 0
\(199\) 113.221 0.568951 0.284476 0.958683i \(-0.408180\pi\)
0.284476 + 0.958683i \(0.408180\pi\)
\(200\) − 43.2231i − 0.216115i
\(201\) −190.879 −0.949646
\(202\) 4.77595 0.0236433
\(203\) −173.420 −0.854285
\(204\) − 68.6638i − 0.336587i
\(205\) − 212.458i − 1.03638i
\(206\) − 165.554i − 0.803660i
\(207\) −114.904 −0.555090
\(208\) 4.50470i 0.0216572i
\(209\) 0 0
\(210\) −156.504 −0.745257
\(211\) − 132.371i − 0.627351i −0.949530 0.313675i \(-0.898440\pi\)
0.949530 0.313675i \(-0.101560\pi\)
\(212\) 47.9466 0.226163
\(213\) −57.5833 −0.270344
\(214\) 84.3419 0.394121
\(215\) 268.478i 1.24874i
\(216\) 14.6969i 0.0680414i
\(217\) 605.263i 2.78923i
\(218\) 266.358 1.22182
\(219\) − 79.2463i − 0.361855i
\(220\) 0 0
\(221\) 22.3225 0.101007
\(222\) − 59.1771i − 0.266564i
\(223\) 133.907 0.600479 0.300239 0.953864i \(-0.402933\pi\)
0.300239 + 0.953864i \(0.402933\pi\)
\(224\) 56.9470 0.254228
\(225\) 45.8450 0.203755
\(226\) 11.7382i 0.0519390i
\(227\) − 383.459i − 1.68925i −0.535361 0.844623i \(-0.679824\pi\)
0.535361 0.844623i \(-0.320176\pi\)
\(228\) 5.11393i 0.0224295i
\(229\) 101.557 0.443479 0.221739 0.975106i \(-0.428827\pi\)
0.221739 + 0.975106i \(0.428827\pi\)
\(230\) − 343.780i − 1.49470i
\(231\) 0 0
\(232\) −48.7246 −0.210020
\(233\) − 37.6592i − 0.161628i −0.996729 0.0808138i \(-0.974248\pi\)
0.996729 0.0808138i \(-0.0257519\pi\)
\(234\) −4.77795 −0.0204186
\(235\) −378.990 −1.61272
\(236\) −86.7193 −0.367455
\(237\) 133.059i 0.561432i
\(238\) − 282.194i − 1.18569i
\(239\) − 121.026i − 0.506384i −0.967416 0.253192i \(-0.918520\pi\)
0.967416 0.253192i \(-0.0814805\pi\)
\(240\) −43.9718 −0.183216
\(241\) − 25.2413i − 0.104736i −0.998628 0.0523679i \(-0.983323\pi\)
0.998628 0.0523679i \(-0.0166768\pi\)
\(242\) 0 0
\(243\) −15.5885 −0.0641500
\(244\) 204.121i 0.836561i
\(245\) −332.207 −1.35595
\(246\) −81.9966 −0.333320
\(247\) −1.66253 −0.00673089
\(248\) 170.056i 0.685711i
\(249\) 122.361i 0.491411i
\(250\) − 87.2290i − 0.348916i
\(251\) 149.794 0.596787 0.298394 0.954443i \(-0.403549\pi\)
0.298394 + 0.954443i \(0.403549\pi\)
\(252\) 60.4014i 0.239688i
\(253\) 0 0
\(254\) −176.624 −0.695371
\(255\) 217.897i 0.854498i
\(256\) 16.0000 0.0625000
\(257\) −403.749 −1.57101 −0.785504 0.618856i \(-0.787596\pi\)
−0.785504 + 0.618856i \(0.787596\pi\)
\(258\) 103.617 0.401616
\(259\) − 243.206i − 0.939019i
\(260\) − 14.2952i − 0.0549814i
\(261\) − 51.6802i − 0.198008i
\(262\) −60.8919 −0.232412
\(263\) − 163.005i − 0.619790i −0.950771 0.309895i \(-0.899706\pi\)
0.950771 0.309895i \(-0.100294\pi\)
\(264\) 0 0
\(265\) −152.153 −0.574164
\(266\) 21.0172i 0.0790120i
\(267\) −92.1084 −0.344975
\(268\) −220.408 −0.822417
\(269\) 355.540 1.32171 0.660855 0.750514i \(-0.270194\pi\)
0.660855 + 0.750514i \(0.270194\pi\)
\(270\) − 46.6391i − 0.172738i
\(271\) 445.111i 1.64248i 0.570584 + 0.821239i \(0.306717\pi\)
−0.570584 + 0.821239i \(0.693283\pi\)
\(272\) − 79.2861i − 0.291493i
\(273\) −19.6364 −0.0719282
\(274\) − 24.5456i − 0.0895823i
\(275\) 0 0
\(276\) −132.679 −0.480722
\(277\) 102.471i 0.369932i 0.982745 + 0.184966i \(0.0592174\pi\)
−0.982745 + 0.184966i \(0.940783\pi\)
\(278\) 50.4909 0.181622
\(279\) −180.372 −0.646495
\(280\) −180.715 −0.645411
\(281\) − 146.819i − 0.522488i −0.965273 0.261244i \(-0.915867\pi\)
0.965273 0.261244i \(-0.0841327\pi\)
\(282\) 146.268i 0.518681i
\(283\) − 128.949i − 0.455650i −0.973702 0.227825i \(-0.926839\pi\)
0.973702 0.227825i \(-0.0731614\pi\)
\(284\) −66.4914 −0.234125
\(285\) − 16.2285i − 0.0569421i
\(286\) 0 0
\(287\) −336.989 −1.17418
\(288\) 16.9706i 0.0589256i
\(289\) −103.893 −0.359491
\(290\) 154.622 0.533180
\(291\) −187.324 −0.643725
\(292\) − 91.5058i − 0.313376i
\(293\) 72.9305i 0.248909i 0.992225 + 0.124455i \(0.0397181\pi\)
−0.992225 + 0.124455i \(0.960282\pi\)
\(294\) 128.213i 0.436097i
\(295\) 275.194 0.932862
\(296\) − 68.3318i − 0.230851i
\(297\) 0 0
\(298\) −0.302495 −0.00101508
\(299\) − 43.1338i − 0.144260i
\(300\) 52.9372 0.176457
\(301\) 425.845 1.41477
\(302\) 145.582 0.482058
\(303\) 5.84932i 0.0193047i
\(304\) 5.90505i 0.0194245i
\(305\) − 647.755i − 2.12379i
\(306\) 84.0956 0.274822
\(307\) − 243.270i − 0.792409i −0.918162 0.396204i \(-0.870327\pi\)
0.918162 0.396204i \(-0.129673\pi\)
\(308\) 0 0
\(309\) 202.761 0.656186
\(310\) − 539.656i − 1.74082i
\(311\) 158.095 0.508343 0.254172 0.967159i \(-0.418197\pi\)
0.254172 + 0.967159i \(0.418197\pi\)
\(312\) −5.51710 −0.0176830
\(313\) −17.4297 −0.0556858 −0.0278429 0.999612i \(-0.508864\pi\)
−0.0278429 + 0.999612i \(0.508864\pi\)
\(314\) 106.394i 0.338833i
\(315\) − 191.677i − 0.608500i
\(316\) 153.644i 0.486214i
\(317\) −73.8869 −0.233082 −0.116541 0.993186i \(-0.537181\pi\)
−0.116541 + 0.993186i \(0.537181\pi\)
\(318\) 58.7224i 0.184662i
\(319\) 0 0
\(320\) −50.7743 −0.158670
\(321\) 103.297i 0.321799i
\(322\) −545.285 −1.69343
\(323\) 29.2618 0.0905938
\(324\) −18.0000 −0.0555556
\(325\) 17.2098i 0.0529533i
\(326\) 271.692i 0.833411i
\(327\) 326.220i 0.997616i
\(328\) −94.6815 −0.288663
\(329\) 601.132i 1.82715i
\(330\) 0 0
\(331\) 418.904 1.26557 0.632786 0.774327i \(-0.281911\pi\)
0.632786 + 0.774327i \(0.281911\pi\)
\(332\) 141.291i 0.425574i
\(333\) 72.4769 0.217648
\(334\) −217.716 −0.651843
\(335\) 699.441 2.08788
\(336\) 69.7456i 0.207576i
\(337\) 153.173i 0.454518i 0.973834 + 0.227259i \(0.0729764\pi\)
−0.973834 + 0.227259i \(0.927024\pi\)
\(338\) 237.208i 0.701800i
\(339\) −14.3763 −0.0424080
\(340\) 251.606i 0.740017i
\(341\) 0 0
\(342\) −6.26325 −0.0183136
\(343\) 33.6495i 0.0981035i
\(344\) 119.647 0.347810
\(345\) 421.043 1.22042
\(346\) −464.959 −1.34381
\(347\) 303.564i 0.874823i 0.899261 + 0.437411i \(0.144105\pi\)
−0.899261 + 0.437411i \(0.855895\pi\)
\(348\) − 59.6751i − 0.171480i
\(349\) 459.785i 1.31744i 0.752390 + 0.658718i \(0.228901\pi\)
−0.752390 + 0.658718i \(0.771099\pi\)
\(350\) 217.561 0.621604
\(351\) − 5.85177i − 0.0166717i
\(352\) 0 0
\(353\) −35.2031 −0.0997256 −0.0498628 0.998756i \(-0.515878\pi\)
−0.0498628 + 0.998756i \(0.515878\pi\)
\(354\) − 106.209i − 0.300025i
\(355\) 211.003 0.594376
\(356\) −106.358 −0.298757
\(357\) 345.616 0.968112
\(358\) − 177.020i − 0.494468i
\(359\) − 209.848i − 0.584534i −0.956337 0.292267i \(-0.905590\pi\)
0.956337 0.292267i \(-0.0944096\pi\)
\(360\) − 53.8542i − 0.149595i
\(361\) 358.821 0.993963
\(362\) − 228.035i − 0.629931i
\(363\) 0 0
\(364\) −22.6742 −0.0622917
\(365\) 290.384i 0.795572i
\(366\) −249.996 −0.683049
\(367\) 391.558 1.06692 0.533458 0.845826i \(-0.320892\pi\)
0.533458 + 0.845826i \(0.320892\pi\)
\(368\) −153.205 −0.416317
\(369\) − 100.425i − 0.272154i
\(370\) 216.844i 0.586064i
\(371\) 241.337i 0.650504i
\(372\) −208.276 −0.559881
\(373\) 352.395i 0.944758i 0.881395 + 0.472379i \(0.156605\pi\)
−0.881395 + 0.472379i \(0.843395\pi\)
\(374\) 0 0
\(375\) 106.833 0.284889
\(376\) 168.896i 0.449191i
\(377\) 19.4003 0.0514597
\(378\) −73.9763 −0.195705
\(379\) −555.910 −1.46678 −0.733390 0.679808i \(-0.762063\pi\)
−0.733390 + 0.679808i \(0.762063\pi\)
\(380\) − 18.7390i − 0.0493133i
\(381\) − 216.320i − 0.567768i
\(382\) − 348.450i − 0.912173i
\(383\) −203.493 −0.531313 −0.265657 0.964068i \(-0.585589\pi\)
−0.265657 + 0.964068i \(0.585589\pi\)
\(384\) 19.5959i 0.0510310i
\(385\) 0 0
\(386\) 384.448 0.995978
\(387\) 126.904i 0.327918i
\(388\) −216.303 −0.557482
\(389\) 432.943 1.11296 0.556482 0.830860i \(-0.312151\pi\)
0.556482 + 0.830860i \(0.312151\pi\)
\(390\) 17.5079 0.0448921
\(391\) 759.188i 1.94166i
\(392\) 148.047i 0.377671i
\(393\) − 74.5770i − 0.189763i
\(394\) −525.764 −1.33443
\(395\) − 487.572i − 1.23436i
\(396\) 0 0
\(397\) −216.304 −0.544847 −0.272423 0.962177i \(-0.587825\pi\)
−0.272423 + 0.962177i \(0.587825\pi\)
\(398\) 160.119i 0.402309i
\(399\) −25.7407 −0.0645130
\(400\) 61.1266 0.152817
\(401\) 79.2577 0.197650 0.0988251 0.995105i \(-0.468492\pi\)
0.0988251 + 0.995105i \(0.468492\pi\)
\(402\) − 269.943i − 0.671501i
\(403\) − 67.7101i − 0.168015i
\(404\) 6.75421i 0.0167183i
\(405\) 57.1211 0.141040
\(406\) − 245.253i − 0.604071i
\(407\) 0 0
\(408\) 97.1053 0.238003
\(409\) − 322.622i − 0.788808i −0.918937 0.394404i \(-0.870951\pi\)
0.918937 0.394404i \(-0.129049\pi\)
\(410\) 300.462 0.732833
\(411\) 30.0620 0.0731437
\(412\) 234.129 0.568274
\(413\) − 436.497i − 1.05689i
\(414\) − 162.498i − 0.392508i
\(415\) − 448.371i − 1.08041i
\(416\) −6.37060 −0.0153139
\(417\) 61.8385i 0.148294i
\(418\) 0 0
\(419\) 609.683 1.45509 0.727546 0.686059i \(-0.240661\pi\)
0.727546 + 0.686059i \(0.240661\pi\)
\(420\) − 221.330i − 0.526976i
\(421\) 31.3509 0.0744678 0.0372339 0.999307i \(-0.488145\pi\)
0.0372339 + 0.999307i \(0.488145\pi\)
\(422\) 187.201 0.443604
\(423\) −179.141 −0.423501
\(424\) 67.8067i 0.159922i
\(425\) − 302.906i − 0.712720i
\(426\) − 81.4350i − 0.191162i
\(427\) −1027.43 −2.40616
\(428\) 119.278i 0.278686i
\(429\) 0 0
\(430\) −379.686 −0.882990
\(431\) − 362.761i − 0.841672i −0.907137 0.420836i \(-0.861737\pi\)
0.907137 0.420836i \(-0.138263\pi\)
\(432\) −20.7846 −0.0481125
\(433\) −88.6628 −0.204764 −0.102382 0.994745i \(-0.532646\pi\)
−0.102382 + 0.994745i \(0.532646\pi\)
\(434\) −855.971 −1.97228
\(435\) 189.373i 0.435339i
\(436\) 376.687i 0.863961i
\(437\) − 56.5426i − 0.129388i
\(438\) 112.071 0.255870
\(439\) − 373.125i − 0.849944i −0.905207 0.424972i \(-0.860284\pi\)
0.905207 0.424972i \(-0.139716\pi\)
\(440\) 0 0
\(441\) −157.028 −0.356072
\(442\) 31.5688i 0.0714226i
\(443\) 544.498 1.22912 0.614558 0.788872i \(-0.289335\pi\)
0.614558 + 0.788872i \(0.289335\pi\)
\(444\) 83.6891 0.188489
\(445\) 337.514 0.758459
\(446\) 189.373i 0.424603i
\(447\) − 0.370479i 0 0.000828813i
\(448\) 80.5352i 0.179766i
\(449\) 86.0956 0.191750 0.0958748 0.995393i \(-0.469435\pi\)
0.0958748 + 0.995393i \(0.469435\pi\)
\(450\) 64.8346i 0.144077i
\(451\) 0 0
\(452\) −16.6003 −0.0367264
\(453\) 178.300i 0.393599i
\(454\) 542.293 1.19448
\(455\) 71.9540 0.158141
\(456\) −7.23218 −0.0158601
\(457\) − 420.181i − 0.919434i −0.888065 0.459717i \(-0.847951\pi\)
0.888065 0.459717i \(-0.152049\pi\)
\(458\) 143.623i 0.313587i
\(459\) 102.996i 0.224391i
\(460\) 486.179 1.05691
\(461\) 169.900i 0.368546i 0.982875 + 0.184273i \(0.0589930\pi\)
−0.982875 + 0.184273i \(0.941007\pi\)
\(462\) 0 0
\(463\) 23.1381 0.0499743 0.0249872 0.999688i \(-0.492046\pi\)
0.0249872 + 0.999688i \(0.492046\pi\)
\(464\) − 68.9069i − 0.148506i
\(465\) 660.941 1.42138
\(466\) 53.2582 0.114288
\(467\) −280.938 −0.601581 −0.300790 0.953690i \(-0.597250\pi\)
−0.300790 + 0.953690i \(0.597250\pi\)
\(468\) − 6.75704i − 0.0144381i
\(469\) − 1109.41i − 2.36549i
\(470\) − 535.973i − 1.14037i
\(471\) −130.305 −0.276656
\(472\) − 122.640i − 0.259830i
\(473\) 0 0
\(474\) −188.174 −0.396992
\(475\) 22.5598i 0.0474942i
\(476\) 399.083 0.838410
\(477\) −71.9199 −0.150776
\(478\) 171.156 0.358068
\(479\) 249.584i 0.521053i 0.965467 + 0.260526i \(0.0838961\pi\)
−0.965467 + 0.260526i \(0.916104\pi\)
\(480\) − 62.1855i − 0.129553i
\(481\) 27.2072i 0.0565638i
\(482\) 35.6966 0.0740593
\(483\) − 667.835i − 1.38268i
\(484\) 0 0
\(485\) 686.415 1.41529
\(486\) − 22.0454i − 0.0453609i
\(487\) 574.028 1.17870 0.589351 0.807877i \(-0.299383\pi\)
0.589351 + 0.807877i \(0.299383\pi\)
\(488\) −288.670 −0.591538
\(489\) −332.753 −0.680477
\(490\) − 469.812i − 0.958799i
\(491\) − 60.7276i − 0.123682i −0.998086 0.0618408i \(-0.980303\pi\)
0.998086 0.0618408i \(-0.0196971\pi\)
\(492\) − 115.961i − 0.235693i
\(493\) −341.460 −0.692617
\(494\) − 2.35117i − 0.00475946i
\(495\) 0 0
\(496\) −240.496 −0.484871
\(497\) − 334.681i − 0.673403i
\(498\) −173.045 −0.347480
\(499\) 570.616 1.14352 0.571759 0.820422i \(-0.306261\pi\)
0.571759 + 0.820422i \(0.306261\pi\)
\(500\) 123.360 0.246721
\(501\) − 266.646i − 0.532228i
\(502\) 211.840i 0.421992i
\(503\) − 188.776i − 0.375299i −0.982236 0.187650i \(-0.939913\pi\)
0.982236 0.187650i \(-0.0600870\pi\)
\(504\) −85.4205 −0.169485
\(505\) − 21.4338i − 0.0424431i
\(506\) 0 0
\(507\) −290.520 −0.573018
\(508\) − 249.784i − 0.491702i
\(509\) −114.710 −0.225364 −0.112682 0.993631i \(-0.535944\pi\)
−0.112682 + 0.993631i \(0.535944\pi\)
\(510\) −308.153 −0.604222
\(511\) 460.590 0.901350
\(512\) 22.6274i 0.0441942i
\(513\) − 7.67089i − 0.0149530i
\(514\) − 570.988i − 1.11087i
\(515\) −742.982 −1.44268
\(516\) 146.537i 0.283986i
\(517\) 0 0
\(518\) 343.945 0.663987
\(519\) − 569.456i − 1.09722i
\(520\) 20.2164 0.0388777
\(521\) −499.055 −0.957878 −0.478939 0.877848i \(-0.658979\pi\)
−0.478939 + 0.877848i \(0.658979\pi\)
\(522\) 73.0868 0.140013
\(523\) 509.331i 0.973865i 0.873440 + 0.486933i \(0.161884\pi\)
−0.873440 + 0.486933i \(0.838116\pi\)
\(524\) − 86.1141i − 0.164340i
\(525\) 266.457i 0.507537i
\(526\) 230.524 0.438258
\(527\) 1191.75i 2.26139i
\(528\) 0 0
\(529\) 937.982 1.77312
\(530\) − 215.177i − 0.405995i
\(531\) 130.079 0.244970
\(532\) −29.7228 −0.0558699
\(533\) 37.6986 0.0707292
\(534\) − 130.261i − 0.243934i
\(535\) − 378.514i − 0.707503i
\(536\) − 311.704i − 0.581537i
\(537\) 216.804 0.403732
\(538\) 502.809i 0.934590i
\(539\) 0 0
\(540\) 65.9577 0.122144
\(541\) 1055.03i 1.95014i 0.221897 + 0.975070i \(0.428775\pi\)
−0.221897 + 0.975070i \(0.571225\pi\)
\(542\) −629.483 −1.16141
\(543\) 279.285 0.514336
\(544\) 112.128 0.206117
\(545\) − 1195.37i − 2.19335i
\(546\) − 27.7701i − 0.0508609i
\(547\) 153.341i 0.280331i 0.990128 + 0.140165i \(0.0447634\pi\)
−0.990128 + 0.140165i \(0.955237\pi\)
\(548\) 34.7127 0.0633443
\(549\) − 306.181i − 0.557707i
\(550\) 0 0
\(551\) 25.4312 0.0461546
\(552\) − 187.637i − 0.339922i
\(553\) −773.359 −1.39848
\(554\) −144.916 −0.261581
\(555\) −265.578 −0.478519
\(556\) 71.4049i 0.128426i
\(557\) 165.728i 0.297537i 0.988872 + 0.148769i \(0.0475309\pi\)
−0.988872 + 0.148769i \(0.952469\pi\)
\(558\) − 255.085i − 0.457141i
\(559\) −47.6388 −0.0852215
\(560\) − 255.570i − 0.456375i
\(561\) 0 0
\(562\) 207.633 0.369455
\(563\) − 538.007i − 0.955608i −0.878467 0.477804i \(-0.841433\pi\)
0.878467 0.477804i \(-0.158567\pi\)
\(564\) −206.854 −0.366763
\(565\) 52.6794 0.0932379
\(566\) 182.361 0.322193
\(567\) − 90.6021i − 0.159792i
\(568\) − 94.0331i − 0.165551i
\(569\) − 27.2038i − 0.0478098i −0.999714 0.0239049i \(-0.992390\pi\)
0.999714 0.0239049i \(-0.00760989\pi\)
\(570\) 22.9506 0.0402641
\(571\) 372.459i 0.652292i 0.945319 + 0.326146i \(0.105750\pi\)
−0.945319 + 0.326146i \(0.894250\pi\)
\(572\) 0 0
\(573\) 426.762 0.744786
\(574\) − 476.575i − 0.830270i
\(575\) −585.306 −1.01792
\(576\) −24.0000 −0.0416667
\(577\) 1065.87 1.84727 0.923634 0.383276i \(-0.125204\pi\)
0.923634 + 0.383276i \(0.125204\pi\)
\(578\) − 146.927i − 0.254199i
\(579\) 470.850i 0.813213i
\(580\) 218.669i 0.377015i
\(581\) −711.180 −1.22406
\(582\) − 264.916i − 0.455183i
\(583\) 0 0
\(584\) 129.409 0.221590
\(585\) 21.4427i 0.0366543i
\(586\) −103.139 −0.176006
\(587\) 586.748 0.999571 0.499785 0.866149i \(-0.333412\pi\)
0.499785 + 0.866149i \(0.333412\pi\)
\(588\) −181.320 −0.308367
\(589\) − 88.7589i − 0.150694i
\(590\) 389.184i 0.659633i
\(591\) − 643.927i − 1.08955i
\(592\) 96.6358 0.163236
\(593\) − 173.493i − 0.292568i −0.989243 0.146284i \(-0.953269\pi\)
0.989243 0.146284i \(-0.0467314\pi\)
\(594\) 0 0
\(595\) −1266.45 −2.12848
\(596\) − 0.427793i 0 0.000717773i
\(597\) −196.105 −0.328484
\(598\) 61.0004 0.102007
\(599\) −912.403 −1.52321 −0.761606 0.648041i \(-0.775589\pi\)
−0.761606 + 0.648041i \(0.775589\pi\)
\(600\) 74.8645i 0.124774i
\(601\) 97.1029i 0.161569i 0.996732 + 0.0807844i \(0.0257425\pi\)
−0.996732 + 0.0807844i \(0.974257\pi\)
\(602\) 602.236i 1.00039i
\(603\) 330.612 0.548278
\(604\) 205.884i 0.340867i
\(605\) 0 0
\(606\) −8.27219 −0.0136505
\(607\) 970.427i 1.59873i 0.600848 + 0.799363i \(0.294830\pi\)
−0.600848 + 0.799363i \(0.705170\pi\)
\(608\) −8.35101 −0.0137352
\(609\) 300.372 0.493222
\(610\) 916.064 1.50174
\(611\) − 67.2480i − 0.110062i
\(612\) 118.929i 0.194329i
\(613\) − 459.111i − 0.748958i −0.927235 0.374479i \(-0.877822\pi\)
0.927235 0.374479i \(-0.122178\pi\)
\(614\) 344.035 0.560318
\(615\) 367.989i 0.598356i
\(616\) 0 0
\(617\) −836.518 −1.35578 −0.677891 0.735162i \(-0.737106\pi\)
−0.677891 + 0.735162i \(0.737106\pi\)
\(618\) 286.748i 0.463993i
\(619\) −190.677 −0.308041 −0.154020 0.988068i \(-0.549222\pi\)
−0.154020 + 0.988068i \(0.549222\pi\)
\(620\) 763.188 1.23095
\(621\) 199.019 0.320481
\(622\) 223.580i 0.359453i
\(623\) − 535.346i − 0.859303i
\(624\) − 7.80236i − 0.0125038i
\(625\) −773.512 −1.23762
\(626\) − 24.6493i − 0.0393758i
\(627\) 0 0
\(628\) −150.463 −0.239591
\(629\) − 478.867i − 0.761315i
\(630\) 271.073 0.430274
\(631\) 282.476 0.447664 0.223832 0.974628i \(-0.428143\pi\)
0.223832 + 0.974628i \(0.428143\pi\)
\(632\) −217.285 −0.343806
\(633\) 229.273i 0.362201i
\(634\) − 104.492i − 0.164814i
\(635\) 792.664i 1.24829i
\(636\) −83.0460 −0.130575
\(637\) − 58.9469i − 0.0925382i
\(638\) 0 0
\(639\) 99.7372 0.156083
\(640\) − 71.8057i − 0.112196i
\(641\) 657.572 1.02585 0.512927 0.858432i \(-0.328561\pi\)
0.512927 + 0.858432i \(0.328561\pi\)
\(642\) −146.085 −0.227546
\(643\) 554.534 0.862417 0.431209 0.902252i \(-0.358087\pi\)
0.431209 + 0.902252i \(0.358087\pi\)
\(644\) − 771.149i − 1.19744i
\(645\) − 465.018i − 0.720958i
\(646\) 41.3824i 0.0640595i
\(647\) −704.426 −1.08876 −0.544378 0.838840i \(-0.683234\pi\)
−0.544378 + 0.838840i \(0.683234\pi\)
\(648\) − 25.4558i − 0.0392837i
\(649\) 0 0
\(650\) −24.3383 −0.0374436
\(651\) − 1048.35i − 1.61036i
\(652\) −384.231 −0.589311
\(653\) −141.023 −0.215961 −0.107980 0.994153i \(-0.534438\pi\)
−0.107980 + 0.994153i \(0.534438\pi\)
\(654\) −461.345 −0.705421
\(655\) 273.274i 0.417212i
\(656\) − 133.900i − 0.204116i
\(657\) 137.259i 0.208917i
\(658\) −850.129 −1.29199
\(659\) − 346.909i − 0.526418i −0.964739 0.263209i \(-0.915219\pi\)
0.964739 0.263209i \(-0.0847808\pi\)
\(660\) 0 0
\(661\) 527.348 0.797803 0.398902 0.916994i \(-0.369392\pi\)
0.398902 + 0.916994i \(0.369392\pi\)
\(662\) 592.420i 0.894894i
\(663\) −38.6637 −0.0583163
\(664\) −199.815 −0.300926
\(665\) 94.3221 0.141838
\(666\) 102.498i 0.153901i
\(667\) 659.804i 0.989212i
\(668\) − 307.896i − 0.460923i
\(669\) −231.933 −0.346687
\(670\) 989.158i 1.47636i
\(671\) 0 0
\(672\) −98.6351 −0.146778
\(673\) − 165.894i − 0.246500i −0.992376 0.123250i \(-0.960668\pi\)
0.992376 0.123250i \(-0.0393316\pi\)
\(674\) −216.619 −0.321393
\(675\) −79.4058 −0.117638
\(676\) −335.463 −0.496248
\(677\) 821.518i 1.21347i 0.794905 + 0.606734i \(0.207521\pi\)
−0.794905 + 0.606734i \(0.792479\pi\)
\(678\) − 20.3312i − 0.0299870i
\(679\) − 1088.75i − 1.60346i
\(680\) −355.824 −0.523271
\(681\) 664.171i 0.975287i
\(682\) 0 0
\(683\) −674.547 −0.987623 −0.493812 0.869569i \(-0.664397\pi\)
−0.493812 + 0.869569i \(0.664397\pi\)
\(684\) − 8.85758i − 0.0129497i
\(685\) −110.157 −0.160813
\(686\) −47.5876 −0.0693697
\(687\) −175.901 −0.256043
\(688\) 169.206i 0.245939i
\(689\) − 26.9981i − 0.0391845i
\(690\) 595.445i 0.862964i
\(691\) 241.760 0.349870 0.174935 0.984580i \(-0.444029\pi\)
0.174935 + 0.984580i \(0.444029\pi\)
\(692\) − 657.551i − 0.950218i
\(693\) 0 0
\(694\) −429.304 −0.618593
\(695\) − 226.596i − 0.326037i
\(696\) 84.3934 0.121255
\(697\) −663.525 −0.951973
\(698\) −650.234 −0.931567
\(699\) 65.2277i 0.0933157i
\(700\) 307.678i 0.439540i
\(701\) 453.896i 0.647498i 0.946143 + 0.323749i \(0.104943\pi\)
−0.946143 + 0.323749i \(0.895057\pi\)
\(702\) 8.27565 0.0117887
\(703\) 35.6650i 0.0507325i
\(704\) 0 0
\(705\) 656.430 0.931106
\(706\) − 49.7847i − 0.0705166i
\(707\) −33.9970 −0.0480863
\(708\) 150.202 0.212150
\(709\) 432.374 0.609836 0.304918 0.952379i \(-0.401371\pi\)
0.304918 + 0.952379i \(0.401371\pi\)
\(710\) 298.404i 0.420287i
\(711\) − 230.466i − 0.324143i
\(712\) − 150.412i − 0.211253i
\(713\) 2302.82 3.22976
\(714\) 488.775i 0.684559i
\(715\) 0 0
\(716\) 250.344 0.349642
\(717\) 209.623i 0.292361i
\(718\) 296.770 0.413328
\(719\) −406.442 −0.565289 −0.282644 0.959225i \(-0.591212\pi\)
−0.282644 + 0.959225i \(0.591212\pi\)
\(720\) 76.1614 0.105780
\(721\) 1178.48i 1.63450i
\(722\) 507.449i 0.702838i
\(723\) 43.7192i 0.0604692i
\(724\) 322.490 0.445428
\(725\) − 263.253i − 0.363108i
\(726\) 0 0
\(727\) −710.158 −0.976834 −0.488417 0.872610i \(-0.662425\pi\)
−0.488417 + 0.872610i \(0.662425\pi\)
\(728\) − 32.0661i − 0.0440469i
\(729\) 27.0000 0.0370370
\(730\) −410.664 −0.562554
\(731\) 838.480 1.14703
\(732\) − 353.548i − 0.482988i
\(733\) 404.685i 0.552095i 0.961144 + 0.276047i \(0.0890247\pi\)
−0.961144 + 0.276047i \(0.910975\pi\)
\(734\) 553.747i 0.754424i
\(735\) 575.400 0.782856
\(736\) − 216.664i − 0.294381i
\(737\) 0 0
\(738\) 142.022 0.192442
\(739\) − 1002.85i − 1.35704i −0.734584 0.678518i \(-0.762623\pi\)
0.734584 0.678518i \(-0.237377\pi\)
\(740\) −306.663 −0.414410
\(741\) 2.87959 0.00388608
\(742\) −341.302 −0.459976
\(743\) 139.721i 0.188050i 0.995570 + 0.0940249i \(0.0299733\pi\)
−0.995570 + 0.0940249i \(0.970027\pi\)
\(744\) − 294.546i − 0.395896i
\(745\) 1.35755i 0.00182222i
\(746\) −498.362 −0.668045
\(747\) − 211.936i − 0.283716i
\(748\) 0 0
\(749\) −600.378 −0.801572
\(750\) 151.085i 0.201447i
\(751\) −29.6933 −0.0395384 −0.0197692 0.999805i \(-0.506293\pi\)
−0.0197692 + 0.999805i \(0.506293\pi\)
\(752\) −238.855 −0.317626
\(753\) −259.450 −0.344555
\(754\) 27.4362i 0.0363875i
\(755\) − 653.349i − 0.865363i
\(756\) − 104.618i − 0.138384i
\(757\) 386.576 0.510668 0.255334 0.966853i \(-0.417815\pi\)
0.255334 + 0.966853i \(0.417815\pi\)
\(758\) − 786.175i − 1.03717i
\(759\) 0 0
\(760\) 26.5010 0.0348698
\(761\) 328.708i 0.431942i 0.976400 + 0.215971i \(0.0692916\pi\)
−0.976400 + 0.215971i \(0.930708\pi\)
\(762\) 305.922 0.401473
\(763\) −1896.04 −2.48497
\(764\) 492.783 0.645004
\(765\) − 377.409i − 0.493345i
\(766\) − 287.783i − 0.375695i
\(767\) 48.8305i 0.0636643i
\(768\) −27.7128 −0.0360844
\(769\) − 240.314i − 0.312502i −0.987717 0.156251i \(-0.950059\pi\)
0.987717 0.156251i \(-0.0499409\pi\)
\(770\) 0 0
\(771\) 699.314 0.907022
\(772\) 543.691i 0.704263i
\(773\) −634.877 −0.821315 −0.410658 0.911790i \(-0.634701\pi\)
−0.410658 + 0.911790i \(0.634701\pi\)
\(774\) −179.470 −0.231873
\(775\) −918.795 −1.18554
\(776\) − 305.899i − 0.394200i
\(777\) 421.245i 0.542143i
\(778\) 612.274i 0.786984i
\(779\) 49.4179 0.0634376
\(780\) 24.7600i 0.0317435i
\(781\) 0 0
\(782\) −1073.65 −1.37296
\(783\) 89.5127i 0.114320i
\(784\) −209.370 −0.267054
\(785\) 477.479 0.608254
\(786\) 105.468 0.134183
\(787\) 22.3959i 0.0284573i 0.999899 + 0.0142287i \(0.00452927\pi\)
−0.999899 + 0.0142287i \(0.995471\pi\)
\(788\) − 743.543i − 0.943582i
\(789\) 282.333i 0.357836i
\(790\) 689.531 0.872824
\(791\) − 83.5571i − 0.105635i
\(792\) 0 0
\(793\) 114.938 0.144940
\(794\) − 305.900i − 0.385265i
\(795\) 263.537 0.331494
\(796\) −226.443 −0.284476
\(797\) −1027.82 −1.28961 −0.644803 0.764349i \(-0.723061\pi\)
−0.644803 + 0.764349i \(0.723061\pi\)
\(798\) − 36.4029i − 0.0456176i
\(799\) 1183.62i 1.48137i
\(800\) 86.4461i 0.108058i
\(801\) 159.536 0.199171
\(802\) 112.087i 0.139760i
\(803\) 0 0
\(804\) 381.758 0.474823
\(805\) 2447.16i 3.03995i
\(806\) 95.7566 0.118805
\(807\) −615.813 −0.763089
\(808\) −9.55190 −0.0118217
\(809\) − 1476.24i − 1.82477i −0.409331 0.912386i \(-0.634238\pi\)
0.409331 0.912386i \(-0.365762\pi\)
\(810\) 80.7814i 0.0997301i
\(811\) − 277.810i − 0.342552i −0.985223 0.171276i \(-0.945211\pi\)
0.985223 0.171276i \(-0.0547890\pi\)
\(812\) 346.840 0.427143
\(813\) − 770.956i − 0.948285i
\(814\) 0 0
\(815\) 1219.31 1.49609
\(816\) 137.328i 0.168294i
\(817\) −62.4481 −0.0764359
\(818\) 456.257 0.557771
\(819\) 34.0113 0.0415278
\(820\) 424.917i 0.518191i
\(821\) − 1012.05i − 1.23270i −0.787471 0.616352i \(-0.788610\pi\)
0.787471 0.616352i \(-0.211390\pi\)
\(822\) 42.5142i 0.0517204i
\(823\) 561.875 0.682715 0.341358 0.939933i \(-0.389113\pi\)
0.341358 + 0.939933i \(0.389113\pi\)
\(824\) 331.108i 0.401830i
\(825\) 0 0
\(826\) 617.301 0.747337
\(827\) 743.913i 0.899532i 0.893146 + 0.449766i \(0.148493\pi\)
−0.893146 + 0.449766i \(0.851507\pi\)
\(828\) 229.807 0.277545
\(829\) 319.318 0.385184 0.192592 0.981279i \(-0.438311\pi\)
0.192592 + 0.981279i \(0.438311\pi\)
\(830\) 634.092 0.763966
\(831\) − 177.485i − 0.213580i
\(832\) − 9.00939i − 0.0108286i
\(833\) 1037.51i 1.24551i
\(834\) −87.4528 −0.104859
\(835\) 977.075i 1.17015i
\(836\) 0 0
\(837\) 312.414 0.373254
\(838\) 862.223i 1.02891i
\(839\) 1403.15 1.67241 0.836204 0.548419i \(-0.184770\pi\)
0.836204 + 0.548419i \(0.184770\pi\)
\(840\) 313.008 0.372628
\(841\) 544.240 0.647134
\(842\) 44.3369i 0.0526567i
\(843\) 254.298i 0.301658i
\(844\) 264.742i 0.313675i
\(845\) 1064.56 1.25983
\(846\) − 253.344i − 0.299461i
\(847\) 0 0
\(848\) −95.8932 −0.113082
\(849\) 223.346i 0.263069i
\(850\) 428.374 0.503969
\(851\) −925.317 −1.08733
\(852\) 115.167 0.135172
\(853\) − 1451.36i − 1.70148i −0.525585 0.850741i \(-0.676153\pi\)
0.525585 0.850741i \(-0.323847\pi\)
\(854\) − 1453.01i − 1.70142i
\(855\) 28.1086i 0.0328755i
\(856\) −168.684 −0.197061
\(857\) − 598.032i − 0.697820i −0.937156 0.348910i \(-0.886552\pi\)
0.937156 0.348910i \(-0.113448\pi\)
\(858\) 0 0
\(859\) −1338.18 −1.55784 −0.778919 0.627125i \(-0.784232\pi\)
−0.778919 + 0.627125i \(0.784232\pi\)
\(860\) − 536.956i − 0.624368i
\(861\) 583.683 0.677913
\(862\) 513.021 0.595152
\(863\) −1062.16 −1.23078 −0.615389 0.788224i \(-0.711001\pi\)
−0.615389 + 0.788224i \(0.711001\pi\)
\(864\) − 29.3939i − 0.0340207i
\(865\) 2086.67i 2.41233i
\(866\) − 125.388i − 0.144790i
\(867\) 179.948 0.207553
\(868\) − 1210.53i − 1.39462i
\(869\) 0 0
\(870\) −267.813 −0.307831
\(871\) 124.109i 0.142490i
\(872\) −532.716 −0.610912
\(873\) 324.455 0.371655
\(874\) 79.9634 0.0914913
\(875\) 620.929i 0.709633i
\(876\) 158.493i 0.180928i
\(877\) 166.881i 0.190287i 0.995464 + 0.0951434i \(0.0303310\pi\)
−0.995464 + 0.0951434i \(0.969669\pi\)
\(878\) 527.679 0.601001
\(879\) − 126.319i − 0.143708i
\(880\) 0 0
\(881\) −1345.57 −1.52732 −0.763662 0.645616i \(-0.776601\pi\)
−0.763662 + 0.645616i \(0.776601\pi\)
\(882\) − 222.071i − 0.251781i
\(883\) −1021.04 −1.15633 −0.578166 0.815919i \(-0.696232\pi\)
−0.578166 + 0.815919i \(0.696232\pi\)
\(884\) −44.6450 −0.0505034
\(885\) −476.651 −0.538588
\(886\) 770.037i 0.869116i
\(887\) 680.244i 0.766904i 0.923561 + 0.383452i \(0.125265\pi\)
−0.923561 + 0.383452i \(0.874735\pi\)
\(888\) 118.354i 0.133282i
\(889\) 1257.28 1.41426
\(890\) 477.317i 0.536311i
\(891\) 0 0
\(892\) −267.814 −0.300239
\(893\) − 88.1531i − 0.0987157i
\(894\) 0.523937 0.000586059 0
\(895\) −794.438 −0.887640
\(896\) −113.894 −0.127114
\(897\) 74.7100i 0.0832887i
\(898\) 121.758i 0.135587i
\(899\) 1035.74i 1.15210i
\(900\) −91.6900 −0.101878
\(901\) 475.188i 0.527400i
\(902\) 0 0
\(903\) −737.585 −0.816816
\(904\) − 23.4764i − 0.0259695i
\(905\) −1023.39 −1.13082
\(906\) −252.155 −0.278317
\(907\) 831.611 0.916881 0.458440 0.888725i \(-0.348408\pi\)
0.458440 + 0.888725i \(0.348408\pi\)
\(908\) 766.918i 0.844623i
\(909\) − 10.1313i − 0.0111456i
\(910\) 101.758i 0.111822i
\(911\) 857.147 0.940886 0.470443 0.882430i \(-0.344094\pi\)
0.470443 + 0.882430i \(0.344094\pi\)
\(912\) − 10.2279i − 0.0112147i
\(913\) 0 0
\(914\) 594.226 0.650138
\(915\) 1121.94i 1.22617i
\(916\) −203.113 −0.221739
\(917\) 433.451 0.472684
\(918\) −145.658 −0.158669
\(919\) 203.278i 0.221195i 0.993865 + 0.110597i \(0.0352764\pi\)
−0.993865 + 0.110597i \(0.964724\pi\)
\(920\) 687.561i 0.747349i
\(921\) 421.355i 0.457497i
\(922\) −240.274 −0.260601
\(923\) 37.4405i 0.0405639i
\(924\) 0 0
\(925\) 369.189 0.399123
\(926\) 32.7222i 0.0353372i
\(927\) −351.193 −0.378849
\(928\) 97.4491 0.105010
\(929\) −1050.34 −1.13061 −0.565305 0.824882i \(-0.691242\pi\)
−0.565305 + 0.824882i \(0.691242\pi\)
\(930\) 934.711i 1.00507i
\(931\) − 77.2714i − 0.0829983i
\(932\) 75.3184i 0.0808138i
\(933\) −273.828 −0.293492
\(934\) − 397.307i − 0.425382i
\(935\) 0 0
\(936\) 9.55590 0.0102093
\(937\) − 605.851i − 0.646586i −0.946299 0.323293i \(-0.895210\pi\)
0.946299 0.323293i \(-0.104790\pi\)
\(938\) 1568.95 1.67265
\(939\) 30.1891 0.0321502
\(940\) 757.980 0.806361
\(941\) 593.739i 0.630966i 0.948931 + 0.315483i \(0.102167\pi\)
−0.948931 + 0.315483i \(0.897833\pi\)
\(942\) − 184.279i − 0.195626i
\(943\) 1282.13i 1.35963i
\(944\) 173.439 0.183727
\(945\) 331.995i 0.351317i
\(946\) 0 0
\(947\) 141.939 0.149883 0.0749413 0.997188i \(-0.476123\pi\)
0.0749413 + 0.997188i \(0.476123\pi\)
\(948\) − 266.119i − 0.280716i
\(949\) −51.5257 −0.0542947
\(950\) −31.9043 −0.0335835
\(951\) 127.976 0.134570
\(952\) 564.388i 0.592845i
\(953\) 1694.64i 1.77822i 0.457694 + 0.889110i \(0.348675\pi\)
−0.457694 + 0.889110i \(0.651325\pi\)
\(954\) − 101.710i − 0.106614i
\(955\) −1563.79 −1.63748
\(956\) 242.052i 0.253192i
\(957\) 0 0
\(958\) −352.966 −0.368440
\(959\) 174.725i 0.182195i
\(960\) 87.9436 0.0916079
\(961\) 2653.90 2.76160
\(962\) −38.4768 −0.0399966
\(963\) − 178.916i − 0.185791i
\(964\) 50.4826i 0.0523679i
\(965\) − 1725.34i − 1.78792i
\(966\) 944.461 0.977703
\(967\) − 1285.89i − 1.32978i −0.746943 0.664888i \(-0.768479\pi\)
0.746943 0.664888i \(-0.231521\pi\)
\(968\) 0 0
\(969\) −50.6829 −0.0523044
\(970\) 970.737i 1.00076i
\(971\) −407.768 −0.419947 −0.209973 0.977707i \(-0.567338\pi\)
−0.209973 + 0.977707i \(0.567338\pi\)
\(972\) 31.1769 0.0320750
\(973\) −359.413 −0.369387
\(974\) 811.798i 0.833468i
\(975\) − 29.8083i − 0.0305726i
\(976\) − 408.242i − 0.418280i
\(977\) −1047.71 −1.07238 −0.536190 0.844098i \(-0.680137\pi\)
−0.536190 + 0.844098i \(0.680137\pi\)
\(978\) − 470.584i − 0.481170i
\(979\) 0 0
\(980\) 664.414 0.677974
\(981\) − 565.030i − 0.575974i
\(982\) 85.8818 0.0874561
\(983\) 72.4020 0.0736541 0.0368271 0.999322i \(-0.488275\pi\)
0.0368271 + 0.999322i \(0.488275\pi\)
\(984\) 163.993 0.166660
\(985\) 2359.55i 2.39548i
\(986\) − 482.898i − 0.489754i
\(987\) − 1041.19i − 1.05490i
\(988\) 3.32506 0.00336544
\(989\) − 1620.20i − 1.63822i
\(990\) 0 0
\(991\) 1335.55 1.34768 0.673838 0.738879i \(-0.264644\pi\)
0.673838 + 0.738879i \(0.264644\pi\)
\(992\) − 340.113i − 0.342856i
\(993\) −725.563 −0.730678
\(994\) 473.311 0.476168
\(995\) 718.591 0.722202
\(996\) − 244.723i − 0.245705i
\(997\) − 511.127i − 0.512665i −0.966589 0.256332i \(-0.917486\pi\)
0.966589 0.256332i \(-0.0825142\pi\)
\(998\) 806.972i 0.808589i
\(999\) −125.534 −0.125659
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 726.3.d.e.241.11 16
3.2 odd 2 2178.3.d.m.1693.2 16
11.4 even 5 66.3.f.a.61.2 yes 16
11.8 odd 10 66.3.f.a.13.2 16
11.10 odd 2 inner 726.3.d.e.241.3 16
33.8 even 10 198.3.j.b.145.3 16
33.26 odd 10 198.3.j.b.127.3 16
33.32 even 2 2178.3.d.m.1693.10 16
44.15 odd 10 528.3.bf.c.193.2 16
44.19 even 10 528.3.bf.c.145.2 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
66.3.f.a.13.2 16 11.8 odd 10
66.3.f.a.61.2 yes 16 11.4 even 5
198.3.j.b.127.3 16 33.26 odd 10
198.3.j.b.145.3 16 33.8 even 10
528.3.bf.c.145.2 16 44.19 even 10
528.3.bf.c.193.2 16 44.15 odd 10
726.3.d.e.241.3 16 11.10 odd 2 inner
726.3.d.e.241.11 16 1.1 even 1 trivial
2178.3.d.m.1693.2 16 3.2 odd 2
2178.3.d.m.1693.10 16 33.32 even 2