Properties

Label 656.2.u.b.529.1
Level $656$
Weight $2$
Character 656.529
Analytic conductor $5.238$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [656,2,Mod(305,656)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(656, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 0, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("656.305"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 656 = 2^{4} \cdot 41 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 656.u (of order \(5\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.23818637260\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 82)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 529.1
Root \(0.809017 + 0.587785i\) of defining polynomial
Character \(\chi\) \(=\) 656.529
Dual form 656.2.u.b.625.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.618034 q^{3} +(0.500000 - 1.53884i) q^{5} +(-2.11803 - 1.53884i) q^{7} -2.61803 q^{9} +(-0.927051 - 2.85317i) q^{11} +(-5.04508 + 3.66547i) q^{13} +(0.309017 - 0.951057i) q^{15} +(-1.30902 - 4.02874i) q^{17} +(-1.42705 - 1.03681i) q^{19} +(-1.30902 - 0.951057i) q^{21} +(-1.30902 + 0.951057i) q^{23} +(1.92705 + 1.40008i) q^{25} -3.47214 q^{27} +(-0.163119 + 0.502029i) q^{29} +(1.88197 + 5.79210i) q^{31} +(-0.572949 - 1.76336i) q^{33} +(-3.42705 + 2.48990i) q^{35} +(0.454915 - 1.40008i) q^{37} +(-3.11803 + 2.26538i) q^{39} +(2.19098 - 6.01661i) q^{41} +(7.85410 - 5.70634i) q^{43} +(-1.30902 + 4.02874i) q^{45} +(-1.23607 + 0.898056i) q^{47} +(-0.0450850 - 0.138757i) q^{49} +(-0.809017 - 2.48990i) q^{51} +(3.66312 - 11.2739i) q^{53} -4.85410 q^{55} +(-0.881966 - 0.640786i) q^{57} +(-4.11803 + 2.99193i) q^{59} +(2.80902 + 2.04087i) q^{61} +(5.54508 + 4.02874i) q^{63} +(3.11803 + 9.59632i) q^{65} +(4.76393 - 14.6619i) q^{67} +(-0.809017 + 0.587785i) q^{69} +(-1.19098 - 3.66547i) q^{71} -16.1803 q^{73} +(1.19098 + 0.865300i) q^{75} +(-2.42705 + 7.46969i) q^{77} -14.0000 q^{79} +5.70820 q^{81} +16.0902 q^{83} -6.85410 q^{85} +(-0.100813 + 0.310271i) q^{87} +(5.04508 + 3.66547i) q^{89} +16.3262 q^{91} +(1.16312 + 3.57971i) q^{93} +(-2.30902 + 1.67760i) q^{95} +(1.69098 - 5.20431i) q^{97} +(2.42705 + 7.46969i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{3} + 2 q^{5} - 4 q^{7} - 6 q^{9} + 3 q^{11} - 9 q^{13} - q^{15} - 3 q^{17} + q^{19} - 3 q^{21} - 3 q^{23} + q^{25} + 4 q^{27} + 15 q^{29} + 12 q^{31} - 9 q^{33} - 7 q^{35} + 13 q^{37} - 8 q^{39}+ \cdots + 3 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/656\mathbb{Z}\right)^\times\).

\(n\) \(129\) \(165\) \(575\)
\(\chi(n)\) \(e\left(\frac{4}{5}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.618034 0.356822 0.178411 0.983956i \(-0.442904\pi\)
0.178411 + 0.983956i \(0.442904\pi\)
\(4\) 0 0
\(5\) 0.500000 1.53884i 0.223607 0.688191i −0.774823 0.632178i \(-0.782161\pi\)
0.998430 0.0560130i \(-0.0178388\pi\)
\(6\) 0 0
\(7\) −2.11803 1.53884i −0.800542 0.581628i 0.110531 0.993873i \(-0.464745\pi\)
−0.911073 + 0.412245i \(0.864745\pi\)
\(8\) 0 0
\(9\) −2.61803 −0.872678
\(10\) 0 0
\(11\) −0.927051 2.85317i −0.279516 0.860263i −0.987989 0.154525i \(-0.950615\pi\)
0.708473 0.705738i \(-0.249385\pi\)
\(12\) 0 0
\(13\) −5.04508 + 3.66547i −1.39925 + 1.01662i −0.404478 + 0.914548i \(0.632547\pi\)
−0.994777 + 0.102070i \(0.967453\pi\)
\(14\) 0 0
\(15\) 0.309017 0.951057i 0.0797878 0.245562i
\(16\) 0 0
\(17\) −1.30902 4.02874i −0.317483 0.977113i −0.974720 0.223429i \(-0.928275\pi\)
0.657237 0.753684i \(-0.271725\pi\)
\(18\) 0 0
\(19\) −1.42705 1.03681i −0.327388 0.237861i 0.411934 0.911214i \(-0.364854\pi\)
−0.739321 + 0.673353i \(0.764854\pi\)
\(20\) 0 0
\(21\) −1.30902 0.951057i −0.285651 0.207538i
\(22\) 0 0
\(23\) −1.30902 + 0.951057i −0.272949 + 0.198309i −0.715836 0.698268i \(-0.753954\pi\)
0.442887 + 0.896577i \(0.353954\pi\)
\(24\) 0 0
\(25\) 1.92705 + 1.40008i 0.385410 + 0.280017i
\(26\) 0 0
\(27\) −3.47214 −0.668213
\(28\) 0 0
\(29\) −0.163119 + 0.502029i −0.0302904 + 0.0932244i −0.965059 0.262033i \(-0.915607\pi\)
0.934768 + 0.355258i \(0.115607\pi\)
\(30\) 0 0
\(31\) 1.88197 + 5.79210i 0.338011 + 1.04029i 0.965220 + 0.261440i \(0.0841973\pi\)
−0.627209 + 0.778851i \(0.715803\pi\)
\(32\) 0 0
\(33\) −0.572949 1.76336i −0.0997376 0.306961i
\(34\) 0 0
\(35\) −3.42705 + 2.48990i −0.579277 + 0.420870i
\(36\) 0 0
\(37\) 0.454915 1.40008i 0.0747876 0.230172i −0.906674 0.421832i \(-0.861387\pi\)
0.981461 + 0.191660i \(0.0613871\pi\)
\(38\) 0 0
\(39\) −3.11803 + 2.26538i −0.499285 + 0.362752i
\(40\) 0 0
\(41\) 2.19098 6.01661i 0.342174 0.939637i
\(42\) 0 0
\(43\) 7.85410 5.70634i 1.19774 0.870209i 0.203679 0.979038i \(-0.434710\pi\)
0.994060 + 0.108829i \(0.0347102\pi\)
\(44\) 0 0
\(45\) −1.30902 + 4.02874i −0.195137 + 0.600569i
\(46\) 0 0
\(47\) −1.23607 + 0.898056i −0.180299 + 0.130995i −0.674274 0.738481i \(-0.735543\pi\)
0.493975 + 0.869476i \(0.335543\pi\)
\(48\) 0 0
\(49\) −0.0450850 0.138757i −0.00644071 0.0198225i
\(50\) 0 0
\(51\) −0.809017 2.48990i −0.113285 0.348655i
\(52\) 0 0
\(53\) 3.66312 11.2739i 0.503168 1.54859i −0.300661 0.953731i \(-0.597207\pi\)
0.803829 0.594861i \(-0.202793\pi\)
\(54\) 0 0
\(55\) −4.85410 −0.654527
\(56\) 0 0
\(57\) −0.881966 0.640786i −0.116819 0.0848742i
\(58\) 0 0
\(59\) −4.11803 + 2.99193i −0.536122 + 0.389516i −0.822643 0.568558i \(-0.807501\pi\)
0.286521 + 0.958074i \(0.407501\pi\)
\(60\) 0 0
\(61\) 2.80902 + 2.04087i 0.359658 + 0.261307i 0.752909 0.658124i \(-0.228650\pi\)
−0.393252 + 0.919431i \(0.628650\pi\)
\(62\) 0 0
\(63\) 5.54508 + 4.02874i 0.698615 + 0.507574i
\(64\) 0 0
\(65\) 3.11803 + 9.59632i 0.386745 + 1.19028i
\(66\) 0 0
\(67\) 4.76393 14.6619i 0.582007 1.79123i −0.0289644 0.999580i \(-0.509221\pi\)
0.610971 0.791653i \(-0.290779\pi\)
\(68\) 0 0
\(69\) −0.809017 + 0.587785i −0.0973942 + 0.0707610i
\(70\) 0 0
\(71\) −1.19098 3.66547i −0.141344 0.435011i 0.855179 0.518333i \(-0.173447\pi\)
−0.996523 + 0.0833216i \(0.973447\pi\)
\(72\) 0 0
\(73\) −16.1803 −1.89377 −0.946883 0.321579i \(-0.895786\pi\)
−0.946883 + 0.321579i \(0.895786\pi\)
\(74\) 0 0
\(75\) 1.19098 + 0.865300i 0.137523 + 0.0999162i
\(76\) 0 0
\(77\) −2.42705 + 7.46969i −0.276588 + 0.851251i
\(78\) 0 0
\(79\) −14.0000 −1.57512 −0.787562 0.616236i \(-0.788657\pi\)
−0.787562 + 0.616236i \(0.788657\pi\)
\(80\) 0 0
\(81\) 5.70820 0.634245
\(82\) 0 0
\(83\) 16.0902 1.76613 0.883063 0.469255i \(-0.155477\pi\)
0.883063 + 0.469255i \(0.155477\pi\)
\(84\) 0 0
\(85\) −6.85410 −0.743432
\(86\) 0 0
\(87\) −0.100813 + 0.310271i −0.0108083 + 0.0332645i
\(88\) 0 0
\(89\) 5.04508 + 3.66547i 0.534778 + 0.388539i 0.822142 0.569283i \(-0.192779\pi\)
−0.287364 + 0.957821i \(0.592779\pi\)
\(90\) 0 0
\(91\) 16.3262 1.71145
\(92\) 0 0
\(93\) 1.16312 + 3.57971i 0.120610 + 0.371199i
\(94\) 0 0
\(95\) −2.30902 + 1.67760i −0.236900 + 0.172118i
\(96\) 0 0
\(97\) 1.69098 5.20431i 0.171693 0.528418i −0.827774 0.561062i \(-0.810393\pi\)
0.999467 + 0.0326444i \(0.0103929\pi\)
\(98\) 0 0
\(99\) 2.42705 + 7.46969i 0.243928 + 0.750733i
\(100\) 0 0
\(101\) −6.30902 4.58377i −0.627771 0.456102i 0.227857 0.973695i \(-0.426828\pi\)
−0.855627 + 0.517593i \(0.826828\pi\)
\(102\) 0 0
\(103\) −9.89919 7.19218i −0.975396 0.708667i −0.0187209 0.999825i \(-0.505959\pi\)
−0.956675 + 0.291158i \(0.905959\pi\)
\(104\) 0 0
\(105\) −2.11803 + 1.53884i −0.206699 + 0.150176i
\(106\) 0 0
\(107\) −4.61803 3.35520i −0.446442 0.324359i 0.341747 0.939792i \(-0.388981\pi\)
−0.788189 + 0.615433i \(0.788981\pi\)
\(108\) 0 0
\(109\) 7.47214 0.715701 0.357850 0.933779i \(-0.383510\pi\)
0.357850 + 0.933779i \(0.383510\pi\)
\(110\) 0 0
\(111\) 0.281153 0.865300i 0.0266859 0.0821306i
\(112\) 0 0
\(113\) 5.51722 + 16.9803i 0.519016 + 1.59737i 0.775853 + 0.630914i \(0.217320\pi\)
−0.256837 + 0.966455i \(0.582680\pi\)
\(114\) 0 0
\(115\) 0.809017 + 2.48990i 0.0754412 + 0.232184i
\(116\) 0 0
\(117\) 13.2082 9.59632i 1.22110 0.887180i
\(118\) 0 0
\(119\) −3.42705 + 10.5474i −0.314157 + 0.966877i
\(120\) 0 0
\(121\) 1.61803 1.17557i 0.147094 0.106870i
\(122\) 0 0
\(123\) 1.35410 3.71847i 0.122095 0.335283i
\(124\) 0 0
\(125\) 9.66312 7.02067i 0.864296 0.627948i
\(126\) 0 0
\(127\) −2.10081 + 6.46564i −0.186417 + 0.573733i −0.999970 0.00775835i \(-0.997530\pi\)
0.813553 + 0.581491i \(0.197530\pi\)
\(128\) 0 0
\(129\) 4.85410 3.52671i 0.427380 0.310510i
\(130\) 0 0
\(131\) 2.82624 + 8.69827i 0.246930 + 0.759971i 0.995313 + 0.0967048i \(0.0308303\pi\)
−0.748384 + 0.663266i \(0.769170\pi\)
\(132\) 0 0
\(133\) 1.42705 + 4.39201i 0.123741 + 0.380836i
\(134\) 0 0
\(135\) −1.73607 + 5.34307i −0.149417 + 0.459858i
\(136\) 0 0
\(137\) −6.76393 −0.577882 −0.288941 0.957347i \(-0.593303\pi\)
−0.288941 + 0.957347i \(0.593303\pi\)
\(138\) 0 0
\(139\) 0.190983 + 0.138757i 0.0161990 + 0.0117692i 0.595855 0.803092i \(-0.296813\pi\)
−0.579656 + 0.814861i \(0.696813\pi\)
\(140\) 0 0
\(141\) −0.763932 + 0.555029i −0.0643347 + 0.0467419i
\(142\) 0 0
\(143\) 15.1353 + 10.9964i 1.26567 + 0.919566i
\(144\) 0 0
\(145\) 0.690983 + 0.502029i 0.0573830 + 0.0416912i
\(146\) 0 0
\(147\) −0.0278640 0.0857567i −0.00229819 0.00707309i
\(148\) 0 0
\(149\) −3.52786 + 10.8576i −0.289014 + 0.889493i 0.696153 + 0.717894i \(0.254894\pi\)
−0.985167 + 0.171600i \(0.945106\pi\)
\(150\) 0 0
\(151\) −12.3262 + 8.95554i −1.00310 + 0.728791i −0.962750 0.270395i \(-0.912846\pi\)
−0.0403454 + 0.999186i \(0.512846\pi\)
\(152\) 0 0
\(153\) 3.42705 + 10.5474i 0.277061 + 0.852705i
\(154\) 0 0
\(155\) 9.85410 0.791501
\(156\) 0 0
\(157\) −2.38197 1.73060i −0.190102 0.138117i 0.488664 0.872472i \(-0.337485\pi\)
−0.678765 + 0.734355i \(0.737485\pi\)
\(158\) 0 0
\(159\) 2.26393 6.96767i 0.179541 0.552572i
\(160\) 0 0
\(161\) 4.23607 0.333849
\(162\) 0 0
\(163\) −4.03444 −0.316002 −0.158001 0.987439i \(-0.550505\pi\)
−0.158001 + 0.987439i \(0.550505\pi\)
\(164\) 0 0
\(165\) −3.00000 −0.233550
\(166\) 0 0
\(167\) 24.0344 1.85984 0.929920 0.367761i \(-0.119875\pi\)
0.929920 + 0.367761i \(0.119875\pi\)
\(168\) 0 0
\(169\) 8.00000 24.6215i 0.615385 1.89396i
\(170\) 0 0
\(171\) 3.73607 + 2.71441i 0.285704 + 0.207576i
\(172\) 0 0
\(173\) −3.76393 −0.286166 −0.143083 0.989711i \(-0.545702\pi\)
−0.143083 + 0.989711i \(0.545702\pi\)
\(174\) 0 0
\(175\) −1.92705 5.93085i −0.145671 0.448330i
\(176\) 0 0
\(177\) −2.54508 + 1.84911i −0.191300 + 0.138988i
\(178\) 0 0
\(179\) 7.52786 23.1684i 0.562659 1.73169i −0.112148 0.993692i \(-0.535773\pi\)
0.674807 0.737995i \(-0.264227\pi\)
\(180\) 0 0
\(181\) 1.86475 + 5.73910i 0.138605 + 0.426584i 0.996133 0.0878537i \(-0.0280008\pi\)
−0.857528 + 0.514437i \(0.828001\pi\)
\(182\) 0 0
\(183\) 1.73607 + 1.26133i 0.128334 + 0.0932400i
\(184\) 0 0
\(185\) −1.92705 1.40008i −0.141680 0.102936i
\(186\) 0 0
\(187\) −10.2812 + 7.46969i −0.751832 + 0.546238i
\(188\) 0 0
\(189\) 7.35410 + 5.34307i 0.534932 + 0.388651i
\(190\) 0 0
\(191\) −5.00000 −0.361787 −0.180894 0.983503i \(-0.557899\pi\)
−0.180894 + 0.983503i \(0.557899\pi\)
\(192\) 0 0
\(193\) −3.73607 + 11.4984i −0.268928 + 0.827675i 0.721834 + 0.692066i \(0.243299\pi\)
−0.990762 + 0.135610i \(0.956701\pi\)
\(194\) 0 0
\(195\) 1.92705 + 5.93085i 0.137999 + 0.424717i
\(196\) 0 0
\(197\) −0.982779 3.02468i −0.0700201 0.215500i 0.909923 0.414777i \(-0.136140\pi\)
−0.979943 + 0.199277i \(0.936140\pi\)
\(198\) 0 0
\(199\) 5.28115 3.83698i 0.374371 0.271996i −0.384650 0.923062i \(-0.625678\pi\)
0.759021 + 0.651066i \(0.225678\pi\)
\(200\) 0 0
\(201\) 2.94427 9.06154i 0.207673 0.639152i
\(202\) 0 0
\(203\) 1.11803 0.812299i 0.0784706 0.0570122i
\(204\) 0 0
\(205\) −8.16312 6.37988i −0.570137 0.445590i
\(206\) 0 0
\(207\) 3.42705 2.48990i 0.238197 0.173060i
\(208\) 0 0
\(209\) −1.63525 + 5.03280i −0.113113 + 0.348126i
\(210\) 0 0
\(211\) 5.04508 3.66547i 0.347318 0.252341i −0.400425 0.916330i \(-0.631138\pi\)
0.747743 + 0.663988i \(0.231138\pi\)
\(212\) 0 0
\(213\) −0.736068 2.26538i −0.0504345 0.155222i
\(214\) 0 0
\(215\) −4.85410 14.9394i −0.331047 1.01886i
\(216\) 0 0
\(217\) 4.92705 15.1639i 0.334470 1.02939i
\(218\) 0 0
\(219\) −10.0000 −0.675737
\(220\) 0 0
\(221\) 21.3713 + 15.5272i 1.43759 + 1.04447i
\(222\) 0 0
\(223\) −20.7984 + 15.1109i −1.39276 + 1.01190i −0.397206 + 0.917729i \(0.630020\pi\)
−0.995556 + 0.0941715i \(0.969980\pi\)
\(224\) 0 0
\(225\) −5.04508 3.66547i −0.336339 0.244365i
\(226\) 0 0
\(227\) −15.0902 10.9637i −1.00157 0.727683i −0.0391456 0.999234i \(-0.512464\pi\)
−0.962424 + 0.271550i \(0.912464\pi\)
\(228\) 0 0
\(229\) 3.28115 + 10.0984i 0.216825 + 0.667318i 0.999019 + 0.0442832i \(0.0141004\pi\)
−0.782194 + 0.623035i \(0.785900\pi\)
\(230\) 0 0
\(231\) −1.50000 + 4.61653i −0.0986928 + 0.303745i
\(232\) 0 0
\(233\) −10.7533 + 7.81272i −0.704471 + 0.511828i −0.881385 0.472398i \(-0.843389\pi\)
0.176914 + 0.984226i \(0.443389\pi\)
\(234\) 0 0
\(235\) 0.763932 + 2.35114i 0.0498334 + 0.153372i
\(236\) 0 0
\(237\) −8.65248 −0.562039
\(238\) 0 0
\(239\) 20.4443 + 14.8536i 1.32243 + 0.960802i 0.999899 + 0.0142429i \(0.00453381\pi\)
0.322531 + 0.946559i \(0.395466\pi\)
\(240\) 0 0
\(241\) −4.72542 + 14.5434i −0.304391 + 0.936820i 0.675512 + 0.737349i \(0.263923\pi\)
−0.979904 + 0.199472i \(0.936077\pi\)
\(242\) 0 0
\(243\) 13.9443 0.894525
\(244\) 0 0
\(245\) −0.236068 −0.0150818
\(246\) 0 0
\(247\) 11.0000 0.699913
\(248\) 0 0
\(249\) 9.94427 0.630193
\(250\) 0 0
\(251\) −5.42705 + 16.7027i −0.342552 + 1.05427i 0.620329 + 0.784342i \(0.286999\pi\)
−0.962881 + 0.269926i \(0.913001\pi\)
\(252\) 0 0
\(253\) 3.92705 + 2.85317i 0.246892 + 0.179377i
\(254\) 0 0
\(255\) −4.23607 −0.265273
\(256\) 0 0
\(257\) −1.47214 4.53077i −0.0918293 0.282622i 0.894585 0.446898i \(-0.147471\pi\)
−0.986414 + 0.164276i \(0.947471\pi\)
\(258\) 0 0
\(259\) −3.11803 + 2.26538i −0.193745 + 0.140764i
\(260\) 0 0
\(261\) 0.427051 1.31433i 0.0264338 0.0813548i
\(262\) 0 0
\(263\) −0.0278640 0.0857567i −0.00171817 0.00528799i 0.950194 0.311660i \(-0.100885\pi\)
−0.951912 + 0.306372i \(0.900885\pi\)
\(264\) 0 0
\(265\) −15.5172 11.2739i −0.953215 0.692551i
\(266\) 0 0
\(267\) 3.11803 + 2.26538i 0.190821 + 0.138639i
\(268\) 0 0
\(269\) 4.89919 3.55947i 0.298709 0.217025i −0.428328 0.903623i \(-0.640897\pi\)
0.727036 + 0.686599i \(0.240897\pi\)
\(270\) 0 0
\(271\) −21.1353 15.3557i −1.28388 0.932790i −0.284213 0.958761i \(-0.591732\pi\)
−0.999663 + 0.0259713i \(0.991732\pi\)
\(272\) 0 0
\(273\) 10.0902 0.610685
\(274\) 0 0
\(275\) 2.20820 6.79615i 0.133160 0.409823i
\(276\) 0 0
\(277\) −4.82624 14.8536i −0.289981 0.892468i −0.984861 0.173343i \(-0.944543\pi\)
0.694881 0.719125i \(-0.255457\pi\)
\(278\) 0 0
\(279\) −4.92705 15.1639i −0.294975 0.907839i
\(280\) 0 0
\(281\) −8.04508 + 5.84510i −0.479930 + 0.348689i −0.801298 0.598265i \(-0.795857\pi\)
0.321369 + 0.946954i \(0.395857\pi\)
\(282\) 0 0
\(283\) 5.40983 16.6497i 0.321581 0.989725i −0.651379 0.758752i \(-0.725809\pi\)
0.972960 0.230972i \(-0.0741907\pi\)
\(284\) 0 0
\(285\) −1.42705 + 1.03681i −0.0845312 + 0.0614155i
\(286\) 0 0
\(287\) −13.8992 + 9.37181i −0.820443 + 0.553200i
\(288\) 0 0
\(289\) −0.763932 + 0.555029i −0.0449372 + 0.0326488i
\(290\) 0 0
\(291\) 1.04508 3.21644i 0.0612640 0.188551i
\(292\) 0 0
\(293\) 5.50000 3.99598i 0.321313 0.233448i −0.415422 0.909629i \(-0.636366\pi\)
0.736736 + 0.676181i \(0.236366\pi\)
\(294\) 0 0
\(295\) 2.54508 + 7.83297i 0.148181 + 0.456053i
\(296\) 0 0
\(297\) 3.21885 + 9.90659i 0.186776 + 0.574839i
\(298\) 0 0
\(299\) 3.11803 9.59632i 0.180321 0.554970i
\(300\) 0 0
\(301\) −25.4164 −1.46498
\(302\) 0 0
\(303\) −3.89919 2.83293i −0.224002 0.162747i
\(304\) 0 0
\(305\) 4.54508 3.30220i 0.260251 0.189083i
\(306\) 0 0
\(307\) −18.1803 13.2088i −1.03761 0.753865i −0.0677899 0.997700i \(-0.521595\pi\)
−0.969817 + 0.243834i \(0.921595\pi\)
\(308\) 0 0
\(309\) −6.11803 4.44501i −0.348043 0.252868i
\(310\) 0 0
\(311\) 1.40983 + 4.33901i 0.0799441 + 0.246043i 0.983038 0.183399i \(-0.0587102\pi\)
−0.903094 + 0.429442i \(0.858710\pi\)
\(312\) 0 0
\(313\) 0.708204 2.17963i 0.0400301 0.123200i −0.929044 0.369968i \(-0.879369\pi\)
0.969075 + 0.246768i \(0.0793686\pi\)
\(314\) 0 0
\(315\) 8.97214 6.51864i 0.505523 0.367284i
\(316\) 0 0
\(317\) −4.19098 12.8985i −0.235389 0.724453i −0.997070 0.0765002i \(-0.975625\pi\)
0.761681 0.647953i \(-0.224375\pi\)
\(318\) 0 0
\(319\) 1.58359 0.0886641
\(320\) 0 0
\(321\) −2.85410 2.07363i −0.159300 0.115739i
\(322\) 0 0
\(323\) −2.30902 + 7.10642i −0.128477 + 0.395412i
\(324\) 0 0
\(325\) −14.8541 −0.823957
\(326\) 0 0
\(327\) 4.61803 0.255378
\(328\) 0 0
\(329\) 4.00000 0.220527
\(330\) 0 0
\(331\) 10.0902 0.554606 0.277303 0.960783i \(-0.410559\pi\)
0.277303 + 0.960783i \(0.410559\pi\)
\(332\) 0 0
\(333\) −1.19098 + 3.66547i −0.0652655 + 0.200866i
\(334\) 0 0
\(335\) −20.1803 14.6619i −1.10257 0.801064i
\(336\) 0 0
\(337\) −26.7639 −1.45792 −0.728962 0.684554i \(-0.759997\pi\)
−0.728962 + 0.684554i \(0.759997\pi\)
\(338\) 0 0
\(339\) 3.40983 + 10.4944i 0.185197 + 0.569976i
\(340\) 0 0
\(341\) 14.7812 10.7391i 0.800444 0.581557i
\(342\) 0 0
\(343\) −5.78115 + 17.7926i −0.312153 + 0.960708i
\(344\) 0 0
\(345\) 0.500000 + 1.53884i 0.0269191 + 0.0828485i
\(346\) 0 0
\(347\) −23.2533 16.8945i −1.24830 0.906944i −0.250180 0.968199i \(-0.580490\pi\)
−0.998122 + 0.0612549i \(0.980490\pi\)
\(348\) 0 0
\(349\) −5.16312 3.75123i −0.276375 0.200798i 0.440960 0.897527i \(-0.354638\pi\)
−0.717335 + 0.696729i \(0.754638\pi\)
\(350\) 0 0
\(351\) 17.5172 12.7270i 0.935000 0.679317i
\(352\) 0 0
\(353\) −6.16312 4.47777i −0.328030 0.238328i 0.411564 0.911381i \(-0.364983\pi\)
−0.739594 + 0.673053i \(0.764983\pi\)
\(354\) 0 0
\(355\) −6.23607 −0.330976
\(356\) 0 0
\(357\) −2.11803 + 6.51864i −0.112098 + 0.345003i
\(358\) 0 0
\(359\) 3.47214 + 10.6861i 0.183252 + 0.563993i 0.999914 0.0131242i \(-0.00417769\pi\)
−0.816662 + 0.577117i \(0.804178\pi\)
\(360\) 0 0
\(361\) −4.90983 15.1109i −0.258412 0.795311i
\(362\) 0 0
\(363\) 1.00000 0.726543i 0.0524864 0.0381336i
\(364\) 0 0
\(365\) −8.09017 + 24.8990i −0.423459 + 1.30327i
\(366\) 0 0
\(367\) 7.42705 5.39607i 0.387689 0.281672i −0.376819 0.926287i \(-0.622982\pi\)
0.764508 + 0.644614i \(0.222982\pi\)
\(368\) 0 0
\(369\) −5.73607 + 15.7517i −0.298608 + 0.820000i
\(370\) 0 0
\(371\) −25.1074 + 18.2416i −1.30351 + 0.947056i
\(372\) 0 0
\(373\) 7.78115 23.9479i 0.402893 1.23998i −0.519749 0.854319i \(-0.673975\pi\)
0.922642 0.385658i \(-0.126025\pi\)
\(374\) 0 0
\(375\) 5.97214 4.33901i 0.308400 0.224066i
\(376\) 0 0
\(377\) −1.01722 3.13068i −0.0523895 0.161238i
\(378\) 0 0
\(379\) 4.64590 + 14.2986i 0.238644 + 0.734470i 0.996617 + 0.0821845i \(0.0261897\pi\)
−0.757973 + 0.652285i \(0.773810\pi\)
\(380\) 0 0
\(381\) −1.29837 + 3.99598i −0.0665177 + 0.204720i
\(382\) 0 0
\(383\) 3.18034 0.162508 0.0812539 0.996693i \(-0.474108\pi\)
0.0812539 + 0.996693i \(0.474108\pi\)
\(384\) 0 0
\(385\) 10.2812 + 7.46969i 0.523976 + 0.380691i
\(386\) 0 0
\(387\) −20.5623 + 14.9394i −1.04524 + 0.759412i
\(388\) 0 0
\(389\) −30.3156 22.0256i −1.53706 1.11674i −0.952145 0.305647i \(-0.901127\pi\)
−0.584917 0.811093i \(-0.698873\pi\)
\(390\) 0 0
\(391\) 5.54508 + 4.02874i 0.280427 + 0.203742i
\(392\) 0 0
\(393\) 1.74671 + 5.37582i 0.0881099 + 0.271174i
\(394\) 0 0
\(395\) −7.00000 + 21.5438i −0.352208 + 1.08399i
\(396\) 0 0
\(397\) 21.4164 15.5599i 1.07486 0.780931i 0.0980794 0.995179i \(-0.468730\pi\)
0.976779 + 0.214248i \(0.0687301\pi\)
\(398\) 0 0
\(399\) 0.881966 + 2.71441i 0.0441535 + 0.135891i
\(400\) 0 0
\(401\) 24.8885 1.24287 0.621437 0.783464i \(-0.286549\pi\)
0.621437 + 0.783464i \(0.286549\pi\)
\(402\) 0 0
\(403\) −30.7254 22.3233i −1.53054 1.11200i
\(404\) 0 0
\(405\) 2.85410 8.78402i 0.141821 0.436482i
\(406\) 0 0
\(407\) −4.41641 −0.218913
\(408\) 0 0
\(409\) −0.270510 −0.0133759 −0.00668793 0.999978i \(-0.502129\pi\)
−0.00668793 + 0.999978i \(0.502129\pi\)
\(410\) 0 0
\(411\) −4.18034 −0.206201
\(412\) 0 0
\(413\) 13.3262 0.655741
\(414\) 0 0
\(415\) 8.04508 24.7602i 0.394918 1.21543i
\(416\) 0 0
\(417\) 0.118034 + 0.0857567i 0.00578015 + 0.00419952i
\(418\) 0 0
\(419\) 17.9787 0.878318 0.439159 0.898409i \(-0.355277\pi\)
0.439159 + 0.898409i \(0.355277\pi\)
\(420\) 0 0
\(421\) −8.41641 25.9030i −0.410191 1.26244i −0.916483 0.400075i \(-0.868984\pi\)
0.506292 0.862362i \(-0.331016\pi\)
\(422\) 0 0
\(423\) 3.23607 2.35114i 0.157343 0.114316i
\(424\) 0 0
\(425\) 3.11803 9.59632i 0.151247 0.465490i
\(426\) 0 0
\(427\) −2.80902 8.64527i −0.135938 0.418374i
\(428\) 0 0
\(429\) 9.35410 + 6.79615i 0.451620 + 0.328121i
\(430\) 0 0
\(431\) −9.51722 6.91467i −0.458428 0.333068i 0.334486 0.942401i \(-0.391437\pi\)
−0.792914 + 0.609333i \(0.791437\pi\)
\(432\) 0 0
\(433\) 6.76393 4.91428i 0.325054 0.236165i −0.413275 0.910606i \(-0.635615\pi\)
0.738329 + 0.674441i \(0.235615\pi\)
\(434\) 0 0
\(435\) 0.427051 + 0.310271i 0.0204755 + 0.0148763i
\(436\) 0 0
\(437\) 2.85410 0.136530
\(438\) 0 0
\(439\) 7.16312 22.0458i 0.341877 1.05219i −0.621357 0.783527i \(-0.713419\pi\)
0.963234 0.268662i \(-0.0865815\pi\)
\(440\) 0 0
\(441\) 0.118034 + 0.363271i 0.00562067 + 0.0172986i
\(442\) 0 0
\(443\) 7.19756 + 22.1518i 0.341966 + 1.05246i 0.963188 + 0.268829i \(0.0866368\pi\)
−0.621221 + 0.783635i \(0.713363\pi\)
\(444\) 0 0
\(445\) 8.16312 5.93085i 0.386969 0.281149i
\(446\) 0 0
\(447\) −2.18034 + 6.71040i −0.103127 + 0.317391i
\(448\) 0 0
\(449\) −5.57295 + 4.04898i −0.263004 + 0.191083i −0.711470 0.702716i \(-0.751970\pi\)
0.448466 + 0.893800i \(0.351970\pi\)
\(450\) 0 0
\(451\) −19.1976 0.673542i −0.903978 0.0317159i
\(452\) 0 0
\(453\) −7.61803 + 5.53483i −0.357926 + 0.260049i
\(454\) 0 0
\(455\) 8.16312 25.1235i 0.382693 1.17781i
\(456\) 0 0
\(457\) 8.66312 6.29412i 0.405244 0.294427i −0.366430 0.930446i \(-0.619420\pi\)
0.771673 + 0.636019i \(0.219420\pi\)
\(458\) 0 0
\(459\) 4.54508 + 13.9883i 0.212146 + 0.652919i
\(460\) 0 0
\(461\) 9.60081 + 29.5483i 0.447154 + 1.37620i 0.880104 + 0.474782i \(0.157473\pi\)
−0.432949 + 0.901418i \(0.642527\pi\)
\(462\) 0 0
\(463\) 5.30902 16.3395i 0.246731 0.759360i −0.748616 0.663004i \(-0.769281\pi\)
0.995347 0.0963559i \(-0.0307187\pi\)
\(464\) 0 0
\(465\) 6.09017 0.282425
\(466\) 0 0
\(467\) 22.6525 + 16.4580i 1.04823 + 0.761585i 0.971875 0.235496i \(-0.0756714\pi\)
0.0763562 + 0.997081i \(0.475671\pi\)
\(468\) 0 0
\(469\) −32.6525 + 23.7234i −1.50775 + 1.09545i
\(470\) 0 0
\(471\) −1.47214 1.06957i −0.0678324 0.0492832i
\(472\) 0 0
\(473\) −23.5623 17.1190i −1.08340 0.787133i
\(474\) 0 0
\(475\) −1.29837 3.99598i −0.0595735 0.183348i
\(476\) 0 0
\(477\) −9.59017 + 29.5155i −0.439104 + 1.35142i
\(478\) 0 0
\(479\) 21.5623 15.6659i 0.985207 0.715795i 0.0263407 0.999653i \(-0.491615\pi\)
0.958866 + 0.283858i \(0.0916145\pi\)
\(480\) 0 0
\(481\) 2.83688 + 8.73102i 0.129351 + 0.398100i
\(482\) 0 0
\(483\) 2.61803 0.119125
\(484\) 0 0
\(485\) −7.16312 5.20431i −0.325260 0.236316i
\(486\) 0 0
\(487\) 3.87132 11.9147i 0.175426 0.539907i −0.824226 0.566261i \(-0.808390\pi\)
0.999653 + 0.0263537i \(0.00838960\pi\)
\(488\) 0 0
\(489\) −2.49342 −0.112756
\(490\) 0 0
\(491\) −26.4721 −1.19467 −0.597335 0.801992i \(-0.703774\pi\)
−0.597335 + 0.801992i \(0.703774\pi\)
\(492\) 0 0
\(493\) 2.23607 0.100707
\(494\) 0 0
\(495\) 12.7082 0.571191
\(496\) 0 0
\(497\) −3.11803 + 9.59632i −0.139863 + 0.430454i
\(498\) 0 0
\(499\) 27.2533 + 19.8007i 1.22002 + 0.886400i 0.996102 0.0882071i \(-0.0281137\pi\)
0.223923 + 0.974607i \(0.428114\pi\)
\(500\) 0 0
\(501\) 14.8541 0.663632
\(502\) 0 0
\(503\) 1.27458 + 3.92274i 0.0568305 + 0.174906i 0.975442 0.220255i \(-0.0706888\pi\)
−0.918612 + 0.395161i \(0.870689\pi\)
\(504\) 0 0
\(505\) −10.2082 + 7.41669i −0.454259 + 0.330039i
\(506\) 0 0
\(507\) 4.94427 15.2169i 0.219583 0.675806i
\(508\) 0 0
\(509\) 9.92705 + 30.5523i 0.440009 + 1.35421i 0.887866 + 0.460103i \(0.152187\pi\)
−0.447857 + 0.894105i \(0.647813\pi\)
\(510\) 0 0
\(511\) 34.2705 + 24.8990i 1.51604 + 1.10147i
\(512\) 0 0
\(513\) 4.95492 + 3.59996i 0.218765 + 0.158942i
\(514\) 0 0
\(515\) −16.0172 + 11.6372i −0.705803 + 0.512796i
\(516\) 0 0
\(517\) 3.70820 + 2.69417i 0.163087 + 0.118489i
\(518\) 0 0
\(519\) −2.32624 −0.102111
\(520\) 0 0
\(521\) 2.29837 7.07367i 0.100694 0.309903i −0.888002 0.459840i \(-0.847907\pi\)
0.988696 + 0.149937i \(0.0479069\pi\)
\(522\) 0 0
\(523\) 4.91641 + 15.1311i 0.214980 + 0.661639i 0.999155 + 0.0410998i \(0.0130862\pi\)
−0.784176 + 0.620539i \(0.786914\pi\)
\(524\) 0 0
\(525\) −1.19098 3.66547i −0.0519788 0.159974i
\(526\) 0 0
\(527\) 20.8713 15.1639i 0.909169 0.660550i
\(528\) 0 0
\(529\) −6.29837 + 19.3844i −0.273842 + 0.842800i
\(530\) 0 0
\(531\) 10.7812 7.83297i 0.467862 0.339922i
\(532\) 0 0
\(533\) 11.0000 + 38.3853i 0.476463 + 1.66265i
\(534\) 0 0
\(535\) −7.47214 + 5.42882i −0.323049 + 0.234709i
\(536\) 0 0
\(537\) 4.65248 14.3188i 0.200769 0.617904i
\(538\) 0 0
\(539\) −0.354102 + 0.257270i −0.0152523 + 0.0110814i
\(540\) 0 0
\(541\) 7.13525 + 21.9601i 0.306769 + 0.944137i 0.979011 + 0.203806i \(0.0653311\pi\)
−0.672243 + 0.740331i \(0.734669\pi\)
\(542\) 0 0
\(543\) 1.15248 + 3.54696i 0.0494575 + 0.152214i
\(544\) 0 0
\(545\) 3.73607 11.4984i 0.160036 0.492539i
\(546\) 0 0
\(547\) −9.00000 −0.384812 −0.192406 0.981315i \(-0.561629\pi\)
−0.192406 + 0.981315i \(0.561629\pi\)
\(548\) 0 0
\(549\) −7.35410 5.34307i −0.313865 0.228037i
\(550\) 0 0
\(551\) 0.753289 0.547296i 0.0320912 0.0233156i
\(552\) 0 0
\(553\) 29.6525 + 21.5438i 1.26095 + 0.916135i
\(554\) 0 0
\(555\) −1.19098 0.865300i −0.0505544 0.0367299i
\(556\) 0 0
\(557\) 0.343459 + 1.05706i 0.0145528 + 0.0447890i 0.958069 0.286537i \(-0.0925041\pi\)
−0.943516 + 0.331326i \(0.892504\pi\)
\(558\) 0 0
\(559\) −18.7082 + 57.5779i −0.791273 + 2.43529i
\(560\) 0 0
\(561\) −6.35410 + 4.61653i −0.268270 + 0.194910i
\(562\) 0 0
\(563\) −2.85410 8.78402i −0.120286 0.370202i 0.872727 0.488209i \(-0.162350\pi\)
−0.993013 + 0.118007i \(0.962350\pi\)
\(564\) 0 0
\(565\) 28.8885 1.21535
\(566\) 0 0
\(567\) −12.0902 8.78402i −0.507739 0.368894i
\(568\) 0 0
\(569\) 12.0517 37.0912i 0.505232 1.55494i −0.295148 0.955451i \(-0.595369\pi\)
0.800380 0.599493i \(-0.204631\pi\)
\(570\) 0 0
\(571\) 6.12461 0.256307 0.128154 0.991754i \(-0.459095\pi\)
0.128154 + 0.991754i \(0.459095\pi\)
\(572\) 0 0
\(573\) −3.09017 −0.129094
\(574\) 0 0
\(575\) −3.85410 −0.160727
\(576\) 0 0
\(577\) 13.4721 0.560852 0.280426 0.959876i \(-0.409524\pi\)
0.280426 + 0.959876i \(0.409524\pi\)
\(578\) 0 0
\(579\) −2.30902 + 7.10642i −0.0959595 + 0.295333i
\(580\) 0 0
\(581\) −34.0795 24.7602i −1.41386 1.02723i
\(582\) 0 0
\(583\) −35.5623 −1.47284
\(584\) 0 0
\(585\) −8.16312 25.1235i −0.337503 1.03873i
\(586\) 0 0
\(587\) 9.73607 7.07367i 0.401851 0.291962i −0.368444 0.929650i \(-0.620109\pi\)
0.770294 + 0.637689i \(0.220109\pi\)
\(588\) 0 0
\(589\) 3.31966 10.2169i 0.136784 0.420979i
\(590\) 0 0
\(591\) −0.607391 1.86936i −0.0249847 0.0768951i
\(592\) 0 0
\(593\) 6.76393 + 4.91428i 0.277761 + 0.201805i 0.717940 0.696105i \(-0.245085\pi\)
−0.440179 + 0.897910i \(0.645085\pi\)
\(594\) 0 0
\(595\) 14.5172 + 10.5474i 0.595148 + 0.432400i
\(596\) 0 0
\(597\) 3.26393 2.37139i 0.133584 0.0970543i
\(598\) 0 0
\(599\) 19.7984 + 14.3844i 0.808940 + 0.587729i 0.913523 0.406787i \(-0.133351\pi\)
−0.104583 + 0.994516i \(0.533351\pi\)
\(600\) 0 0
\(601\) −27.1803 −1.10871 −0.554355 0.832281i \(-0.687035\pi\)
−0.554355 + 0.832281i \(0.687035\pi\)
\(602\) 0 0
\(603\) −12.4721 + 38.3853i −0.507905 + 1.56317i
\(604\) 0 0
\(605\) −1.00000 3.07768i −0.0406558 0.125126i
\(606\) 0 0
\(607\) −12.2188 37.6057i −0.495948 1.52637i −0.815475 0.578793i \(-0.803524\pi\)
0.319527 0.947577i \(-0.396476\pi\)
\(608\) 0 0
\(609\) 0.690983 0.502029i 0.0280000 0.0203432i
\(610\) 0 0
\(611\) 2.94427 9.06154i 0.119112 0.366591i
\(612\) 0 0
\(613\) 19.4615 14.1396i 0.786042 0.571093i −0.120744 0.992684i \(-0.538528\pi\)
0.906786 + 0.421591i \(0.138528\pi\)
\(614\) 0 0
\(615\) −5.04508 3.94298i −0.203437 0.158996i
\(616\) 0 0
\(617\) 12.8541 9.33905i 0.517487 0.375976i −0.298170 0.954513i \(-0.596376\pi\)
0.815656 + 0.578537i \(0.196376\pi\)
\(618\) 0 0
\(619\) −0.0729490 + 0.224514i −0.00293207 + 0.00902398i −0.952512 0.304502i \(-0.901510\pi\)
0.949580 + 0.313526i \(0.101510\pi\)
\(620\) 0 0
\(621\) 4.54508 3.30220i 0.182388 0.132513i
\(622\) 0 0
\(623\) −5.04508 15.5272i −0.202127 0.622083i
\(624\) 0 0
\(625\) −2.29180 7.05342i −0.0916718 0.282137i
\(626\) 0 0
\(627\) −1.01064 + 3.11044i −0.0403612 + 0.124219i
\(628\) 0 0
\(629\) −6.23607 −0.248648
\(630\) 0 0
\(631\) 6.47214 + 4.70228i 0.257652 + 0.187195i 0.709111 0.705097i \(-0.249096\pi\)
−0.451459 + 0.892292i \(0.649096\pi\)
\(632\) 0 0
\(633\) 3.11803 2.26538i 0.123931 0.0900409i
\(634\) 0 0
\(635\) 8.89919 + 6.46564i 0.353153 + 0.256581i
\(636\) 0 0
\(637\) 0.736068 + 0.534785i 0.0291641 + 0.0211889i
\(638\) 0 0
\(639\) 3.11803 + 9.59632i 0.123348 + 0.379625i
\(640\) 0 0
\(641\) −1.48278 + 4.56352i −0.0585663 + 0.180248i −0.976060 0.217502i \(-0.930209\pi\)
0.917494 + 0.397751i \(0.130209\pi\)
\(642\) 0 0
\(643\) 5.76393 4.18774i 0.227307 0.165148i −0.468303 0.883568i \(-0.655134\pi\)
0.695610 + 0.718420i \(0.255134\pi\)
\(644\) 0 0
\(645\) −3.00000 9.23305i −0.118125 0.363551i
\(646\) 0 0
\(647\) 18.3820 0.722670 0.361335 0.932436i \(-0.382321\pi\)
0.361335 + 0.932436i \(0.382321\pi\)
\(648\) 0 0
\(649\) 12.3541 + 8.97578i 0.484941 + 0.352330i
\(650\) 0 0
\(651\) 3.04508 9.37181i 0.119346 0.367310i
\(652\) 0 0
\(653\) 27.8328 1.08918 0.544591 0.838702i \(-0.316685\pi\)
0.544591 + 0.838702i \(0.316685\pi\)
\(654\) 0 0
\(655\) 14.7984 0.578220
\(656\) 0 0
\(657\) 42.3607 1.65265
\(658\) 0 0
\(659\) −20.6525 −0.804506 −0.402253 0.915528i \(-0.631773\pi\)
−0.402253 + 0.915528i \(0.631773\pi\)
\(660\) 0 0
\(661\) −0.611456 + 1.88187i −0.0237829 + 0.0731962i −0.962244 0.272190i \(-0.912252\pi\)
0.938461 + 0.345386i \(0.112252\pi\)
\(662\) 0 0
\(663\) 13.2082 + 9.59632i 0.512964 + 0.372690i
\(664\) 0 0
\(665\) 7.47214 0.289757
\(666\) 0 0
\(667\) −0.263932 0.812299i −0.0102195 0.0314524i
\(668\) 0 0
\(669\) −12.8541 + 9.33905i −0.496968 + 0.361069i
\(670\) 0 0
\(671\) 3.21885 9.90659i 0.124262 0.382440i
\(672\) 0 0
\(673\) −4.40983 13.5721i −0.169986 0.523165i 0.829383 0.558681i \(-0.188692\pi\)
−0.999369 + 0.0355165i \(0.988692\pi\)
\(674\) 0 0
\(675\) −6.69098 4.86128i −0.257536 0.187111i
\(676\) 0 0
\(677\) −25.9894 18.8824i −0.998852 0.725709i −0.0370104 0.999315i \(-0.511783\pi\)
−0.961842 + 0.273606i \(0.911783\pi\)
\(678\) 0 0
\(679\) −11.5902 + 8.42075i −0.444790 + 0.323159i
\(680\) 0 0
\(681\) −9.32624 6.77591i −0.357382 0.259653i
\(682\) 0 0
\(683\) 13.2016 0.505146 0.252573 0.967578i \(-0.418723\pi\)
0.252573 + 0.967578i \(0.418723\pi\)
\(684\) 0 0
\(685\) −3.38197 + 10.4086i −0.129218 + 0.397693i
\(686\) 0 0
\(687\) 2.02786 + 6.24112i 0.0773678 + 0.238114i
\(688\) 0 0
\(689\) 22.8435 + 70.3049i 0.870266 + 2.67840i
\(690\) 0 0
\(691\) −2.90983 + 2.11412i −0.110695 + 0.0804247i −0.641756 0.766909i \(-0.721794\pi\)
0.531061 + 0.847334i \(0.321794\pi\)
\(692\) 0 0
\(693\) 6.35410 19.5559i 0.241372 0.742868i
\(694\) 0 0
\(695\) 0.309017 0.224514i 0.0117217 0.00851630i
\(696\) 0 0
\(697\) −27.1074 0.951057i −1.02677 0.0360238i
\(698\) 0 0
\(699\) −6.64590 + 4.82853i −0.251371 + 0.182632i
\(700\) 0 0
\(701\) 11.1697 34.3768i 0.421874 1.29839i −0.484083 0.875022i \(-0.660847\pi\)
0.905956 0.423371i \(-0.139153\pi\)
\(702\) 0 0
\(703\) −2.10081 + 1.52633i −0.0792337 + 0.0575666i
\(704\) 0 0
\(705\) 0.472136 + 1.45309i 0.0177817 + 0.0547263i
\(706\) 0 0
\(707\) 6.30902 + 19.4172i 0.237275 + 0.730257i
\(708\) 0 0
\(709\) −8.73607 + 26.8869i −0.328090 + 1.00976i 0.641937 + 0.766758i \(0.278131\pi\)
−0.970026 + 0.242999i \(0.921869\pi\)
\(710\) 0 0
\(711\) 36.6525 1.37458
\(712\) 0 0
\(713\) −7.97214 5.79210i −0.298559 0.216916i
\(714\) 0 0
\(715\) 24.4894 17.7926i 0.915850 0.665404i
\(716\) 0 0
\(717\) 12.6353 + 9.18005i 0.471872 + 0.342835i
\(718\) 0 0
\(719\) 30.1074 + 21.8743i 1.12282 + 0.815774i 0.984634 0.174633i \(-0.0558739\pi\)
0.138183 + 0.990407i \(0.455874\pi\)
\(720\) 0 0
\(721\) 9.89919 + 30.4666i 0.368665 + 1.13463i
\(722\) 0 0
\(723\) −2.92047 + 8.98829i −0.108614 + 0.334278i
\(724\) 0 0
\(725\) −1.01722 + 0.739054i −0.0377786 + 0.0274478i
\(726\) 0 0
\(727\) 3.00000 + 9.23305i 0.111264 + 0.342435i 0.991149 0.132751i \(-0.0423809\pi\)
−0.879886 + 0.475186i \(0.842381\pi\)
\(728\) 0 0
\(729\) −8.50658 −0.315058
\(730\) 0 0
\(731\) −33.2705 24.1724i −1.23055 0.894050i
\(732\) 0 0
\(733\) 5.33688 16.4252i 0.197122 0.606680i −0.802823 0.596217i \(-0.796670\pi\)
0.999945 0.0104624i \(-0.00333035\pi\)
\(734\) 0 0
\(735\) −0.145898 −0.00538153
\(736\) 0 0
\(737\) −46.2492 −1.70361
\(738\) 0 0
\(739\) 19.8328 0.729562 0.364781 0.931093i \(-0.381144\pi\)
0.364781 + 0.931093i \(0.381144\pi\)
\(740\) 0 0
\(741\) 6.79837 0.249745
\(742\) 0 0
\(743\) 9.23607 28.4257i 0.338838 1.04284i −0.625962 0.779854i \(-0.715293\pi\)
0.964800 0.262984i \(-0.0847066\pi\)
\(744\) 0 0
\(745\) 14.9443 + 10.8576i 0.547516 + 0.397793i
\(746\) 0 0
\(747\) −42.1246 −1.54126
\(748\) 0 0
\(749\) 4.61803 + 14.2128i 0.168739 + 0.519326i
\(750\) 0 0
\(751\) 6.02786 4.37950i 0.219960 0.159810i −0.472349 0.881412i \(-0.656594\pi\)
0.692309 + 0.721602i \(0.256594\pi\)
\(752\) 0 0
\(753\) −3.35410 + 10.3229i −0.122230 + 0.376186i
\(754\) 0 0
\(755\) 7.61803 + 23.4459i 0.277249 + 0.853284i
\(756\) 0 0
\(757\) 11.0623 + 8.03724i 0.402066 + 0.292118i 0.770382 0.637582i \(-0.220065\pi\)
−0.368316 + 0.929701i \(0.620065\pi\)
\(758\) 0 0
\(759\) 2.42705 + 1.76336i 0.0880964 + 0.0640058i
\(760\) 0 0
\(761\) −0.427051 + 0.310271i −0.0154806 + 0.0112473i −0.595499 0.803356i \(-0.703045\pi\)
0.580018 + 0.814604i \(0.303045\pi\)
\(762\) 0 0
\(763\) −15.8262 11.4984i −0.572948 0.416271i
\(764\) 0 0
\(765\) 17.9443 0.648777
\(766\) 0 0
\(767\) 9.80902 30.1891i 0.354183 1.09006i
\(768\) 0 0
\(769\) 8.92705 + 27.4746i 0.321918 + 0.990761i 0.972813 + 0.231593i \(0.0743938\pi\)
−0.650895 + 0.759168i \(0.725606\pi\)
\(770\) 0 0
\(771\) −0.909830 2.80017i −0.0327667 0.100846i
\(772\) 0 0
\(773\) −12.2812 + 8.92278i −0.441722 + 0.320930i −0.786319 0.617821i \(-0.788016\pi\)
0.344597 + 0.938751i \(0.388016\pi\)
\(774\) 0 0
\(775\) −4.48278 + 13.7966i −0.161026 + 0.495588i
\(776\) 0 0
\(777\) −1.92705 + 1.40008i −0.0691326 + 0.0502278i
\(778\) 0 0
\(779\) −9.36475 + 6.31437i −0.335527 + 0.226236i
\(780\) 0 0
\(781\) −9.35410 + 6.79615i −0.334716 + 0.243185i
\(782\) 0 0
\(783\) 0.566371 1.74311i 0.0202405 0.0622937i
\(784\) 0 0
\(785\) −3.85410 + 2.80017i −0.137559 + 0.0999423i
\(786\) 0 0
\(787\) 3.95492 + 12.1720i 0.140977 + 0.433884i 0.996472 0.0839281i \(-0.0267466\pi\)
−0.855494 + 0.517812i \(0.826747\pi\)
\(788\) 0 0
\(789\) −0.0172209 0.0530006i −0.000613081 0.00188687i
\(790\) 0 0
\(791\) 14.4443 44.4549i 0.513579 1.58063i
\(792\) 0 0
\(793\) −21.6525 −0.768902
\(794\) 0 0
\(795\) −9.59017 6.96767i −0.340128 0.247118i
\(796\) 0 0
\(797\) 18.4164 13.3803i 0.652343 0.473955i −0.211726 0.977329i \(-0.567908\pi\)
0.864068 + 0.503374i \(0.167908\pi\)
\(798\) 0 0
\(799\) 5.23607 + 3.80423i 0.185239 + 0.134584i
\(800\) 0 0
\(801\) −13.2082 9.59632i −0.466689 0.339069i
\(802\) 0 0
\(803\) 15.0000 + 46.1653i 0.529339 + 1.62914i
\(804\) 0 0
\(805\) 2.11803 6.51864i 0.0746509 0.229752i
\(806\) 0 0
\(807\) 3.02786 2.19987i 0.106586 0.0774392i
\(808\) 0 0
\(809\) −9.45492 29.0992i −0.332417 1.02307i −0.967980 0.251026i \(-0.919232\pi\)
0.635563 0.772049i \(-0.280768\pi\)
\(810\) 0 0
\(811\) −19.0689 −0.669599 −0.334800 0.942289i \(-0.608669\pi\)
−0.334800 + 0.942289i \(0.608669\pi\)
\(812\) 0 0
\(813\) −13.0623 9.49032i −0.458115 0.332840i
\(814\) 0 0
\(815\) −2.01722 + 6.20837i −0.0706602 + 0.217470i
\(816\) 0 0
\(817\) −17.1246 −0.599114
\(818\) 0 0
\(819\) −42.7426 −1.49355
\(820\) 0 0
\(821\) 10.4377 0.364278 0.182139 0.983273i \(-0.441698\pi\)
0.182139 + 0.983273i \(0.441698\pi\)
\(822\) 0 0
\(823\) −1.43769 −0.0501149 −0.0250574 0.999686i \(-0.507977\pi\)
−0.0250574 + 0.999686i \(0.507977\pi\)
\(824\) 0 0
\(825\) 1.36475 4.20025i 0.0475143 0.146234i
\(826\) 0 0
\(827\) −9.51722 6.91467i −0.330946 0.240446i 0.409886 0.912137i \(-0.365569\pi\)
−0.740832 + 0.671690i \(0.765569\pi\)
\(828\) 0 0
\(829\) 10.2918 0.357449 0.178724 0.983899i \(-0.442803\pi\)
0.178724 + 0.983899i \(0.442803\pi\)
\(830\) 0 0
\(831\) −2.98278 9.18005i −0.103471 0.318452i
\(832\) 0 0
\(833\) −0.500000 + 0.363271i −0.0173240 + 0.0125866i
\(834\) 0 0
\(835\) 12.0172 36.9852i 0.415873 1.27993i
\(836\) 0 0
\(837\) −6.53444 20.1109i −0.225863 0.695136i
\(838\) 0 0
\(839\) −18.6074 13.5191i −0.642398 0.466730i 0.218275 0.975887i \(-0.429957\pi\)
−0.860673 + 0.509158i \(0.829957\pi\)
\(840\) 0 0
\(841\) 23.2361 + 16.8820i 0.801244 + 0.582138i
\(842\) 0 0
\(843\) −4.97214 + 3.61247i −0.171249 + 0.124420i
\(844\) 0 0
\(845\) −33.8885 24.6215i −1.16580 0.847004i
\(846\) 0 0
\(847\) −5.23607 −0.179913
\(848\) 0 0
\(849\) 3.34346 10.2901i 0.114747 0.353156i
\(850\) 0 0
\(851\) 0.736068 + 2.26538i 0.0252321 + 0.0776564i
\(852\) 0 0
\(853\) 4.19098 + 12.8985i 0.143497 + 0.441637i 0.996815 0.0797538i \(-0.0254134\pi\)
−0.853318 + 0.521391i \(0.825413\pi\)
\(854\) 0 0
\(855\) 6.04508 4.39201i 0.206738 0.150204i
\(856\) 0 0
\(857\) 5.60081 17.2375i 0.191320 0.588823i −0.808680 0.588249i \(-0.799817\pi\)
1.00000 0.000573603i \(-0.000182584\pi\)
\(858\) 0 0
\(859\) −3.61803 + 2.62866i −0.123446 + 0.0896886i −0.647795 0.761815i \(-0.724309\pi\)
0.524349 + 0.851503i \(0.324309\pi\)
\(860\) 0 0
\(861\) −8.59017 + 5.79210i −0.292752 + 0.197394i
\(862\) 0 0
\(863\) −2.38197 + 1.73060i −0.0810831 + 0.0589103i −0.627588 0.778545i \(-0.715958\pi\)
0.546505 + 0.837456i \(0.315958\pi\)
\(864\) 0 0
\(865\) −1.88197 + 5.79210i −0.0639888 + 0.196937i
\(866\) 0 0
\(867\) −0.472136 + 0.343027i −0.0160346 + 0.0116498i
\(868\) 0 0
\(869\) 12.9787 + 39.9444i 0.440273 + 1.35502i
\(870\) 0 0
\(871\) 29.7082 + 91.4325i 1.00662 + 3.09807i
\(872\) 0 0
\(873\) −4.42705 + 13.6251i −0.149833 + 0.461138i
\(874\) 0 0
\(875\) −31.2705 −1.05714
\(876\) 0 0
\(877\) −29.3435 21.3193i −0.990858 0.719901i −0.0307493 0.999527i \(-0.509789\pi\)
−0.960109 + 0.279627i \(0.909789\pi\)
\(878\) 0 0
\(879\) 3.39919 2.46965i 0.114652 0.0832994i
\(880\) 0 0
\(881\) 37.0344 + 26.9071i 1.24772 + 0.906523i 0.998088 0.0618170i \(-0.0196895\pi\)
0.249635 + 0.968340i \(0.419690\pi\)
\(882\) 0 0
\(883\) −0.600813 0.436516i −0.0202190 0.0146899i 0.577630 0.816299i \(-0.303978\pi\)
−0.597849 + 0.801609i \(0.703978\pi\)
\(884\) 0 0
\(885\) 1.57295 + 4.84104i 0.0528741 + 0.162730i
\(886\) 0 0
\(887\) 3.97871 12.2452i 0.133592 0.411154i −0.861776 0.507289i \(-0.830648\pi\)
0.995368 + 0.0961343i \(0.0306478\pi\)
\(888\) 0 0
\(889\) 14.3992 10.4616i 0.482933 0.350872i
\(890\) 0 0
\(891\) −5.29180 16.2865i −0.177282 0.545617i
\(892\) 0 0
\(893\) 2.69505 0.0901864
\(894\) 0 0
\(895\) −31.8885 23.1684i −1.06592 0.774434i
\(896\) 0 0
\(897\) 1.92705 5.93085i 0.0643424 0.198025i
\(898\) 0 0
\(899\) −3.21478 −0.107219
\(900\) 0 0
\(901\) −50.2148 −1.67290
\(902\) 0 0
\(903\) −15.7082 −0.522736
\(904\) 0 0
\(905\) 9.76393 0.324564
\(906\) 0 0
\(907\) 12.2639 37.7445i 0.407217 1.25329i −0.511812 0.859097i \(-0.671026\pi\)
0.919030 0.394188i \(-0.128974\pi\)
\(908\) 0 0
\(909\) 16.5172 + 12.0005i 0.547842 + 0.398030i
\(910\) 0 0
\(911\) −42.4853 −1.40760 −0.703800 0.710398i \(-0.748515\pi\)
−0.703800 + 0.710398i \(0.748515\pi\)
\(912\) 0 0
\(913\) −14.9164 45.9080i −0.493661 1.51933i
\(914\) 0 0
\(915\) 2.80902 2.04087i 0.0928632 0.0674691i
\(916\) 0 0
\(917\) 7.39919 22.7724i 0.244343 0.752009i
\(918\) 0 0
\(919\) −10.6525 32.7849i −0.351393 1.08148i −0.958072 0.286529i \(-0.907499\pi\)
0.606679 0.794947i \(-0.292501\pi\)
\(920\) 0 0
\(921\) −11.2361 8.16348i −0.370241 0.268996i
\(922\) 0 0
\(923\) 19.4443 + 14.1271i 0.640016 + 0.464999i
\(924\) 0 0
\(925\) 2.83688 2.06111i 0.0932761 0.0677690i
\(926\) 0 0
\(927\) 25.9164 + 18.8294i 0.851207 + 0.618438i
\(928\) 0 0
\(929\) −27.8328 −0.913165 −0.456583 0.889681i \(-0.650927\pi\)
−0.456583 + 0.889681i \(0.650927\pi\)
\(930\) 0 0
\(931\) −0.0795268 + 0.244758i −0.00260639 + 0.00802163i
\(932\) 0 0
\(933\) 0.871323 + 2.68166i 0.0285258 + 0.0877935i
\(934\) 0 0
\(935\) 6.35410 + 19.5559i 0.207801 + 0.639547i
\(936\) 0 0
\(937\) −36.0238 + 26.1728i −1.17685 + 0.855029i −0.991812 0.127703i \(-0.959239\pi\)
−0.185034 + 0.982732i \(0.559239\pi\)
\(938\) 0 0
\(939\) 0.437694 1.34708i 0.0142836 0.0439604i
\(940\) 0 0
\(941\) −24.4164 + 17.7396i −0.795952 + 0.578293i −0.909724 0.415214i \(-0.863707\pi\)
0.113772 + 0.993507i \(0.463707\pi\)
\(942\) 0 0
\(943\) 2.85410 + 9.95959i 0.0929423 + 0.324329i
\(944\) 0 0
\(945\) 11.8992 8.64527i 0.387081 0.281231i
\(946\) 0 0
\(947\) 0.0172209 0.0530006i 0.000559605 0.00172229i −0.950776 0.309878i \(-0.899712\pi\)
0.951336 + 0.308156i \(0.0997118\pi\)
\(948\) 0 0
\(949\) 81.6312 59.3085i 2.64986 1.92524i
\(950\) 0 0
\(951\) −2.59017 7.97172i −0.0839920 0.258501i
\(952\) 0 0
\(953\) 12.2254 + 37.6260i 0.396020 + 1.21883i 0.928164 + 0.372171i \(0.121387\pi\)
−0.532144 + 0.846654i \(0.678613\pi\)
\(954\) 0 0
\(955\) −2.50000 + 7.69421i −0.0808981 + 0.248979i
\(956\) 0 0
\(957\) 0.978714 0.0316373
\(958\) 0 0
\(959\) 14.3262 + 10.4086i 0.462618 + 0.336112i
\(960\) 0 0
\(961\) −4.92705 + 3.57971i −0.158937 + 0.115475i
\(962\) 0 0
\(963\) 12.0902 + 8.78402i 0.389600 + 0.283061i
\(964\) 0 0
\(965\) 15.8262 + 11.4984i 0.509465 + 0.370148i
\(966\) 0 0
\(967\) −9.26393 28.5115i −0.297908 0.916866i −0.982229 0.187686i \(-0.939901\pi\)
0.684321 0.729181i \(-0.260099\pi\)
\(968\) 0 0
\(969\) −1.42705 + 4.39201i −0.0458435 + 0.141092i
\(970\) 0 0
\(971\) −9.92705 + 7.21242i −0.318574 + 0.231458i −0.735567 0.677452i \(-0.763084\pi\)
0.416993 + 0.908910i \(0.363084\pi\)
\(972\) 0 0
\(973\) −0.190983 0.587785i −0.00612263 0.0188435i
\(974\) 0 0
\(975\) −9.18034 −0.294006
\(976\) 0 0
\(977\) −46.4058 33.7158i −1.48465 1.07866i −0.976021 0.217678i \(-0.930152\pi\)
−0.508631 0.860984i \(-0.669848\pi\)
\(978\) 0 0
\(979\) 5.78115 17.7926i 0.184766 0.568653i
\(980\) 0 0
\(981\) −19.5623 −0.624576
\(982\) 0 0
\(983\) −47.8115 −1.52495 −0.762475 0.647017i \(-0.776016\pi\)
−0.762475 + 0.647017i \(0.776016\pi\)
\(984\) 0 0
\(985\) −5.14590 −0.163962
\(986\) 0 0
\(987\) 2.47214 0.0786890
\(988\) 0 0
\(989\) −4.85410 + 14.9394i −0.154351 + 0.475045i
\(990\) 0 0
\(991\) 5.82624 + 4.23301i 0.185077 + 0.134466i 0.676466 0.736474i \(-0.263511\pi\)
−0.491389 + 0.870940i \(0.663511\pi\)
\(992\) 0 0
\(993\) 6.23607 0.197896
\(994\) 0 0
\(995\) −3.26393 10.0453i −0.103474 0.318459i
\(996\) 0 0
\(997\) −10.4549 + 7.59594i −0.331110 + 0.240566i −0.740902 0.671614i \(-0.765602\pi\)
0.409791 + 0.912179i \(0.365602\pi\)
\(998\) 0 0
\(999\) −1.57953 + 4.86128i −0.0499740 + 0.153804i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 656.2.u.b.529.1 4
4.3 odd 2 82.2.d.b.37.1 4
12.11 even 2 738.2.h.b.37.1 4
41.10 even 5 inner 656.2.u.b.625.1 4
164.51 odd 10 82.2.d.b.51.1 yes 4
164.107 odd 10 3362.2.a.e.1.2 2
164.139 odd 10 3362.2.a.h.1.1 2
492.215 even 10 738.2.h.b.379.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
82.2.d.b.37.1 4 4.3 odd 2
82.2.d.b.51.1 yes 4 164.51 odd 10
656.2.u.b.529.1 4 1.1 even 1 trivial
656.2.u.b.625.1 4 41.10 even 5 inner
738.2.h.b.37.1 4 12.11 even 2
738.2.h.b.379.1 4 492.215 even 10
3362.2.a.e.1.2 2 164.107 odd 10
3362.2.a.h.1.1 2 164.139 odd 10