Properties

Label 738.2.h.b.37.1
Level $738$
Weight $2$
Character 738.37
Analytic conductor $5.893$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [738,2,Mod(37,738)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(738, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 8])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("738.37"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 738 = 2 \cdot 3^{2} \cdot 41 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 738.h (of order \(5\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-1,0,-1,-2,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.89295966917\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 82)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 37.1
Root \(0.809017 + 0.587785i\) of defining polynomial
Character \(\chi\) \(=\) 738.37
Dual form 738.2.h.b.379.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.809017 + 0.587785i) q^{2} +(0.309017 - 0.951057i) q^{4} +(-0.500000 + 1.53884i) q^{5} +(2.11803 + 1.53884i) q^{7} +(0.309017 + 0.951057i) q^{8} +(-0.500000 - 1.53884i) q^{10} +(-0.927051 - 2.85317i) q^{11} +(-5.04508 + 3.66547i) q^{13} -2.61803 q^{14} +(-0.809017 - 0.587785i) q^{16} +(1.30902 + 4.02874i) q^{17} +(1.42705 + 1.03681i) q^{19} +(1.30902 + 0.951057i) q^{20} +(2.42705 + 1.76336i) q^{22} +(-1.30902 + 0.951057i) q^{23} +(1.92705 + 1.40008i) q^{25} +(1.92705 - 5.93085i) q^{26} +(2.11803 - 1.53884i) q^{28} +(0.163119 - 0.502029i) q^{29} +(-1.88197 - 5.79210i) q^{31} +1.00000 q^{32} +(-3.42705 - 2.48990i) q^{34} +(-3.42705 + 2.48990i) q^{35} +(0.454915 - 1.40008i) q^{37} -1.76393 q^{38} -1.61803 q^{40} +(-2.19098 + 6.01661i) q^{41} +(-7.85410 + 5.70634i) q^{43} -3.00000 q^{44} +(0.500000 - 1.53884i) q^{46} +(-1.23607 + 0.898056i) q^{47} +(-0.0450850 - 0.138757i) q^{49} -2.38197 q^{50} +(1.92705 + 5.93085i) q^{52} +(-3.66312 + 11.2739i) q^{53} +4.85410 q^{55} +(-0.809017 + 2.48990i) q^{56} +(0.163119 + 0.502029i) q^{58} +(-4.11803 + 2.99193i) q^{59} +(2.80902 + 2.04087i) q^{61} +(4.92705 + 3.57971i) q^{62} +(-0.809017 + 0.587785i) q^{64} +(-3.11803 - 9.59632i) q^{65} +(-4.76393 + 14.6619i) q^{67} +4.23607 q^{68} +(1.30902 - 4.02874i) q^{70} +(-1.19098 - 3.66547i) q^{71} -16.1803 q^{73} +(0.454915 + 1.40008i) q^{74} +(1.42705 - 1.03681i) q^{76} +(2.42705 - 7.46969i) q^{77} +14.0000 q^{79} +(1.30902 - 0.951057i) q^{80} +(-1.76393 - 6.15537i) q^{82} +16.0902 q^{83} -6.85410 q^{85} +(3.00000 - 9.23305i) q^{86} +(2.42705 - 1.76336i) q^{88} +(-5.04508 - 3.66547i) q^{89} -16.3262 q^{91} +(0.500000 + 1.53884i) q^{92} +(0.472136 - 1.45309i) q^{94} +(-2.30902 + 1.67760i) q^{95} +(1.69098 - 5.20431i) q^{97} +(0.118034 + 0.0857567i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - q^{2} - q^{4} - 2 q^{5} + 4 q^{7} - q^{8} - 2 q^{10} + 3 q^{11} - 9 q^{13} - 6 q^{14} - q^{16} + 3 q^{17} - q^{19} + 3 q^{20} + 3 q^{22} - 3 q^{23} + q^{25} + q^{26} + 4 q^{28} - 15 q^{29}+ \cdots - 4 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/738\mathbb{Z}\right)^\times\).

\(n\) \(83\) \(703\)
\(\chi(n)\) \(1\) \(e\left(\frac{4}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.809017 + 0.587785i −0.572061 + 0.415627i
\(3\) 0 0
\(4\) 0.309017 0.951057i 0.154508 0.475528i
\(5\) −0.500000 + 1.53884i −0.223607 + 0.688191i 0.774823 + 0.632178i \(0.217839\pi\)
−0.998430 + 0.0560130i \(0.982161\pi\)
\(6\) 0 0
\(7\) 2.11803 + 1.53884i 0.800542 + 0.581628i 0.911073 0.412245i \(-0.135255\pi\)
−0.110531 + 0.993873i \(0.535255\pi\)
\(8\) 0.309017 + 0.951057i 0.109254 + 0.336249i
\(9\) 0 0
\(10\) −0.500000 1.53884i −0.158114 0.486624i
\(11\) −0.927051 2.85317i −0.279516 0.860263i −0.987989 0.154525i \(-0.950615\pi\)
0.708473 0.705738i \(-0.249385\pi\)
\(12\) 0 0
\(13\) −5.04508 + 3.66547i −1.39925 + 1.01662i −0.404478 + 0.914548i \(0.632547\pi\)
−0.994777 + 0.102070i \(0.967453\pi\)
\(14\) −2.61803 −0.699699
\(15\) 0 0
\(16\) −0.809017 0.587785i −0.202254 0.146946i
\(17\) 1.30902 + 4.02874i 0.317483 + 0.977113i 0.974720 + 0.223429i \(0.0717251\pi\)
−0.657237 + 0.753684i \(0.728275\pi\)
\(18\) 0 0
\(19\) 1.42705 + 1.03681i 0.327388 + 0.237861i 0.739321 0.673353i \(-0.235146\pi\)
−0.411934 + 0.911214i \(0.635146\pi\)
\(20\) 1.30902 + 0.951057i 0.292705 + 0.212663i
\(21\) 0 0
\(22\) 2.42705 + 1.76336i 0.517449 + 0.375949i
\(23\) −1.30902 + 0.951057i −0.272949 + 0.198309i −0.715836 0.698268i \(-0.753954\pi\)
0.442887 + 0.896577i \(0.353954\pi\)
\(24\) 0 0
\(25\) 1.92705 + 1.40008i 0.385410 + 0.280017i
\(26\) 1.92705 5.93085i 0.377926 1.16314i
\(27\) 0 0
\(28\) 2.11803 1.53884i 0.400271 0.290814i
\(29\) 0.163119 0.502029i 0.0302904 0.0932244i −0.934768 0.355258i \(-0.884393\pi\)
0.965059 + 0.262033i \(0.0843931\pi\)
\(30\) 0 0
\(31\) −1.88197 5.79210i −0.338011 1.04029i −0.965220 0.261440i \(-0.915803\pi\)
0.627209 0.778851i \(-0.284197\pi\)
\(32\) 1.00000 0.176777
\(33\) 0 0
\(34\) −3.42705 2.48990i −0.587734 0.427014i
\(35\) −3.42705 + 2.48990i −0.579277 + 0.420870i
\(36\) 0 0
\(37\) 0.454915 1.40008i 0.0747876 0.230172i −0.906674 0.421832i \(-0.861387\pi\)
0.981461 + 0.191660i \(0.0613871\pi\)
\(38\) −1.76393 −0.286148
\(39\) 0 0
\(40\) −1.61803 −0.255834
\(41\) −2.19098 + 6.01661i −0.342174 + 0.939637i
\(42\) 0 0
\(43\) −7.85410 + 5.70634i −1.19774 + 0.870209i −0.994060 0.108829i \(-0.965290\pi\)
−0.203679 + 0.979038i \(0.565290\pi\)
\(44\) −3.00000 −0.452267
\(45\) 0 0
\(46\) 0.500000 1.53884i 0.0737210 0.226890i
\(47\) −1.23607 + 0.898056i −0.180299 + 0.130995i −0.674274 0.738481i \(-0.735543\pi\)
0.493975 + 0.869476i \(0.335543\pi\)
\(48\) 0 0
\(49\) −0.0450850 0.138757i −0.00644071 0.0198225i
\(50\) −2.38197 −0.336861
\(51\) 0 0
\(52\) 1.92705 + 5.93085i 0.267234 + 0.822461i
\(53\) −3.66312 + 11.2739i −0.503168 + 1.54859i 0.300661 + 0.953731i \(0.402793\pi\)
−0.803829 + 0.594861i \(0.797207\pi\)
\(54\) 0 0
\(55\) 4.85410 0.654527
\(56\) −0.809017 + 2.48990i −0.108109 + 0.332727i
\(57\) 0 0
\(58\) 0.163119 + 0.502029i 0.0214186 + 0.0659196i
\(59\) −4.11803 + 2.99193i −0.536122 + 0.389516i −0.822643 0.568558i \(-0.807501\pi\)
0.286521 + 0.958074i \(0.407501\pi\)
\(60\) 0 0
\(61\) 2.80902 + 2.04087i 0.359658 + 0.261307i 0.752909 0.658124i \(-0.228650\pi\)
−0.393252 + 0.919431i \(0.628650\pi\)
\(62\) 4.92705 + 3.57971i 0.625736 + 0.454624i
\(63\) 0 0
\(64\) −0.809017 + 0.587785i −0.101127 + 0.0734732i
\(65\) −3.11803 9.59632i −0.386745 1.19028i
\(66\) 0 0
\(67\) −4.76393 + 14.6619i −0.582007 + 1.79123i 0.0289644 + 0.999580i \(0.490779\pi\)
−0.610971 + 0.791653i \(0.709221\pi\)
\(68\) 4.23607 0.513699
\(69\) 0 0
\(70\) 1.30902 4.02874i 0.156457 0.481527i
\(71\) −1.19098 3.66547i −0.141344 0.435011i 0.855179 0.518333i \(-0.173447\pi\)
−0.996523 + 0.0833216i \(0.973447\pi\)
\(72\) 0 0
\(73\) −16.1803 −1.89377 −0.946883 0.321579i \(-0.895786\pi\)
−0.946883 + 0.321579i \(0.895786\pi\)
\(74\) 0.454915 + 1.40008i 0.0528828 + 0.162757i
\(75\) 0 0
\(76\) 1.42705 1.03681i 0.163694 0.118931i
\(77\) 2.42705 7.46969i 0.276588 0.851251i
\(78\) 0 0
\(79\) 14.0000 1.57512 0.787562 0.616236i \(-0.211343\pi\)
0.787562 + 0.616236i \(0.211343\pi\)
\(80\) 1.30902 0.951057i 0.146353 0.106331i
\(81\) 0 0
\(82\) −1.76393 6.15537i −0.194794 0.679747i
\(83\) 16.0902 1.76613 0.883063 0.469255i \(-0.155477\pi\)
0.883063 + 0.469255i \(0.155477\pi\)
\(84\) 0 0
\(85\) −6.85410 −0.743432
\(86\) 3.00000 9.23305i 0.323498 0.995625i
\(87\) 0 0
\(88\) 2.42705 1.76336i 0.258725 0.187974i
\(89\) −5.04508 3.66547i −0.534778 0.388539i 0.287364 0.957821i \(-0.407221\pi\)
−0.822142 + 0.569283i \(0.807221\pi\)
\(90\) 0 0
\(91\) −16.3262 −1.71145
\(92\) 0.500000 + 1.53884i 0.0521286 + 0.160435i
\(93\) 0 0
\(94\) 0.472136 1.45309i 0.0486971 0.149874i
\(95\) −2.30902 + 1.67760i −0.236900 + 0.172118i
\(96\) 0 0
\(97\) 1.69098 5.20431i 0.171693 0.528418i −0.827774 0.561062i \(-0.810393\pi\)
0.999467 + 0.0326444i \(0.0103929\pi\)
\(98\) 0.118034 + 0.0857567i 0.0119232 + 0.00866274i
\(99\) 0 0
\(100\) 1.92705 1.40008i 0.192705 0.140008i
\(101\) 6.30902 + 4.58377i 0.627771 + 0.456102i 0.855627 0.517593i \(-0.173172\pi\)
−0.227857 + 0.973695i \(0.573172\pi\)
\(102\) 0 0
\(103\) 9.89919 + 7.19218i 0.975396 + 0.708667i 0.956675 0.291158i \(-0.0940406\pi\)
0.0187209 + 0.999825i \(0.494041\pi\)
\(104\) −5.04508 3.66547i −0.494711 0.359429i
\(105\) 0 0
\(106\) −3.66312 11.2739i −0.355794 1.09502i
\(107\) −4.61803 3.35520i −0.446442 0.324359i 0.341747 0.939792i \(-0.388981\pi\)
−0.788189 + 0.615433i \(0.788981\pi\)
\(108\) 0 0
\(109\) 7.47214 0.715701 0.357850 0.933779i \(-0.383510\pi\)
0.357850 + 0.933779i \(0.383510\pi\)
\(110\) −3.92705 + 2.85317i −0.374430 + 0.272039i
\(111\) 0 0
\(112\) −0.809017 2.48990i −0.0764449 0.235273i
\(113\) −5.51722 16.9803i −0.519016 1.59737i −0.775853 0.630914i \(-0.782680\pi\)
0.256837 0.966455i \(-0.417320\pi\)
\(114\) 0 0
\(115\) −0.809017 2.48990i −0.0754412 0.232184i
\(116\) −0.427051 0.310271i −0.0396507 0.0288079i
\(117\) 0 0
\(118\) 1.57295 4.84104i 0.144802 0.445654i
\(119\) −3.42705 + 10.5474i −0.314157 + 0.966877i
\(120\) 0 0
\(121\) 1.61803 1.17557i 0.147094 0.106870i
\(122\) −3.47214 −0.314352
\(123\) 0 0
\(124\) −6.09017 −0.546913
\(125\) −9.66312 + 7.02067i −0.864296 + 0.627948i
\(126\) 0 0
\(127\) 2.10081 6.46564i 0.186417 0.573733i −0.813553 0.581491i \(-0.802470\pi\)
0.999970 + 0.00775835i \(0.00246958\pi\)
\(128\) 0.309017 0.951057i 0.0273135 0.0840623i
\(129\) 0 0
\(130\) 8.16312 + 5.93085i 0.715953 + 0.520170i
\(131\) 2.82624 + 8.69827i 0.246930 + 0.759971i 0.995313 + 0.0967048i \(0.0308303\pi\)
−0.748384 + 0.663266i \(0.769170\pi\)
\(132\) 0 0
\(133\) 1.42705 + 4.39201i 0.123741 + 0.380836i
\(134\) −4.76393 14.6619i −0.411541 1.26659i
\(135\) 0 0
\(136\) −3.42705 + 2.48990i −0.293867 + 0.213507i
\(137\) 6.76393 0.577882 0.288941 0.957347i \(-0.406697\pi\)
0.288941 + 0.957347i \(0.406697\pi\)
\(138\) 0 0
\(139\) −0.190983 0.138757i −0.0161990 0.0117692i 0.579656 0.814861i \(-0.303187\pi\)
−0.595855 + 0.803092i \(0.703187\pi\)
\(140\) 1.30902 + 4.02874i 0.110632 + 0.340491i
\(141\) 0 0
\(142\) 3.11803 + 2.26538i 0.261660 + 0.190107i
\(143\) 15.1353 + 10.9964i 1.26567 + 0.919566i
\(144\) 0 0
\(145\) 0.690983 + 0.502029i 0.0573830 + 0.0416912i
\(146\) 13.0902 9.51057i 1.08335 0.787100i
\(147\) 0 0
\(148\) −1.19098 0.865300i −0.0978982 0.0711272i
\(149\) 3.52786 10.8576i 0.289014 0.889493i −0.696153 0.717894i \(-0.745106\pi\)
0.985167 0.171600i \(-0.0548936\pi\)
\(150\) 0 0
\(151\) 12.3262 8.95554i 1.00310 0.728791i 0.0403454 0.999186i \(-0.487154\pi\)
0.962750 + 0.270395i \(0.0871542\pi\)
\(152\) −0.545085 + 1.67760i −0.0442122 + 0.136071i
\(153\) 0 0
\(154\) 2.42705 + 7.46969i 0.195577 + 0.601925i
\(155\) 9.85410 0.791501
\(156\) 0 0
\(157\) −2.38197 1.73060i −0.190102 0.138117i 0.488664 0.872472i \(-0.337485\pi\)
−0.678765 + 0.734355i \(0.737485\pi\)
\(158\) −11.3262 + 8.22899i −0.901067 + 0.654664i
\(159\) 0 0
\(160\) −0.500000 + 1.53884i −0.0395285 + 0.121656i
\(161\) −4.23607 −0.333849
\(162\) 0 0
\(163\) 4.03444 0.316002 0.158001 0.987439i \(-0.449495\pi\)
0.158001 + 0.987439i \(0.449495\pi\)
\(164\) 5.04508 + 3.94298i 0.393955 + 0.307895i
\(165\) 0 0
\(166\) −13.0172 + 9.45756i −1.01033 + 0.734049i
\(167\) 24.0344 1.85984 0.929920 0.367761i \(-0.119875\pi\)
0.929920 + 0.367761i \(0.119875\pi\)
\(168\) 0 0
\(169\) 8.00000 24.6215i 0.615385 1.89396i
\(170\) 5.54508 4.02874i 0.425289 0.308990i
\(171\) 0 0
\(172\) 3.00000 + 9.23305i 0.228748 + 0.704014i
\(173\) 3.76393 0.286166 0.143083 0.989711i \(-0.454298\pi\)
0.143083 + 0.989711i \(0.454298\pi\)
\(174\) 0 0
\(175\) 1.92705 + 5.93085i 0.145671 + 0.448330i
\(176\) −0.927051 + 2.85317i −0.0698791 + 0.215066i
\(177\) 0 0
\(178\) 6.23607 0.467413
\(179\) 7.52786 23.1684i 0.562659 1.73169i −0.112148 0.993692i \(-0.535773\pi\)
0.674807 0.737995i \(-0.264227\pi\)
\(180\) 0 0
\(181\) 1.86475 + 5.73910i 0.138605 + 0.426584i 0.996133 0.0878537i \(-0.0280008\pi\)
−0.857528 + 0.514437i \(0.828001\pi\)
\(182\) 13.2082 9.59632i 0.979057 0.711327i
\(183\) 0 0
\(184\) −1.30902 0.951057i −0.0965020 0.0701128i
\(185\) 1.92705 + 1.40008i 0.141680 + 0.102936i
\(186\) 0 0
\(187\) 10.2812 7.46969i 0.751832 0.546238i
\(188\) 0.472136 + 1.45309i 0.0344341 + 0.105977i
\(189\) 0 0
\(190\) 0.881966 2.71441i 0.0639845 0.196924i
\(191\) −5.00000 −0.361787 −0.180894 0.983503i \(-0.557899\pi\)
−0.180894 + 0.983503i \(0.557899\pi\)
\(192\) 0 0
\(193\) −3.73607 + 11.4984i −0.268928 + 0.827675i 0.721834 + 0.692066i \(0.243299\pi\)
−0.990762 + 0.135610i \(0.956701\pi\)
\(194\) 1.69098 + 5.20431i 0.121406 + 0.373648i
\(195\) 0 0
\(196\) −0.145898 −0.0104213
\(197\) 0.982779 + 3.02468i 0.0700201 + 0.215500i 0.979943 0.199277i \(-0.0638595\pi\)
−0.909923 + 0.414777i \(0.863860\pi\)
\(198\) 0 0
\(199\) −5.28115 + 3.83698i −0.374371 + 0.271996i −0.759021 0.651066i \(-0.774322\pi\)
0.384650 + 0.923062i \(0.374322\pi\)
\(200\) −0.736068 + 2.26538i −0.0520479 + 0.160187i
\(201\) 0 0
\(202\) −7.79837 −0.548692
\(203\) 1.11803 0.812299i 0.0784706 0.0570122i
\(204\) 0 0
\(205\) −8.16312 6.37988i −0.570137 0.445590i
\(206\) −12.2361 −0.852527
\(207\) 0 0
\(208\) 6.23607 0.432394
\(209\) 1.63525 5.03280i 0.113113 0.348126i
\(210\) 0 0
\(211\) −5.04508 + 3.66547i −0.347318 + 0.252341i −0.747743 0.663988i \(-0.768862\pi\)
0.400425 + 0.916330i \(0.368862\pi\)
\(212\) 9.59017 + 6.96767i 0.658656 + 0.478541i
\(213\) 0 0
\(214\) 5.70820 0.390205
\(215\) −4.85410 14.9394i −0.331047 1.01886i
\(216\) 0 0
\(217\) 4.92705 15.1639i 0.334470 1.02939i
\(218\) −6.04508 + 4.39201i −0.409425 + 0.297465i
\(219\) 0 0
\(220\) 1.50000 4.61653i 0.101130 0.311246i
\(221\) −21.3713 15.5272i −1.43759 1.04447i
\(222\) 0 0
\(223\) 20.7984 15.1109i 1.39276 1.01190i 0.397206 0.917729i \(-0.369980\pi\)
0.995556 0.0941715i \(-0.0300202\pi\)
\(224\) 2.11803 + 1.53884i 0.141517 + 0.102818i
\(225\) 0 0
\(226\) 14.4443 + 10.4944i 0.960819 + 0.698076i
\(227\) −15.0902 10.9637i −1.00157 0.727683i −0.0391456 0.999234i \(-0.512464\pi\)
−0.962424 + 0.271550i \(0.912464\pi\)
\(228\) 0 0
\(229\) 3.28115 + 10.0984i 0.216825 + 0.667318i 0.999019 + 0.0442832i \(0.0141004\pi\)
−0.782194 + 0.623035i \(0.785900\pi\)
\(230\) 2.11803 + 1.53884i 0.139659 + 0.101468i
\(231\) 0 0
\(232\) 0.527864 0.0346560
\(233\) 10.7533 7.81272i 0.704471 0.511828i −0.176914 0.984226i \(-0.556611\pi\)
0.881385 + 0.472398i \(0.156611\pi\)
\(234\) 0 0
\(235\) −0.763932 2.35114i −0.0498334 0.153372i
\(236\) 1.57295 + 4.84104i 0.102390 + 0.315125i
\(237\) 0 0
\(238\) −3.42705 10.5474i −0.222143 0.683685i
\(239\) 20.4443 + 14.8536i 1.32243 + 0.960802i 0.999899 + 0.0142429i \(0.00453381\pi\)
0.322531 + 0.946559i \(0.395466\pi\)
\(240\) 0 0
\(241\) −4.72542 + 14.5434i −0.304391 + 0.936820i 0.675512 + 0.737349i \(0.263923\pi\)
−0.979904 + 0.199472i \(0.936077\pi\)
\(242\) −0.618034 + 1.90211i −0.0397287 + 0.122272i
\(243\) 0 0
\(244\) 2.80902 2.04087i 0.179829 0.130653i
\(245\) 0.236068 0.0150818
\(246\) 0 0
\(247\) −11.0000 −0.699913
\(248\) 4.92705 3.57971i 0.312868 0.227312i
\(249\) 0 0
\(250\) 3.69098 11.3597i 0.233438 0.718449i
\(251\) −5.42705 + 16.7027i −0.342552 + 1.05427i 0.620329 + 0.784342i \(0.286999\pi\)
−0.962881 + 0.269926i \(0.913001\pi\)
\(252\) 0 0
\(253\) 3.92705 + 2.85317i 0.246892 + 0.179377i
\(254\) 2.10081 + 6.46564i 0.131817 + 0.405690i
\(255\) 0 0
\(256\) 0.309017 + 0.951057i 0.0193136 + 0.0594410i
\(257\) 1.47214 + 4.53077i 0.0918293 + 0.282622i 0.986414 0.164276i \(-0.0525288\pi\)
−0.894585 + 0.446898i \(0.852529\pi\)
\(258\) 0 0
\(259\) 3.11803 2.26538i 0.193745 0.140764i
\(260\) −10.0902 −0.625766
\(261\) 0 0
\(262\) −7.39919 5.37582i −0.457123 0.332120i
\(263\) −0.0278640 0.0857567i −0.00171817 0.00528799i 0.950194 0.311660i \(-0.100885\pi\)
−0.951912 + 0.306372i \(0.900885\pi\)
\(264\) 0 0
\(265\) −15.5172 11.2739i −0.953215 0.692551i
\(266\) −3.73607 2.71441i −0.229073 0.166431i
\(267\) 0 0
\(268\) 12.4721 + 9.06154i 0.761857 + 0.553521i
\(269\) −4.89919 + 3.55947i −0.298709 + 0.217025i −0.727036 0.686599i \(-0.759103\pi\)
0.428328 + 0.903623i \(0.359103\pi\)
\(270\) 0 0
\(271\) 21.1353 + 15.3557i 1.28388 + 0.932790i 0.999663 0.0259713i \(-0.00826784\pi\)
0.284213 + 0.958761i \(0.408268\pi\)
\(272\) 1.30902 4.02874i 0.0793708 0.244278i
\(273\) 0 0
\(274\) −5.47214 + 3.97574i −0.330584 + 0.240183i
\(275\) 2.20820 6.79615i 0.133160 0.409823i
\(276\) 0 0
\(277\) −4.82624 14.8536i −0.289981 0.892468i −0.984861 0.173343i \(-0.944543\pi\)
0.694881 0.719125i \(-0.255457\pi\)
\(278\) 0.236068 0.0141584
\(279\) 0 0
\(280\) −3.42705 2.48990i −0.204805 0.148800i
\(281\) 8.04508 5.84510i 0.479930 0.348689i −0.321369 0.946954i \(-0.604143\pi\)
0.801298 + 0.598265i \(0.204143\pi\)
\(282\) 0 0
\(283\) −5.40983 + 16.6497i −0.321581 + 0.989725i 0.651379 + 0.758752i \(0.274191\pi\)
−0.972960 + 0.230972i \(0.925809\pi\)
\(284\) −3.85410 −0.228699
\(285\) 0 0
\(286\) −18.7082 −1.10624
\(287\) −13.8992 + 9.37181i −0.820443 + 0.553200i
\(288\) 0 0
\(289\) −0.763932 + 0.555029i −0.0449372 + 0.0326488i
\(290\) −0.854102 −0.0501546
\(291\) 0 0
\(292\) −5.00000 + 15.3884i −0.292603 + 0.900539i
\(293\) −5.50000 + 3.99598i −0.321313 + 0.233448i −0.736736 0.676181i \(-0.763634\pi\)
0.415422 + 0.909629i \(0.363634\pi\)
\(294\) 0 0
\(295\) −2.54508 7.83297i −0.148181 0.456053i
\(296\) 1.47214 0.0855662
\(297\) 0 0
\(298\) 3.52786 + 10.8576i 0.204364 + 0.628967i
\(299\) 3.11803 9.59632i 0.180321 0.554970i
\(300\) 0 0
\(301\) −25.4164 −1.46498
\(302\) −4.70820 + 14.4904i −0.270927 + 0.833827i
\(303\) 0 0
\(304\) −0.545085 1.67760i −0.0312628 0.0962169i
\(305\) −4.54508 + 3.30220i −0.260251 + 0.189083i
\(306\) 0 0
\(307\) 18.1803 + 13.2088i 1.03761 + 0.753865i 0.969817 0.243834i \(-0.0784053\pi\)
0.0677899 + 0.997700i \(0.478405\pi\)
\(308\) −6.35410 4.61653i −0.362059 0.263051i
\(309\) 0 0
\(310\) −7.97214 + 5.79210i −0.452787 + 0.328969i
\(311\) 1.40983 + 4.33901i 0.0799441 + 0.246043i 0.983038 0.183399i \(-0.0587102\pi\)
−0.903094 + 0.429442i \(0.858710\pi\)
\(312\) 0 0
\(313\) 0.708204 2.17963i 0.0400301 0.123200i −0.929044 0.369968i \(-0.879369\pi\)
0.969075 + 0.246768i \(0.0793686\pi\)
\(314\) 2.94427 0.166155
\(315\) 0 0
\(316\) 4.32624 13.3148i 0.243370 0.749016i
\(317\) 4.19098 + 12.8985i 0.235389 + 0.724453i 0.997070 + 0.0765002i \(0.0243746\pi\)
−0.761681 + 0.647953i \(0.775625\pi\)
\(318\) 0 0
\(319\) −1.58359 −0.0886641
\(320\) −0.500000 1.53884i −0.0279508 0.0860239i
\(321\) 0 0
\(322\) 3.42705 2.48990i 0.190982 0.138757i
\(323\) −2.30902 + 7.10642i −0.128477 + 0.395412i
\(324\) 0 0
\(325\) −14.8541 −0.823957
\(326\) −3.26393 + 2.37139i −0.180772 + 0.131339i
\(327\) 0 0
\(328\) −6.39919 0.224514i −0.353336 0.0123967i
\(329\) −4.00000 −0.220527
\(330\) 0 0
\(331\) −10.0902 −0.554606 −0.277303 0.960783i \(-0.589441\pi\)
−0.277303 + 0.960783i \(0.589441\pi\)
\(332\) 4.97214 15.3027i 0.272881 0.839843i
\(333\) 0 0
\(334\) −19.4443 + 14.1271i −1.06394 + 0.773000i
\(335\) −20.1803 14.6619i −1.10257 0.801064i
\(336\) 0 0
\(337\) −26.7639 −1.45792 −0.728962 0.684554i \(-0.759997\pi\)
−0.728962 + 0.684554i \(0.759997\pi\)
\(338\) 8.00000 + 24.6215i 0.435143 + 1.33923i
\(339\) 0 0
\(340\) −2.11803 + 6.51864i −0.114867 + 0.353523i
\(341\) −14.7812 + 10.7391i −0.800444 + 0.581557i
\(342\) 0 0
\(343\) 5.78115 17.7926i 0.312153 0.960708i
\(344\) −7.85410 5.70634i −0.423465 0.307665i
\(345\) 0 0
\(346\) −3.04508 + 2.21238i −0.163705 + 0.118938i
\(347\) −23.2533 16.8945i −1.24830 0.906944i −0.250180 0.968199i \(-0.580490\pi\)
−0.998122 + 0.0612549i \(0.980490\pi\)
\(348\) 0 0
\(349\) −5.16312 3.75123i −0.276375 0.200798i 0.440960 0.897527i \(-0.354638\pi\)
−0.717335 + 0.696729i \(0.754638\pi\)
\(350\) −5.04508 3.66547i −0.269671 0.195928i
\(351\) 0 0
\(352\) −0.927051 2.85317i −0.0494120 0.152074i
\(353\) 6.16312 + 4.47777i 0.328030 + 0.238328i 0.739594 0.673053i \(-0.235017\pi\)
−0.411564 + 0.911381i \(0.635017\pi\)
\(354\) 0 0
\(355\) 6.23607 0.330976
\(356\) −5.04508 + 3.66547i −0.267389 + 0.194269i
\(357\) 0 0
\(358\) 7.52786 + 23.1684i 0.397860 + 1.22449i
\(359\) 3.47214 + 10.6861i 0.183252 + 0.563993i 0.999914 0.0131242i \(-0.00417769\pi\)
−0.816662 + 0.577117i \(0.804178\pi\)
\(360\) 0 0
\(361\) −4.90983 15.1109i −0.258412 0.795311i
\(362\) −4.88197 3.54696i −0.256590 0.186424i
\(363\) 0 0
\(364\) −5.04508 + 15.5272i −0.264434 + 0.813845i
\(365\) 8.09017 24.8990i 0.423459 1.30327i
\(366\) 0 0
\(367\) −7.42705 + 5.39607i −0.387689 + 0.281672i −0.764508 0.644614i \(-0.777018\pi\)
0.376819 + 0.926287i \(0.377018\pi\)
\(368\) 1.61803 0.0843459
\(369\) 0 0
\(370\) −2.38197 −0.123833
\(371\) −25.1074 + 18.2416i −1.30351 + 0.947056i
\(372\) 0 0
\(373\) 7.78115 23.9479i 0.402893 1.23998i −0.519749 0.854319i \(-0.673975\pi\)
0.922642 0.385658i \(-0.126025\pi\)
\(374\) −3.92705 + 12.0862i −0.203063 + 0.624964i
\(375\) 0 0
\(376\) −1.23607 0.898056i −0.0637453 0.0463137i
\(377\) 1.01722 + 3.13068i 0.0523895 + 0.161238i
\(378\) 0 0
\(379\) −4.64590 14.2986i −0.238644 0.734470i −0.996617 0.0821845i \(-0.973810\pi\)
0.757973 0.652285i \(-0.226190\pi\)
\(380\) 0.881966 + 2.71441i 0.0452439 + 0.139246i
\(381\) 0 0
\(382\) 4.04508 2.93893i 0.206965 0.150369i
\(383\) 3.18034 0.162508 0.0812539 0.996693i \(-0.474108\pi\)
0.0812539 + 0.996693i \(0.474108\pi\)
\(384\) 0 0
\(385\) 10.2812 + 7.46969i 0.523976 + 0.380691i
\(386\) −3.73607 11.4984i −0.190161 0.585255i
\(387\) 0 0
\(388\) −4.42705 3.21644i −0.224749 0.163290i
\(389\) 30.3156 + 22.0256i 1.53706 + 1.11674i 0.952145 + 0.305647i \(0.0988729\pi\)
0.584917 + 0.811093i \(0.301127\pi\)
\(390\) 0 0
\(391\) −5.54508 4.02874i −0.280427 0.203742i
\(392\) 0.118034 0.0857567i 0.00596162 0.00433137i
\(393\) 0 0
\(394\) −2.57295 1.86936i −0.129623 0.0941768i
\(395\) −7.00000 + 21.5438i −0.352208 + 1.08399i
\(396\) 0 0
\(397\) 21.4164 15.5599i 1.07486 0.780931i 0.0980794 0.995179i \(-0.468730\pi\)
0.976779 + 0.214248i \(0.0687301\pi\)
\(398\) 2.01722 6.20837i 0.101114 0.311197i
\(399\) 0 0
\(400\) −0.736068 2.26538i −0.0368034 0.113269i
\(401\) −24.8885 −1.24287 −0.621437 0.783464i \(-0.713451\pi\)
−0.621437 + 0.783464i \(0.713451\pi\)
\(402\) 0 0
\(403\) 30.7254 + 22.3233i 1.53054 + 1.11200i
\(404\) 6.30902 4.58377i 0.313885 0.228051i
\(405\) 0 0
\(406\) −0.427051 + 1.31433i −0.0211942 + 0.0652290i
\(407\) −4.41641 −0.218913
\(408\) 0 0
\(409\) −0.270510 −0.0133759 −0.00668793 0.999978i \(-0.502129\pi\)
−0.00668793 + 0.999978i \(0.502129\pi\)
\(410\) 10.3541 + 0.363271i 0.511353 + 0.0179407i
\(411\) 0 0
\(412\) 9.89919 7.19218i 0.487698 0.354333i
\(413\) −13.3262 −0.655741
\(414\) 0 0
\(415\) −8.04508 + 24.7602i −0.394918 + 1.21543i
\(416\) −5.04508 + 3.66547i −0.247356 + 0.179714i
\(417\) 0 0
\(418\) 1.63525 + 5.03280i 0.0799829 + 0.246162i
\(419\) 17.9787 0.878318 0.439159 0.898409i \(-0.355277\pi\)
0.439159 + 0.898409i \(0.355277\pi\)
\(420\) 0 0
\(421\) −8.41641 25.9030i −0.410191 1.26244i −0.916483 0.400075i \(-0.868984\pi\)
0.506292 0.862362i \(-0.331016\pi\)
\(422\) 1.92705 5.93085i 0.0938074 0.288709i
\(423\) 0 0
\(424\) −11.8541 −0.575686
\(425\) −3.11803 + 9.59632i −0.151247 + 0.465490i
\(426\) 0 0
\(427\) 2.80902 + 8.64527i 0.135938 + 0.418374i
\(428\) −4.61803 + 3.35520i −0.223221 + 0.162180i
\(429\) 0 0
\(430\) 12.7082 + 9.23305i 0.612844 + 0.445257i
\(431\) −9.51722 6.91467i −0.458428 0.333068i 0.334486 0.942401i \(-0.391437\pi\)
−0.792914 + 0.609333i \(0.791437\pi\)
\(432\) 0 0
\(433\) 6.76393 4.91428i 0.325054 0.236165i −0.413275 0.910606i \(-0.635615\pi\)
0.738329 + 0.674441i \(0.235615\pi\)
\(434\) 4.92705 + 15.1639i 0.236506 + 0.727891i
\(435\) 0 0
\(436\) 2.30902 7.10642i 0.110582 0.340336i
\(437\) −2.85410 −0.136530
\(438\) 0 0
\(439\) −7.16312 + 22.0458i −0.341877 + 1.05219i 0.621357 + 0.783527i \(0.286581\pi\)
−0.963234 + 0.268662i \(0.913419\pi\)
\(440\) 1.50000 + 4.61653i 0.0715097 + 0.220084i
\(441\) 0 0
\(442\) 26.4164 1.25650
\(443\) 7.19756 + 22.1518i 0.341966 + 1.05246i 0.963188 + 0.268829i \(0.0866368\pi\)
−0.621221 + 0.783635i \(0.713363\pi\)
\(444\) 0 0
\(445\) 8.16312 5.93085i 0.386969 0.281149i
\(446\) −7.94427 + 24.4500i −0.376172 + 1.15774i
\(447\) 0 0
\(448\) −2.61803 −0.123690
\(449\) 5.57295 4.04898i 0.263004 0.191083i −0.448466 0.893800i \(-0.648030\pi\)
0.711470 + 0.702716i \(0.248030\pi\)
\(450\) 0 0
\(451\) 19.1976 + 0.673542i 0.903978 + 0.0317159i
\(452\) −17.8541 −0.839786
\(453\) 0 0
\(454\) 18.6525 0.875404
\(455\) 8.16312 25.1235i 0.382693 1.17781i
\(456\) 0 0
\(457\) 8.66312 6.29412i 0.405244 0.294427i −0.366430 0.930446i \(-0.619420\pi\)
0.771673 + 0.636019i \(0.219420\pi\)
\(458\) −8.59017 6.24112i −0.401392 0.291629i
\(459\) 0 0
\(460\) −2.61803 −0.122066
\(461\) −9.60081 29.5483i −0.447154 1.37620i −0.880104 0.474782i \(-0.842527\pi\)
0.432949 0.901418i \(-0.357473\pi\)
\(462\) 0 0
\(463\) −5.30902 + 16.3395i −0.246731 + 0.759360i 0.748616 + 0.663004i \(0.230719\pi\)
−0.995347 + 0.0963559i \(0.969281\pi\)
\(464\) −0.427051 + 0.310271i −0.0198253 + 0.0144040i
\(465\) 0 0
\(466\) −4.10739 + 12.6412i −0.190271 + 0.585595i
\(467\) 22.6525 + 16.4580i 1.04823 + 0.761585i 0.971875 0.235496i \(-0.0756714\pi\)
0.0763562 + 0.997081i \(0.475671\pi\)
\(468\) 0 0
\(469\) −32.6525 + 23.7234i −1.50775 + 1.09545i
\(470\) 2.00000 + 1.45309i 0.0922531 + 0.0670258i
\(471\) 0 0
\(472\) −4.11803 2.99193i −0.189548 0.137715i
\(473\) 23.5623 + 17.1190i 1.08340 + 0.787133i
\(474\) 0 0
\(475\) 1.29837 + 3.99598i 0.0595735 + 0.183348i
\(476\) 8.97214 + 6.51864i 0.411237 + 0.298781i
\(477\) 0 0
\(478\) −25.2705 −1.15585
\(479\) 21.5623 15.6659i 0.985207 0.715795i 0.0263407 0.999653i \(-0.491615\pi\)
0.958866 + 0.283858i \(0.0916145\pi\)
\(480\) 0 0
\(481\) 2.83688 + 8.73102i 0.129351 + 0.398100i
\(482\) −4.72542 14.5434i −0.215237 0.662432i
\(483\) 0 0
\(484\) −0.618034 1.90211i −0.0280925 0.0864597i
\(485\) 7.16312 + 5.20431i 0.325260 + 0.236316i
\(486\) 0 0
\(487\) −3.87132 + 11.9147i −0.175426 + 0.539907i −0.999653 0.0263537i \(-0.991610\pi\)
0.824226 + 0.566261i \(0.191610\pi\)
\(488\) −1.07295 + 3.30220i −0.0485701 + 0.149483i
\(489\) 0 0
\(490\) −0.190983 + 0.138757i −0.00862773 + 0.00626841i
\(491\) −26.4721 −1.19467 −0.597335 0.801992i \(-0.703774\pi\)
−0.597335 + 0.801992i \(0.703774\pi\)
\(492\) 0 0
\(493\) 2.23607 0.100707
\(494\) 8.89919 6.46564i 0.400393 0.290903i
\(495\) 0 0
\(496\) −1.88197 + 5.79210i −0.0845028 + 0.260073i
\(497\) 3.11803 9.59632i 0.139863 0.430454i
\(498\) 0 0
\(499\) −27.2533 19.8007i −1.22002 0.886400i −0.223923 0.974607i \(-0.571886\pi\)
−0.996102 + 0.0882071i \(0.971886\pi\)
\(500\) 3.69098 + 11.3597i 0.165066 + 0.508020i
\(501\) 0 0
\(502\) −5.42705 16.7027i −0.242221 0.745480i
\(503\) 1.27458 + 3.92274i 0.0568305 + 0.174906i 0.975442 0.220255i \(-0.0706888\pi\)
−0.918612 + 0.395161i \(0.870689\pi\)
\(504\) 0 0
\(505\) −10.2082 + 7.41669i −0.454259 + 0.330039i
\(506\) −4.85410 −0.215791
\(507\) 0 0
\(508\) −5.50000 3.99598i −0.244023 0.177293i
\(509\) −9.92705 30.5523i −0.440009 1.35421i −0.887866 0.460103i \(-0.847813\pi\)
0.447857 0.894105i \(-0.352187\pi\)
\(510\) 0 0
\(511\) −34.2705 24.8990i −1.51604 1.10147i
\(512\) −0.809017 0.587785i −0.0357538 0.0259767i
\(513\) 0 0
\(514\) −3.85410 2.80017i −0.169997 0.123510i
\(515\) −16.0172 + 11.6372i −0.705803 + 0.512796i
\(516\) 0 0
\(517\) 3.70820 + 2.69417i 0.163087 + 0.118489i
\(518\) −1.19098 + 3.66547i −0.0523288 + 0.161051i
\(519\) 0 0
\(520\) 8.16312 5.93085i 0.357976 0.260085i
\(521\) −2.29837 + 7.07367i −0.100694 + 0.309903i −0.988696 0.149937i \(-0.952093\pi\)
0.888002 + 0.459840i \(0.152093\pi\)
\(522\) 0 0
\(523\) −4.91641 15.1311i −0.214980 0.661639i −0.999155 0.0410998i \(-0.986914\pi\)
0.784176 0.620539i \(-0.213086\pi\)
\(524\) 9.14590 0.399540
\(525\) 0 0
\(526\) 0.0729490 + 0.0530006i 0.00318073 + 0.00231093i
\(527\) 20.8713 15.1639i 0.909169 0.660550i
\(528\) 0 0
\(529\) −6.29837 + 19.3844i −0.273842 + 0.842800i
\(530\) 19.1803 0.833141
\(531\) 0 0
\(532\) 4.61803 0.200217
\(533\) −11.0000 38.3853i −0.476463 1.66265i
\(534\) 0 0
\(535\) 7.47214 5.42882i 0.323049 0.234709i
\(536\) −15.4164 −0.665887
\(537\) 0 0
\(538\) 1.87132 5.75934i 0.0806785 0.248303i
\(539\) −0.354102 + 0.257270i −0.0152523 + 0.0110814i
\(540\) 0 0
\(541\) 7.13525 + 21.9601i 0.306769 + 0.944137i 0.979011 + 0.203806i \(0.0653311\pi\)
−0.672243 + 0.740331i \(0.734669\pi\)
\(542\) −26.1246 −1.12215
\(543\) 0 0
\(544\) 1.30902 + 4.02874i 0.0561236 + 0.172731i
\(545\) −3.73607 + 11.4984i −0.160036 + 0.492539i
\(546\) 0 0
\(547\) 9.00000 0.384812 0.192406 0.981315i \(-0.438371\pi\)
0.192406 + 0.981315i \(0.438371\pi\)
\(548\) 2.09017 6.43288i 0.0892876 0.274799i
\(549\) 0 0
\(550\) 2.20820 + 6.79615i 0.0941581 + 0.289789i
\(551\) 0.753289 0.547296i 0.0320912 0.0233156i
\(552\) 0 0
\(553\) 29.6525 + 21.5438i 1.26095 + 0.916135i
\(554\) 12.6353 + 9.18005i 0.536821 + 0.390023i
\(555\) 0 0
\(556\) −0.190983 + 0.138757i −0.00809948 + 0.00588462i
\(557\) −0.343459 1.05706i −0.0145528 0.0447890i 0.943516 0.331326i \(-0.107496\pi\)
−0.958069 + 0.286537i \(0.907496\pi\)
\(558\) 0 0
\(559\) 18.7082 57.5779i 0.791273 2.43529i
\(560\) 4.23607 0.179007
\(561\) 0 0
\(562\) −3.07295 + 9.45756i −0.129625 + 0.398943i
\(563\) −2.85410 8.78402i −0.120286 0.370202i 0.872727 0.488209i \(-0.162350\pi\)
−0.993013 + 0.118007i \(0.962350\pi\)
\(564\) 0 0
\(565\) 28.8885 1.21535
\(566\) −5.40983 16.6497i −0.227392 0.699841i
\(567\) 0 0
\(568\) 3.11803 2.26538i 0.130830 0.0950534i
\(569\) −12.0517 + 37.0912i −0.505232 + 1.55494i 0.295148 + 0.955451i \(0.404631\pi\)
−0.800380 + 0.599493i \(0.795369\pi\)
\(570\) 0 0
\(571\) −6.12461 −0.256307 −0.128154 0.991754i \(-0.540905\pi\)
−0.128154 + 0.991754i \(0.540905\pi\)
\(572\) 15.1353 10.9964i 0.632837 0.459783i
\(573\) 0 0
\(574\) 5.73607 15.7517i 0.239419 0.657463i
\(575\) −3.85410 −0.160727
\(576\) 0 0
\(577\) 13.4721 0.560852 0.280426 0.959876i \(-0.409524\pi\)
0.280426 + 0.959876i \(0.409524\pi\)
\(578\) 0.291796 0.898056i 0.0121371 0.0373542i
\(579\) 0 0
\(580\) 0.690983 0.502029i 0.0286915 0.0208456i
\(581\) 34.0795 + 24.7602i 1.41386 + 1.02723i
\(582\) 0 0
\(583\) 35.5623 1.47284
\(584\) −5.00000 15.3884i −0.206901 0.636777i
\(585\) 0 0
\(586\) 2.10081 6.46564i 0.0867838 0.267093i
\(587\) 9.73607 7.07367i 0.401851 0.291962i −0.368444 0.929650i \(-0.620109\pi\)
0.770294 + 0.637689i \(0.220109\pi\)
\(588\) 0 0
\(589\) 3.31966 10.2169i 0.136784 0.420979i
\(590\) 6.66312 + 4.84104i 0.274316 + 0.199302i
\(591\) 0 0
\(592\) −1.19098 + 0.865300i −0.0489491 + 0.0355636i
\(593\) −6.76393 4.91428i −0.277761 0.201805i 0.440179 0.897910i \(-0.354915\pi\)
−0.717940 + 0.696105i \(0.754915\pi\)
\(594\) 0 0
\(595\) −14.5172 10.5474i −0.595148 0.432400i
\(596\) −9.23607 6.71040i −0.378324 0.274869i
\(597\) 0 0
\(598\) 3.11803 + 9.59632i 0.127506 + 0.392423i
\(599\) 19.7984 + 14.3844i 0.808940 + 0.587729i 0.913523 0.406787i \(-0.133351\pi\)
−0.104583 + 0.994516i \(0.533351\pi\)
\(600\) 0 0
\(601\) −27.1803 −1.10871 −0.554355 0.832281i \(-0.687035\pi\)
−0.554355 + 0.832281i \(0.687035\pi\)
\(602\) 20.5623 14.9394i 0.838057 0.608884i
\(603\) 0 0
\(604\) −4.70820 14.4904i −0.191574 0.589604i
\(605\) 1.00000 + 3.07768i 0.0406558 + 0.125126i
\(606\) 0 0
\(607\) 12.2188 + 37.6057i 0.495948 + 1.52637i 0.815475 + 0.578793i \(0.196476\pi\)
−0.319527 + 0.947577i \(0.603524\pi\)
\(608\) 1.42705 + 1.03681i 0.0578746 + 0.0420483i
\(609\) 0 0
\(610\) 1.73607 5.34307i 0.0702913 0.216334i
\(611\) 2.94427 9.06154i 0.119112 0.366591i
\(612\) 0 0
\(613\) 19.4615 14.1396i 0.786042 0.571093i −0.120744 0.992684i \(-0.538528\pi\)
0.906786 + 0.421591i \(0.138528\pi\)
\(614\) −22.4721 −0.906902
\(615\) 0 0
\(616\) 7.85410 0.316451
\(617\) −12.8541 + 9.33905i −0.517487 + 0.375976i −0.815656 0.578537i \(-0.803624\pi\)
0.298170 + 0.954513i \(0.403624\pi\)
\(618\) 0 0
\(619\) 0.0729490 0.224514i 0.00293207 0.00902398i −0.949580 0.313526i \(-0.898490\pi\)
0.952512 + 0.304502i \(0.0984899\pi\)
\(620\) 3.04508 9.37181i 0.122294 0.376381i
\(621\) 0 0
\(622\) −3.69098 2.68166i −0.147995 0.107525i
\(623\) −5.04508 15.5272i −0.202127 0.622083i
\(624\) 0 0
\(625\) −2.29180 7.05342i −0.0916718 0.282137i
\(626\) 0.708204 + 2.17963i 0.0283055 + 0.0871154i
\(627\) 0 0
\(628\) −2.38197 + 1.73060i −0.0950508 + 0.0690584i
\(629\) 6.23607 0.248648
\(630\) 0 0
\(631\) −6.47214 4.70228i −0.257652 0.187195i 0.451459 0.892292i \(-0.350904\pi\)
−0.709111 + 0.705097i \(0.750904\pi\)
\(632\) 4.32624 + 13.3148i 0.172089 + 0.529634i
\(633\) 0 0
\(634\) −10.9721 7.97172i −0.435759 0.316598i
\(635\) 8.89919 + 6.46564i 0.353153 + 0.256581i
\(636\) 0 0
\(637\) 0.736068 + 0.534785i 0.0291641 + 0.0211889i
\(638\) 1.28115 0.930812i 0.0507213 0.0368512i
\(639\) 0 0
\(640\) 1.30902 + 0.951057i 0.0517434 + 0.0375938i
\(641\) 1.48278 4.56352i 0.0585663 0.180248i −0.917494 0.397751i \(-0.869791\pi\)
0.976060 + 0.217502i \(0.0697909\pi\)
\(642\) 0 0
\(643\) −5.76393 + 4.18774i −0.227307 + 0.165148i −0.695610 0.718420i \(-0.744866\pi\)
0.468303 + 0.883568i \(0.344866\pi\)
\(644\) −1.30902 + 4.02874i −0.0515825 + 0.158755i
\(645\) 0 0
\(646\) −2.30902 7.10642i −0.0908471 0.279598i
\(647\) 18.3820 0.722670 0.361335 0.932436i \(-0.382321\pi\)
0.361335 + 0.932436i \(0.382321\pi\)
\(648\) 0 0
\(649\) 12.3541 + 8.97578i 0.484941 + 0.352330i
\(650\) 12.0172 8.73102i 0.471354 0.342459i
\(651\) 0 0
\(652\) 1.24671 3.83698i 0.0488250 0.150268i
\(653\) −27.8328 −1.08918 −0.544591 0.838702i \(-0.683315\pi\)
−0.544591 + 0.838702i \(0.683315\pi\)
\(654\) 0 0
\(655\) −14.7984 −0.578220
\(656\) 5.30902 3.57971i 0.207282 0.139764i
\(657\) 0 0
\(658\) 3.23607 2.35114i 0.126155 0.0916570i
\(659\) −20.6525 −0.804506 −0.402253 0.915528i \(-0.631773\pi\)
−0.402253 + 0.915528i \(0.631773\pi\)
\(660\) 0 0
\(661\) −0.611456 + 1.88187i −0.0237829 + 0.0731962i −0.962244 0.272190i \(-0.912252\pi\)
0.938461 + 0.345386i \(0.112252\pi\)
\(662\) 8.16312 5.93085i 0.317269 0.230509i
\(663\) 0 0
\(664\) 4.97214 + 15.3027i 0.192956 + 0.593858i
\(665\) −7.47214 −0.289757
\(666\) 0 0
\(667\) 0.263932 + 0.812299i 0.0102195 + 0.0314524i
\(668\) 7.42705 22.8581i 0.287361 0.884407i
\(669\) 0 0
\(670\) 24.9443 0.963681
\(671\) 3.21885 9.90659i 0.124262 0.382440i
\(672\) 0 0
\(673\) −4.40983 13.5721i −0.169986 0.523165i 0.829383 0.558681i \(-0.188692\pi\)
−0.999369 + 0.0355165i \(0.988692\pi\)
\(674\) 21.6525 15.7314i 0.834022 0.605953i
\(675\) 0 0
\(676\) −20.9443 15.2169i −0.805549 0.585266i
\(677\) 25.9894 + 18.8824i 0.998852 + 0.725709i 0.961842 0.273606i \(-0.0882165\pi\)
0.0370104 + 0.999315i \(0.488217\pi\)
\(678\) 0 0
\(679\) 11.5902 8.42075i 0.444790 0.323159i
\(680\) −2.11803 6.51864i −0.0812229 0.249978i
\(681\) 0 0
\(682\) 5.64590 17.3763i 0.216193 0.665372i
\(683\) 13.2016 0.505146 0.252573 0.967578i \(-0.418723\pi\)
0.252573 + 0.967578i \(0.418723\pi\)
\(684\) 0 0
\(685\) −3.38197 + 10.4086i −0.129218 + 0.397693i
\(686\) 5.78115 + 17.7926i 0.220725 + 0.679323i
\(687\) 0 0
\(688\) 9.70820 0.370122
\(689\) −22.8435 70.3049i −0.870266 2.67840i
\(690\) 0 0
\(691\) 2.90983 2.11412i 0.110695 0.0804247i −0.531061 0.847334i \(-0.678206\pi\)
0.641756 + 0.766909i \(0.278206\pi\)
\(692\) 1.16312 3.57971i 0.0442151 0.136080i
\(693\) 0 0
\(694\) 28.7426 1.09106
\(695\) 0.309017 0.224514i 0.0117217 0.00851630i
\(696\) 0 0
\(697\) −27.1074 0.951057i −1.02677 0.0360238i
\(698\) 6.38197 0.241561
\(699\) 0 0
\(700\) 6.23607 0.235701
\(701\) −11.1697 + 34.3768i −0.421874 + 1.29839i 0.484083 + 0.875022i \(0.339153\pi\)
−0.905956 + 0.423371i \(0.860847\pi\)
\(702\) 0 0
\(703\) 2.10081 1.52633i 0.0792337 0.0575666i
\(704\) 2.42705 + 1.76336i 0.0914729 + 0.0664590i
\(705\) 0 0
\(706\) −7.61803 −0.286708
\(707\) 6.30902 + 19.4172i 0.237275 + 0.730257i
\(708\) 0 0
\(709\) −8.73607 + 26.8869i −0.328090 + 1.00976i 0.641937 + 0.766758i \(0.278131\pi\)
−0.970026 + 0.242999i \(0.921869\pi\)
\(710\) −5.04508 + 3.66547i −0.189339 + 0.137563i
\(711\) 0 0
\(712\) 1.92705 5.93085i 0.0722193 0.222268i
\(713\) 7.97214 + 5.79210i 0.298559 + 0.216916i
\(714\) 0 0
\(715\) −24.4894 + 17.7926i −0.915850 + 0.665404i
\(716\) −19.7082 14.3188i −0.736530 0.535120i
\(717\) 0 0
\(718\) −9.09017 6.60440i −0.339242 0.246474i
\(719\) 30.1074 + 21.8743i 1.12282 + 0.815774i 0.984634 0.174633i \(-0.0558739\pi\)
0.138183 + 0.990407i \(0.455874\pi\)
\(720\) 0 0
\(721\) 9.89919 + 30.4666i 0.368665 + 1.13463i
\(722\) 12.8541 + 9.33905i 0.478380 + 0.347564i
\(723\) 0 0
\(724\) 6.03444 0.224268
\(725\) 1.01722 0.739054i 0.0377786 0.0274478i
\(726\) 0 0
\(727\) −3.00000 9.23305i −0.111264 0.342435i 0.879886 0.475186i \(-0.157619\pi\)
−0.991149 + 0.132751i \(0.957619\pi\)
\(728\) −5.04508 15.5272i −0.186983 0.575475i
\(729\) 0 0
\(730\) 8.09017 + 24.8990i 0.299431 + 0.921553i
\(731\) −33.2705 24.1724i −1.23055 0.894050i
\(732\) 0 0
\(733\) 5.33688 16.4252i 0.197122 0.606680i −0.802823 0.596217i \(-0.796670\pi\)
0.999945 0.0104624i \(-0.00333035\pi\)
\(734\) 2.83688 8.73102i 0.104711 0.322268i
\(735\) 0 0
\(736\) −1.30902 + 0.951057i −0.0482510 + 0.0350564i
\(737\) 46.2492 1.70361
\(738\) 0 0
\(739\) −19.8328 −0.729562 −0.364781 0.931093i \(-0.618856\pi\)
−0.364781 + 0.931093i \(0.618856\pi\)
\(740\) 1.92705 1.40008i 0.0708398 0.0514681i
\(741\) 0 0
\(742\) 9.59017 29.5155i 0.352066 1.08355i
\(743\) 9.23607 28.4257i 0.338838 1.04284i −0.625962 0.779854i \(-0.715293\pi\)
0.964800 0.262984i \(-0.0847066\pi\)
\(744\) 0 0
\(745\) 14.9443 + 10.8576i 0.547516 + 0.397793i
\(746\) 7.78115 + 23.9479i 0.284888 + 0.876796i
\(747\) 0 0
\(748\) −3.92705 12.0862i −0.143587 0.441916i
\(749\) −4.61803 14.2128i −0.168739 0.519326i
\(750\) 0 0
\(751\) −6.02786 + 4.37950i −0.219960 + 0.159810i −0.692309 0.721602i \(-0.743406\pi\)
0.472349 + 0.881412i \(0.343406\pi\)
\(752\) 1.52786 0.0557155
\(753\) 0 0
\(754\) −2.66312 1.93487i −0.0969851 0.0704638i
\(755\) 7.61803 + 23.4459i 0.277249 + 0.853284i
\(756\) 0 0
\(757\) 11.0623 + 8.03724i 0.402066 + 0.292118i 0.770382 0.637582i \(-0.220065\pi\)
−0.368316 + 0.929701i \(0.620065\pi\)
\(758\) 12.1631 + 8.83702i 0.441784 + 0.320975i
\(759\) 0 0
\(760\) −2.30902 1.67760i −0.0837568 0.0608529i
\(761\) 0.427051 0.310271i 0.0154806 0.0112473i −0.580018 0.814604i \(-0.696955\pi\)
0.595499 + 0.803356i \(0.296955\pi\)
\(762\) 0 0
\(763\) 15.8262 + 11.4984i 0.572948 + 0.416271i
\(764\) −1.54508 + 4.75528i −0.0558992 + 0.172040i
\(765\) 0 0
\(766\) −2.57295 + 1.86936i −0.0929644 + 0.0675426i
\(767\) 9.80902 30.1891i 0.354183 1.09006i
\(768\) 0 0
\(769\) 8.92705 + 27.4746i 0.321918 + 0.990761i 0.972813 + 0.231593i \(0.0743938\pi\)
−0.650895 + 0.759168i \(0.725606\pi\)
\(770\) −12.7082 −0.457972
\(771\) 0 0
\(772\) 9.78115 + 7.10642i 0.352031 + 0.255766i
\(773\) 12.2812 8.92278i 0.441722 0.320930i −0.344597 0.938751i \(-0.611984\pi\)
0.786319 + 0.617821i \(0.211984\pi\)
\(774\) 0 0
\(775\) 4.48278 13.7966i 0.161026 0.495588i
\(776\) 5.47214 0.196438
\(777\) 0 0
\(778\) −37.4721 −1.34344
\(779\) −9.36475 + 6.31437i −0.335527 + 0.226236i
\(780\) 0 0
\(781\) −9.35410 + 6.79615i −0.334716 + 0.243185i
\(782\) 6.85410 0.245102
\(783\) 0 0
\(784\) −0.0450850 + 0.138757i −0.00161018 + 0.00495562i
\(785\) 3.85410 2.80017i 0.137559 0.0999423i
\(786\) 0 0
\(787\) −3.95492 12.1720i −0.140977 0.433884i 0.855494 0.517812i \(-0.173253\pi\)
−0.996472 + 0.0839281i \(0.973253\pi\)
\(788\) 3.18034 0.113295
\(789\) 0 0
\(790\) −7.00000 21.5438i −0.249049 0.766493i
\(791\) 14.4443 44.4549i 0.513579 1.58063i
\(792\) 0 0
\(793\) −21.6525 −0.768902
\(794\) −8.18034 + 25.1765i −0.290309 + 0.893480i
\(795\) 0 0
\(796\) 2.01722 + 6.20837i 0.0714985 + 0.220050i
\(797\) −18.4164 + 13.3803i −0.652343 + 0.473955i −0.864068 0.503374i \(-0.832092\pi\)
0.211726 + 0.977329i \(0.432092\pi\)
\(798\) 0 0
\(799\) −5.23607 3.80423i −0.185239 0.134584i
\(800\) 1.92705 + 1.40008i 0.0681315 + 0.0495005i
\(801\) 0 0
\(802\) 20.1353 14.6291i 0.711001 0.516572i
\(803\) 15.0000 + 46.1653i 0.529339 + 1.62914i
\(804\) 0 0
\(805\) 2.11803 6.51864i 0.0746509 0.229752i
\(806\) −37.9787 −1.33774
\(807\) 0 0
\(808\) −2.40983 + 7.41669i −0.0847775 + 0.260918i
\(809\) 9.45492 + 29.0992i 0.332417 + 1.02307i 0.967980 + 0.251026i \(0.0807679\pi\)
−0.635563 + 0.772049i \(0.719232\pi\)
\(810\) 0 0
\(811\) 19.0689 0.669599 0.334800 0.942289i \(-0.391331\pi\)
0.334800 + 0.942289i \(0.391331\pi\)
\(812\) −0.427051 1.31433i −0.0149866 0.0461239i
\(813\) 0 0
\(814\) 3.57295 2.59590i 0.125232 0.0909862i
\(815\) −2.01722 + 6.20837i −0.0706602 + 0.217470i
\(816\) 0 0
\(817\) −17.1246 −0.599114
\(818\) 0.218847 0.159002i 0.00765181 0.00555936i
\(819\) 0 0
\(820\) −8.59017 + 5.79210i −0.299982 + 0.202269i
\(821\) −10.4377 −0.364278 −0.182139 0.983273i \(-0.558302\pi\)
−0.182139 + 0.983273i \(0.558302\pi\)
\(822\) 0 0
\(823\) 1.43769 0.0501149 0.0250574 0.999686i \(-0.492023\pi\)
0.0250574 + 0.999686i \(0.492023\pi\)
\(824\) −3.78115 + 11.6372i −0.131723 + 0.405401i
\(825\) 0 0
\(826\) 10.7812 7.83297i 0.375124 0.272544i
\(827\) −9.51722 6.91467i −0.330946 0.240446i 0.409886 0.912137i \(-0.365569\pi\)
−0.740832 + 0.671690i \(0.765569\pi\)
\(828\) 0 0
\(829\) 10.2918 0.357449 0.178724 0.983899i \(-0.442803\pi\)
0.178724 + 0.983899i \(0.442803\pi\)
\(830\) −8.04508 24.7602i −0.279249 0.859440i
\(831\) 0 0
\(832\) 1.92705 5.93085i 0.0668085 0.205615i
\(833\) 0.500000 0.363271i 0.0173240 0.0125866i
\(834\) 0 0
\(835\) −12.0172 + 36.9852i −0.415873 + 1.27993i
\(836\) −4.28115 3.11044i −0.148067 0.107577i
\(837\) 0 0
\(838\) −14.5451 + 10.5676i −0.502452 + 0.365052i
\(839\) −18.6074 13.5191i −0.642398 0.466730i 0.218275 0.975887i \(-0.429957\pi\)
−0.860673 + 0.509158i \(0.829957\pi\)
\(840\) 0 0
\(841\) 23.2361 + 16.8820i 0.801244 + 0.582138i
\(842\) 22.0344 + 16.0090i 0.759357 + 0.551705i
\(843\) 0 0
\(844\) 1.92705 + 5.93085i 0.0663318 + 0.204148i
\(845\) 33.8885 + 24.6215i 1.16580 + 0.847004i
\(846\) 0 0
\(847\) 5.23607 0.179913
\(848\) 9.59017 6.96767i 0.329328 0.239271i
\(849\) 0 0
\(850\) −3.11803 9.59632i −0.106948 0.329151i
\(851\) 0.736068 + 2.26538i 0.0252321 + 0.0776564i
\(852\) 0 0
\(853\) 4.19098 + 12.8985i 0.143497 + 0.441637i 0.996815 0.0797538i \(-0.0254134\pi\)
−0.853318 + 0.521391i \(0.825413\pi\)
\(854\) −7.35410 5.34307i −0.251652 0.182836i
\(855\) 0 0
\(856\) 1.76393 5.42882i 0.0602900 0.185553i
\(857\) −5.60081 + 17.2375i −0.191320 + 0.588823i 0.808680 + 0.588249i \(0.200183\pi\)
−1.00000 0.000573603i \(0.999817\pi\)
\(858\) 0 0
\(859\) 3.61803 2.62866i 0.123446 0.0896886i −0.524349 0.851503i \(-0.675691\pi\)
0.647795 + 0.761815i \(0.275691\pi\)
\(860\) −15.7082 −0.535645
\(861\) 0 0
\(862\) 11.7639 0.400681
\(863\) −2.38197 + 1.73060i −0.0810831 + 0.0589103i −0.627588 0.778545i \(-0.715958\pi\)
0.546505 + 0.837456i \(0.315958\pi\)
\(864\) 0 0
\(865\) −1.88197 + 5.79210i −0.0639888 + 0.196937i
\(866\) −2.58359 + 7.95148i −0.0877940 + 0.270202i
\(867\) 0 0
\(868\) −12.8992 9.37181i −0.437827 0.318100i
\(869\) −12.9787 39.9444i −0.440273 1.35502i
\(870\) 0 0
\(871\) −29.7082 91.4325i −1.00662 3.09807i
\(872\) 2.30902 + 7.10642i 0.0781932 + 0.240654i
\(873\) 0 0
\(874\) 2.30902 1.67760i 0.0781037 0.0567456i
\(875\) −31.2705 −1.05714
\(876\) 0 0
\(877\) −29.3435 21.3193i −0.990858 0.719901i −0.0307493 0.999527i \(-0.509789\pi\)
−0.960109 + 0.279627i \(0.909789\pi\)
\(878\) −7.16312 22.0458i −0.241744 0.744010i
\(879\) 0 0
\(880\) −3.92705 2.85317i −0.132381 0.0961803i
\(881\) −37.0344 26.9071i −1.24772 0.906523i −0.249635 0.968340i \(-0.580310\pi\)
−0.998088 + 0.0618170i \(0.980310\pi\)
\(882\) 0 0
\(883\) 0.600813 + 0.436516i 0.0202190 + 0.0146899i 0.597849 0.801609i \(-0.296022\pi\)
−0.577630 + 0.816299i \(0.696022\pi\)
\(884\) −21.3713 + 15.5272i −0.718795 + 0.522235i
\(885\) 0 0
\(886\) −18.8435 13.6906i −0.633058 0.459944i
\(887\) 3.97871 12.2452i 0.133592 0.411154i −0.861776 0.507289i \(-0.830648\pi\)
0.995368 + 0.0961343i \(0.0306478\pi\)
\(888\) 0 0
\(889\) 14.3992 10.4616i 0.482933 0.350872i
\(890\) −3.11803 + 9.59632i −0.104517 + 0.321669i
\(891\) 0 0
\(892\) −7.94427 24.4500i −0.265994 0.818645i
\(893\) −2.69505 −0.0901864
\(894\) 0 0
\(895\) 31.8885 + 23.1684i 1.06592 + 0.774434i
\(896\) 2.11803 1.53884i 0.0707585 0.0514091i
\(897\) 0 0
\(898\) −2.12868 + 6.55139i −0.0710349 + 0.218623i
\(899\) −3.21478 −0.107219
\(900\) 0 0
\(901\) −50.2148 −1.67290
\(902\) −15.9271 + 10.7391i −0.530313 + 0.357574i
\(903\) 0 0
\(904\) 14.4443 10.4944i 0.480409 0.349038i
\(905\) −9.76393 −0.324564
\(906\) 0 0
\(907\) −12.2639 + 37.7445i −0.407217 + 1.25329i 0.511812 + 0.859097i \(0.328974\pi\)
−0.919030 + 0.394188i \(0.871026\pi\)
\(908\) −15.0902 + 10.9637i −0.500785 + 0.363842i
\(909\) 0 0
\(910\) 8.16312 + 25.1235i 0.270605 + 0.832836i
\(911\) −42.4853 −1.40760 −0.703800 0.710398i \(-0.748515\pi\)
−0.703800 + 0.710398i \(0.748515\pi\)
\(912\) 0 0
\(913\) −14.9164 45.9080i −0.493661 1.51933i
\(914\) −3.30902 + 10.1841i −0.109453 + 0.336860i
\(915\) 0 0
\(916\) 10.6180 0.350830
\(917\) −7.39919 + 22.7724i −0.244343 + 0.752009i
\(918\) 0 0
\(919\) 10.6525 + 32.7849i 0.351393 + 1.08148i 0.958072 + 0.286529i \(0.0925014\pi\)
−0.606679 + 0.794947i \(0.707499\pi\)
\(920\) 2.11803 1.53884i 0.0698295 0.0507341i
\(921\) 0 0
\(922\) 25.1353 + 18.2618i 0.827786 + 0.601421i
\(923\) 19.4443 + 14.1271i 0.640016 + 0.464999i
\(924\) 0 0
\(925\) 2.83688 2.06111i 0.0932761 0.0677690i
\(926\) −5.30902 16.3395i −0.174465 0.536948i
\(927\) 0 0
\(928\) 0.163119 0.502029i 0.00535464 0.0164799i
\(929\) 27.8328 0.913165 0.456583 0.889681i \(-0.349073\pi\)
0.456583 + 0.889681i \(0.349073\pi\)
\(930\) 0 0
\(931\) 0.0795268 0.244758i 0.00260639 0.00802163i
\(932\) −4.10739 12.6412i −0.134542 0.414078i
\(933\) 0 0
\(934\) −28.0000 −0.916188
\(935\) 6.35410 + 19.5559i 0.207801 + 0.639547i
\(936\) 0 0
\(937\) −36.0238 + 26.1728i −1.17685 + 0.855029i −0.991812 0.127703i \(-0.959239\pi\)
−0.185034 + 0.982732i \(0.559239\pi\)
\(938\) 12.4721 38.3853i 0.407230 1.25332i
\(939\) 0 0
\(940\) −2.47214 −0.0806322
\(941\) 24.4164 17.7396i 0.795952 0.578293i −0.113772 0.993507i \(-0.536293\pi\)
0.909724 + 0.415214i \(0.136293\pi\)
\(942\) 0 0
\(943\) −2.85410 9.95959i −0.0929423 0.324329i
\(944\) 5.09017 0.165671
\(945\) 0 0
\(946\) −29.1246 −0.946923
\(947\) 0.0172209 0.0530006i 0.000559605 0.00172229i −0.950776 0.309878i \(-0.899712\pi\)
0.951336 + 0.308156i \(0.0997118\pi\)
\(948\) 0 0
\(949\) 81.6312 59.3085i 2.64986 1.92524i
\(950\) −3.39919 2.46965i −0.110284 0.0801262i
\(951\) 0 0
\(952\) −11.0902 −0.359434
\(953\) −12.2254 37.6260i −0.396020 1.21883i −0.928164 0.372171i \(-0.878613\pi\)
0.532144 0.846654i \(-0.321387\pi\)
\(954\) 0 0
\(955\) 2.50000 7.69421i 0.0808981 0.248979i
\(956\) 20.4443 14.8536i 0.661215 0.480401i
\(957\) 0 0
\(958\) −8.23607 + 25.3480i −0.266095 + 0.818957i
\(959\) 14.3262 + 10.4086i 0.462618 + 0.336112i
\(960\) 0 0
\(961\) −4.92705 + 3.57971i −0.158937 + 0.115475i
\(962\) −7.42705 5.39607i −0.239458 0.173976i
\(963\) 0 0
\(964\) 12.3713 + 8.98829i 0.398453 + 0.289493i
\(965\) −15.8262 11.4984i −0.509465 0.370148i
\(966\) 0 0
\(967\) 9.26393 + 28.5115i 0.297908 + 0.916866i 0.982229 + 0.187686i \(0.0600986\pi\)
−0.684321 + 0.729181i \(0.739901\pi\)
\(968\) 1.61803 + 1.17557i 0.0520056 + 0.0377843i
\(969\) 0 0
\(970\) −8.85410 −0.284288
\(971\) −9.92705 + 7.21242i −0.318574 + 0.231458i −0.735567 0.677452i \(-0.763084\pi\)
0.416993 + 0.908910i \(0.363084\pi\)
\(972\) 0 0
\(973\) −0.190983 0.587785i −0.00612263 0.0188435i
\(974\) −3.87132 11.9147i −0.124045 0.381772i
\(975\) 0 0
\(976\) −1.07295 3.30220i −0.0343443 0.105701i
\(977\) 46.4058 + 33.7158i 1.48465 + 1.07866i 0.976021 + 0.217678i \(0.0698484\pi\)
0.508631 + 0.860984i \(0.330152\pi\)
\(978\) 0 0
\(979\) −5.78115 + 17.7926i −0.184766 + 0.568653i
\(980\) 0.0729490 0.224514i 0.00233027 0.00717184i
\(981\) 0 0
\(982\) 21.4164 15.5599i 0.683425 0.496537i
\(983\) −47.8115 −1.52495 −0.762475 0.647017i \(-0.776016\pi\)
−0.762475 + 0.647017i \(0.776016\pi\)
\(984\) 0 0
\(985\) −5.14590 −0.163962
\(986\) −1.80902 + 1.31433i −0.0576108 + 0.0418567i
\(987\) 0 0
\(988\) −3.39919 + 10.4616i −0.108143 + 0.332829i
\(989\) 4.85410 14.9394i 0.154351 0.475045i
\(990\) 0 0
\(991\) −5.82624 4.23301i −0.185077 0.134466i 0.491389 0.870940i \(-0.336489\pi\)
−0.676466 + 0.736474i \(0.736489\pi\)
\(992\) −1.88197 5.79210i −0.0597525 0.183899i
\(993\) 0 0
\(994\) 3.11803 + 9.59632i 0.0988980 + 0.304377i
\(995\) −3.26393 10.0453i −0.103474 0.318459i
\(996\) 0 0
\(997\) −10.4549 + 7.59594i −0.331110 + 0.240566i −0.740902 0.671614i \(-0.765602\pi\)
0.409791 + 0.912179i \(0.365602\pi\)
\(998\) 33.6869 1.06634
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 738.2.h.b.37.1 4
3.2 odd 2 82.2.d.b.37.1 4
12.11 even 2 656.2.u.b.529.1 4
41.10 even 5 inner 738.2.h.b.379.1 4
123.92 odd 10 82.2.d.b.51.1 yes 4
123.98 odd 10 3362.2.a.h.1.1 2
123.107 odd 10 3362.2.a.e.1.2 2
492.215 even 10 656.2.u.b.625.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
82.2.d.b.37.1 4 3.2 odd 2
82.2.d.b.51.1 yes 4 123.92 odd 10
656.2.u.b.529.1 4 12.11 even 2
656.2.u.b.625.1 4 492.215 even 10
738.2.h.b.37.1 4 1.1 even 1 trivial
738.2.h.b.379.1 4 41.10 even 5 inner
3362.2.a.e.1.2 2 123.107 odd 10
3362.2.a.h.1.1 2 123.98 odd 10