| L(s) = 1 | + 0.618·3-s + (0.5 − 1.53i)5-s + (−2.11 − 1.53i)7-s − 2.61·9-s + (−0.927 − 2.85i)11-s + (−5.04 + 3.66i)13-s + (0.309 − 0.951i)15-s + (−1.30 − 4.02i)17-s + (−1.42 − 1.03i)19-s + (−1.30 − 0.951i)21-s + (−1.30 + 0.951i)23-s + (1.92 + 1.40i)25-s − 3.47·27-s + (−0.163 + 0.502i)29-s + (1.88 + 5.79i)31-s + ⋯ |
| L(s) = 1 | + 0.356·3-s + (0.223 − 0.688i)5-s + (−0.800 − 0.581i)7-s − 0.872·9-s + (−0.279 − 0.860i)11-s + (−1.39 + 1.01i)13-s + (0.0797 − 0.245i)15-s + (−0.317 − 0.977i)17-s + (−0.327 − 0.237i)19-s + (−0.285 − 0.207i)21-s + (−0.272 + 0.198i)23-s + (0.385 + 0.280i)25-s − 0.668·27-s + (−0.0302 + 0.0932i)29-s + (0.338 + 1.04i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 656 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.846 + 0.532i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 656 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.846 + 0.532i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.198126 - 0.687077i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.198126 - 0.687077i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 41 | \( 1 + (-2.19 + 6.01i)T \) |
| good | 3 | \( 1 - 0.618T + 3T^{2} \) |
| 5 | \( 1 + (-0.5 + 1.53i)T + (-4.04 - 2.93i)T^{2} \) |
| 7 | \( 1 + (2.11 + 1.53i)T + (2.16 + 6.65i)T^{2} \) |
| 11 | \( 1 + (0.927 + 2.85i)T + (-8.89 + 6.46i)T^{2} \) |
| 13 | \( 1 + (5.04 - 3.66i)T + (4.01 - 12.3i)T^{2} \) |
| 17 | \( 1 + (1.30 + 4.02i)T + (-13.7 + 9.99i)T^{2} \) |
| 19 | \( 1 + (1.42 + 1.03i)T + (5.87 + 18.0i)T^{2} \) |
| 23 | \( 1 + (1.30 - 0.951i)T + (7.10 - 21.8i)T^{2} \) |
| 29 | \( 1 + (0.163 - 0.502i)T + (-23.4 - 17.0i)T^{2} \) |
| 31 | \( 1 + (-1.88 - 5.79i)T + (-25.0 + 18.2i)T^{2} \) |
| 37 | \( 1 + (-0.454 + 1.40i)T + (-29.9 - 21.7i)T^{2} \) |
| 43 | \( 1 + (-7.85 + 5.70i)T + (13.2 - 40.8i)T^{2} \) |
| 47 | \( 1 + (1.23 - 0.898i)T + (14.5 - 44.6i)T^{2} \) |
| 53 | \( 1 + (-3.66 + 11.2i)T + (-42.8 - 31.1i)T^{2} \) |
| 59 | \( 1 + (4.11 - 2.99i)T + (18.2 - 56.1i)T^{2} \) |
| 61 | \( 1 + (-2.80 - 2.04i)T + (18.8 + 58.0i)T^{2} \) |
| 67 | \( 1 + (-4.76 + 14.6i)T + (-54.2 - 39.3i)T^{2} \) |
| 71 | \( 1 + (1.19 + 3.66i)T + (-57.4 + 41.7i)T^{2} \) |
| 73 | \( 1 + 16.1T + 73T^{2} \) |
| 79 | \( 1 + 14T + 79T^{2} \) |
| 83 | \( 1 - 16.0T + 83T^{2} \) |
| 89 | \( 1 + (-5.04 - 3.66i)T + (27.5 + 84.6i)T^{2} \) |
| 97 | \( 1 + (-1.69 + 5.20i)T + (-78.4 - 57.0i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.03012235602856444129020250693, −9.144277665720754240025190971444, −8.751753305470974191666508667332, −7.49618144751831945385636116508, −6.71924507562127281698122708415, −5.55304768031695424281329528275, −4.66548591365412410503772717515, −3.38587787620042086336912469204, −2.33799637269863992992477029222, −0.33305462174410690175554500507,
2.47235359717407633437703381890, 2.84549539760076544214068257938, 4.36230293429045609439605358518, 5.68105442655202632484546209493, 6.33385835615241441413053247641, 7.47172022832058707518111494583, 8.225040895131857858780139775043, 9.305752928460447467533371408710, 10.01403180313552472472262940417, 10.66346845852499884609828263822