Properties

Label 650.6.b.f
Level 650650
Weight 66
Character orbit 650.b
Analytic conductor 104.249104.249
Analytic rank 00
Dimension 44
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [650,6,Mod(599,650)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("650.599"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(650, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 6, names="a")
 
Level: N N == 650=25213 650 = 2 \cdot 5^{2} \cdot 13
Weight: k k == 6 6
Character orbit: [χ][\chi] == 650.b (of order 22, degree 11, not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,-64,0,-48,0,0,356] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 104.249482878104.249482878
Analytic rank: 00
Dimension: 44
Coefficient field: Q(i,145)\Q(i, \sqrt{145})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x4+73x2+1296 x^{4} + 73x^{2} + 1296 Copy content Toggle raw display
Coefficient ring: Z[a1,,a13]\Z[a_1, \ldots, a_{13}]
Coefficient ring index: 22 2^{2}
Twist minimal: no (minimal twist has level 130)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q4β1q2+(β23β1)q316q4+(4β312)q6+(β2+65β1)q7+64β1q8+(6β3+89)q9+(30β3+102)q11+(16β2+48β1)q12++(3282β3+35178)q99+O(q100) q - 4 \beta_1 q^{2} + (\beta_{2} - 3 \beta_1) q^{3} - 16 q^{4} + (4 \beta_{3} - 12) q^{6} + (\beta_{2} + 65 \beta_1) q^{7} + 64 \beta_1 q^{8} + (6 \beta_{3} + 89) q^{9} + (30 \beta_{3} + 102) q^{11} + ( - 16 \beta_{2} + 48 \beta_1) q^{12}+ \cdots + (3282 \beta_{3} + 35178) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q64q448q6+356q9+408q11+1040q14+1024q16224q19+200q21+768q24+2704q26+13624q29640q313232q345696q36+2028q39++140712q99+O(q100) 4 q - 64 q^{4} - 48 q^{6} + 356 q^{9} + 408 q^{11} + 1040 q^{14} + 1024 q^{16} - 224 q^{19} + 200 q^{21} + 768 q^{24} + 2704 q^{26} + 13624 q^{29} - 640 q^{31} - 3232 q^{34} - 5696 q^{36} + 2028 q^{39}+ \cdots + 140712 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x4+73x2+1296 x^{4} + 73x^{2} + 1296 : Copy content Toggle raw display

β1\beta_{1}== (ν3+37ν)/36 ( \nu^{3} + 37\nu ) / 36 Copy content Toggle raw display
β2\beta_{2}== (ν3+109ν)/36 ( \nu^{3} + 109\nu ) / 36 Copy content Toggle raw display
β3\beta_{3}== 2ν2+73 2\nu^{2} + 73 Copy content Toggle raw display
ν\nu== (β2β1)/2 ( \beta_{2} - \beta_1 ) / 2 Copy content Toggle raw display
ν2\nu^{2}== (β373)/2 ( \beta_{3} - 73 ) / 2 Copy content Toggle raw display
ν3\nu^{3}== (37β2+109β1)/2 ( -37\beta_{2} + 109\beta_1 ) / 2 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/650Z)×\left(\mathbb{Z}/650\mathbb{Z}\right)^\times.

nn 2727 301301
χ(n)\chi(n) 1-1 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
599.1
6.52080i
5.52080i
5.52080i
6.52080i
4.00000i 15.0416i −16.0000 0 −60.1664 52.9584i 64.0000i 16.7504 0
599.2 4.00000i 9.04159i −16.0000 0 36.1664 77.0416i 64.0000i 161.250 0
599.3 4.00000i 9.04159i −16.0000 0 36.1664 77.0416i 64.0000i 161.250 0
599.4 4.00000i 15.0416i −16.0000 0 −60.1664 52.9584i 64.0000i 16.7504 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 650.6.b.f 4
5.b even 2 1 inner 650.6.b.f 4
5.c odd 4 1 130.6.a.c 2
5.c odd 4 1 650.6.a.f 2
20.e even 4 1 1040.6.a.c 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
130.6.a.c 2 5.c odd 4 1
650.6.a.f 2 5.c odd 4 1
650.6.b.f 4 1.a even 1 1 trivial
650.6.b.f 4 5.b even 2 1 inner
1040.6.a.c 2 20.e even 4 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T34+308T32+18496 T_{3}^{4} + 308T_{3}^{2} + 18496 acting on S6new(650,[χ])S_{6}^{\mathrm{new}}(650, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T2+16)2 (T^{2} + 16)^{2} Copy content Toggle raw display
33 T4+308T2+18496 T^{4} + 308 T^{2} + 18496 Copy content Toggle raw display
55 T4 T^{4} Copy content Toggle raw display
77 T4+8740T2+16646400 T^{4} + 8740 T^{2} + 16646400 Copy content Toggle raw display
1111 (T2204T120096)2 (T^{2} - 204 T - 120096)^{2} Copy content Toggle raw display
1313 (T2+28561)2 (T^{2} + 28561)^{2} Copy content Toggle raw display
1717 T4++18052947263376 T^{4} + \cdots + 18052947263376 Copy content Toggle raw display
1919 (T2+112T451584)2 (T^{2} + 112 T - 451584)^{2} Copy content Toggle raw display
2323 T4++11405101596736 T^{4} + \cdots + 11405101596736 Copy content Toggle raw display
2929 (T26812T+5566516)2 (T^{2} - 6812 T + 5566516)^{2} Copy content Toggle raw display
3131 (T2+320T122880)2 (T^{2} + 320 T - 122880)^{2} Copy content Toggle raw display
3737 T4++138282641684496 T^{4} + \cdots + 138282641684496 Copy content Toggle raw display
4141 (T2+35080T+307623180)2 (T^{2} + 35080 T + 307623180)^{2} Copy content Toggle raw display
4343 T4++16 ⁣ ⁣56 T^{4} + \cdots + 16\!\cdots\!56 Copy content Toggle raw display
4747 T4++93 ⁣ ⁣56 T^{4} + \cdots + 93\!\cdots\!56 Copy content Toggle raw display
5353 T4++20 ⁣ ⁣96 T^{4} + \cdots + 20\!\cdots\!96 Copy content Toggle raw display
5959 (T221888T7262784)2 (T^{2} - 21888 T - 7262784)^{2} Copy content Toggle raw display
6161 (T2+41272T259465524)2 (T^{2} + 41272 T - 259465524)^{2} Copy content Toggle raw display
6767 T4++67 ⁣ ⁣00 T^{4} + \cdots + 67\!\cdots\!00 Copy content Toggle raw display
7171 (T2+15480T3478614400)2 (T^{2} + 15480 T - 3478614400)^{2} Copy content Toggle raw display
7373 T4++80 ⁣ ⁣96 T^{4} + \cdots + 80\!\cdots\!96 Copy content Toggle raw display
7979 (T2+27208T3741765504)2 (T^{2} + 27208 T - 3741765504)^{2} Copy content Toggle raw display
8383 T4++14 ⁣ ⁣00 T^{4} + \cdots + 14\!\cdots\!00 Copy content Toggle raw display
8989 (T268132T+90877236)2 (T^{2} - 68132 T + 90877236)^{2} Copy content Toggle raw display
9797 T4++77 ⁣ ⁣16 T^{4} + \cdots + 77\!\cdots\!16 Copy content Toggle raw display
show more
show less