gp: [N,k,chi] = [650,6,Mod(599,650)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("650.599");
S:= CuspForms(chi, 6);
N := Newforms(S);
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(650, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([1, 0]))
N = Newforms(chi, 6, names="a")
Newform invariants
sage: traces = [4,0,0,-64,0,-48,0,0,356]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a basis 1 , β 1 , β 2 , β 3 1,\beta_1,\beta_2,\beta_3 1 , β 1 , β 2 , β 3 for the coefficient ring described below.
We also show the integral q q q -expansion of the trace form .
Basis of coefficient ring in terms of a root ν \nu ν of
x 4 + 73 x 2 + 1296 x^{4} + 73x^{2} + 1296 x 4 + 7 3 x 2 + 1 2 9 6
x^4 + 73*x^2 + 1296
:
β 1 \beta_{1} β 1 = = =
( ν 3 + 37 ν ) / 36 ( \nu^{3} + 37\nu ) / 36 ( ν 3 + 3 7 ν ) / 3 6
(v^3 + 37*v) / 36
β 2 \beta_{2} β 2 = = =
( ν 3 + 109 ν ) / 36 ( \nu^{3} + 109\nu ) / 36 ( ν 3 + 1 0 9 ν ) / 3 6
(v^3 + 109*v) / 36
β 3 \beta_{3} β 3 = = =
2 ν 2 + 73 2\nu^{2} + 73 2 ν 2 + 7 3
2*v^2 + 73
ν \nu ν = = =
( β 2 − β 1 ) / 2 ( \beta_{2} - \beta_1 ) / 2 ( β 2 − β 1 ) / 2
(b2 - b1) / 2
ν 2 \nu^{2} ν 2 = = =
( β 3 − 73 ) / 2 ( \beta_{3} - 73 ) / 2 ( β 3 − 7 3 ) / 2
(b3 - 73) / 2
ν 3 \nu^{3} ν 3 = = =
( − 37 β 2 + 109 β 1 ) / 2 ( -37\beta_{2} + 109\beta_1 ) / 2 ( − 3 7 β 2 + 1 0 9 β 1 ) / 2
(-37*b2 + 109*b1) / 2
Character values
We give the values of χ \chi χ on generators for ( Z / 650 Z ) × \left(\mathbb{Z}/650\mathbb{Z}\right)^\times ( Z / 6 5 0 Z ) × .
n n n
27 27 2 7
301 301 3 0 1
χ ( n ) \chi(n) χ ( n )
− 1 -1 − 1
1 1 1
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
T 3 4 + 308 T 3 2 + 18496 T_{3}^{4} + 308T_{3}^{2} + 18496 T 3 4 + 3 0 8 T 3 2 + 1 8 4 9 6
T3^4 + 308*T3^2 + 18496
acting on S 6 n e w ( 650 , [ χ ] ) S_{6}^{\mathrm{new}}(650, [\chi]) S 6 n e w ( 6 5 0 , [ χ ] ) .
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
( T 2 + 16 ) 2 (T^{2} + 16)^{2} ( T 2 + 1 6 ) 2
(T^2 + 16)^2
3 3 3
T 4 + 308 T 2 + 18496 T^{4} + 308 T^{2} + 18496 T 4 + 3 0 8 T 2 + 1 8 4 9 6
T^4 + 308*T^2 + 18496
5 5 5
T 4 T^{4} T 4
T^4
7 7 7
T 4 + 8740 T 2 + 16646400 T^{4} + 8740 T^{2} + 16646400 T 4 + 8 7 4 0 T 2 + 1 6 6 4 6 4 0 0
T^4 + 8740*T^2 + 16646400
11 11 1 1
( T 2 − 204 T − 120096 ) 2 (T^{2} - 204 T - 120096)^{2} ( T 2 − 2 0 4 T − 1 2 0 0 9 6 ) 2
(T^2 - 204*T - 120096)^2
13 13 1 3
( T 2 + 28561 ) 2 (T^{2} + 28561)^{2} ( T 2 + 2 8 5 6 1 ) 2
(T^2 + 28561)^2
17 17 1 7
T 4 + ⋯ + 18052947263376 T^{4} + \cdots + 18052947263376 T 4 + ⋯ + 1 8 0 5 2 9 4 7 2 6 3 3 7 6
T^4 + 8660968*T^2 + 18052947263376
19 19 1 9
( T 2 + 112 T − 451584 ) 2 (T^{2} + 112 T - 451584)^{2} ( T 2 + 1 1 2 T − 4 5 1 5 8 4 ) 2
(T^2 + 112*T - 451584)^2
23 23 2 3
T 4 + ⋯ + 11405101596736 T^{4} + \cdots + 11405101596736 T 4 + ⋯ + 1 1 4 0 5 1 0 1 5 9 6 7 3 6
T^4 + 6822932*T^2 + 11405101596736
29 29 2 9
( T 2 − 6812 T + 5566516 ) 2 (T^{2} - 6812 T + 5566516)^{2} ( T 2 − 6 8 1 2 T + 5 5 6 6 5 1 6 ) 2
(T^2 - 6812*T + 5566516)^2
31 31 3 1
( T 2 + 320 T − 122880 ) 2 (T^{2} + 320 T - 122880)^{2} ( T 2 + 3 2 0 T − 1 2 2 8 8 0 ) 2
(T^2 + 320*T - 122880)^2
37 37 3 7
T 4 + ⋯ + 138282641684496 T^{4} + \cdots + 138282641684496 T 4 + ⋯ + 1 3 8 2 8 2 6 4 1 6 8 4 4 9 6
T^4 + 152733448*T^2 + 138282641684496
41 41 4 1
( T 2 + 35080 T + 307623180 ) 2 (T^{2} + 35080 T + 307623180)^{2} ( T 2 + 3 5 0 8 0 T + 3 0 7 6 2 3 1 8 0 ) 2
(T^2 + 35080*T + 307623180)^2
43 43 4 3
T 4 + ⋯ + 16 ⋯ 56 T^{4} + \cdots + 16\!\cdots\!56 T 4 + ⋯ + 1 6 ⋯ 5 6
T^4 + 261092788*T^2 + 16214410036385856
47 47 4 7
T 4 + ⋯ + 93 ⋯ 56 T^{4} + \cdots + 93\!\cdots\!56 T 4 + ⋯ + 9 3 ⋯ 5 6
T^4 + 291823812*T^2 + 9394419956633856
53 53 5 3
T 4 + ⋯ + 20 ⋯ 96 T^{4} + \cdots + 20\!\cdots\!96 T 4 + ⋯ + 2 0 ⋯ 9 6
T^4 + 1041819592*T^2 + 204166647637057296
59 59 5 9
( T 2 − 21888 T − 7262784 ) 2 (T^{2} - 21888 T - 7262784)^{2} ( T 2 − 2 1 8 8 8 T − 7 2 6 2 7 8 4 ) 2
(T^2 - 21888*T - 7262784)^2
61 61 6 1
( T 2 + 41272 T − 259465524 ) 2 (T^{2} + 41272 T - 259465524)^{2} ( T 2 + 4 1 2 7 2 T − 2 5 9 4 6 5 5 2 4 ) 2
(T^2 + 41272*T - 259465524)^2
67 67 6 7
T 4 + ⋯ + 67 ⋯ 00 T^{4} + \cdots + 67\!\cdots\!00 T 4 + ⋯ + 6 7 ⋯ 0 0
T^4 + 5457234260*T^2 + 6757916624544462400
71 71 7 1
( T 2 + 15480 T − 3478614400 ) 2 (T^{2} + 15480 T - 3478614400)^{2} ( T 2 + 1 5 4 8 0 T − 3 4 7 8 6 1 4 4 0 0 ) 2
(T^2 + 15480*T - 3478614400)^2
73 73 7 3
T 4 + ⋯ + 80 ⋯ 96 T^{4} + \cdots + 80\!\cdots\!96 T 4 + ⋯ + 8 0 ⋯ 9 6
T^4 + 4717280872*T^2 + 802609152013470096
79 79 7 9
( T 2 + 27208 T − 3741765504 ) 2 (T^{2} + 27208 T - 3741765504)^{2} ( T 2 + 2 7 2 0 8 T − 3 7 4 1 7 6 5 5 0 4 ) 2
(T^2 + 27208*T - 3741765504)^2
83 83 8 3
T 4 + ⋯ + 14 ⋯ 00 T^{4} + \cdots + 14\!\cdots\!00 T 4 + ⋯ + 1 4 ⋯ 0 0
T^4 + 1066182740*T^2 + 142979786127822400
89 89 8 9
( T 2 − 68132 T + 90877236 ) 2 (T^{2} - 68132 T + 90877236)^{2} ( T 2 − 6 8 1 3 2 T + 9 0 8 7 7 2 3 6 ) 2
(T^2 - 68132*T + 90877236)^2
97 97 9 7
T 4 + ⋯ + 77 ⋯ 16 T^{4} + \cdots + 77\!\cdots\!16 T 4 + ⋯ + 7 7 ⋯ 1 6
T^4 + 26297184328*T^2 + 77216919039228166416
show more
show less